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1 Introduction

Macroeconomic time series such as total unemployment or total industrial produc-

tion concern data which are aggregated across regions, sectors, or age categories. In

this paper we examine if it can be beneficial to forecast these aggregates using models

for the disaggregate series when available. Often, macroeconomic variables display

nonlinear features, regime-switching behaviour in particular. If the disaggregate se-

ries show such nonlinearity it may then be unclear what the dynamic properties of

the aggregated series are, see Granger and Lee (1999). Hence, aggregating forecasts

for regions or sectors to a forecast of the macro series may lead to more accurate

forecasts than when a model for the aggregate is considered. This is the key issue

examined in this paper.

The analysis is motivated by an empirical application to forecasting the aggre-

gate US coincident index, making use of the underlying state-specific series recently

constructed by Crone and Clayton-Matthews (2004). These measures of economic

activity often display regime-switching behaviour, with different dynamics in busi-

ness cycle recessions and expansions. To capture this nonlinear feature we employ

models of the two-regime smooth transition autoregressive [STAR] type. While US

states obviously are closely related, they may differ with respect to timing and the

duration of recessions, see Owyang et al. (2004) for example. Hence we put forward

a panel version of the STAR model, allowing the parameters that govern the regime-

switching to differ across states. To achieve parsimony and to facilitate interpretation

of the model parameters, we impose some structure on these parameters. In partic-

ular, we assume that these parameters can partly be explained by characteristics of

the particular states. As such, our model contains two levels and hence we call it

a multi-level panel STAR model. A basic version of this model has been proposed

in Fok et al. (2005), but here we extend it to allow for multiple variables indicating

the regime. Furthermore, we explicitly focus on forecasting aggregate data. For
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that purpose, we supplement our empirical evidence with simulation experiments,

confirming that using disaggregate data might indeed by beneficial.

The outline of our paper is as follows. In Section 2 we discuss the components of

the multi-level panel STAR model. In the same section we also outline the estima-

tion method based on Simulated Maximum Likelihood. In Section 3 we elaborate

on the way forecasts can be generated from our model. Given that our empirical

application concerns economic activity at the national level and at the disaggregated

state level, we consider the construction of forecasts (i) in case a model is constructed

for the aggregate growth rate and forecasts are generated from this model, (ii) in

case state-specific models are considered, from which forecasts are created for state-

specific growth that are then aggregated to an aggregate growth forecast, and (iii)

in case we rely on our panel model for the state-level growth rates for generating

forecasts for aggregate growth. Naturally, the advantage of the first approach is sim-

plicity, although information contained in the disaggregate series is not taken into

account. Case (ii) seems a natural way to go, but it may lack efficiency as it ignores

any linkages across states. In addition, it may be that STAR type models cannot

be fitted easily to all disaggregate series. To alleviate this drawback, our proposal

(iii) is to introduce a second level in a panel model, where this level contains a de-

scription of the parameters in the regime-switching mechanism, as these parameters

are notoriously difficult to estimate. Before we turn to our empirical illustration,

we perform simulation experiments and report on their outcomes in Section 4. In

Section 5 we then consider the state-level coincident indexes, and show that fore-

casts for aggregate economic activity are improved by employing disaggregate data.

Section 6 concludes this paper with some suggestions for further work.
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2 A multi-level panel STAR model with multiple

leading indicators

In this section we present the multi-level panel smooth transition autoregressive

[STAR] model. First, we discuss the univariate model for an individual series, see

also Granger and Teräsvirta (1993), Teräsvirta (1994), Franses and van Dijk (2000),

and van Dijk, Teräsvirta and Franses (2002). The use of multiple business cycle

indicators is not standard in the STAR model, hence we pay special attention to

this feature of the model. Next, we discuss the panel version of the model. The

presentation of the model is geared towards our empirical application to state-level

output growth rates, but obviously it can be applied in different contexts as well.

2.1 Univariate STAR model with multiple indicators

Let Yi,t denote the level of economic activity for state i = 1, . . . , N at time t =

1, . . . , T , such that the (one-period) growth rate can be defined as yi,t = log Yi,t −

log Yi,t−1. The basic STAR model assumes the existence of two regimes in the series

yi,t. Within each regime, the dynamics of the time series can be adequately described

by means of a linear AR model. The autoregressive coefficients are allowed to differ

across regimes though. In the context of output growth rates, the two model regimes

usually are intended to correspond with the main business cycle phases, recessions

and expansions. Transitions between these two states are governed by a continuous

switching function, denoted by G(zt;πi, γi, τi), taking on values between 0 and 1.

The value of G() depends on a vector of observable leading indicator variables zt =

(zt,1, . . . , zt,K)
′ and on the parameters πi, γi and τi. We discuss the parameters of

the switching function in detail below. Note that, contrary to the typical STAR

model, we allow the switching function to depend on K > 1 indicators.

From the above it follows that the STAR model for the growth rate in state i
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reads

yi,t = α′ixi,t + β′ixi,tG(zt;πi, γi, τi) + εi,t, (1)

where xi,t = (1, yi,t−1, . . . , yi,t−Pi
)′, αi = (αi,0, αi,1, . . . , αi,Pi

)′, βi is similarly defined,

and the properties of εi,t are discussed in detail below. The AR order for state i

is given by Pi. In case G() equals 0 the model implies an AR process for yi,t with

parameters αi, for G() equal to 1 we have an AR process with parameters αi + βi.

For the switching function we use the logistic function

G(zt;πi, γi, τi) =
1

1 + exp(−γi(π′izt − τi))
, (2)

with γi > 0 and πi = (πi,1, . . . , πi,K)
′. The value of the switching function ranges be-

tween 0 for very small values of the linear combination of the leading indicators π ′izt

to 1 for very large values of π′izt, where “small” and “large” are defined relative

to the threshold value τi. The importance weight of indicator k for state i is given

by πi,k. Through these weights we effectively allow different states to respond to (a

combination of) different leading indicators. The speed of transition from one state

of the economy to the other is captured by γi. For larger values of γi, regime-switches

occur more rapidly.

For identification and interpretation purposes, we impose the parameter restric-

tions γi > 0,
∑K

k=1 πi,k = 1 and πi,k ≥ 0. By restricting πi,k to be positive we require

all indicators to have the same qualitative relation with the business cycle, in the

sense that large values of each indicator should correspond with the same state of

the economy. Note that this of course does not rule out any indicator a priori, as

one can always take minus one times the indicator instead. For estimation purposes,

we reparameterize the indicator weights using a logit transformation,

πi,k =
exp(ui,k)∑K
j=1 exp(ui,j)

, (3)

where ui,1 = 0 for identification. The advantage of this specification is that ui =

(ui,2, . . . , ui,K)
′ can be left unrestricted, while the restrictions imposed on πi,k will
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be satisfied automatically.

Model (1) can be generalized further by allowing for additional regressors, de-

noted by vt, with parameters that are independent of the business cycle, that is,

yi,t = λ′ivt +α′ixi,t + β′ixi,tG(zt;πi, γi, τi) + εi,t. (4)

Oftentimes, one includes the business cycle indicators as linear explanatory variables,

that is, vt = zt. This is also what we will do in the empirical section of this paper.

We assume that the error terms in (4) are martingale difference series, that

is, E[εi,t|vt, yi,t−1, yi,t−2, . . . , yi,t−Pi
] = 0. The conditional variance of the errors is

constant over time and equal to σ2
i . Finally, the errors are independent across

states. To be precise, we assume that any correlation that may exist across states

can be explained by the common exogenous variables vt in (4).

2.2 Multi-level panel STAR model

If one opts to estimate STAR models for each individual state separately, (2) and

(4) specify the complete model. However, as mentioned before, estimating state-

specific STAR models may be difficult in practice due to outliers or a small number

of observations in one of the regimes. Furthermore, it seems plausible that similar

states will show similar business cycle patterns, that is, similar switching parameters.

The use of this information may lead to improved forecasting performance. To

incorporate this, we introduce a second-level model relating the switching parameters

to observable state characteristics (or other exogenous regressors), that is,



log(γi)
τi
ui


 = δ′wi + ηi, ηi ∼ N(0,Ση), (5)

with wi a (Q × 1) vector consisting of a constant and Q characteristics of state i,

δ a ((1 +Q)× (1 +K)) matrix of unknown coefficients, and ηi a vector of random

effects. Note that by modeling log(γi) we naturally obtain that γi > 0.
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The panel STAR model given by (2), (4) and (5) is somewhere in between a fully

pooled model and a fully heterogeneous model, where the switching parameters are

estimated separately for each state. Both alternative specifications can be seen as

extreme cases of (5). The pooled model is obtained by setting wi = 1 and Ση = 0,

the other extreme corresponds to including state dummies in wi.

2.3 Parameter estimation

Parameter estimation of the panel model in (4) and (5) is a straightforward extension

of the method outlined in Fok et al. (2005). The extension to multiple indicators

does not change the estimation procedure to a large extent. For completeness we

briefly present the estimation procedure here, for a more detailed discussion we refer

to Fok et al. (2005).

The complete model for state i = 1, . . . , I reads

yi,t = λ′ivt +α′ixi,t + β′ixi,tG(zt; γi, τi,ui) + εi,t,

log(γi)
τi
ui


 = δ′wi + ηi, ηi ∼ N(0,Ση), εi,t ∼ N(0, σ2

i ).
(6)

The likelihood function for this model equals

L =
N∏

i=1

Li =
∏

i

∫

ηi

T∏

t=1

φ(ei,t(λi,αi,βi, δ
′wi + ηi); 0, σ

2
i )φ(ηi;0,Ση)dηi, (7)

where we (implicitly) condition on initial observations (yi,1−Pi
, . . . , yi,0). Further-

more, φ(x;µ,Σ) denotes the (K + 1)-variate normal density function with mean µ

and covariance matrix Σ evaluated at x and

ei,t(λi,αi,βi,θi) = yi,t − λ
′
ivt −α

′
ixi,t − β

′
ixi,tG(zt; γi, τi,ui) (8)

gives the error for sector i and period t, given the parameters λi, αi and βi, and

the switching parameters θi = (log(γi), τi,u
′
i)
′.

Parameter estimation is done through concentrated simulated maximum likeli-

hood. We use simulation to calculate the likelihood (7) and concentrate it with
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respect to the parameters in the first level model (λi,αi,βi, σ
2
i , i = 1, . . . , I). The

simulated likelihood contribution of state i is

L̃i =
1

L

L∑

l=1

∏

t

φ(ei,t(λi,αi,βi, δ
′wi +Σ

1/2
η η̃i,l); 0, σ

2
i )

=
1

L

L∑

l=1

∏

t

φ(ei,t,l; 0, σ
2
i ),

(9)

where we use the shorthand notation ei,t,l to denote the residual for state i at time t

conditional on the l-th draw of the random effects, η̃i,l ∼ N(0, I), l = 1, . . . , L. For

the concentration step we need to solve maxλi,αi,βi,σ
2
i
L̃i. One can show that the first

order conditions for max L̃i are

1

L

∑

l

∑

t

wi,l
ei,t,l

σ2
i

xi,t,l = 0 and

1

L

∑

l

∑

t

wi,l

2σ2
i

(
e2
i,t,l

σ2
i

− 1) = 0,

(10)

where 0 denotes a vector of zeros and

xi,t,l = (v′t, [1, G(zt; δ
′wi +Σ

1/2
η η̃i,l)]⊗ x

′
i,t)

′,

wi,l =
∏

t

φ(ei,t,l; 0, σ
2
i )

(11)

The expressions in (10) bear close resemblance to weighted least squares [WLS],

although here a complication arises due to the fact that the weights wi,l depend on

the parameter values. Following this observation, (10) can be solved by iterating

between WLS and updating the weights. Denoting xi,l = (xi,1,l, . . . ,xi,T,l)
′ and

yi = (yi,1, . . . , yi,T )
′ , we alternate between



λ̂i
α̂i

β̂i


 =

(
1

L

L∑

l=1

wi,lx
′
i,lxi,l

)−1(
1

L

L∑

l=1

wi,lx
′
i,lyi

)
(12)

σ̂2
i =

1
L

∑
l

∑
twi,lei,t,l

T
L

∑
l wi,l

. (13)

and updating the weights according to (11). After convergence we have the opti-

mal AR parameters conditional on the switching parameters. Using these optimal
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parameters we calculate the (log) concentrated likelihood function which is in turn

(numerically) optimized to obtain estimates of the switching parameters.

The resulting Simulated Maximum Likelihood estimator is consistent for N →∞

and L→∞, see Hajivassiliou and Ruud (1994). The asymptotic covariance matrix

can be estimated through the Hessian of the log concentrated likelihood, see Davidson

and MacKinnon (1993). The estimated covariance matrix equals

V̂ar(ϑ) =

(
−
∂2 logLc

∂ϑ∂ϑ′

)−1

(14)

where ϑ contains the parameters in δ and Ση and where Lc denotes the concentrated

likelihood function.

3 Forecasting

In this section we discuss forecasting growth rates and levels using the multi-level

panel STAR model. First, we consider forecasts for a single state. In Section 3.2 we

present forecasts for the aggregate series.

3.1 Forecasting using panel STAR model

In the panel STAR model it is not possible to obtain forecasts of the state-level

growth rates or the level of the underlying series directly from the estimated param-

eters. The complicating factor is that one needs to calculate the expected value of

yi,t over the random terms εi,t and ηi, where this expectation is usually calculated

conditional on the observed series.

Denoting the relevant information set by Ωt−1, to obtain (one-step ahead) fore-

casts of the level Yi,t we have to calculate

Ŷi,t = E[exp(yi,t)Yi,t−1|Ωt−1] = Eηi
[Eεi,t

[exp(yi,t)|ηi,Ωt−1]|Ωt−1]Yi,t−1

= Eηi
[exp(λivt +αixi,t + βixi,tG(zt; γi, τi,ui) +

1
2
σ2
i )|Ωt−1]Yi,t−1.

(15)
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For forecasts of the growth rates we need

ŷi,t = E[yi,t|Ωt−1] = Eηi
[Eεi,t

[yi,t|ηi,Ωt−1]|Ωt−1]

= λivt +αixi,t + βixi,tEηi
[G(zt; γi, τi,ui)|Ωt−1].

(16)

Both forecasts require computing the (conditional) expectation of a complex function

of the random effects (ηi). The expression for such an expectation conditional on

the complete series yi can be found in Fok et al. (2005), and is restated here

Eηi
[f(ηi)|yi] =

∫

ηi

f(ηi)g(ηi|yi)dηi

=

∫
ηi
f(ηi)g(yi|ηi)φ(ηi;0,Ση)dηi∫
ηi
g(yi|ηi)φ(ηi;0,Ση)dηi

=
1
L

∑
l f(η̃i,l)wi,l

1
L

∑
l wi,l

, (17)

where f() denotes a function of ηi, and, as before, η̃i,l ∼ N(0, I) and the weights

wi,l as defined in (11), g(x|z) denotes the density function of x given z.

3.2 Forecasting aggregate growth

Denote the aggregate, national measure of economic activity as Ỹt =
∑

iwiYi,t where

wi denotes the constant and exogenous weight of state i in the total economy. The

growth rate of aggregate output is given by ỹt = log Ỹt − log Ỹt−1.

Forecasts of Ỹt are easily obtained from forecasts of the state-level series, that

is, ̂̃Y t = E[Ỹt|Ωt−1] =
∑

iwiE[Yi,t|Ωt−1] =
∑

iwiŶi,t. However, usually forecasts of

the growth rate ỹt are desired. In case models for the disaggregate growth rates

are considered it is not straightforward to convert the resulting state-level growth

forecasts into forecasts of the aggregate growth rate. To see this, consider the one-

step ahead forecast

E[ỹt|Ωt−1] = E[log Ỹt|Ωt−1]− log Ỹt−1 = E[log
N∑

i=1

wiYi,t|Ωt−1]− log Ỹt−1

= E[log
N∑

i=1

wiYi,t−1 exp(yi,t)|Ωt−1]− log Ỹt−1

(18)
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In (18) only the yi,t variables are unknown. However, the transformation of forecasts

of yi,t to the forecast of the aggregate growth rate is nonlinear. To appropriately

evaluate this expectation one would again have to rely on simulation, that is,

E[ỹt|Ωt−1] = lim
L→∞

1

L

L∑

l=1

(
log

N∑

i=1

wiYi,t−1 exp(yi,t,l)

)
− log Ỹt−1, (19)

where yi,t,l denotes a simulated value from the distribution of yi,t conditional on Ωt−1.

A forecast of the aggregate growth rate may then be obtained by dropping the limit

in (19) and setting L to a relatively large number. Using the same arguments as in

(17) one can show that forecasts can be obtained as

̂̃yt =
1
L

∑
l

(
log
∑N

i=1wiYi,t−1 exp(yi,t,l)
)∏N

i=1 wi,l

1
L

∑
l

∏N
i=1 wi,l

− log Ỹt−1, (20)

where yi,t,l now equals λ′ivt +α′ixi,t + β′ixi,tG(zt; δ
′wi +Σ

1/2
η η̃i,l).

It is important to note that the simulation weights wi,l enter (20) in a multi-

plicative way. Simulation noise is therefore amplified. It turns out that an excessive

amount of simulations L is required to obtain relatively noise-free forecasts. Further-

more, in practice it may be that the gain of the simulation is very small. We suggest

that instead one considers forecasting the aggregate growth rate by transforming

forecasted levels, that is,

̂̃yt = log ̂̃Y t − log Ỹt−1. (21)

4 Simulation experiment

In this section we discuss a limited simulation experiment, which is meant to illus-

trate the potential benefits from considering a panel of nonlinear time series when

the main interest is in obtaining forecasts of the aggregate. We generate 25 panel

data sets, estimate the various possible models and forecast individual growth rates,

aggregate growth rates and the aggregate level. We choose a setting similar to our

empirical application, that is, N = 50, T = 264 and we leave out 50 observations for
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the out-of-sample forecast comparison. The estimation of our panel STAR model is

very time consuming, therefore we only use a relatively small number of replications.

For each replication, we randomly generate the model parameters. The data

generating process [DGP] is given by (6), where

αi = |0.5 + 0.25ξi|, ξi ∼ N(0, 1)

βi = −|1.5 + 0.25νi|, νi ∼ N(0, 1)

σ2
i = |3 + ζi|, ζi ∼ N(0, 1)

δ = (1, 0)′

Ση =

(
2 0
0 1

)
,

(22)

where the parameters refer to (6). As leading indicator we use the most recent

observations of the term spread (see Section 5), standardized to have mean 0 and

standard deviation 2. To be specific, for the in-sample period we use the term spread

from 1977:11 - 1999:10 and for the out-of-sample period we use 1999:11-2003:12. We

use a standard deviation of 2 for the indicator to allow for a wide range of values

of the threshold τ . Note that for a proper STAR model the value of τ better not

be close to the minimum or maximum values of the leading indicator. We have

selected the DGP in such a way that values of the switching function G() close to

1 correspond to periods of a recession. In these periods the growth rate of ‘state’

i equals αi + βi, while in expansion periods the growth rate equals αi. The DGP

further implies that, on average, the negative growth rate in recessions is (in absolute

value) larger than the growth rate in expansions.

Results are presented in Table 1. To forecast individual growth rates, the use

of separate univariate STAR models for each series gives the best results. This was

to be expected as the individual growth rates were also generated as independent

STAR models. As long as the simulated series are informative enough to estimate

the model parameters, reasonably accurate forecasts will result from independent

STAR models. Note, however, that the quality of the forecasts generated by the
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panel STAR model is very similar to that of the forecasts made with the independent

models. In case individual series do not supply adequate information, for example in

case of short time series or outliers, the panel STAR model will outperform forecasts

generated with individual models. By also using cross-sectional information one will

be able to obtain more accurate estimates for individual series.

We are interested in forecasting the aggregate series using the individual com-

ponents. Depending on the particular application one can either be interested in

forecasting growth rates or in forecasting the level of the aggregate series. In the

simulation experiment we compare the performance of the proposed methods on

both, see Table 1 again. Qualitatively, the results are the same. Forecasts based

on individual STAR models perform best, followed by forecasts generated by the

panel STAR model. Forecasts obtained by directly estimating a STAR model for

the aggregate growth rates perform worst. The difference in performance of this last

model with the other approaches is strikingly large.

5 Forecasting aggregate US economic activity

Aggregate US output probably is the most popular macroeconomic variable when

it comes to applications of nonlinear time series models. Numerous attempts have

been made at describing its presumably different dynamics in business cycle expan-

sions and recessions, see Hamilton (1989), Teräsvirta (1995) and Pesaran and Potter

(1997), among many others. While some doubt has been cast on the usefulness of

nonlinear models for this purpose, see Engel et al. (2004), it may still be the case

that such models render more accurate forecasts of growth rates and business cycle

turning points. The evidence here is mixed, see Chauvet and Piger (2003), van Dijk

and Franses (2003) and Camacho (2004) for recent accounts. In this section we

examine whether the use of our nonlinear panel STAR model for state-level output

series results in improved forecasts for the aggregate.
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Unfortunately, the most suitable measure of state-level output, Gross State Prod-

uct (GSP), is available only at the annual frequency and with a delay of two years.

For that reason, we employ the monthly state-level coincident indexes developed

in Crone and Clayton-Matthews (2004). These indexes measure economic activity

in general and are extracted from a dynamic factor model for nonagricultural em-

ployment, the unemployment rate, average hours worked in manufacturing, and real

wage and salary disbursements. Although indexes are available for all 50 states,

we exclude Alaska and Hawaii from the analysis, focusing on the 48 contiguous

states. The sample period for which information for all states is available covers

July 1979-October 2003. The panel STAR model is specified using observations up

to December 2001, while the final two years are saved for out-of-sample forecasting.

We assume that the business cycle regimes for all states can be related to (a linear

combination of) the four components of the Conference Board’s Composite Index of

Leading Indicators (CLI). These are initial claims for unemployment insurance, new

orders of consumer goods and materials, stock prices, and the interest rate spread.1

These variables, after transformation to month-to-month changes or monthly growth

rates, enter the model as zt in the logistic transition function, while in addition they

are included as regressors vt. Note that we take the negative of the average initial

claims given that this variable is counter-cyclical, such that low values of all leading

indicators correspond with recessions. Finally, we employ several industrial, demo-

graphic and tax variables to explain differences in timing and duration of recessions

through the second-level model. In particular, we include states’ employment shares

in manufacturing, in construction and mining, and in finance, insurance, and real

estate (FIRE), and the shares of a state’s population aged 25 and older with a school

diploma (but no college degree), and the population share with a bachelor’s degree,

1We started with the complete set of 10 components of the CLI, including average weekly hours
in manufacturing, vendor performance, new orders of nondefense capital goods, building permits,
money supply, and the index of consumer expectations. Preliminary estimates suggested that the
four selected series suffice.

13



the state’s population share that is of prime working age (between 18 and 44), and

finally, the maximum marginal tax rates on wages and salaries and on capital gains.

A preliminary analysis of the series shows that there are few differences in the

speed of transition (γ) across the states. Furthermore, the results are rather insen-

sitive to the exact value of γ. Therefore we choose to fix the value of γ to 25. Next

we determine the autoregressive lag orders Pi by means of Schwarz’ BIC in uni-

variate ARX models for monthly growth rates of the state-level coincident indexes,

including the four leading indicator variables as exogenous variables. The selected

AR orders, which are fixed for the remainder of the analysis, generally are fairly

low, equal to 2 or 3 for most states. Next, we estimate the three models of interest,

(i) univariate STAR models for the state-level growth rates, (ii) a univariate STAR

model for the monthly growth rate in the aggregate coincident index, and (iii) our

two-level panel STAR model. The aggregate coincident index is constructed from

the state-level indexes, using the average share of GSP over the sample period as

weights. We determine the appropriate delay of each of the four business cycle indi-

cators by means of grid search, allowing for a maximum delay of six months. This

procedure results in delays of a single month for average initial claims, new orders

and the interest rate spread, and of three months for stock prices. Next, only the

employment share in manufacturing, the maximum marginal tax rate on wages and

salaries, and the population share with college education (bachelor’s degree) are re-

tained as state characteristics in the final specification, in addition to a geographical

dummy variable, where states in the Plains, Rocky Mountains or the Southwest are

coded with a 0 and the other states with a 1.

Given our focus on out-of-sample forecasting, in-sample estimation results are not

discussed extensively here. Table 2 shows the parameter estimates for the second-

level model, which are of most interest. Full details are available upon request, but

now we highlight some of the findings. The negative intercept for the threshold
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indicates that states tend to be longer in expansions than in recessions. States

with high marginal wage tax rates tend to have shorter recessions. For states with

many people with a college degree the opposite holds. Across all states, the interest

spread turns out to be the most important indicator, which is reflected by the large

estimated intercept for the corresponding weight. The least important indicator

is the stock price. However, in states with a high marginal tax rate on wages,

states that heavily rely on manufacturing or states with a large percentage of the

population with a college degree, the weight of the stock price is significantly higher.

Furthermore, the estimated standard deviation of the random effect associated with

this weight is rather large. This indicates that next to explained differences in the

weight of this indicator, there are also large differences that cannot be explained.

Inspecting the estimated transition functions G(), we observe a wide variety of

patterns. For some, notably the larger states, the model regimes correspond quite

closely with the nation-wide business cycle expansions and recessions, as dated by

the NBER. Several of the smaller states appear to exhibit more idiosyncratic regime-

switches in addition.

Table 3 summarizes the out-of-sample forecasting performance of the three dif-

ferent models. First, note that the panel STAR model renders more accurate out-

of-sample forecasts for the state-level growth rates than the individual univariate

STAR models. This is probably due to the fact that for several states estimating a

univariate STAR model proves to be difficult, due to the presence of some aberrant

observations (although the individual models provide a slightly better in-sample fit

than the panel STAR model).

Turning to the forecasts for the aggregate coincident index, we find that the panel

STAR model produces the smallest mean squared prediction error, when forecasting

the level as well as the growth rate. Corresponding with our simulation experiment,

the univariate STAR model for the aggregate growth rate shows the worst forecasting
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performance.

From these results. we conclude that it indeed appears to be useful to consider

nonlinear models for disaggregate series, and to combine these into a panel framework

in order to exploit cross-sectional linkages, even when the ultimate interest is in

forecasting the aggregate.

6 Conclusion

In this paper we examined if forecasts for aggregates like total output or total un-

employment could be improved by considering panel models for the disaggregated

series, where these series show nonlinear properties. Based on simulated results and

on comparing total output forecasts with forecasts obtained from a panel model

covering 48 states, we conclude that such gains can indeed be achieved.

We believe that our model class opens ways to improve forecasting aggregates.

These days many disaggregate data are available, and somehow these contain in-

formation that could benefit aggregate forecasts. Unrestricted panel models may

be useful, but they may also contain difficult to estimate or interpret parameters.

Hence, we believe that multi-level panels are perhaps more useful. We hope to see

more applications of this approach to various other situations, although we must ad-

mit that parameter estimation is not straightforward. Hence, we also would welcome

more research in improved methods for estimation.
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Table 1: Monte Carlo forecasting results

Forecasting model
Panel Aggregate Individual
STAR STAR STAR

Forecasting individual growth rates
Average MSPE 3.103 – 3.102
No. best forecast 605 – 645

Forecasting aggregate level
Average MSPE 348.75 415.93 338.14
No. best forecast 7 2 16
No. best forecast 22 3 –

(excl. indiv. STAR)

Forecasting aggregate growth
Average MSPE 0.176 0.203 0.170
No. best forecast 8 2 15
No. best forecast 20 5 –

(excl. indiv. STAR)

Note: The table reports results the simulation experiment where panels of
N=50 series of length T = 264 are generated according to the multi-level panel
STAR model (6), with parameterizations given in (22). In addition to the panel
STAR model, forecasts are obtained from univariate STAR models for the indi-
vidual series and a univariate STAR model for the aggregate. Results are based
on 25 replications.
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Table 2: Empirical estimation results

Intercept MANUF WTAX CEDU BEA ση

Speed of transition γi 25
- - - - - -

Threshold τi -0.409 -0.093 -0.461 0.294 0.294 0.939
(0.162) (0.044) (0.041) (0.035) (0.144) (0.053)

Economic indicators (πi)

New orders of consumer 2.449 0.010 0.762 0.980 0.005 0.242
goods and materials (0.403) (0.146) (0.230) (0.275) (0.444) (0.067)

Interest rate spread 4.634 -0.060 0.882 1.228 -0.038 1.679
(0.713) (0.186) (0.230) (0.276) (0.706) (0.195)

Stock prices -1.193 1.607 0.554 2.155 -2.567 3.605
(0.743) (0.623) (0.265) (0.572) (1.030) (0.657)

Note: The table shows estimates of the parameters δ and ση in the second-level model in the
panel STAR model (6) applied to monthly growth rates of the coincident index of the 48 contiguous
US states, using 4 economic indicators and 4 state characteristics, over the period July 1979-December
2001. Standard errors are given in parentheses. Initial claims for unemployment insurance is used as
baseline indicator. MANUF=the employment share in manufacturing, WTAX=the maximum marginal
tax rate on wages and salaries, CEDU=the population share with college education (bachelor’s degree),
and BEA=a geographical dummy (states in the Plains (MN,MO,KS,NE,IA,SD,ND), Rocky Mountains
(MT,ID,WY,UT,CO) and the South West (TX,OK,NM,AR) are coded with a 0, other states with a 1)

19



Table 3: Empirical forecasting results

Forecasting model
Panel Aggregate Individual
STAR STAR STAR

Forecasting individual growth rates
(average MSPE across states)

In sample 4.829 – 4.748
Out-of-sample 4.705 – 4.935

Forecasting aggregate level
In sample 9.004 9.884 8.983
Out-of-sample 27.005 29.106 28.178

Forecasting aggregate growth
In sample 0.610 0.661 0.615
Out-of-sample 0.853 0.920 0.890

Note: The table shows the MSPE of one-step ahead forecasts for
monthly growth rates and levels of US state-level and aggregate coinci-
dent indexes, over the in-sample period July 1979-December 2001 and
the out-of-sample period January 2002-October 2003. In addition to
the panel STAR model, forecasts are obtained from univariate STAR
models for the individual series and a univariate STAR model for the
aggregate index.
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