Efficient Estimation of the Non-linear Volatility and Growth Model

Julie Byrne and Denis Conniffe
Department of Economics, Finance and Accountancy, NUIM

August 2009

Abstract

Ramey and Ramey (1995) introduced a non-linear model relating volatility to growth. The solution of this model by generalised computer algorithms for non-linear maximum likelihood estimation encounters the usual difficulties and is, at best, tedious. We propose an algebraic solution for the model that provides fully efficient estimators and is elementary to implement as a standard ordinary least squares procedure. This eliminates issues such as the 'guesstimation' of initial values and multiple runs. Our approach also facilitates testing the validity of the Ramey and Ramey (1995) model. We illustrate our approach by reanalysing the R\&R data, demonstrating virtually identical results.

JEL: C51, E32, O40
Keywords: Econometrics, Macroeconomics, Growth, Volatility

I INTRODUCTION

Ramey and Ramey (1995) proposed and implemented a non-linear model to analyse the relationship between volatility and growth when utilising cross-country data. The model is

$$
\begin{equation*}
y_{i j}=a+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+. .+\beta_{m} x_{m i}+\lambda \sigma_{i}+e_{i j}, \tag{1}
\end{equation*}
$$

with $e_{i j}$ assumed $N\left(0, \sigma_{i}^{2}\right)$, The dependent variable $y_{i j}$ is growth rate of output per capita in country i in year j . The m explanatory variables $x_{k i}$ are constant over years
and differ only between countries, Variances differ between countries and the nonlinear nature of the model arises from assuming the standard deviation of growth occurs in the model for the mean as well as in that for the variance. Ramey and Ramey had $\mathrm{m}=4$, However the many subsequent authors who have employed the model sometimes added other variables. These authors include Van der Ploeg and Poelhekke (2007), Aizenman \& Marion (1998), Barlevy (2002), and Akai et al (2007).

Ramey and Ramey and the other authors used econometric package software for maximising likelihood functions from non-linear models to obtain the MLE estimates for the coefficients of model (1). As with most non-linear maximisation, obtaining solutions identifiable with global optima can be very tedious, requiring experimentation with guesstimated values, repetitive checking for local rather than global optima and constant adjustment of convergence criteria. Greene, (2008, p.1061) who reviews the complications and difficulties, says it can require a "balanced mix of art and science". Some authors, for example, Kroft and Lloyd-Ellis (2002) choose to view model (1) as a special case of ARCH in the mean models, currently popular in financial econometrics ${ }^{1}$, and employ the corresponding package routines. However, these ARCH-M routines employ the same software, with the same difficulties, as described above ${ }^{2}$.

Since model (1) is not terribly complicated as non-linear models go, it is worth looking for a semi-analytic solution to it and we will derive one that is simpler and computationally faster than general non-linear optimisation or ARCH-M. So one

[^0]dimension of the "efficient" in our title refers to computational efficiency. However, this is achieved without losing any of the asymptotically optimal properties attached to ML estimation, justifying the usual interpretation of "efficient" as attaining minimum (asymptotic) variance. In addition we will show that our approach lends itself to easy assessment of the validity of model (1) itself.

The log likelihood function corresponding to model (1) is

$$
\begin{equation*}
-\frac{r n}{2} \log 2 \pi-\frac{n}{2} \sum_{i=1}^{r} \log \sigma_{i}^{2}-\sum_{1}^{r} \frac{1}{2 \sigma_{i}^{2}} \sum_{1}^{n}\left(y_{i j}-a-\beta_{1} x_{1 i}-. .-\beta_{m} x_{m i}-\lambda \sigma_{i}\right)^{2}, \tag{2}
\end{equation*}
$$

where there are r countries and n years of data per country. Note again that $x_{k i}$ is constant within country i. So model (1) is nested within the family of models

$$
\begin{equation*}
y_{i j}=\alpha_{i}+e_{i j} . \tag{3}
\end{equation*}
$$

Model (1) makes the r country means α_{i} equal $a+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{m} x_{m i}+\lambda \sigma_{i}$, so depending on $m+2$ parameters in addition to the σ_{i} parameters. An unrestricted model (3) would allow each country its mean and variance with a total of 2 r parameters.

II. THE UNRESTRICTED MODEL

Model (3) is always 'correct' as a fit to the data, although it is over parameterised if (1) is the true model. The ML estimators of α_{i} and σ_{i}^{2} are, of course,

$$
\tilde{\alpha}_{i}=\bar{y}_{i} \quad \text { and } \quad \tilde{\sigma}_{i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{i j}-\bar{y}_{i}\right)^{2}
$$

respectively and the estimated \log likelihood is then

$$
\begin{equation*}
-\frac{r n}{2} \log 2 \pi-\frac{n}{2} \sum_{i=1}^{r} \log \tilde{\sigma}_{i}^{2}-\frac{r n}{2} . \tag{4}
\end{equation*}
$$

[^1]If (1) is the true model $\tilde{\sigma}_{i}^{2}$, while still a consistent estimator, may not be the efficient estimator obtainable under the model. But comparison of the two, remembering the variance of the difference between an efficient estimator and an inefficient one is the difference of the variances can provides a Hausman (1978) type test of the validity of model (1) and we will return to this theme later.

III ML ESTIMATORS OF THE NON-LINEAR MODEL

Differentiating the log likelihood (2) with respect to a and equating to zero gives

$$
n \sum_{i=1}^{r}\left(\bar{y}_{i}-a-\beta_{1} x_{1 i}-\beta_{2} x_{2 i}-. .-\beta_{m} x_{m i}-\lambda \sigma_{i}\right) / \sigma_{i}^{2}=0
$$

or

$$
\begin{equation*}
\sum \frac{\bar{y}_{i}}{\sigma_{i}^{2}}=a \sum \frac{1}{\sigma_{i}^{2}}+\beta_{1} \sum \frac{x_{1 i}}{\sigma_{i}^{2}}+. . \beta_{m} \sum \frac{x_{m i}}{\sigma_{i}^{2}}+\lambda \sum \frac{1}{\sigma_{i}} . \tag{5}
\end{equation*}
$$

Similarly, differentiating with respect to β_{k} gives m equations $\mathrm{k}=1,2, . . \mathrm{m}$

$$
\begin{equation*}
\sum \frac{x_{k i} \bar{y}_{i}}{\sigma_{i}^{2}}=a \sum \frac{x_{k i}}{\sigma_{i}^{2}}+\beta_{1} \sum \frac{x_{k i} x_{1 i}}{\sigma_{i}^{2}}+\ldots \beta_{m} \sum \frac{x_{k i} x_{m i}}{\sigma_{i}^{2}}+\lambda \sum \frac{x_{k i}}{\sigma_{i}} \tag{6}
\end{equation*}
$$

While differentiating with respect to λ gives

$$
\begin{equation*}
\sum \frac{\bar{y}_{i}}{\sigma_{i}}=a \sum \frac{1}{\sigma_{i}}+\beta_{1} \sum \frac{x_{1 i}}{\sigma_{i}}+. . \beta_{m} \sum \frac{x_{m i}}{\sigma_{i}}+r \lambda \tag{7}
\end{equation*}
$$

Now treating the σ_{i} just for the present as known parameters, equations (5), (6) and (7) are the same as the OLS equations that would result from regressing \bar{y}_{i} / σ_{i} on $x_{k i} / \sigma_{i}$ and the $1 / \sigma_{i}$ variable and including an intercept term ${ }^{3}$. Furthermore, as taking second derivatives of (2) to obtain the Hessian matrix shows, the OLS variance formulae from such a regression match the asymptotic ML variances as given by

[^2]\[

$$
\begin{equation*}
\Theta^{-1}=\left[E\left\{-\frac{\partial^{2} \log L}{\partial \theta \partial \theta^{\prime}}\right\}\right]^{-1} \tag{8}
\end{equation*}
$$

\]

where $\theta^{\prime}=\left(\lambda, \beta_{1}, \ldots \beta_{m}, a\right)$.

$$
\Theta=n\left[\begin{array}{cccc}
r & \sum \frac{x_{1 i}}{\sigma_{i}} . & \sum \frac{x_{4 i}}{\sigma_{i}} & \sum \frac{1}{\sigma_{i}} \\
\sum \frac{x_{1 i}}{\sigma_{i}} & \sum \frac{x_{1 i}^{2}}{\sigma_{i}^{2}} . . & \sum \frac{x_{1 i} x_{4 i}}{\sigma_{i}^{2}} & \sum \frac{x_{1 i}}{\sigma_{i}^{2}} \\
\sum \frac{x_{4 i}}{\sigma_{i}} & \sum \frac{x_{1 i} x_{2 i}}{\sigma_{i}^{2}} . . & \sum \frac{x_{4 i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{4 i}}{\sigma_{i}^{2}} \\
\sum \frac{1}{\sigma_{i}} & \sum \frac{x_{1 i}}{\sigma_{i}^{2}} . . & \sum \frac{x_{4 i}}{\sigma_{i}^{2}} & \sum \frac{1}{\sigma_{i}^{2}}
\end{array}\right]
$$

Of course, the σ_{i} are actually unknown parameters. If we possessed the ML estimates $\breve{\sigma}_{i}^{2}$ of σ_{i}^{2} they could be inserted into (5), (6) and (7) giving ML estimates $\breve{\lambda}, \breve{\beta}_{1}, \ldots \breve{\beta}_{m}$ and \breve{a}. They could also be inserted into (8), but when the σ_{i}^{2} have to be estimated the variance matrix of θ is no longer exactly (8) unless parameter orthogonality holds between θ and the vector of variances, Σ say. If

$$
E\left\{-\left[\begin{array}{cc}
\frac{\partial^{2} \log L}{\partial \theta \partial \theta^{\prime}} & \frac{\partial^{2} \log L}{\partial \theta \partial \Sigma^{\prime}} \\
\left(\frac{\partial^{2} \log L}{\partial \theta \partial \Sigma^{\prime}}\right) & \frac{\partial^{2} \log L}{\partial \Sigma \partial \Sigma^{\prime}}
\end{array}\right]\right\}=\left[\begin{array}{cc}
\Theta & \Gamma \\
\Gamma^{\prime} & \Omega
\end{array}\right]
$$

then the variance matrix of θ is $\left[\Theta-\Gamma^{\prime} \Omega^{-1} \Gamma\right]^{-1}$. Differentiating (2) with respect to σ_{i}^{2} gives

$$
\begin{array}{r}
-\frac{n}{2} \frac{1}{\sigma_{i}^{2}}+\frac{1}{2 \sigma_{i}^{4}} \sum_{j=1}^{n}\left(y_{i j}-a-\beta_{1} x_{1 i}-. .-\beta_{m} x_{m i}-\lambda \sigma_{i}\right)^{2} \tag{9}\\
\quad+\frac{n \lambda}{2 \sigma_{i}^{3}}\left(\bar{y}_{i}-a-\beta_{1} x_{1 i}-. .-\beta_{m} x_{m i}-\lambda \sigma_{i}\right)=0 .
\end{array}
$$

And differentiating this with respect to the elements of θ and Σ and taking expectations shows

$$
\Gamma=\frac{n \lambda}{2}\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & \frac{1}{\sigma_{2}^{2}} & . . & \frac{1}{\sigma_{r}^{2}} \\
\frac{x_{11}}{\sigma_{1}^{2}} & \frac{x_{12}}{\sigma_{2}^{2}} & . . & \frac{x_{1 r}}{\sigma_{r}^{2}} \\
\frac{1}{\sigma_{1}^{3}} & \frac{1}{\sigma_{2}^{3}} & . & \\
\frac{i}{\sigma_{r}^{3}}
\end{array}\right]
$$

and Ω to be a diagonal matrix with terms

$$
\begin{equation*}
\frac{n\left(1+\frac{\lambda^{2}}{2}\right)}{2 \sigma_{i}^{4}} \tag{10}
\end{equation*}
$$

Then the variance matrix of the estimates of θ proves to be

$$
\begin{equation*}
\Theta^{-1}\left(1+\frac{\lambda^{2}}{2}\right) . \tag{11}
\end{equation*}
$$

So standard errors of coefficients from the OLS solutions ought to be multiplied by $\sqrt{1+\lambda^{2} / 2}$, although it may make little difference.

We have estimators $\tilde{\sigma}_{i}^{2}$ of the nuisance parameters σ_{i}^{2} and can insert these into (5), (6) and (7) giving estimates $\hat{\lambda}, \hat{\beta}_{1}, \ldots \hat{\beta}_{m}$ and \hat{a}. Are these efficient estimators, that is, asymptotically equivalent to $\breve{\lambda}, \breve{\beta}_{1}, \ldots \breve{\beta}_{m}$ and \breve{a} so that variance formula applies?

Before demonstrating they are, it is worth showing that $\tilde{\sigma}_{i}^{2}$ is not an efficient estimator
of σ_{i}^{2} under model (1) and observing how dependent an efficient estimator is on the exact truth of that model. The estimator $\tilde{\sigma}_{i}^{2}$ does extract all the information about σ_{i}^{2} from within country i , but if (1) is true

$$
\sigma_{i}^{+}=\left(\bar{y}_{i}-a-\beta_{1} x_{1 i}+. .-\beta_{m} x_{m i}\right) / \lambda
$$

also estimates σ_{i} once estimates of $a, \beta_{1}, \ldots \beta_{m}$ are available. Asymptotically, σ_{i}^{+}
has variance $\sigma_{i}^{2} /\left(n \lambda^{2}\right)$ and so $\left(\sigma_{i}^{+}\right)^{2}$ has variance $4 \sigma_{i}^{4} /\left(n \lambda^{2}\right)$ while $\tilde{\sigma}_{i}^{2}$ has variance $2 \sigma_{i}^{4} / n$. Combining inversely by variances

$$
\begin{equation*}
\frac{\tilde{\sigma}_{i}^{2}+\frac{1}{2} \lambda^{2}\left(\sigma_{i}^{+}\right)^{2}}{1+\frac{1}{2} \lambda^{2}} \tag{12}
\end{equation*}
$$

is efficient. Its variance is easily seen to be

$$
\frac{2 \sigma_{i}^{4}}{n\left(1+\frac{1}{2} \lambda^{2}\right)},
$$

which of course is the reciprocal of (10). But unlike $\tilde{\sigma}_{i}^{2}$ the consistency of (12) is totally dependent on the truth of model (1).

Returning to whether the $\hat{\theta}=\left(\hat{\lambda}, \hat{\beta}_{1}, \ldots \hat{\beta}_{m}, \hat{a}\right)^{\prime}$ are efficient estimators, the fact that $\tilde{\sigma}_{i}^{2}$ is not efficient does not preclude $\hat{\theta}$ from being so. Discussion of asymptotic properties clearly supposes the number of observations becoming large and we will presume that r and n increase in proportion. This is convenient since $O_{p}\left(n^{s}\right)$ is then also $O_{p}\left(r^{s}\right)$, but it is probably the most sensible approach anyway. Assuming n increases much faster than r would imply that when r is large enough to apply asymptotic arguments $\tilde{\sigma}_{i}^{2}$ has become σ_{i}^{2}, θ is estimated accordingly and (8) is its variance. Assuming rincreases much faster than n could perhaps invalidate assumptions underlying likelihood inference given that there are r of the σ_{i}^{2} parameters, so that the number of nuisance parameters increases indefinitely ${ }^{4}$.

A standard result in asymptotic inference is that is an estimator which differs from the maximum likelihood estimator only by a term of $O_{p}(1 / t)$ where t is the

[^3]sample size has the same asymptotic properties and is efficient. However, the parameter vector θ is estimated only from the r cross country values of \bar{y}_{i} and the explanatory variables.

So we need to show that the coefficients obtained by regression of $\bar{y}_{i} / \tilde{\sigma}_{i}$ on the $x_{k i} / \tilde{\sigma}_{i}$ and $1 / \tilde{\sigma}_{i}$ will differ from the coefficients obtained by regression of $\bar{y}_{i} / \breve{\sigma}_{i}$ on $x_{k i} / \breve{\sigma}_{i}$ and $1 / \tilde{\sigma}_{i}$ only by terms of $O_{p}(1 / r)$. Of course the actual variances of coefficient are also inversely proportional to n through the variance of \bar{y}_{i}.

Equating (9) to zero and substituting ML estimates of parameters gives

$$
\begin{align*}
-\frac{n}{2} \frac{1}{\breve{\sigma}_{i}^{2}}+ & \frac{1}{2 \breve{\sigma}_{i}^{4}} \sum_{j=1}^{n}\left(y_{i j}-\breve{a}-\breve{\beta}_{1} x_{1 i}-. .-\breve{\beta}_{m} x_{m i}-\check{\lambda} \breve{\sigma}_{i}\right)^{2} \tag{13}\\
& +\frac{n \lambda}{2 \breve{\sigma}_{i}^{3}}\left(\bar{y}_{i}-\breve{a}-\breve{\beta}_{1} x_{1 i}-. .-\breve{\beta}_{m} x_{m i}-\breve{\lambda} \breve{\sigma}_{i}\right)=0 .
\end{align*}
$$

where $\breve{\theta}$ denotes an ML estimate of θ. Noting

$$
\sum_{j=1}^{n}\left(y_{i j}-\breve{a}-\breve{\beta}_{1} x_{1 i}-. .-\breve{\beta}_{m} x_{m i}-\breve{\lambda} \breve{\sigma}_{i}\right)^{2}=\sum_{j=1}^{n}\left(y_{i j}-\bar{y}_{i}\right)^{2}+n z_{i}^{2},
$$

where

$$
z_{i}=\bar{y}_{i}-\breve{a}-\breve{\beta}_{1} x_{1 i}+. .-\breve{\beta}_{m} x_{m i}-\check{\lambda} \breve{\sigma}_{i},
$$

(13) implies

$$
\breve{\sigma}_{i}^{2}=\tilde{\sigma}_{i}^{2}+z_{i}^{2}+\lambda \breve{\sigma}_{i} z_{i} .
$$

Now:

$$
\begin{aligned}
& z_{i}=\bar{y}_{i}-a-\beta_{1} x_{1 i}+. .-\beta_{m} x_{m i}-\lambda \sigma_{i}-(\breve{a}-a)-\left(\breve{\beta}_{1}-\beta_{1}\right) x_{1 i}-. .-\left(\breve{\beta}_{m}-\beta_{m}\right) x_{m i} \\
&-\lambda\left(\breve{\sigma}_{i}-\sigma_{i}\right)-(\breve{\lambda}-\lambda) \sigma_{i}-(\breve{\lambda}-\lambda)\left(\breve{\sigma}_{i}-\sigma_{i}\right) .
\end{aligned}
$$

The ML estimates differ from true values by terms of $O_{p}(1 / \sqrt{r n})=O_{p}(1 / r)$ and the $\bar{y}_{i}-\left(a+\beta_{1} x_{1 i}+. .+\beta_{m} x_{m i}+\lambda \sigma_{i}\right)$ has mean zero so it is $O_{p}(1 / \sqrt{n})=O_{p}(1 / \sqrt{r})$. So
z_{i} is $O_{p}(1 / \sqrt{r})$ while z_{i}^{2} is $O_{p}(1 / r)$. Also, since $\breve{\sigma}_{i}=\sigma_{i}+O_{p}(1 / \sqrt{n})$

$$
\breve{\sigma}_{i}^{2}=\tilde{\sigma}_{i}^{2}+\lambda \sigma_{i} z_{i}+O_{p}(1 / r) .
$$

and

$$
\begin{aligned}
& \frac{1}{\breve{\sigma}_{i}^{2}}=\frac{1}{\widetilde{\sigma}_{i}^{2}}-\lambda \frac{\sigma_{i} z_{i}}{\widetilde{\sigma}_{i}^{4}}+O_{p}(1 / r) \\
& \frac{1}{\breve{\sigma}_{i}^{2}}=\frac{1}{\tilde{\sigma}_{i}^{2}}-w_{i}+O_{p}(1 / r)
\end{aligned}
$$

So

$$
\begin{equation*}
\sum_{1}^{r} \frac{1}{\breve{\sigma}_{i}^{2}}=\sum_{1}^{r} \frac{1}{\tilde{\sigma}_{i}^{2}}-\sum_{1}^{r} w_{i}+O_{p}(1) \tag{14}
\end{equation*}
$$

and since \bar{y}_{i} and $\tilde{\sigma}_{i}^{2}$ are independent Σw_{i} is also $O_{p}(1)^{5}$. The term on the left hand side of (14) and the first on the right hand side are $O_{p}(r)$. Similarly we can show that terms such as

$$
\sum_{1}^{r} \frac{1}{\breve{\sigma}_{i}}, \quad \sum_{1}^{r} \frac{x_{k i}}{\breve{\sigma}_{i}} \text { and } \sum_{1}^{r} \frac{x_{k i} x_{m i}}{\breve{\sigma}_{i}^{2}}
$$

equal corresponding terms with $\breve{\sigma}_{i}^{2}$ replaced by $\breve{\sigma}_{i}^{2}$ plus terms of $O_{p}(1)$. So the effect of using $\tilde{\sigma}_{i}^{2}$ rather than $\widetilde{\sigma}_{i}^{2}$ in the right hand sides of (5), (6) and (7) is just to add terms of $O_{p}(1)$. For the left hand side of (5)

$$
\sum_{1}^{r} \frac{\bar{y}_{i}}{\breve{\sigma}_{i}^{2}}=\sum_{1}^{r} \frac{\bar{y}_{i}}{\tilde{\sigma}_{i}^{2}}+\sum_{1}^{r} \bar{y}_{i} w_{i}=\sum_{1}^{r} \frac{\bar{y}_{i}}{\tilde{\sigma}_{i}^{2}}+O_{p}(1)
$$

because although the expectation of $\bar{y}_{i} z_{i}$ is non-zero and

[^4]$$
E\left[\bar{y}_{i}\left(\bar{y}_{i}-a-\beta_{1} x_{1 i}-. .-\beta_{m} x_{m i}-\lambda \sigma_{i}\right)\right]=\sigma_{i}^{2} / n=O_{p}(1 / r),
$$
while the covariance of \bar{y}_{i} and an ML estimator is $O_{p}(1 / r)$. The same result follows for the left hand sides of (6) and (7). So the equations (5), (6) and (7) with $\breve{\sigma}_{i}^{2}$ in place of σ_{i}^{2} are just the equations with $\tilde{\sigma}_{i}^{2}$ in place of σ_{i}^{2} plus terms of $O_{p}(1)$. Solving the equations multiplies the $O_{p}(r)$ vector
$$
\left(\sum_{1}^{r} \frac{\bar{y}_{i}}{\tilde{\sigma}_{i}^{2}}, \sum_{1}^{r} \frac{x_{1 i} \bar{y}_{i}}{\tilde{\sigma}_{i}^{2}}, . . \sum_{1}^{r} \frac{x_{4 i} \bar{y}_{i}}{\tilde{\sigma}_{i}^{2}}, \sum_{1}^{r} \frac{\bar{y}_{i}}{\widetilde{\sigma}_{i}}\right)^{\prime}
$$
by the inverse of the matrix
\[

\left[$$
\begin{array}{cccc}
r & \sum \frac{x_{1 i}}{\tilde{\sigma}_{i}} . . & \sum \frac{x_{4 i}}{\widetilde{\sigma}_{i}} & \sum \frac{1}{\tilde{\sigma}_{i}} \\
\sum \frac{x_{1 i}}{\widetilde{\sigma}_{i}} & \sum \frac{x_{1 i}^{2}}{\tilde{\sigma}_{i}^{2}} \cdot & \sum \frac{x_{1 i} x_{4 i}}{\tilde{\sigma}_{i}^{2}} & \sum \frac{x_{1 i}}{\tilde{\sigma}_{i}^{2}} \\
\sum \frac{x_{4 i}}{\tilde{\sigma}_{i}} & \sum \frac{x_{1 i} x_{2 i}}{\tilde{\sigma}_{i}^{2}} \cdot & \sum \frac{x_{4 i}^{2}}{\widetilde{\sigma}_{i}^{2}} & \sum \frac{x_{4 i}}{\widetilde{\sigma}_{i}^{2}} \\
\sum \frac{1}{\tilde{\sigma}_{i}} & \sum \frac{x_{1 i}}{\tilde{\sigma}_{i}^{2}} . & \sum \frac{x_{4 i}}{\widetilde{\sigma}_{i}^{2}} & \sum \frac{1}{\tilde{\sigma}_{i}^{2}}
\end{array}
$$\right]
\]

In which all terms are $O_{p}(r)$, giving an $O_{p}(1)$ vector, and the vector of $O_{p}(1)$ terms by the same inverse giving an $O_{p}(1 / r)$ vector. So the coefficients obtained using $\tilde{\sigma}_{i}$ rather than $\breve{\sigma}_{i}$ differ only by terms of $O_{p}(1 / r)$ and are asymptotically equivalent.

$$
\text { IV The Ramey and Ramey } 1995 \text { data analysis }
$$

Ramey and Ramey (1995) are interested in developing the hypothesis that growth is negatively related to volatility. The explanatory variables included in their analysis are the average investment fraction of GDP, initial log GDP per capita, initial human capital and the average growth rate of population. They use a panel structure and measure volatility as the standard deviation of the residuals in the growth regression to find a negative relationship between volatility and growth. Ramey and Ramey
(1995) use a sample of ninety-two countries from $1960-1985^{6}$. The results of the Ramey and Ramey (1995) analysis is presented below alongside the results of the Byrne and Coniffe (2009) analysis ${ }^{7}$. Using maximum likelihood, they find a significant, negative effect of volatility on growth for the ninety-two country sample.

Table 1		
Results of Ramey and Ramey (1995) analysis and Byrne and Coniffe (2009)		
Analysis		
Independent variable	Ramey and Ramey	Byrne and Coniffe
	92-country sample	92-country sample
	(2,208 observations)	(2,208 observations)
Constant	0.077	0.076
	(3.72)	(3.18)
Volatility (σ)	-0.211	-0.217
	(-2.61)	(-2.21)
Average investment share	0.127	0.124
of GDP	(7.63)	(5.98)
Average population	-0.058	-0.062
growth rate	(-0.38)	(-0.32)
Initial human capital	0.0008	0.0009
	(1.18)	(1.17)
Initial per capita GDP	-0.0088	-0.0093
	(-3.61)	(-3.10)

Numbers in parentheses are t statistics.
It is clear from the results that the estimates of coefficients are effectively identical, as are the standard errors.

There have been differing opinions among economists on whether volatility is harmful or beneficial to growth although it is now generally accepted that volatility has a negative effect (Aghion and Banerjee (2005), Pritchett (2000), Jerzmanowski

[^5](2005)). Since the introduction of the Ramey and Ramey (1995) analysis, many subsequent authors have used and adapted the model to further analyse the link between growth and volatility. Barlevy (2004) follows the R\&R model but adds the standard deviation of the log of the investment output ratio as an explanatory variable in an attempt to capture the non-linearities of the investment function while Van der Ploeg \& Poelhekke (2009) use the R\&R framework to examine the natural resource curse. The R\&R methodogoly is also followed by Akai et al (2007) to examine the impact of fiscal decentralisation on the fifty US states. Kroft \& Llyod-Ellis (2002) adapt the R\&R framework by decomposing volatility into two components; within regime volatility and between regime volatility. Using this methodology, they find that the source of volatility matters. Examining developing countries, Aizenman \& Marion (1998) use the R\&R method and find a significant negative relationship between innovation volatility and private investment in developing countries.

V Concluding remarks

Having estimated the θ parameters using $\tilde{\sigma}_{i}^{2}$ for σ_{i}^{2} it would be easy to calculate (12) and repeat the estimation process with (12) replacing σ_{i}^{2} in (5), (6) and (7). But it hardly seems worthwhile in view of the efficiency of $\hat{\theta}$. Not only have they equal asymptotic variances, but the variance of the difference between two efficient estimators is of second order. So with large samples the actual estimates will be very close as the analysis of Ramey and Ramey in section IV showed.

Also, should model (1) be at all inaccurate (12), unlike $\tilde{\sigma}_{i}^{2}$, is not a consistent estimator, so the iteration could make matters worse. Indeed, observed differences between (12) and $\tilde{\sigma}_{i}^{2}$ can be used to test the validity of model (1) through a Hausman
type test. The difference is

$$
\frac{\lambda^{2}}{2+\lambda^{2}}\left[\left(\sigma_{i}^{+}\right)^{2}-\tilde{\sigma}_{i}^{2}\right]
$$

The variance of the difference, remembering that (12) is efficient, is

$$
\frac{\lambda^{2} \sigma_{i}^{4}}{n\left(1+\frac{\lambda^{2}}{2}\right)} .
$$

So

$$
\frac{n \lambda^{2}}{4\left(1+\lambda^{2} / 2\right)} \sum_{1}^{r} \frac{\left[\left(\sigma_{i}^{+}\right)^{2}-\tilde{\sigma}_{i}^{2}\right]^{2}}{\tilde{\sigma}_{i}^{4}}
$$

is asymptotically χ_{r}^{2} if model (1) is correct.
No model is ever exactly the correct one and alternatives to model one are certainly conceivable. However, it is not our purpose in this paper to test or criticise the Ramey and Ramey model. We have developed an algebraic approach to estimation of the model that provides efficient estimators and is far less computationally demanding than econometric package algorithms for maximising likelihood functions from non-linear models.

References

Aghion, Philippe and Banerjee, Abhijit (2005), "Volatility and Growth". Oxford University Press.

Aizenman, Joshua and Marion, Nancy (2000). "Volatility and the Investment Response", NBER Working Paper No. W5841. Available at SSRN:http//ssrn.com/abstract =225627.

Akai, Nobuo, Hosoi, Masayo and Nishimura, Yukihiro (2009) "Fiscal Decentralization and Economic Volatility: Evidence from State-Level-Cross-Section Data of the USA", Japenese Economic Review, Volume 60, Issue 2, pp. 223-225.

Barlevy, Gadi (2004). "The Cost of Business Cycle Under Endogenous Growth".
American Economic Review, 94, (4), 964-990.
Greene, William H. (2008): Econometric Analysis $6{ }^{\text {th }}$ Edition, Pearson, New Jersey.
Hausman, Jerry A. (1978) 'Specification tests in econometrics’, Econometrica 46, 1251-1271.
Jerzmanowski, Michal (2006). "Empirics of Hills, Plateaus, Mountains and Plains: A
Markov-Switching Approach to Growth". Journal of Development Economics, Volume 81, Issue 2, pp. 357-385.

Kroft, Kory and Lloyd Ellis, Huw (2002). "Further Evidence on the link between
Growth, Volatility, and Business Cycles", Queens University Working Paper.
Neyman, Jerzy and Elizabeth Scott (1948) Consistent estimates based on partially consistent
Observations Econometrica 16 375-389
Pritchett, Lant (2000), "Understanding Patterns of Economic Growth: Searching for
Hills among Plateaus, Mountains, and Plains", World Bank Economic review, Volume 14(2), pp 221-250.

Ramey Gary and Valerie Ramey (1995) ‘Cross-country evidence on the link between volatility and growth’ The American Economic Review 85, 1138-1151.

SHAZAM User’s Reference Manual Version 9.0, Northwest Econometrics, 2001. ISBN 0-9687709-0-8.

Van Der Ploeg , Frederick and Poelhekke, Steven (2009). "Volatility and the Natural Resource Curse", Oxford Economic Papers Advance Access.

[^0]: ${ }^{1}$ ARCH-M is hardly a natural generalisation of model (1). It also requires variation in standard deviation to identify a coefficient in the mean equation, but obtains that by presuming autoregressive evolution of σ_{t}^{2} in a time series, while model (1) uses cross-country variation in σ_{i}^{2}. Developments of model (1) might consider factors affecting σ_{i}^{2}, but not analogously to Arch-M.

[^1]: ${ }^{2}$ Indeed, we failed to get a solution from the ARCH-M routine in our particular econometric package.

[^2]: ${ }^{3}$ There are evident resemblances to the weighted regression procedure except that the constant is not suppressed.

[^3]: ${ }^{4}$ The Neyman and Scott (1948) example of inconsistent estimation arose in such a situation.

[^4]: ${ }^{5}$ Because each $\bar{y}_{i}-\left(a+\beta_{1} x_{1 i}+\ldots+\beta_{m} x_{m i}+\lambda \sigma_{i}\right)$ has mean zero, their sum over countries is not $O_{p}(r / \sqrt{n})$ but $O_{p}(\sqrt{r} / \sqrt{n})=O_{p}(1)$ and since an ML estimator minus true value is $O_{p}(1 / r)$ the sum over countries is $O_{p}(1)$.

[^5]: ${ }^{6}$ Ramey and Ramey also analysed a sub-sample of OECD countries.
 ${ }^{7}$ Our computations were carried out using the Shazam package. The program is available from the authors.

