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Abstract

This paper explores the implications of time varying volatility for optimal
monetary policy and the measurement of welfare costs. We show how macro-
economic models with linear and quadratic state dependence in their variance
structure can be used for the analysis of optimal policy within the framework
of an optimal linear regulator problem. We use this framework to study op-
timal monetary policy under in�ation conditional volatility and �nd that the
quadratic component of the variance makes policy more responsive to in�a-
tion shocks in the same way that an increase in the welfare weight attached
to in�ation does, while the linear component reduces the steady state rate of
in�ation. Empirical results for the period 1979-2010 underline the statistical
signi�cance of in�ation-dependent UK macroeconomic volatility. Analysis of
the welfare losses associated with in�ation and macroeconomic volatility shows
that the conventional homoskedastic model seriously underestimates both the
welfare costs of in�ation and the potential gains from policy optimization.
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1 Introduction

Since the Second World War, the world�s developed economies have experienced

marked �uctuations in macroeconomic volatility. The early post-war years were

relatively stable but volatility rose from decade to decade, reaching a peak in the

late 1970s and early 1980s. It then began to subside in the mid 1980s, remaining

remarkably low until the �credit crunch� that began in August 2007. Stock and

Watson (2002) refer to the decline in US macroeconomic volatility started from the

mid 1980s as the �Great Moderation�. Similar declines in volatility occurred over

the same period of time in almost all G7 countries (Bernanke (2004)), and have

been particularly marked in the UK, where Mervyn King dubbed the period 1994-

2003 as the �NICE�or �Non-In�ationary Consistent Expansion�decade (King (2003)).

However, economic volatility has risen markedly since the credit crunch of 2007,

provoking the sharpest recession seen in the G7 countries since the Second World

War.

The recognition of time-varying volatility in macroeconomic data has lead econo-

mists to abandon the traditional constant variance (homoskedasticity) assumption

and to develop macroeconomic models in which volatility can �uctuate. This litera-

ture has demonstrated that modelling movements in volatility increases the accuracy

of parameter estimates and macroeconomic forecasts. It also provides a framework

for analyzing changes in volatility, asking whether they are for instance driven by

changes in the systematic component of macroeconomic policy or the magnitude

of shocks. Recent examples of this burgeoning literature include Primiceri (2005),

Sims and Zha (2006), Canova, Gambetti, and Pappa (2008), Justiniano and Prim-

iceri (2008) and Benati and Surico (2009) for the US. Benati (2004) and Bianchi,

Mumtaz, and Surico (2009) look at the evidence for the UK and Mumtaz and Surico
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(2011) for a sample of industrialized countries.

This paper attempts to explore theoretically and measure empirically the implica-

tions of time-varying macroeconomic volatility for macroeconomic policy and welfare.

To the best of our knowledge, it is the �rst time that this type of exercise has been

conducted. We focus on state dependent volatility, a class of stochastic volatility

models that relates this to the (lagged) value of one or more state variables. This

type of model is extensively used in the literature on the term structure of interest

rates, where the e¤ect of volatility upon risk premia is a vital consideration. We

start with a general framework that allows the variance of the shocks to depend in

both a linear and a quadratic way on state variables re�ecting in�ation and the state

of the business cycle. The linear speci�cation is the analogue of the Cox, Ingersoll,

and Ross (1985) �square root�volatility speci�cation of the term structure literature,

while the quadratic speci�cation is the analogue of Dothan (1978) and Courtadon

(1982). We combine these two e¤ects and analyze the implications for welfare and

optimal policy assuming that policy makers care about squared deviations in goal

variables such as in�ation and the output gap around their target values, as in the

canonical homoskedastic control problem (Lungqvist and Sargent (2004)).

Two general results emerge from this analysis. First, unlike the standard ho-

moskedastic control problem which is certainty equivalent (meaning that the optimal

rule is the same as it would be in the absence of uncertainty) we show that the coef-

�cients of the optimal policy rule are a¤ected by the stochastic structure when this

is state dependent. Second, we show how the optimal linear regulator problem for a

state dependent model can be re-parameterized so that standard control techniques

can be employed to quantify optimal policy rules and welfare losses. The �rst result

highlights the importance of allowing for time-varying volatility in the design of opti-

mal macroeconomic policy, while the second shows how this can be performed using
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the algorithms and insights provided by existing methodologies.

We then use this framework to examine how the design of optimal monetary

policy and welfare analysis change when macroeconomic volatility depends upon the

rate of in�ation.1 We show that linear-quadratic in�ation conditional volatility adds

to the welfare cost of in�ation, thus altering the conduct of optimal monetary policy.

Speci�cally, we show that this e¤ect makes the optimal monetary policy response to

a rise in in�ation more aggressive than that implied by a homoskedastic model and

leads to a lower average in�ation rate. A number of papers, Holland (1995), Fountas,

Karanasos, and Kim (2002) and Caporale and Kontonikas (2009) among others,

have argued that, if policy makers care about economic stability then an increase in

in�ation should lead to a monetary tightening response to constrain the increase in

macroeconomic volatility. Our theoretical results formalize this conjecture.

We have looked at the signi�cance of conditional heteroskedasticity using several

econometric methodologies for several di¤erent countries. In this paper we present

the results for the UK using a version Rudebusch and Svensson (1999) model which

we modify to allow the variance structure of the shocks to exhibit linear-quadratic

in�ation dependence. We focus on the UK country because we �nd that in�ation

conditional volatility is empirically much stronger than for other countries that we

have looked at. The Rudebusch and Svensson (1999) model is chosen because it pro-

vides a simple and e¤ective description of the dynamic evolution of the key variables

describing the macroeconomy and as such is a workhorse for the analysis of monetary

1The relationship between the in�ation rate and macroeconomic volatility was �rst documented
by Okun (1971) and the implications for welfare analysis were �rst noted by Friedman in his Nobel
lecture, Friedman (1977). Early theoretical work suggesting that the in�ation rate a¤ects macroeco-
nomic volatility includes Ball (1992) and Ungar and Zilberfarb (1993). Empirical evidence in support
of this relationship was initially provided by Ball and Cecchetti (1990), Brunner and Hess (1993),
Holland (1995) and Fountas, Karanasos, and Kim (2002) for the US. Evidence for other industri-
alized countries is found in Fountas and Karanasos (2007) and for the UK in Conrad, Karanasos,
and Zeng (2010). The empirical term structure literature also suggests that the volatility of short
term interest rates is state-dependent; see Chen, Karolyi, Longsta¤, and Sanders (1992), Ait-Sahalia
(1996), Stanton (1997) and, for the UK, Nowman (1999). Re�ecting this literature, we �nd that
the in�ation rate has a very signi�cant e¤ect on UK macroeconomic volatility.
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policy. See for example, Ozlale (2003), Favero and Rovelli (2003), Dennis (2006) and

Cogley et al (2011).

The maximum likelihood estimates of the model based on UK quarterly time series

for the output gap; in�ation and nominal interest rate, show that linear-quadratic

dependence provides a much better explanation of the UK data over the period 1979-

2010 than the assumption of constant variance or linear dependence. This result is

consistent with the �nding of Sims and Zha (2006) that time-varying volatility models

typically outperform homoscedastic models when estimated over long periods of time.

In particular, the empirical model captures the high level of volatility seen in the UK

until the mid 1980s and the subsequent decline, consistent with the time-varying

macroeconomic volatility literature.

We then ask how recognizing the dependence of volatility upon in�ation would

have in�uenced the design of an optimal monetary policy rule derived from the min-

imization of a quadratic in�ation targeting loss function consistent with Rotemberg

and Woodford (1997) and Woodford (2003). As in Rudebusch and Svensson (1999),

Sack (2000) and Woodford (2003), we replace the estimated interest rate equation (or

Taylor rule) by the optimal policy rule and study the implied dynamics of the model

under optimal policy. The optimal policy calculations suggest that mis-speci�cation

of the variance structure can lead researchers to seriously understate both the welfare

cost of in�ation and the potential gains from optimization.

The rest of the paper proceeds as follows. Section 2, supported by Appendices 1

and 2, presents a general analysis of state dependent volatility and its implications

for the optimal conduct of macroeconomic policy. Section 3, supported by Appendix

3, applies this to the study of optimal monetary policy under in�ation-conditional

volatility and outlines the version of the macroeconomic model of the economy used

here to allow for linear-quadratic in�ation dependence in the variance structure. Sec-
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tion 4 presents the maximum likelihood estimation results, while section 5 quanti�es

the coe¢ cients of the optimal policy rule and welfare losses. Section 6 concludes

with a brief summary of the empirical �ndings and their relevance for UK monetary

policy, together with an agenda for future research.

2 Optimal macroeconomic control with state dependent volatil-

ity

In this section we explore the general implications of state dependent volatility for

the optimal design of macroeconomic policy. We employ a canonical speci�cation,

which we then specialize in subsequent sections.

2.1 The dynamic structure

We start with a general linear dynamic model. This is expressed in state space form

as:

Xt+1 =�Xt +�it +Ut+1 (1)

Ut+1 �N(0;�t+1); (2)

whereXt is an n�1 vector of state variables observed by the decision maker describing

the position of the macroeconomy at any time t; it is a policy instrument available

to the decision maker in period t; � an n2 matrix of coe¢ cients; � is an n � 1

vector; and Ut is a an n � 1 vector of Gaussian error terms, with �t+1 denoting a

n2 variance-covariance matrix, discussed further below.

Variables are expressed as deviations from sample mean, so there is no intercept

constant vector in this system. Obviously, the state vector must include the variables

targeted by the policy maker, notably the output gap (gt = sgXt) and the annual
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rate of in�ation (�at = s�aXt); where sz is a selection vector that picks any variable

or linear combination of variables zt (including gt and �at ) from Xt. If the decision

maker is a central bank, the policy instrument it can be either the monetary base,

the exchange rate or the policy interest rate.

A wide range of macro models can be written in the state space form (1). For

example, this describes VAR models such as those used for the measurement of

macroeconomic shocks by Bernanke and Blinder (1992) and Bernanke and Mihov

(1998); for optimal control exercises by Sack (2000) and Polito and Wickens (2011).

It also encompasses the Rudebusch-Svensson central bank model, which has been

extensively employed for the analysis of US monetary policy (Ozlale (2003), Favero

and Rovelli (2003) and Dennis (2006)) used in the next section. Since the state

vector Xt+1 can also include variables representing private sector expectations, (1) is

consistent with the state space representation of linear rational expectations models,

as in Blanchard and Kahn (1980), Soderlind (1999), Woodford (2003), Lungqvist and

Sargent (2004) and Salemi (2006). Walsh (2010) explores the implications for optimal

monetary policy when the parameters of (1) are derived from Gali and Gertler (2007)

speci�cation of the New Keynesian model.

2.2 The stochastic structure

The optimal control literature has hitherto assumed that volatility is constant over

time. However, the term structure literature departs from this homoskedastic frame-

work by assuming that the error structure exhibits linear-quadratic dependence. The

workhorse is provided by the A1 speci�cation,2 which assumes that there is a single

2The subscript indicates the number of variables or combinations driving volatity, so the ho-
moskedastic model is denoted as A0:
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variable or combination of variables driving volatility:

Ut+1 = �
1
2
t+1Vt+1; (3)

where Vt+1 is a an n�1 vector of standard normally independently distributed error

terms and

�t+1 =E[Ut+1U
0
t+1jXt] (4)

=�0 +�1s
0
zXt +�2X

0
tSzXt

=�0 +�1zt +�2z
2
t ;

where �i; i = 0; 1; 2 are n2 matrices of coe¢ cients.3 This allows the variance of the

stochastic shocks entering (1) and (2) to depend on a single linear combination of

lagged dependent variables (zt) and its square. We can write the squared value of a

variable a¤ecting the variance as z2t = X0
tSzXt where Sz = szs

0
z. In this paper we

assume that the policy instrument does not a¤ect volatility directly since Xt does

not include it: We use the selection vector s0i to pick out it�1 from Xt : it�1 = s
0
iXt

and i2t�1 = X
0
tSiXt; where Si = sis0i.

Equation (4) encompasses a wide range of volatility models. The standard ho-

moskedastic speci�cation (A0) is obtained when �1 = �2 = 0, so that �t = �0.

The linear dependence speci�cation, consistent with Cox, Ingersoll, and Ross (1985),

is obtained when �2 = 0. A quadratic dependence speci�cation that relates vari-

ances to the square of a state variable, as proposed by Dothan (1978) and Courtadon

(1982), is obtained when �1 = 0.

Equation (4) shows how the responses of the state variables to shocks depend on

3Appendix 1 reports the restrictions that we use to ensure that this is �admissible�, i.e. that the
variance structure remains non-negative de�nite.
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the speci�cation of the variance structure. In a homoskedastic model, these responses

do not depend upon the state variables and are entirely determined by the dynamic

model (1). They are linear in the shocks, symmetric for positive and negative shocks

for example. However, in a conditional volatility model the impulse responses also

depend on the initial values of the variables driving volatility. Moreover, because

changes in the values of the driving variables in one period a¤ect the impact of

subsequent shocks (modelled by the Gaussian vector Vt+1 in (3)), the responses

depend upon the size, sign and duration of the shocks being simulated. These non-

linear e¤ects are not apparent in conventional simulations of one period shocks but

are evident in simulations of longer-lasting shocks (as section 4.3 will demonstrate).

For example, in the linear dependence model (with �2 = 0), the model responses

are ampli�ed by any series of shocks that increases the variable (or combination of

variables) zt driving volatility. A series of negative shocks has the opposite e¤ect,

depressing this variable, attenuating the e¤ect of further negative shocks and making

the responses asymmetric. As explained in appendix 1, this e¤ect implies a lower

bound for the variable driving volatility. The ampli�cation e¤ect is also a feature of

the quadratic dependence speci�cation (with �1 = 0). However, starting with an

initial value of zt = 0 keeps the responses to positive and negative shocks symmetric.

The general model incorporates both ampli�cation and attenuation e¤ects but the

asymmetries in numerical simulations are less marked than in the linear model and

the driving variable is unbounded.

2.3 The conditional volatility control framework

Appendix 2 shows how state dependent volatility a¤ects the determination of an

optimal decision rule within the general framework of the stochastic linear regulator

problem. The remainder of this section (and the appendix) can be skipped by readers
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who are primarily interested in the in�ation-conditional volatility speci�cation, which

is set out in the next section. However the general intuition is quite straightforward.

When a decision maker has a concave utility or loss function (like a quadratic) de-

�ned over deviations of variables like in�ation and output from bliss values, volatility

in the goal variables reduces expected utility in the same way that volatility of as-

set prices reduces the utility of an investor with a concave utility function. In the

standard stochastic optimal regulator problem volatility is constant and the decision

rule exhibits �certainty equivalence�: it does not depend in any way upon the degree

of volatility in the system. In that case, volatility just lowers welfare and there is

nothing the decision maker can do about it. If however, macroeconomic volatility is

state dependent and the decision maker can in�uence the state of the system, this

should in�uence his behavior. The certainty equivalence principle does not hold,

since the coe¢ cients of the optimal policy rule as well as the minimum value of the

loss depend upon the variance structure.

Appendix 2 formalizes this observation and analyses the general implications,

assuming that the preferences of a decision maker are characterized by a canonical

quadratic loss function and that the law of motion of the state variables is described

by the linear-quadratic state space framework set out in equations (1) and (4). The

appendix shows that because the conditional volatility terms in (4) are linear and

quadratic they have an e¤ect which is mathematically equivalent to the linear and

quadratic terms describing the welfare loss. This isomorphism means that we can

re-write any linear-quadratic state dependent volatility control problem as an equiv-

alent homoskedastic problem by a suitable re-parameterization of the targets and

welfare weights. Given a volatility process of the general form (4), we set the linear

(�1) and quadratic (�2) components to zero and appropriately adjust the target

values and welfare weights in the loss function. Speci�cally, appendix 2 shows that
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the linear dependence component has an e¤ect equivalent to changing the target val-

ues in the welfare function while the quadratic component is equivalent to a change

in the welfare weights given to squared deviations from target. This means that

researchers can draw upon standard optimal control algorithms and insights in solv-

ing heteroskedastic control problems and discussing the results. An illustration is

provided by the model set out in the next section.

3 An in�ation-conditional volatility model

The adjustments to the welfare parameters in the canonical model of the previous

section depend upon the choice of the state variables conditioning volatility. These

adjustments could make policy either more or less responsive to economic distur-

bances and little can be said without specifying the nature of this dependence. In

this section we provide an example based upon the in�ation-conditional volatility

model discussed in the introduction and examine its broad qualitative implications

for economic policy.

First we brie�y describe the speci�cation search that led us to employ this spec-

i�cation. We started by using the Breusch and Pagan (1979) test to con�rm the

signi�cance of conditional heteroskedasticity in various UK macroeconomic data.

The �rst stage of this test is to regress a variable such as the output gap, in�ation

or interest rate on its lagged values. The second stage takes the squared residuals

from these regressions as a measure of volatility and regresses them on various lagged

indicator variables (and their squares). We began by using the base rate and the

10 year Treasury yield as explanatory variables in these second stage regressions, as

suggested by the term structure literature. These variables performed reasonably

well, but we found that the annual Consumer Expenditure De�ator (CED) in�ation

rate gave a much better explanation, consistent with the hypothesis that macroeco-
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nomic volatility is driven by the underlying in�ation rate. The output gap was not

signi�cant either on its own or in combination with other variables. We thus adopted

a single factor volatility structure, driven by the lagged annual (CED) in�ation rate.

Thus we specify: z = � in equation (4).

In this section, we assume that the central bank uses the policy interest rate (it)

to minimize an intertemporal loss function including as arguments the variation in

the output gap; the variation in the annual in�ation rate around its target and the

change in the interest rate:

Lt = Et

1X
j=0

�t+j
h
�
�
�at+j � ��

�2
+ �g2t+j + � (�it+j)

2
i
; (5)

where Et is the time t�conditional expectations operator; � is the discount factor,

�at+j is the annual in�ation rate, �it+j = it+j� it+j�1 is the change in the base rate;

�� is the in�ation target; and the parameters � � 0; � � 0 and � � 0 are weights

given to in�ation, output gap and instrument stabilization. Rotemberg andWoodford

(1997) and Woodford (2003) show that this quadratic loss function provides a good

approximation to the expected lifetime utility of a representative household derived

from a fully micro-founded macroeconomic model of the economy, in which in�ation

brings e¢ ciency costs by distorting relative prices.

The policy maker is assumed to choose the intertemporal sequence of policy in-

struments fit+jg1j=0 that minimizes this loss function given the model of the economy

in (1)-(4) and the initial state vector Xt. This minimization problem can be solved

using standard dynamic programming techniques. Because the control problem is

entirely linear-quadratic the solution or value function (which shows the minimum

expected loss in any period t aggregating over current and future periods), can be

written as a linear-quadratic function of the state variables Xt observed by the policy
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maker at the beginning of that period:

J (Xt) = min
fit+jg

Lt (6)

= c� 2X0
tp+X

0
tPXt; (7)

where p is an n� 1 vector of constant coe¢ cients and P an n2 positive semide�nite

matrix of coe¢ cients that depend upon the nature of the problem.

The optimal policy is then found from the solution of a recursive Bellman equation

that is obtained by substituting (5) into (6); using J (Xt+1) to represent the minimum

expected value of future losses and then substituting (7):

J (Xt) = min
it
[� (�at � ��)

2
+ �g2t + � (�it)

2
+ �Et

�
X0
t+1PXt+1 � 2X0

t+1p+ c
�
]:

Evaluating expectations using the constraints (1) and (4) gives the conditional volatil-

ity problem:

J (Xt) = min
it

8>><>>:
� (�at � ��)

2
+ �g2t + � (�it)

2
+ �c+ It

+�tr (P�1)�
a
t + �tr (P�2) (�

a
t )
2

9>>=>>; ; (8)

where:

It = I (Xt; it) = �[(�it +�Xt)
0
P (�it +�Xt)�2 (�it +�Xt)

0
p+tr (P�0)]: (9)

The �rst line of (8) shows the Bellman form of the standard homoskedastic control

problem, in which: �1= �2= 0. In this case, the target rate for the variables in Xt

is normally assumed to be in line with the sample mean and �� = 0 if the model

is speci�ed in terms of mean-di¤erences. The certainty equivalence principle also
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holds in this case. The last two terms of (8) are non-standard and capture the e¤ect

of the state dependent variance structure on the control problem. Since these are

respectively linear and quadratic in �at , they a¤ect the coe¢ cients of the optimal

policy rule. However, we can consolidate these with the in�ation term in the �rst

period loss writing the Bellman equation in the canonical form by setting�1= �2= 0

and replacing the welfare parameters �; �� and c by ~�; ~�� and ~c in the �rst term of

the loss function (8), where:

~�= [�+�trP�2] � � (10)

~�� = [��� � �tr(P�1)=2]=~� (11)

~c= c+ �[(��)2 � (~��)2]=�: (12)

This shows that the quadratic-dependent volatility term �trP�2 stemming from

�2 in (4) has the e¤ect of making policy more aggressive in the sense that it has

exactly the same e¤ect on the optimal policy responses as would an increase in the

welfare weight � due to the macroeconomic costs of in�ationary price distortions in

the standard problem (Rotemberg and Woodford (1997)). The linear dependence

term �1 has the e¤ect of reducing the e¤ective target rate of in�ation from ��

to: ~�� = [��� � �tr(P�1)] =~�; where �tr(P�1) � 0: Provided that �� � 0 then

~�� � �� (since � � ~�): Thus we see that the e¤ect of linear dependence is to reduce

the e¤ective target and hence the steady state rate of in�ation in exactly the same

way as a negative structural shift in �� would. Finally, the intercept in the value

function shifts from c to ~c, but this does not a¤ect the decision rule.

Transforming (8) using this re-parameterization allows the optimization problem

to be written in the form of a standard Bellman problem:
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J (Xt) = min
it
[~� (�at � ~��)

2
+ �g2t + ��i

2
t + �~c+ I (Xt; it)]: (13)

The solution to (13) can then be obtained using the techniques developed for the

standard homoskedastic problem (for a review, see Lungqvist and Sargent (2004)).

If the parameters of (1) are independent of the policy rule, as for example in the

model developed in the rest of this section, the optimal policy rule is obtained simply

by (13) di¤erentiating w.r.t. it and solving for the optimal policy rate. Using the

notation described in section 2.1 to write �i2t as (it � siXt)
2 in (13), this procedure

gives:

it = � + �Xt (14)

where: � =
��0p

�+��0P�
; � =

�s0i � ��0P�

�+��0P�
: (15)

Substituting these expressions back into (13) and equating with (7) then allows us

to solve for the parameters using this notation as:

p = �1
2
~�~��

�
I�� (�� +�)0

��1
s�a (16)

P = ~�S�a + �Sga + �Sia

� (�s0i � ��0P�)
0
(�+��0P�)

�1
(�s0i���0P�) + ��0P�: (17)

Equation (14) shows that the optimal policy rule is linear in the current state

vector, with (15) determining its intercept and slope coe¢ cients as in the standard

model. The linear and quadratic volatility terms �1 and �2 do a¤ect the policy

rule. They work indirectly through the parameters p and P of the value function

(7), de�ned in (10), (11), (16) and (17). Inspection of (14) and (15) shows that p and
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hence linear dependence only a¤ects the intercept coe¢ cient in the policy response

function, while quadratic dependence also a¤ects the slope parameters, via its e¤ect

on P.

The observation that the monetary authorities should be more aggressive in re-

sponding to increases in in�ation, if this increases macroeconomic volatility is for-

malized in equations (10) and (11), but is not new. In his seminal paper, Friedman

(1977) suggests that a burst in in�ation increases variability of both actual and antic-

ipated in�ation. A number of authors, for example, Holland (1993), Holland (1995),

Fountas, Karanasos, and Kim (2002), Fountas, Ioannidis, and Karanasos (2004) and

Caporale and Kontonikas (2009), follow Friedman (1977) in suggesting that the as-

sociated rise in macroeconomic volatility is part of the welfare cost of in�ation and

that taking account of this e¤ect should make the authorities react more aggressively

towards an increase in in�ation, thus leading to a lower average in�ation rate.

The next section adapts a standard macro model to quantify empirically the

impact of in�ation conditional volatility on optimal monetary policy in the UK.

3.1 Modelling the macroeconomy

In this section we specify a simple linear structure for the UK economy that is

potentially heteroskedastic. This based on the semi-structural dynamic model of

Rudebusch and Svensson (1999), which represents the behavior of the macroeconomy

in terms of the output gap, in�ation and the policy interest rate. This type of

model has been extensively used in macro-�nance literature on the term structure of

interest rates (Dewachter and Lyrio (2006), Rudebusch and Wu (2008)) and in the

macroeconomic literature on optimal monetary policy (Favero and Rovelli (2003),

Dennis (2006), Cogley, De Paoli, Matthes, Nikolow, and Yates (2011)). We represent

in�ation (�t) by the quarterly percentage change in the CED, averaging this over
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four quarters to get the annual rate (�at ).
4 The Bank of England�s base rate is

used to represent the policy instrument (it). Both of these series were supplied by

Datastream. The GDP output gap (gt) is the OECD measure, based on a trend

�ltering approach. The estimation sample begins in 1979Q3 following the election

of the Thatcher government in May 1979, which saw a move to a more aggressive

monetary stance and it ends in 2010Q4. Table 1 reports the basic summary statistics

for the data before they were de-meaned for use in subsequent analysis. Hereafter,

gt; �t and it refer to deviations from mean values. The ADF and KPSS statistics

suggest that the in�ation rate and the base rate have a unit root.

3.2 The dynamic structure

The model describes the dynamic evolution of the output gap and the in�ation rate

according to the structural relationships:

gt = a1gt�1 + a2gt�2 + a3(i
a
t�1 � �at�1) + ug;t (18)

�t = b1�t�1 + b2�t�2 + b3�t�3 + b4�t�4 + b5gt�1 + u�;t; (19)

where �at =
1
4

P3
j=0 �t�j and i

a
t =

1
4

P3
j=0 it�j are the annual in�ation and interest

rates. The �rst equation represents the IS curve, while the second is the Phillips

curve. As the restriction b4 = 1 � b1 � b2 � b3 is imposed, the Phillips curve is

vertical in the long run. The IS equation implies that in the long run the nominal

rate equals the in�ation rate, i.e. i = � for mean-adjusted data in non-accelerating

in�ation equilibrium. The error terms ug;t and u�;t are conventionally interpreted

as demand and supply shocks respectively. The model is augmented to include an

4This series is used because it is (implicitly) seasonally adjusted. The annual percentage changes
in the CED closely track those in the RPIX (Retail Price Index excluding mortgage interest pay-
ments) which was the policy objective (with a target rate of 2.5 %) between November 1992 and
April 2004 when it was replaced by the Consumer Price Index (with a target rate of 2%). The CPI
data is only available since 1996, but also follows RPIX closely once a time trend is allowed for.
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interest rate equation, which describes the actual behavior of the central bank in

terms of a systematic component, including on lagged values of the output gap, the

in�ation rate and the interest rate; and an idiosyncratic component ui;t, which is

interpreted as the monetary policy shock. The full model is described as:

xt =�xXt�1 + �xit�1 + ux;t; (20)

it =�iXt�1 + �iit�1 + ui;t; (21)

where: xt = fgt; �tg0, ux;t = fug;t; u�;tg and Xt includes current and lagged values

of xt and it�1. The complete description of all the equations of the model, their state

space representation and how they are mapped into the system in equation (1) is in

Appendix 3. The parameters of the policy rule (21) are initially determined by max-

imum likelihood (ML) estimation along with those of the state equations (20). We

refer to these as the ML models. The likelihood-based estimation of the parameters

entering (20) and (21) is straightforward: given an initial set of parameters values

(typically this employs the OLS estimates of the homoskedastic model), a vector of

shocks and a sample of the observations, the likelihood function is computed through

the Kalman �lter, and the original parameter values updated using simplex meth-

ods. Appendix 3 also describes the likelihood function, while appendix 1 speci�es the

admissibility conditions imposed on the covariance structure to estimate the model

under state dependence.

Having then obtained the maximum likelihood estimates of the model, we use

the estimated equations for the state variables to mimic the law of motion in the

optimization problem and then replace the coe¢ cients of the policy rule in the ML

models with those obtained from the optimization procedure. We refer to these as

the Direct Control (DC) models.
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Using the bar notation to denote steady state values, we note for use in section

5.2 that the steady state impact of �g and �� on the policy rate is:

it = ��+ ��g�g +
�����: (22)

This denotes the long run policy rule, and the actual de�nition of the coe¢ cients ��,

��g and ��� is also in appendix 3. Evidently the ML and DC models will incorporate

di¤erent types of policy rules, which in turn will lead to di¤erent long run values. In

particular, we note that �� = 0 for the mean-adjusted ML models, but can be non-zero

when the equilibrium is shifted by the linear dependence e¤ect in the heteroskedastic

DC models. With i = ��; �g = 0 in a non-accelerating in�ation equilibrium we have:

i = �� = ��=(1 � ���); where the denominator is negative under the Taylor (1993)

principle ��� > 1. The stochastic structure of the model is of the form (4) and

speci�ed in appendix 3.

4 The empirical (ML) models

Appendix 3 derives the likelihood function for the model formed by (20), (21) and (38)

and outlines the ML estimation procedure. We start by estimating the homoskedas-

tic model ML0, which provides a set of baseline parameters for the dynamic model

(1). This model has a likelihood value of (-) 122.7, as reported in Table 2. Then

the likelihood is optimized with respect to the parameters of the stochastic structure

(4) keeping these baseline parameters �xed. This two-stage exercise immediately

reveals the signi�cance of state-dependent volatility. Table 2 shows that the like-

lihood increases to (-) 70.2 once linear dependence is allowed for (in model ML01)

and increases further to (-) 63.1 when an additional allowance is made for quadratic

dependence (in model ML03). Quadratic dependence on its own (ML02) does not
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produce as large an improvement in �t as these two models. These ML0X, where

X=1,2,3, models are used in the next section to study the e¤ects on optimal mon-

etary policy and welfare of changing the stochastic structure (4) while keeping the

parameters of the dynamic model (1) unchanged.

We then used these results as the starting values for a fully optimized set of models

(respectively MLX, for X=1,2,3) in which all relevant parameters were optimized.

This produces a further modest improvement in �t. Table 3 reports these fully

optimized ML results. Model ML3 has 29 parameters and a likelihood value of (-)

56.14.5 The table compares this value (lnLu) with that of each restricted model

(lnLr). It reports the loglikelihood ratio test statistic 2�(lnLu � lnLr), which has

the 1% critical values �2(3) =11.35 and �2(6) =15.09. All three restricted models

are rejected on test. However, to guard against over�tting the table also reports the

di¤erence in the Schwarz approximation to the Posterior Odds ratio (SCA=(lnLu �

lnLr)-0.5�(ku�kr)� ln(T )) as proposed by Canova (2007). On this criterion the pure

quadratic variance model ML2 is decisively rejected against the encompassing model,

as is the homoskedastic model ML0. The performance of the linear variance model

ML1 is very similar to that of ML3 on this criterion. These tests strongly support the

in�ation-conditional volatility hypothesis. The results in Table 3 are consistent with

a large body of the empirical literature in support of the relevance of this hypothesis

in UK data, Grier and Perry (1996), Fountas, Karanasos, and Kim (2002), Fountas,

Ioannidis, and Karanasos (2004), Conrad, Karanasos, and Zeng (2010).

4.1 Parameter estimates and residuals

Table 4 reports estimates of the parameters of these MLX models. The one-quarter-

ahead forecast values and 95% con�dence intervals for the three macro variables in

5These are: a vector a comprising three parameters a1, a2 and a3, i.e. a(3); b(4); c(9); �i;G (1) ;
g(2); D0(3); D1(3) and D2(3):
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ML3 are shown in the upper panels of �gures 1-3, while the lower panels show the

unconditioned residuals (the u�s in (38)) and their error bands. ML3 conditions

the variance structure using both linear and quadratic in�ation terms, although the

quadratic component is not signi�cant in the base rate equation. This e¤ect is evident

in these �gures, meaning that volatility is particularly high when in�ation is elevated

between 1979 and 1982. These �gures all show a very low level of volatility between

1994 and 2003 - the period of the NICE decade. This was interrupted by the recent

credit crunch, which is re�ected in large negative outliers in the �nal quarter of 2008

and �rst quarter of 2009, following the collapse of Lehman Brothers. However, the

subsequent residuals remain low, consistent with the low volatility implied by the

relatively low level of in�ation.

Importantly, conditioning the error structure in this way means that the likelihood

function in models ML1-3 discount the large errors (the u�s in (38)) that occur

during the high in�ation period. This means that the errors in that period tend

to be larger than in ML0. Consequently the sum of squared errors (u2) is higher

in ML3 (635.3) than in ML1 (619.7) and ML0 (579.9). In this sense, the standard

homoskedastic model underestimates the degree of macroeconomic volatility. Thus,

we see that neglecting the in�ation conditional volatility e¤ect leads researchers to

signi�cantly understate the volatility of the system. This conditioning also a¤ects the

deterministic parameters in these models because it acts like a weighted regression

system that gives observations a weight that varies inversely with in�ation.

4.2 The empirical impulse responses

The dynamic properties of these models can be seen from the impulse responses,

which show the e¤ects of innovations in the macroeconomic variables on the system.

Because the reduced form innovations (u0ts) are correlated empirically, we work with

21



orthogonalized innovations using the triangular factorization de�ned in (38). The

orthogonalized impulse responses show the e¤ect on the macroeconomic system of

increasing each of these shocks by one percentage point for one or several periods

using the Wald representation of the system. This arrangement is a¤ected by the or-

dering of the macroeconomic variables. We adopt the standard ordering: fgt; �t; itg;

interpreting vg as a positive demand shock, v� as a negative supply shock, and vi as

a contractionary monetary shock. As noted in section 2.2, we need to distinguish one

period shocks in which the impulse response functions depend only on the parame-

ters of the deterministic equation (1) and longer-lasting shocks in which non-linear

ampli�ed and asymmetric responses can occur.

Figure 4 shows the e¤ect of unit one period shocks in fgt; �t; itg: The impulse

response functions for ML0, ML1, ML2 and ML3 are shown by dotted; dashed; thin

continuous and thick continuous continuous schedules respectively. A temporary

shock in real output leads to a decline of in�ation on impact and an increase in the

nominal rate. The initial e¤ect on the nominal rate in the heteroskedastic models is

larger than in ML0. The increase in in�ation pushes up output initially, but then

output declines in all four models as the real rate responds. A nominal rate shock

causes output and in�ation to fall in all three models.

Figure 5 plots the responses of the output gap, annual in�ation and annual in-

terest rate to a 5 year sequence of positive (continuous lines) and negative (dashed

lines) unit shocks to in�ation.6 To analyze the ampli�cation and asymmetric e¤ects

emerging under conditional volatility we keep the dynamic parameters of equation

(1) �xed across these models and use the baseline ML0X variants shown in table 2.

In the homoskedastic model ML0, the increase in in�ation looks like a linear trend

6The ampli�cation and asymmetric e¤ects under linear quadratic dependence are also visible
when cosidering permanent shocks to both output and in�ation.
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over the 5 year period and output declines because the nominal rate increases more

than in�ation. The patterns for negative shocks are mirror images of these. The

ampli�cation e¤ect is clearly evident for a sequence of positive shocks in the het-

eroskedastic models: in�ation increases more than in the homoskedastic model and

the ampli�cation e¤ect is largest under ML03. This leads to larger responses of the

nominal rate, which depress output.

In the pure quadratic models ML2 and DC02, the linear dependence e¤ect is

absent and the simulated values from pairs of antithetical simulations are mirror

images of each other as in ML0. However, the asymmetry of the responses is evident

under both ML01 and ML03 when the economy is hit by a sequence of negative

in�ation shocks. As explained in section 2.2 and appendix 1, this attenuation e¤ect

puts a lower bound on the variable driving volatility,7 as in the Cox, Ingersoll, and

Ross (1985) model.8 In�ation approaches the lower bound after about 10 periods in

the ML01 simulation. This linear dependence e¤ect is also a feature of the ML03

and DC03 models but is o¤set by the quadratic ampli�cation e¤ect which dominates

at high or low in�ation rates. This e¤ect removes the lower bound on in�ation, as

appendix 1 explains.

5 Optimal control

Sections 2 and 3 showed how dynamic linear models with state-dependent variance

structures could be employed for the study of optimal macroeconomic policy. The

previous section used a simple macroeconomic model with a variance structure that

allows for linear and quadratic dependence on the lagged in�ation rate to capture

7 If the simulated value of in�ation approaches the lower bound this shuts down the volatility
structure temporarily. However mean reversion means that the in�ation rate then tends to move
back up slowly, switching the volatility back on.

8 In the continuous time CIR model, the interest rate drives its own volatility and is non-negative,
having an asymmetric non-central �2 distribution.
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the in�ation conditional volatility e¤ect found in empirical studies of UK data. In

this section we use these results to quantify the welfare costs of UK macroeconomic

volatility and its e¤ect on the conduct of optimal monetary policy. In order to

analyze the e¤ect of di¤erent stochastic and welfare speci�cations, in this section

we use the benchmark parameter estimates (shown as ML0 in table 4) for the two

state equations (18) and (19) throughout, alongside the stochastic parameters shown

in table 2 for the benchmark ML0X heteroskedastic models.9 We then replace the

empirical Taylor rules by the optimal base rate rules implied by di¤erent stochastic

structures and welfare weights. We label the models under control derived from ML0,

ML01, ML02 and ML03 as DC0, DC01, DC02 and DC03 respectively. Appendix 2

describes how we combine the state equations and the optimal policy rule to form

the model under control used for impulse response and welfare analysis.

5.1 Steady state base rate responses

Columns 2-6 of Table 5 present the long run coe¢ cients implied by the optimal policy

rules for the four di¤erent ML0X stochastic speci�cations under the �ve di¤erent

speci�cations of the welfare weights used by Rudebusch and Svensson (1999).10 The

�rst column reports the long run coe¢ cients of the benchmark empirical policy rule

implied by ML0. We used a stylized assumption about the discount rate, which is

set at six percent.

Several patterns are apparent in this table. First, reading across the table we

see the e¤ect of di¤erent welfare weights. The �rst set of weights is a benchmark

that gives in�ation, output and base rate smoothing equal weight in the loss function

9Results for the fully estimated heteroskedastic MLX models (ML1-ML3), which include the
additional e¤ect of changes in the estimated parameters (18) and (19), are qualitatively similar and
available upon request.
10These parameter sets are also used by Rudebusch (2002) in his analysis of money GDP rules

for the UK.
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(� = � = 1). The second set shows the e¤ect of reducing the base rate smoothing

parameter, which makes the monetary authorities more responsive to increases in

both in�ation and output. The third set shows the e¤ect of then reducing the weight

given to the output gap, making the monetary authorities still more aggressive in

response to rising in�ation. The fourth set shows the e¤ect of attaching a much

higher weight to output volatility than in cases 2 and 3, while the last speci�cation

considers a case in which much less weight is given to changes in the policy instrument

than in case 1.

Re�ecting the results of sections 2 and 3, we see that because they use the

same state equations, the policy responses in DC01 are identical to those of the

homoskedastic model DC0. However linear dependence has the e¤ect of introducing

a positive intercept (��) into the base rate equation in DC01, depressing the steady

state rate of in�ation (��). In DC02, quadratic dependence has the e¤ect of making

policy much more responsive to in�ation, without a¤ecting the steady state. In DC03

both e¤ects are present: the shift in �� is slightly larger, but the more aggressive in�a-

tion response has the e¤ect of damping the e¤ect on the steady state rate of in�ation

compared to DC01.

In contrast to optimal control studies of US monetary policy, which generally

�nd that the optimal long run responses to in�ation in a standard homoskedastic

model are larger in absolute value than those implied by the empirical estimates,

the optimal control responses in our equivalent DC0 model tend to straddle the

empirical benchmark shown in the �rst column. The optimal in�ation responses in

the heteroskedastic models DC02 and DC03 are naturally more aggressive. These

responses are all larger than those proposed by Taylor (1993). The output responses

are much higher than observed empirically since 1979. This is true for all models

and welfare speci�cations. We also �nd that the optimal output gap response is still
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much larger than the empirical one even when the model is simulated with � = 0.

This is because the output gap acts as a leading indicator of movement in in�ation,

an observation that might justify the prominence of the negative output gap in the

Monetary Policy Committee�s deliberations of monetary policy at the moment.

5.2 The optimal impulse responses

Section 4.2 discussed the impulse responses for the three ML models. In this section

we compare the responses to unit one period shocks for the benchmark models under

control, DC0, DC02 and DC03.11 These are shown in �gure 6 as the dotted, dashed

and continuous schedules respectively. We only present the results for the �rst set

of welfare parameters � = � = 1 since the results are not markedly a¤ected by

alternative choices. The policy rate is far more responsive to output and in�ation

shocks than under the empirical rules in the homoskedastic models. This is re�ected

in the much sharper response in output shown in the top panel. Consistent with the

theory, the policy response for DC03 is more aggressive than for the other models.

The simulations reported in the next section are designed to show the responses of

the model to longer-lasting sequences of random shocks.12

5.3 Welfare analysis

How would policy optimization have a¤ected the volatility of the system and the

imputed welfare losses? To answer this we follow Sack (2000) and simulate the various

models and welfare speci�cations stochastically, recording the standard deviations

of output, in�ation and interest rate changes and the welfare losses. We start by

creating a �at benchmark path setting the starting values in the state vector to zero,

to keep the steady state values in line with the zero mean of the empirical sample.

11The responses for DC01 are identical to those for DC0, as in table 4.
12A �gure showing the e¤ect of 5 year sequence of unit shocks to in�ation comparable with that

of �gure 5 for the ML0X models is available upon request.
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Then, re�ecting the change in the steady state rate of in�ation implied by DC01

and DC03, we reduce the benchmark path for in�ation for these two models by the

respective value of �� shown in table 5. We then use the Matlab function randn,

which produces standardized random normal variates, to generate 500 random paths

for the homoskedastic errors (the v�s in (3) and (38)). Changing the sign on these

then gives a total of 1,000 antithetical normal variates.13 This set is then used to

perturb the benchmark path using (1) and (3) in each model/weight combination.

Although these sets of shocks are the same for each such combination, it is important

to note that the �nal disturbances (the u�s) generated by (3) can be very di¤erent,

particularly for sequences of large shocks with the same sign. The use of antithetical

variable shocks makes the simulation results for positive and negative residual tracks

symmetric for the ML0, DC0, ML02 and DC02 models. However, recall that in the

linear dependence models ML01 and DC01, a series of negative output and in�ation

shocks has the cumulative e¤ect of lowering the simulated value of in�ation, thus

attenuating the e¤ect of future shocks. This linear dependence e¤ect is also a feature

of the ML03 and DC03 models but is o¤set by the quadratic dependence e¤ect which

dominates at high or low in�ation rates, amplifying volatility.

Table 6 shows the results obtained by simulating the ML models with their em-

pirical policy rules. The �rst three columns of numbers show the standard deviations

of the three goal variables and the remaining columns show the welfare losses implied

by the �ve welfare speci�cations used in table 5. The losses fall as we move from

case 1 to 3 reducing respectively the base rate smoothing and output weights. Case 4

shows the e¤ect of a large output weight and case 5 that of a very low rate smoothing

weight. This table shows a fall in the volatility of in�ation and interest rates in ML01

compared to ML0. This re�ects the asymmetric volatility attenuation e¤ect of low

13We trim 10% of the simulated series to eliminate the impact of extreme draws.
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in�ation paths noted earlier. The quadratic ampli�cation e¤ect in ML02 increases

the variances of the goal variables and hence the welfare losses compared to the other

models. Again, ML03 combines both e¤ects and implies a welfare loss somewhere

between that of ML01 and ML02.

Table 7 compares the results obtained by simulating the three models with the

optimal policy rule using the �ve welfare speci�cations to get the DC results. These

welfare speci�cations a¤ect the policy rules and hence the volatilities of the goal

variables. Optimization reduces the welfare loss relative to the empirical rules, with

the percentage welfare gains being shown in the �nal column. In the DC0 speci�-

cation, the gain is achieved by reducing the variability of in�ation at the expense

of increasing that of output and/or interest rates. The variances are �xed in this

speci�cation (�t = �0), so a reduction in the variance of one variable has to be

traded o¤ against an increase in that of another. However, the low downside risk in

DC01 makes it optimal to lower the steady state in�ation rate (as shown in table 5),

thus shifting the trade-o¤ and reducing the overall variability of the system. DC01

is able to reduce the variability of all the goal variables compared to DC0, for all of

these welfare parameter values. Optimization makes a much bigger di¤erence in this

case than it does in the standard model, even though it comes through a reduction in

the steady state (like a reduction in the in�ation target) and not an increase in the

level of aggression. As we saw in table 6, the quadratic ampli�cation e¤ect increases

the welfare losses in ML02 compared to the other models, but the gains from opti-

mization are nevertheless bigger than in the standard model, taking the form of a

change in the level of aggression without a¤ecting the steady state. DC03 combines

both a more aggressive stance and a shift in the steady state (shown in table 5) and

reduces the welfare losses to about a �fth of those implied in ML03. These results

suggest that mis-speci�cation of the variance structure can lead the researchers to
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seriously understate the potential gains from optimization.

6 Conclusion

Time varying stochastic volatility is remarkably signi�cant in UK macroeconomic

data; our empirical results show that this feature can be well captured by a simple

state dependent macroeconomic model in which the variance of the output gap,

in�ation and interest rate data exhibits quadratic as well as linear dependence. This

phenomenon helps explain the NICE decade, the UK equivalent of the US Great

Moderation or low volatility era that characterized the years between the recessions

of the early 1990s and the late 2000s. The empirical model regards the large output

and interest shocks in the �nal quarter of 2008 following the collapse of Lehman

Brothers as outliers, since subsequent surprises have apparently returned to the low

volatility implied by the relatively low rate of in�ation. The empirical results suggest

that the conventional model signi�cantly understates the degree of volatility in the

macroeconomy as well as neglecting its association with the level of in�ation.

There is a burgeoning empirical literature highlighting the role of time varying

macroeconomic volatility as a feature of macroeconomic data in most industrialized

countries. This paper is the �rst to explore the implications of this for the design

of optimal monetary policy and the analysis of the welfare costs of in�ation. The-

oretically, linear dependence reduces the risk of de�ation and makes it optimal for

monetary authorities to reduce the in�ation target relative to both the sample mean

of the data and the homoskedastic optimization model target. The optimal policy

calculations reveal that, depending upon the welfare speci�cation, this e¤ect would

have reduced the target by one or two percentage points compared to the sample

mean of 4 34%, in turn reducing the welfare losses (in DC01) relative to those implied

by the optimization of the homoskedastic speci�cation (DC0).
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We �nd that optimizing the standard homoskedastic model implies a level of

aggression comparable to that seem empirically since 1979. However, this model is

dominated empirically by the heteroskedastic model ML3, which implies a higher

level of macroeconomic volatility and makes it optimal for the monetary authorities

to react more aggressively to in�ation shocks. The welfare costs under the optimal

rule are about a �fth of those implied by the empirical rule for this model. These

cost reductions are much larger than those suggested by the conventional model.

We believe that this paper opens the way to the more general use of time-varying

macroeconomic volatility models in optimal policy analysis. The paper analyses the

policy implications of state dependent volatility in the conduct of optimal monetary

policy abstracting from issues such as parameter uncertainty (Sack (2000), Soder-

strom (2002)) or learning about the unknown state of the economy (Ellison and

Valla (2001)). These additional considerations could make optimal policy rules more

or less aggressive relative to the benchmark analysis in this paper, and are potentially

interesting extensions of the analysis provided here. However, they are unlikely to

change the central result of this paper, which is that mis-speci�cation of the vari-

ance structure can lead researchers to seriously understate both the welfare cost of

in�ation and the potential gains from optimization.

30



Appendix 1: Admissibility

A stochastic volatility speci�cation is said to be �admissible� if it ensures that the

variance structure remains non-negative de�nite. This is guaranteed in a mean-

reverting continuous-time model when there is a single square root volatility factor,

essentially because the volatility goes to zero gradually as the interest rate or other

variable driving the volatility goes to zero, allowing the system to mean revert.14 If

the variance of in�ation is driven by (39) with k = � and ��;2 = 0 (which gives a

model of the Cox, Ingersoll, and Ross (1985) type):

��;t = ��;0 + ��;1�
a
t�1 � 0

then the variance exhibits linear dependence and is shut o¤ at ��;t = 0: This puts a

lower bound on the driving variable of �amin = ���;0=��;1 � 0: For example using the

parameters for ML01 shown in table 0 gives a lower bound of �amin = �1:01=0:3185 =

�3:1711 on the Rudebusch and Svensson (1999) de�nition (that follows (19)), as

re�ected in �gure 5. This is �12:684% when expressed as an annual logarithmic

change. :

Admissibility is more problematic in discrete time square root volatility models

(i.e. linear-dependent variance structures) because these use a Gaussian approxi-

mation (due originally to Sun (1992)) allowing the driving variable to turn negative

during a discrete time interval. However this is not a problem in our linear-quadratic

speci�cation. In this case, we simply need to ensure that the eigenvalues of the vari-

ance structure remain non-negative for all possible values of the driving variable (in

14 It is however a problem in multi-factor correlated square root (CSR) volatility models. Dai and
Singleton (2000) show that these are admissible only if the factors are negatively correlated, while
empirical evidence is that they are positively correlated.
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this paper, z = �a). These are given by (39) requiring �k;t � 0; k = g; �; i:

�k;t = �k;0 + �k;1�
a
t�1 + �k;2�

a
t�1

2 � 0:

This is ensured provided that 4�k;0�k;2 � �2k;1 so that the roots of the associated

quadratic equation are complex. The absence of a real valued solution means that

there is no lower bound, although the linear component does reduce downside risk

relative to the pure quadratic model 2. Empirically, the linear term �k;1 is typically

small compared to the constant and quadratic terms so that this is not an issue. Our

Matlab code automatically checks that this restriction is satis�ed.

Appendix 2: Representing the general problem in canonical

form

This appendix explores the general implications of the dynamic stochastic framework

set out in sections 2.1 and 2.2, assuming that the policy maker has a canonical

quadratic loss function de�ned over state variables and instruments:

Lt =
1X
j=0

�t+jEt[(Xt+j�X
�)0�(Xt+j�X

�)+� (it+j�i�)2+2(Xt+j�X
�)0H (it+j�i�)];

(23)

where Et is the time t�conditional expectations operator; � is the discount factor; X�

and i� are target or bliss vectors forXt+j and it+j respectively; � andH are matrices

of constant welfare weights; and � is a weight attached to deviations of the policy

instruments from target. The policy maker is assumed to choose the intertemporal

sequence of policy instruments fit+jg1j=0 that minimizes the loss function (23) given

the model of the economy in (1)-(4) and the initial state vector Xt.

This minimization problem can be solved using standard dynamic programming
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techniques. Since the per-period loss function is quadratic and the dynamics are

linear, the value function in the canonical problem takes the form (7). The optimal

policy is then found from the solution of a recursive Bellman equation that is obtained

by substituting (23) into (6) and using (7) to replace J (Xt+1):

J (Xt) =min
it
[(Xt �X�)

0
� (Xt �X�) + �(it � i�)2 + 2 (Xt �X�)

0
H(it � i�)

+�Et
�
X0
t+1PXt+1 � 2X0

t+1p+ c
�
]:

This is optimized subject to the constraints (1) and (4). Evaluating expectations

using these constraints gives the conditional volatility problem:

J (Xt) = min
it

8>><>>:
(Xt �X�)

0
� (Xt �X�) + �(it � i�)2 + 2 (Xt �X�)

0
H(it � i�) + �c+ It

+�tr (P�1)X
0
tsz + �tr (P�2)X

0
tSzXt:

9>>=>>; ;
(24)

where It is de�ned in equation (9). The �rst line of (24) shows the Bellman form of

the standard homoskedastic control problem, in which: �1= �2= 0. In this case, the

target rate for the variables in Xt is the sample mean and if the model is speci�ed

in terms of mean-di¤erences then: X� = 0. The certainty equivalence principle

also holds in this case. The last two terms of (24) capture the e¤ect of the state

dependent variance structure on the control problem. Since these are, respectively,

linear and quadratic in Xt, they a¤ect the coe¢ cients of the optimal policy rule.

However, we can consolidate these with the other linear and quadratic terms and

write the loss function in the canonical form given by the �rst two lines of (24) by

setting: �1= �2= 0 and replacing the welfare parameters �;X
�; i� and c in (23) by
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~�; ~X�;~{� and ~c to get:

Lt =
1X
j=0

�t+jEt[(Xt+j�~X
�)0~�(Xt+j�~X

�)+� (it+j�~{�)2+2(Xt+j�~X
�)0H (it+j�~{�)];

(25)

where:

~�=�+�tr (P�2)Sz (26)

~X� = (~��HH0=�)
�1
[(��HH0=�)X

� � �tr (P�1) sz=2] (27)

~{� = i� +H0
�
X� � ~X�

�
=� (28)

~c= c+
h
X�0�X� � ~X�0�~X� � �(i� � ~{�)2

i
=� � 2X�0HH0

�
X� � ~X�

�
=�: (29)

This allows the optimization problem to be expressed in the form of the standard

Bellman equation:

J (Xt) = min
it
[(Xt� ~X�)0~�(Xt� ~X

�)+�(it�~{�)2+2
�
Xt � ~X�

�0
H(it�~{�)+�~c+It]:

(30)

To demonstrate the equivalence of (24) and (30), we expand the �rst quadratic

term in (24) and use (26) to rearrange this as:

J (Xt) = min
it

8>><>>:
X0
t
~�Xt � 2X0

t[�X
� � �tr (P�1) sz=2] +X�0�X� + �(it � i�)2

+2 (Xt �X�)
0
H(it � i�) + �c+ It

9>>=>>; :
(31)
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We then write (30) as:

J (Xt) = min
it

8>>>>>><>>>>>>:
X0
t
~�Xt � 2X0

t
~�~X

�
+ ~X�0~�~X�

+�[(it � i�)2 + (i� � ~{�)2 + 2(it � i�)(i� � ~{�)] + It + �~c

2 (Xt �X�)
0
H(it � i�) + 2 (Xt �X�)

0
H(i� � ~{�) + 2

�
X� � ~X�

�0
H(it � ~{�)

9>>>>>>=>>>>>>;
:

(32)

Equating (31) and (32) and cancelling common terms, we require:

X�0�X� + �c� 2X0
t[�X

� � �tr (P�1) sz=2]

= ~X�0�~X� � 2X0
t
~�~X

�
+ �(i� � ~{�)2 + 2 (Xt �X�)

0
H(i� � ~{�) + �~c;

+2[�(i� � ~{�) + 2
�
X� � ~X�

�0
H](it � i�)

= ~X�0~�~X� � 2X0
t
~�~X

�
+ �[(i� � ~{�)2]� 2 (Xt �X�)

0
HH0

�
X� � ~X�

�
=� + �~c;

where the last line follows by substituting condition (28). Equating the coe¢ cients

of Xt gives [�X
� � �tr (P�1) sz=2] = ~�~X

�
+HH0

�
X� � ~X�

�
=�; with the solution

(27). Finally, equating the respective intercept terms gives (29).

The solution can then be obtained by appropriate use of the algorithms devel-

oped for the standard homoskedastic problem (Lungqvist and Sargent (2004)). If

the parameters of (1) and (4) are independent of the policy rule as they are for ex-

ample in the model developed in section 3, the optimal value is obtained simply by

di¤erentiating (30) w.r.t. it to get the closed loop solution:

it = � + �Xt (33)

� = (�+��0P�)
�1
��0p (34)

�=� (�+��0P�)
�1
(H0+��0P�) : (35)
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The matrices �1 and �2 showing the e¤ect of the linear and quadratic volatility

terms a¤ect the policy rule indirectly, through the parameters p and P of the value

function (7). These values are obtained by substituting (33) - (35) back into (30)

and equating with (7) to obtain the standard formula:

p =
�
I�� (�� +�)0

��1 h�~� + �0H0 ~X�
�
+
�
�0� +H

�
i�
i

(36)

and the standard Riccati equation:

P=~�� (H0+��0P�)
0
(�+��0P�)

�1
(H0+��0P�) + ��0P�: (37)

The optimal response coe¢ cients are then obtained by solving (37) numerically and

substituting P back into (36), and (33) - (35).

A Appendix 3: Estimating and optimizing the empirical model

This canonical model of section 2 and appendix 1 can be used to describe various

models appearing in the control literature. In this appendix we show how the em-

pirical model of section 3 �ts into this general structure and describe the estimation

procedure. We then show how we obtain the policy rule implied by the state equa-

tions and the loss function of section 2.4.

A.1 The stochastic structure

The residuals in (20) and (21) are potentially heteroskedastic, driven by the annual

CED in�ation rate (lagged one quarter):

2664ux;t
ui;t

3775 =
2664G02
g0 1

3775
2664D

1=2
x;t 02

002 �
1=2
i;t

3775
2664vx;t
vi;t

3775 (38)
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where:

Dx;t =Dx;0 +Dx;1�
a
t�1 +Dx;2(�

a
t�1)

2 (39)

�i;t = �i;0 + �i;1�
a
t�1 + �i;2(�

a
t�1)

2

and where G =

2664 1 0
g1 1

3775 and g0 = fg2; g3g0 include constant parameters; vx;t =

fvg;t; v�;tg0 � N (02; I2) and vi;t � N (0; 1) are Gaussian homoskedastic shocks to

output, in�ation and interest rate respectively; Dx;j = diagf�g;j ; ��;jg, j = 0; 1; 2;

with �g;j ; and ��;j again denoting constant parameters.15

The state space form

Equations (18) and (19) describing the current state variables of the system x0t =

fgt; �tg can be written in the matrix form (20) using

�x =

2664a1 �a3=4 a3=4 a2 �a3=4 a3=4 0 �a3=4 a3=4 0 �a3=4

b5 b1 0 0 b2 0 0 b3 0 0 b4

3775
X0
t =

�
x0t; it�1;x

0
t�1; it�2;x

0
t�2; it�3;x

0
t�3
	

�0x = fa3=4; 0g:

The policy interest rate can be written as

it = �iit�1 + c1gt�1 + c2�t�1 + c3it�2 + c4gt�2 + c5�t�2 + c6it�3 + c7�t�3

+c8it�4 + c9�t�4 + ui;t

15 In this paper, diagf�g represents a matrix with the elements of the row vector � in the main
diagonal and zeros elsewhere. 0a is the (a � 1) � 1 zero vector; 1a is the (a � 1) � 1 summation
vector; 0a;b the (a� b) zero matrix; and Ia the a2 identity matrix.
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which can then be arranged in a form compatible with equation (21) using:

�i = fc1;c2;c3; c4;c5;c6; 0; c7;c8; 0; c9g:

The interest rate rule in the long run is written in equation (22), using:

��g = (c1 + c4)=(�i + c3 + c6 + c8) (40)

��� = (c2 + c5 + c7 + c9)=(�i + c3 + c6 + c8): (41)

The coe¢ cient �� = 0 for the mean-adjusted ML models, but can be non-zero when

the equilibrium is shifted by a change in the rate setting equation, as in some of the

optimized models for example. The evolution of the state vector is described by the

companion form (1), where speci�cally: �0 = f�0i;009g, and U0
t =

�
u0x;t;0

0
9

	
are 11�1

de�cient coe¢ cient and error vectors and:

� =

2666666666666666666666666664

fa1;�a3=4g a3=4 fa2;�a3=4g a3=4 f0;�a3=4g a3=4 f0;�a3=4g

fb5; b1g 0 f0; b2g 0 f0; b3g 0 f0; b4g

002 0 002 0 002 0 002

I2 02 02;2 02 02;2 02 02;2

002 1 002 0 002 0 002

02;2 02 I2 02 02;2 02 02;2

002 0 002 1 002 0 002

02;2 02 02;2 02 I2 02 02;2

3777777777777777777777777775

:16

16 In this paper, 0a is the (a� 1)� 1 zero vector; 1a is the (a� 1)� 1 summation vector; 0a;b the
(a� b) zero matrix; and Ia the a2 identity matrix. Diagf�g represents a matrix with the elements
of the row vector � in the main diagonal and zeros elsewhere.
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Finally, to put (38) into form (1) we de�ne:

Ut � N (011;�t)

where �t is de�ned in (4) specifying: z = �a;

�j = ��j�
0;

�=

2664 G 02;9

09;2 011;11

3775 ;
and: �j = diagf�g;j ; ��;j ;009g, j = 0; 1; 2:

The likelihood function

Next we derive the likelihood function of the model of section 3 and describe the

numerical optimization procedure. Write (20) and (21) as:

zt =

2664�x
�i

3775+Xt�1

2664�x
�i

3775 it�1 +
2664ux;t
ui;t

3775 (42a)

=�Xt�1 + �it�1 + ut: (42b)

Similarly, write (38) as:

ut =CD
1=2
t vt (43)

vt �N (03; I3)
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where: z0t = fx0t; itg ; u0t =
�
u0x;t; ui;t

	
; v0t =

�
v0x;t; vi;t

	
and:

C =

2664G03
g0 1

3775 ; Dt =

2664Dx;t 03

003 �i;t

3775 : (44)

Then using (43):

vt =C
�1D

�1=2
t ut

=C�1D
�1=2
t [zt��Xt�1 � �it�1]

vt �N (03; I3)

Thus the loglikelihood for period t can be written as:

Lt = �
1

2
ln(2�)� 1

2
ln(jDtj)�

1

2
v0tD

�1
t vt (45)

Summing this over T periods gives the loglikelihood for the estimation period:

L = �2T ln(2�)� 1
2

TX
t=1

ln(jDtj)�
1

2

kX
�=1

v0tD
�1
t vt:

This likelihood function was maximized using the FindMinimum numerical optimiza-

tion package on Matlab.

Policy optimization

First, the Rotemberg-Woodford type welfare function (5) used in the model of section

3 is put into the canonical form (23) using:

� = �S�a+�Sg+�Si; H = ��si; X� = ��s�a : (46)
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where: s�a = 0:25[0; 1; 0; 1; 0; 0; 1; 0; 0; 1; 0]0 and S� = s�s0�.

The model under control consists of the state equations (20) and the policy rule

(14). Following Polito and Wickens (2011), we partition the vector � = f�1; �2; �3g

conformably with {xt; Xt�1; it�1g and stack these equations to obtain

2664 I2 0

��1 1

3775
2664xt
i�t

3775 =
266402
�

3775+
2664�x �x
�2 �3

3775
2664Xt�1

it�1

3775+
2664ux;t
0

3775 : (47)

This can be solved to obtain the reduced form system that is congruent with (42a):

2664xt
i�t

3775 =
266402
�

3775+
2664�x
�i�

3775Xt�1 +

2664�x
�i�

3775 it�1 +
2664 ux;t

�1ux;t

3775 ; (48)

where:

�i� =�i�(P) = �1(P)�x + �2(P); (49)

�i� = �i�(P) = �1(P)�x + �3(P);

�1 = �1(P)

� = � (P)

and where the relationships � (P), �1(P); �2(P) and �3(P) follow from the restrictions

(15)-(17) and (49), with P = f�x;�x; �; �; �g.17 Substituting stylized values for �, �

and � as well as the ML parameters �̂x and �̂x from (42a) into (48) gives the Direct

Control (DC) model used for impulse response and welfare analysis in section 5.

17We normalise the welfare weight to in�ation to unity, so that � and � measure the welfare weight
attached to output gap stabilisation and interest rate smoothing relative to in�ation stabilisation.

41



References

Ait-Sahalia, Y. (1996): �Testing Continuous Time Models of the Spot Interest

Rate,�Review of Financial Studies, 9, 385�42.

Ball, L. (1992): �Why Does In�ation Raise In�ation Uncertainty,�Journal of Mon-

etary Economics, 29, 371�388.

Ball, L., and S. G. Cecchetti (1990): �In�ation and Uncertainty at Long and

SHort Horizons,�Brookings Papers on Economic Activity, 1, 215�254.

Benati, L. (2004): �Evolving post-World War II UK economic performance,�Jour-

nal of Money, Credit, and Banking, 36, 691�718.

Benati, L., and P. Surico (2009): �VAR Analysis and the Great Moderation,�

American Economic Review, 99, 1636�1652.

Bernanke, B., and A. Blinder (1992): �The Federal Funds Rate and the Channels

of Monetary Transmission,�American Economic Review, 82, 901�921.

Bernanke, B., and I. Mihov (1998): �Measuring Monetary Policy,�The Quarterly

Journal of Economics, 113, 869�902.

Bernanke, B. S. (2004): �The Great Moderation,�Proceedings of the Meetings of

the Eastern Economic Association, Washington D.C.

Bianchi, F., H. Mumtaz, and P. Surico (2009): �The great moderation of the

term structure of UK interest rates,�Journal of Monetary Economics, 56, 856�871.

Blanchard, O., and C. Kahn (1980): �The Solution of Linear Di¤erence Models

under Rational Expectations,�Econometrica, 48, 1305�1311.

Breusch, T., and A. Pagan (1979): �Simple test for heteroscedasticity and random

coe¢ cient variation,�Econometrica, 47, 1287�1294.

Brunner, A., and G. Hess (1993): �Are Higher Levels of In�ation Less Pre-

dictable? A State Dependent Conditional Heteroscedasticity Approach,�Journal

42



of Business and Economic Statistics, 11, 187�197.

Canova, F. (2007): Methods for Applied Macroeconomic Research. Princeton Uni-

versity Press, Princeton NJ.

Canova, F., L. Gambetti, and E. Pappa (2008): �The Structural Dynamics of

U.S. Output and In�ation: What Explains the Changes?,� Journal of Money,

Credit and Banking, 40, 368�388.

Caporale, G. M., and A. Kontonikas (2009): �The Euro and in�ation uncer-

tainty in the European Monetary Union,� Journal of International Money and

Finance, 28, 954�971.

Chen, K., F. Karolyi, F. Longstaff, and A. Sanders (1992): �An Empirical

Comparison of Alternative Models of the Short Term Interest Rate,�The Journal

of Finance, 47, 1209�1227.

Cogley, T., B. De Paoli, C. Matthes, K. Nikolow, and T. Yates (2011):

�A Bayesian approach to optimal monetary policy with parameter and model

uncertainty,�Bank of England working paper No. 414.

Conrad, C., M. Karanasos, and N. Zeng (2010): �The link between macroeco-

nomic performance and variability in the UK,�Economic Letters, 106, 154�157.

Courtadon, G. (1982): �The Pricing of Options on Default-Free Bonds,�Journal

of Banking and Finance, 17, 75�100.

Cox, J., J. Ingersoll, and S. Ross (1985): �A Theory of the Term Structure of

Interest Rates,�Econometrica, 52, 385�407.

Dai, Q., and K. Singleton (2000): �Speci�cation Analysis of A¢ ne Term Struc-

ture Models,�Journal of Finance, 55, 415�41.

Dennis, R. (2006): �The Policy Preferences of the US Federal Reserve,�Journal of

Applied Econometrics, 21(1), 55�77.

Dewachter, H., and M. Lyrio (2006): �Macro Factors and the Term Structure

43



of Interest Rates,�Journal of Money, Credit and Banking, 38, 119�140.

Dothan, U. (1978): �On the Term Structure of Interest Rates,�Journal of Financial

Economics, 6, 59�69.

Ellison, M., and N. Valla (2001): �Learning, uncertainty and central bank ac-

tivism in an economy with strategic interactions,�Journal of Monetary Economics,

48, 153�171.

Favero, C., and R. Rovelli (2003): �Macroeconomic Stability and the Preferences

of the Fed. A formal Analysis, 1961-98,� Journal of Money Credit and Banking,

35, 545�556.

Fountas, S., A. Ioannidis, and M. Karanasos (2004): �In�ation, in�ation un-

certainty and a common European monetary policy,�Manchester School, 72, 221�

241.

Fountas, S., and M. Karanasos (2007): �In�ation, output growth, and nominal

and real uncertainty: Empirical evidence for the G7,� Journal of International

Money and Finance, 26, 229�250.

Fountas, S., M. Karanasos, and J. Kim (2002): �In�ation and output growth

uncertainty and their relationship with in�ation and output growth,� Economic

Letters, 75, 293�301.

Friedman, M. (1977): �Nobel Lecture: In�ation and Unemployment,� Journal of

Political Economy, 85, 451�472.

Gali, J., and M. Gertler (2007): �Macroeconomic Modelling for Monetary Policy

Evaluation,�Journal of Economic Perspectives, 21, 25�45.

Grier, K., and M. Perry (1996): �On in�ation and in�ation uncertainty in the

G7 countries.,�Journal of International Money and Finance, 17, 671�689.

Holland, A. S. (1993): �Comment on �In�ation regimes and the Sources of In�ation

Uncertainty�,�Journal of Money, Credit and Banking, 25, 514�520.

44



(1995): �In�ation and Uncertainty: Tests for Temporal Ordering,�Journal

of Money, Credit and Banking, 27, 827�837.

Justiniano, A., and G. Primiceri (2008): �The Time-Varying Volatility of Macro-

economic Fluctuations,�American Economic Review, 98(3), 604�641.

King, M. (2003): �Speech to the East Midlands Development Agency,� Bank of

England, 14 October.

Lungqvist, L., and J. Sargent, T. (2004): Recursive Macroeconomic Theory.

The MIT Press, Cambridge, Massachusetts.

Mumtaz, H., and P. Surico (2011): �Evolving international in�ation dynamics:

evidence from a time-varying dynamic factor model,� Journal of European Eco-

nomic Association, forthcoming.

Nowman, B. (1999): �Gaussian Estimation of Single Factor Continuous Time Mod-

els of the Term Structure of Interest Rates,�The Journal of Finance, 52, 1695�

1706.

Okun, A. (1971): �The Mirage of Steady In�ation,�Brookings Papers on Economic

Activity, 2, 485�498.

Ozlale, U. (2003): �Price Stability vs. Output Stability: Tales from Three Federal

Reserve Administrations,�Journal of Economic Dynamics and Control, 27, 1595�

1610.

Polito, V., and M. Wickens (2011): �Optimal Monetary Policy Using an Unre-

stricted VAR,�Journal of Applied Econometrics, Forthcoming.

Primiceri, G. E. (2005): �Time Varying Structural Vector Autoregressions and

Monetary Policy.,�Review of Economic Studies, 72, 821�852.

Rotemberg, J., and M. Woodford (1997): �An Optimization-Based Economet-

ric Framework for the Evaluation of Monetary Policy,� NBER Macroeconomics

Annual, 12, 297�346.

45



Rudebusch, G., and L. Svensson (1999): �Policy Rules for In�ation Targeting,�in

Monetary Policy Rules, ed. by J. Taylor, pp. 203�262, Cambridge, Massachusetts.

National Bureau of Economic Research.

Rudebusch, G. D., and T. Wu (2008): �A Macro-Finance Model of the Term

Structure, Monetary Policy and the Economy,�The Economic Journal, 118(530),

906�926.

Sack, B. (2000): �Does the Fed Act Gradually? A VAR Analysis,� Journal of

Monetary Economics, 46, 229�256.

Salemi, M. (2006): �Econometric Policy Evaluation and Inverse Control,�Journal

of Money, Credit and Banking, 38(7), 1737�1764.

Sims, C., and T. Zha (2006): �Were There Regime Switches in U.S. Monetary

Policy?,�American Economic Review, 96, 54�81.

Soderlind, P. (1999): �Solution and estimation of RE macroeconomic models with

optimal policy,�European Economic Review, 43, 813�823.

Soderstrom, U. (2002): �Monetary Policy with uncertain parameters,�Scandina-

vian Journal of Economics, 104, 125�145.

Stanton, R. (1997): �A Non-Parametric Model of Term Structure Dynamics and

the Market Price of Interest Rate Risk,�The Journal of Finance, 52, 1973�2002.

Stock, J., and M. Watson (2002): �Has the business cycle changed and why?,�

NBER Macroeconomic Annuals 2002, 17, 159�230.

Taylor, J. (1993): �Discretion versus Policy Rules in Practice,�Carnegie-Rochester

Conference Series on Public Policy, 39, 195�214.

Ungar, M., and B. Zilberfarb (1993): �In�ation and its unpredictability - theory

and empirical evidence,�Journal of Money, Credit, and Banking, 25, 709�720.

Walsh, C. (2010): Monetary Theory and Policy. The MIT Press, Cambridge, Massa-

chusetts.

46



Woodford, M. (2003): Interest and Prices: Foundations of a Theory of Monetary

Policy. Princeton University Press.

47



B Tables and Figures

Table 1: Data summary statistics: 1979Q3-2010Q4
Mean Standard Skewness Excess First order KPSS ADF

deviation kurtosis Autocorrel.
g -0.329 2.481 -0.467 0.219 0.975 0.267 -4.249
� 1.190 0.900 1.653 1.699 0.951 0.766 -1.755
i 1.941 0.962 0.335 -0.655 0.963 0.941 -1.176

Note: Output gap (g) is from OECD; CED in�ation (�) and the base rate (i) are from Datastream.

Mean denotes sample arithmetic mean expressed as percentage p.a.; KPSS is the Kwiatowski et al

(1992) statistic for the null hypothesis of level stationarity and ADF is the Adjusted Dickey-Fuller

statistic for the null of non-stationarity. The 5% signi�cance levels are 0.463 and (-)2.877 respectively.
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Table 2: Baseline estimates
Model ML0 ML01 ML02 ML03
Loglikelihood value (-) 122.7 (-) 70.16 (-) 97.281 (-) 63.09
Number of �
Parameters

6 9 9 12

Initial estimates

�0

�1

�2

�g;0
��;0
�i;0
�g;1
��;1
�i;1
�g;2
��;2
�i;2

0.4784
1.0893
0.6551

0.4953
1.0100
0.6905
0.2643
0.3184
0.3967

0.301 4
0.4946
0..6547

0.0788
0.3089

2.25�10�6

0.4131
0.6056
0.7420
0.2403
0.3283
0.4486
0.0257
0.2943

1.26�10�2
G g1

g2
g3

-0.5011
0.5942
0.1559

-0.4035
0.5052
0.1303

-0.2254
0.6372
0.1559

-0.1909
0.5272
0.1270

Note: Model ML0 is the baseline homoskedastic model. This provides a set of baseline

parameters for the dynamic model (1). In the ML0X approach, the likelihood is then opti-

mized with respect to the parameters of the stochastic structure (4) keeping these baseline

parameters �xed. ML01 assumes that the error variances are linear in the (lagged) annual

rate of in�ation while ML02 assumes that the variances are quadratic in this rate. The

encompassing model ML03 includes both linear and quadratic e¤ects. The fully optimized

results are reported in the next two tables..
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Table 3: Loglikelihood ratio tests
Model ML0 ML1 ML2 ML3
Loglikelihood value (logL) -122.70 - 63.24 - 96.81 - 56.14
Number of Parameters (k) 23 26 26 29

LR test (against M3)
133.12
� �2(6)

14.20
� �2(3)

81.34
� �2(3)

SCA test (against M3) - 52.06 - 0.16 - 33.40

Note: In the ML approach, the interest rate equation (21) is estimated alongside the struc-

tural equations (20) using maximum likelihood. Model ML0 assumes a homoskedastic

error structure. ML1 assumes that the error variances are linear in the (lagged) an-

nual rate of in�ation while ML2 assumes that the variances are quadratic in this rate.

The encompassing model ML3 includes both linear and quadratic terms. Its likelihood

value (Lu) is compared with that of each restricted model (Lr) using a loglikelihood

ratio test LR=(2�(lnLu � lnLr)), which has the 1% critical values �2(3)=11.35 and
�2(6)=15.09. All three restricted models are rejected on this test. The Schwarz statistic
(SCA=(lnLu � lnLr)-0.5�(ku�kr)� ln(T )) guards against over-�tting and provides an
asymptotically consistent test. On this criterion, ML0 and ML2 are decisively rejected

against ML3, while the performance of ML1 and ML3 are similar.
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Table 4: Parameter estimates for ML models
ML0 ML1 ML2 ML3

par. t-stat par. t-stat par. t-stat. par. t-stat.
g1 -0.5011 3.91 -0.4700 3.10 -0.2647 3.00 -0.2617 2.38
g2 0.5942 5.65 0.4353 2.90 0.6311 3.77 0.4551 4.09
g3 0.1559 1.62 0.1502 2.80 0.1559 3.01 0.1401 3.85
a1 1.2930 16.67 1.4636 19.06 1.3785 16.90 1.4488 20.17
a2 -0.3495 4.41 -0.5047 6.11 -0.4204 5.07 0.4812 -6.29
a3 -0.0236 1.03 -0.0108 0.58 -0.0236 1.12 -0.0236 1.12
b1 0.3588 4.29 0.4213 4.82 0.3004 3.48 0.3666 4.22
b2 0.2887 3.38 0.2232 2.40 0.2320 2.61 0.2169 2.39
b3 0.1491 1.76 0.1044 1.17 0.1448 1.65 0.1176 1.31
b5 0.0972 2.53 0.0180 0.61 0.0793 2.55 0.0419 1.32
�i 0.2602 2.34 0.2251 2.50 0.3150 2.83 0.1986 1.92
c1 0.2584 3.72 0.1955 3.21 0.2493 3.59 0.1736 2.56
c2 0.7941 9.11 0.9137 11.17 0.7941 9.11 0.9073 10.69
c3 -0.1423 1.36 -0.1169 1.40 -0.1900 1.82 -0.0902 0.85
c4 0.1204 1.69 0.0010 0.02 0.1116 1.56 0.0010 0.01
c5 0.0863 0.78 -0.0192 -0.17 0.0863 0.78 -0.0163 0.15
c6 0.0268 0.37 0.0010 0.01 0.0261 0.36 0.0010 0.01
c7 -0.0476 0.45 0.0521 0.36 -0.0476 0.45 -0.0424 0.41
c8 0.0119 0.15 0.0744 1.36 0.0306 0.40 0.0777 1.20
c9 0.0179 0.23 0.0687 0.95 0.0179 0.23 0.0666 0.96
�g;0 0.4784 15.95 0.5007 13.28 0.2894 12.47 0.4088 13.28
��;0 1.0893 11.50 0.9986 9.99 0.4674 10.91 0.6237 9.70
�i;0 0.6553 14.95 0.6462 14.10 0.6547 15.95 0.7112 15.87
�g;1 0.2792 10.01 0.2715 8.67
��;1 0.3718 5.05 0.3754 5.05
�i;1 0.3704 9.09 0.4307 9.99
�g;2 9.25�10�2 3.66 3.94�10�2 2.35
��;2 0.3174 4.00 0.2729 4.94
�i;2 4.91�10�7 0.01 1. 23�10�2 0.66

Note: The model parameters are de�ned in (20), (21) and (38) and are estimated using maximum

likelihood (appendix 3).
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Table 5: Long run responses of estimated and optimal policy rules

ML0 DC0
�=�=1 �=1,�=0.5 �=0.2,�=0.5 �=5,�=0.5 �=1,�=0.1

�� (0) (0) (0) (0) (0) (0)
��g 0.79 2.50 2.91 2.54 3.87 4.16
��� 2.80 2.89 3.13 5.06 1.73 3.79
�� (0) (0) (0) (0) (0) (0)

ML01 DC01
�� 0.00 3.39 3.58 3.39 3.77 4.01
��g 0.79 2.50 2.91 2.54 3.87 4.16
��� 2.80 2.89 3.13 5.06 1.73 3.79
�� (0) -1.79 -1.68 -0.83 -5.16 -1.44

ML02 DC02
�� 0.00 0.00 0.00 0.00 0.00 0.00
��g 0.79 3.23 3.63 3.23 4.57 4.85
��� 2.80 6.77 7.24 8.16 6.63 8.55
�� (0) (0) (0) (0) (0) (0)

ML03 DC03
�� 0.00 3.53 3.73 3.62 3.91 4.23
��g 0.79 3.00 3.41 3.07 4.29 4.65
��� 2.80 5.59 6.02 7.44 4.68 7.22
�� (0) -0.77 -0.74 -0.56 -1.06 -0.68

Note: The ML0X models are described in the footnote to table 2 and the DC0X models replace

the empirical interest rule with the appropriate optimal rule. The long run interest rate rule takes

the form i = ��+��gg+
����, where the long run coe¢ cients shown in (40) and (41) are computed

using the coe¢ cients of either the estimated or the optimal policy rule. The intercept is zero in

the MLX models and in DC0 since the data is de-meaned. Heteroskedasticity has the e¤ect of

inducing a positive �� intercept, which reduces the steady state in�ation rate by �� = ��=(1� ���)
in DC1 and DC3.
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Table 6: Volatilities and welfare losses implied by the empirical rules under di¤erent
welfare speci�cations

Standard deviations Losses
Goal variables Welfare weights

gt �t �it Case: 1 2 3 4 5
� = 1
� = 1

� = 1
� = 0:5

� = 0:2
� = 0:5

� = 5
� = 0:5

� = 1
� = 0:2

Model

ML0
ML01
ML02
ML03

2.56
2.43
3.54
2.69

2.29
2.01
2.90
2.60

1.00
0.98
1.22
1.22

12.81
10.88
22.40
15.49

12.31
10.40
21.66
14.75

7.02
5.67
11.57
8.94

38.26
33.62
71.16
43.28

11.91
10.02
21.06
14.15

Note: This table shows the results obtained by simulating the ML0X models with the benchmark ML0 empirical

policy rule (and state equations) and the stochastic parameters shown in table 2. The �rst three columns of numbers

show the standard deviations of the three goal variables and the remaining columns show the welfare losses implied

by the �ve welfare speci�cations used in table 5. The losses drop as we move from case 1 to 3 reducing respectively

the interest rate smoothing and output weights. Macro volatility is lower in ML1 than ML0 because sequences of

shocks that lower in�ation have the e¤ect of attenuating the e¤ect of later shocks. On the other hand, the quadratic

ampli�cation e¤ect in ML02 increases volatility and welfare losses, while ML03 combines both linear attenuation and

quadratic ampli�cation e¤ects.
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Table 7: Welfare gains from policy optimization
Empirical rules

Model
Welfare
loss

Optimal rules

Model
Standard deviations

gt �t �it

Welfare
loss

%
gain

Case 1, � = � = 1
ML0
ML01
ML02
ML03

12.81
10.88
22.40
15.49

DC0 2.22 1.95 0.89 9.52 0.26
DC01 1.91 1.22 0.66 5.59 0.49
DC02 2.72 1.72 1.99 14.29 0.36
DC03 1.56 0.79 0.83 3.75 0.76

Case 2, � = 1; � = 0:5

ML0
ML01
ML02
ML03

12.31
10.40
21.66
14.75

DC0 2.15 1.87 1.21 8.85 0.28
DC01 1.80 1.13 0.89 4.91 0.53
DC02 2.58 1.61 2.39 12.08 0.44
DC03 1.48 0.72 1.04 3.24 0.78

Case 3, � = 0:2; � = 0:5
ML0
ML01
ML02
ML03

7.02
5.67
11.57
8.94

DC0 2.63 1.88 1.08 5.49 0.22
DC01 1.96 1.12 0.64 2.22 0.61
DC02 2.97 1.68 2.13 6.87 0.41
DC03 1.74 0.82 0.94 1.72 0.81

Case 4: � = 5; � = 0:5
ML0
ML01
ML02
ML03

38.26
33.62
71.16
43.28

DC0 1.82 1.98 2.12 22.64 0.41
DC01 1.87 1.37 2.09 21.49 0.36
DC02 2.21 1.54 3.45 32.80 0.54
DC03 1.18 0.61 1.55 8.54 0.80

Case 5: � = 1; � = 0:2
ML0
ML01
ML02
ML03

11.91
10.02
21.06
14.15

DC0 1.98 1.72 2.51 7.50 0.37
DC01 1.55 1.00 1.77 3.71 0.63
DC02 2.29 1.41 3.91 8.76 0.58
DC03 1.32 0.63 1.87 2.48 0.82

Note: This table compares the results obtained by simulating the three models under the optimal policy (the DC0X models)

with the empirial (ML0X) models shown in the previous table. The welfare speci�cations a¤ect the policy rules and hence

the volatilities of the goal variables. Optimization reduces the welfare loss relative to the empirical rules, with the percentage

welfare gains being shown in the �nal column.
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Fig 1(a) Output gap volatility
(one step ahead estimate and 95% confidence interval)
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Fig 1(b) Output shocks
(One step ahead error (x) and 95% confidence interval)
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Fig 2(a) Inflation volatility
(one step ahead estimate and 95% confidence interval)
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Fig 2(b) Inflation shocks
(One step ahead error (x) and 95% confidence interval)
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Fig 3(a) Base rate volatility
(one step ahead estimate and 95% confidence interval)
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Fig 3(b) Monetary policy (base rate) shocks
(One step ahead error (x) and 95% confidence interval)
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Fig 4. Impulse response functions for the ML models (response to one period shocks)
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Fig 5. Responses to a sequence (20-quarters) of positve and negative inflation shocks
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Fig 6. Impulse response functions for the DC0X models (response to one period shocks)
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