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The Explanatory and Predictive Power of Non
Two-Stage-Probability Theories of Decision Making Under

Ambiguity

By JOHN D HEY AND NOEMI PACE

Revised July 2012

Representing ambiguity in the laboratory using a Bingo Blower (which
is transparent and not manipulable) and asking the subjects a series
of allocation questions (which are more efficient than pairwise choice
questions), we obtain data from which we can estimate by maximum
likelihood methods (with explicit assumptions about the errors made by
the subjects) a significant subset of the empirically relevant models of
behaviour under ambiguity, and compare their relative explanatory and
predictive abilities. Our results suggest that not all recent models of
behaviour represent a major improvement in explanatory and predictive
power, particularly the more theoretically sophisticated ones.

The past decade has seen an explosion of theoretical work in the modelling of be-
haviour under ambiguity. Now it is the turn of the experimentalists to investigate the
empirical validity of these theories. That is the primary purpose of this paper. Specif-
ically, we complement a growing experimental literature, and, in particular, add to the
work of Abdellaouiet al (2011), Halevy (2007), Ahnet al (2010) and Heyet al (2010),
though our detailed objectives, methods and results differ in many respects substantially
from theirs.

In essence, all these papers (and others) are aimed at the same fundamental objective:
to discover which of the many theories of behaviour under ambiguity are empirically
most appealing. However our work differs from these earlier works in terms of: (1)
the representation of ambiguity (except for Heyet al); (2) in terms of the experimental
design (except for Ahnet al); (3) in terms of the theories being explored; and (4) the
econometric methods (except for part of Heyet al).

Ambiguity is represented in different ways in the experiments on which these different
papers were based. Ambiguity is understood as a situation in which probabilities do
not exist or the decision-maker does not know the actual probabilities. Both Halevy and
Abdellaouiet aluse as one of their representations the traditional ’Ellsberg Urn’: subjects
are told what objects are in the urn but are not told the quantities of each object, so that the
probability of drawing any particular object can not be known by the subject. Abdellaoui
et al, given that their objective is to examine the impact of differentsourcesof ambiguity,
also consider other sources (changes in the French Stock Index, the temperature in Paris,
and the temperature at some randomly drawn remote country – all on a particular day).
Ahn et al’s representation is simply not to tell the subjects what the precise probability
of two of the three possible outcomes was; this is a sort of continuous Ellsberg Urn and
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inevitably suffers from the usual problem that the subjects may simply consider it as the
’suspicious urn’. In contrast, Heyet al used an open and transparent representation: a
Bingo Blower. This is also what we used in the experiment reported on in this paper.
The Blower removes any possible suspicion; moreover it enables us to carry out two
treatments which unambiguously have different amounts of ambiguity.

The papers by Heyet aland Abdellaouiet aluse the ’traditional’ form of experimental
question: pairwise choice, while Halevy uses reservation price questions. In contrast,
Ahn et al use theallocation type of question pioneered originally by Loomes (1991),
but forgotten for many years until revived by Andreoni and Miller (2002) in a social
choice context, and later by Choiet al (2007) in a risky choice context. In this paper we
use allocation questions, which are more informative than pairwise choice questions and
probably more reliable than reservation price questions, and thus more able to detect true
preferences. In this respect the comments by Wilcox (2007) as to the informative nature
of experimental data in general, and pairwise choice questions in particular, should be
noted.

The set of theories of behaviour under ambiguity is now very large. Those theo-
ries – such as maximin, which do not incorporate a preference functional – have been
largely discredited (partly by Heyet al); we do not consider them here. Of the re-
maining theories, one can make a broad distinction between the set of theories that
use second-order probabilities1 and the set that does not. For example, if there areI
possible eventsi D 1;2; :::; I , but the probabilities of them are not known, those the-
ories that use second-order probabilities assume that the decision-maker works on the
basis that there is a set ofJ possible values for these probabilities, with thej th set
taking valuesp1 j ; p2 j ; :::; pI j with the probability that thej thset being true given by
� j ; � j D 1;2; :::; J. In contrast, the set of theories that do not use second-order proba-
bilities may assume that thepi may take a range of values in the decision-maker’s mind,
but he or she does not attach probabilities to these possible values. We restrict attention
here to this second set (non two-stage-probability models). This is for three reasons:
the way we represent ambiguity in the laboratory (there is no obvious first stage); the
complexity of the resulting models in the two-stage-probability set; and problems with
distinguishability of the underlying preference functionals (because of the large number
of parameters). In contrast, Halevy uses two-stage-probability models because his ex-
perimental design effectively makes such models appropriate. One could also argue that
the same applies to the Ahnet alexperiment: there they have three possible outcomes 1,
2 and 3. Subjects are toldp2 but they are not told anything aboutp1 and p3 (except that
they obey the usual probability rules). However, if subjects had read footnote 4 of their
paper2 then a two-stage-probability representation would have been natural.

Ahn et al make another distinction amongst the various specifications of behaviour
under ambiguity: between those specifications that they callsmoothand those that they

1Sometimes called Mulitple Prior models.
2Which read "In practice, the probability of one of the ’ambiguous’ states was drawn from the uniform distribution

over [0,2/3]. This distribution was not announced to the subjects." If the distribution had been revealed to the subjects,
the decision problem would have involved compound risk rather than ambiguity."
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call kinked. Essentially this distinction consists on whether preference depends upon the
orderingof the outcomes: in Expected Utility theory this is not the case and hence this is
a smooth specification; in contrast, Choquet Expected Utility and (as one can tell from its
name) Rank Dependent Expected Utility (if one considers this as a theory of behaviour
under ambiguity) are kinked. Ahnet aldo not estimate particular preference functionals
but rather two general specifications – one smooth and one kinked. They note that the
smooth specification "can be derived from" Recursive Expected Utility (REU, which is
a two-stage-probability model); while the kinked specification "... can be derived as a
special case of a variety of utility models: MEU, CEU, Contraction Expected Utility,
and�-MEU3". We note two things: first that the smooth specification does not come
only from REU (indeed it comes from several other models, such as the Variational
model of Maccheroniet al (2006)); and secondly, but perhaps more importantly, Ahnet
al do not estimate any preference functionals that comespecificallyfrom the models that
they mention. So they do not testdirectly any of the recent theories of behaviour under
ambiguity.

Abdellaouiet al effectively investigate only one model – essentially Rank Dependent
Expected Utility (RDEU) theory. This has two key elements, a utility function, which
they take to be CRRA (Constant Relative Risk Averse), and a (probability) weighting
function, which they take, in the ’Ellsberg Urn’ part of the experiment, to be of the Pr-
elec form:w.p/ D .exp.�.� ln.p//�//� . It may seem a bit odd using probabilities in a
study of ambiguity, but these probabilities are the true probabilities, which, of course, the
experimenters know, if not the subjects. Using these functional specifications, RDEU is
a special case4 of Choquet Expected Utility, which we estimate. In the ’Natural Uncer-
tainties’ part of the experiment they do not assume any particular form for the weighting
function, so RDEU in this context is precisely Choquet – which we estimate. While Ab-
dellaouiet alassume CRRA preferences, we estimate both assuming CRRA and CARA
preferences.

There are significant econometric differences between these various papers. First, and
rather hidden from view, is the fact that we carried out extensive pre-experimental sim-
ulations to ensure that we had a sufficient number and an appropriate set of questions to
ask the subjects; too many experiments have too few questions and thus lack power to
discriminate amongst the theories. Second, the estimation methods vary. Underlying any
particular chosen estimation method, there is an assumption about the stochastic spec-
ification of the model. Usually this is tacit; it should be explicit, particular as there is
an obvious source for the stochastic component of the data – if one is estimating subject
by subject (which is the case in all these papers) this comes either from randomness in
preferences or from errors made by the subjects. We see no mention in any of this liter-
ature of randomness in preferences, so the noise, the stochastic component, must come
from errors made by the subjects. We explicitly include a story of such mistakes. Indeed,

3(Our note) MEU, CEU and�-MEU are respectively MaxMin Expected Utility, Choquet Expected Utility, and Alpha
Expected Utility (all of which we consider specifically later).

4If they had estimated the weighting function at all points, rather than estimating the parameters of the particular
functional form, it would have been precisely Choquet.
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we explore two different stochastic specifications, a normal error story and a beta error
story, depending upon the functional form we take for the utility function (as we explain
later). We estimate the various preference functionals with the stochastic specifications
specifically built in to the estimation; this does not appear to be the case in the other
papers we have mentioned in this section (though it is the case in Andersonet al (2009)
which we will discuss later), so their assumptions about errors is not clear.

We also go one step further than all these other papers. Believing that economics is all
about predicting, rather than just explaining, we compare our different models by seeing
how good they are at predicting. For the importance of this, see Wilcox (2007 and 2011).

In summary: we represent ambiguity in the laboratory in an open and non-manipulable
manner; we ask a set of allocation questions to the subjects (obviously with an appro-
priate incentive mechanism) chosen after extensive simulations; we use maximum like-
lihood estimation, with two carefully-chosen stochastic specifications, to estimate a sig-
nificant sub-set of the empirically relevant theories of behaviour under ambiguity, using
two different functional forms for the utility function, and to compare their relative good-
ness of fit; finally we compare the various theories in terms of their predictive ability. To
prepare the reader for what is to come, we should warn that the theorists are going to
be disappointed: the more recent theories are in general only marginally empirically
superior to SEU in terms of fitting but less so in terms of prediction.

The rest of the paper is organised as follows. In the next section we give a brief
overview of the theories that we are going to fit to our data. The following section
describes the way that our data was generated in our experiment. We then relate what we
do to the literature, a part of which we have discussed in this introduction, and give more
detail about what others have done. A section describing the technicalities underlying
our analysis then follows, after which we present our results. We then conclude.

I. Theories under investigation

This section discusses the theories of decision-making under ambiguity that we inves-
tigate. We confine our attention to those theories in which there is an explicit preference
functional, and hence we exclude earlier theories which proceed directly to a decision
rule.5 In all the theories which we consider the decision maker is perceived, in any deci-
sion problem, as maximising the value of some preference functional. As noted above,
we include: (1) Subjective Expected Utility (SEU) theory in which the decision-maker
is envisaged as working with subjective probabilities; (2) the Choquet Expected Util-
ity (CEU) model, usually nowadays accredited to Schmeidler (1989), which allows the
agent’s beliefs to be represented by unique but nonadditive "capacities"; (3) the Alpha
Expected Utility model (AEU) of Ghirardatoet al (2004), which models the agent’s be-
liefs as being represented by a set of probabilities (but without attaching probabilities
to the members of this set); (4) Vector Expected Utility (VEU) of Siniscalchi (2009) in
which uncertain prospect is assessed according to a baseline expected utility evaluation

5Such as, for example, MaxMin (in which the decision-maker looks at the worst that can happen and makes that as
good as possible) and MaxMax (in which the decision-maker looks at the best that can happen and makes that as good as
possible). See Hey, Lotito and Maffioletti (2010) for the empirical evidence against such theories.



5

and an "adjustment that reflects the individual’s perception of ambiguity and her attitude
toward it" (Siniscalchi 2009, p.1); and (5) the Contraction Model of Gajdos, Hayashi,
Tallon and Vergnaud (2008) which combines Maxmin with Expected Utility at a particu-
lar point in the probability set. We note that SEU is a ’smooth’ specification in the sense
used above, while all the rest are kinked specifications. We tried to fit the Variational
model of Maccheroniet al (2006), which is a smooth specification, but without success
(in terms of goodness of fit); this may have been the consequence of the particular context
of our experiment. We give an overview of these theories below.6 We restrict attention in
both the overview and the detail to decision problems with at most three events - which
was the case in our experiment. Call these eventsE1; E2 andE3 To each event there will
be associated an outcome to the decision-maker which consists of an amount of money.
We denote the utility of the decision-maker for these three outcomesu1;u2 andu3. For
some of the theories – those with a ’rank-dependent’ flavouring – the ordering of the
outcomes will be crucial and we will assume in what follows thatu1 � u2 � u3 though
it should be noted that it is not necessarily the case that the ordering of the outcomes
is the same as the original ordering of the events: this depends upon the decisions that
the decision-maker makes. Let us denote the event which leads to the highest outcome
by E.1/, that to the second highest outcome byE.2/ and that to the lowest outcome by
E.3/. We note that the setfE.1/; E.2/; E.3/g consists of the numbers 1;2 and 3, though not
necessarily in that order. In summary, each of our models (SEU, CEU, AEU, VEU and
COM) implies a particular preference functional, respectively equations.1/, .2/, .4/, .6/
and.7/. It is clear that these are different, except insofar as.2/, .4/, .6/ and.7/ reduce
to .1/ (and hence CEU, AEU, VEU and COM reduce to SEU) when respectively, the
CEU capacities are additive, the set D of probabilities consists of a single element, the
parameter� is zero, and the setD of probabilities consists of a single element. Given
that.2/, .4/, .6/ and.7/ are different it follows that the models are observationally dis-
tinguishable: different models imply different preference functionals and hence different
decisions. However this is not to deny that the functionA.:/ in VEU and the setsD in
AEU and COM could be such that they lead to the same preference functionals. But the
crucial point is that our specifications of the different models imply different preference
functionals and hence are observationally distinguishable.

SUBJECTIVE EXPECTEDUTILITY THEORY

The preference functional for SEU is given by

(1) SEUD
3P

iD1
pi ui

wherepi is the subjective probability that eventE.i / occurs. In this casepi D Prob.E.i //
for all i , and, of coursep1C p2C p3 D 1.

6More technical detail are available on this web-site:
http://www.york.ac.uk/economics/research/research-clusters/experimental-economics/research/ongoing-projects/
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CHOQUET EXPECTEDUTILITY THEORY

According to Schmeidler (1989), the Choquet Expected Utility of a lottery is given by

(2) C EU D
3P

iD1
Nwi ui

where the Nw’s are weights that depends on nonadditivecapacitiesw that satisfy the
normalisation conditions and monotonicity. In the context of our experiment, a CEU
subject works with six nonadditive capacitieswE.1/; wE.2/; wE.3/; wE.2/[E.3/; wE.1/[E.3/ and
wE.1/[E.2/ referring to the three events and their pairwise unions. Crucially, the weights
Nw depend upon the ordering of the outcomes:

Nw1 D wE.1/

Nw2 D wE.1/[E.2/ � wE.1/(3)

Nw3 D 1� wE.1/[E.2/

We note that the main difference between CEU and SEU consists in the additive prob-
ability measure being replaced by a nonadditive capacity measure. If the capacities are
actually probabilities (that is, ifwE.2/[E.3/ D wE.2/ C wE.3/ , wE.1/[E.3/ D wE.1/ C wE.3/ ,
wE.1/[E.2/ D wE.1/CwE.2/ andwE.1/CwE.2/CwE.3/ D 1 ) then (2) is equivalent to (1). We
note that CEU is the same as Rank Dependent Expected Utility (which is not regarded
by all as a theory of behaviour under ambiguity because it uses objective probabilities,
but also uses, as we have already noted, to rescue it from that criticism, a weighting func-
tion, mapping objective probabilities into subjective probabilities) under an appropriate
interpretation of that latter theory.7 Similarly Cumulative Prospect Theory, with a fixed
reference point, can be regarded in the same way as CEU.

ALPHA EXPECTEDUTILITY THEORY

Alpha Expected Utility theory (AEU) was proposed by Ghirardatoet al (2004) as
a generalization of the theory proposed in Gilboa and Schmeidler (1989). Ghirardato
et al (2004)’s model implies that, although the decision maker does not know the true
probabilities, he or she acts as if he or she believes that the true probabilities lie within
a setD of probabilities on different events. We can refer to each priorp 2 D as a
"possible scenario" that the decision maker envisions. According to Ghirardatoet al, the
set D of probabilities represents formally the ambiguity that the decision maker feels
in the decision problem (they introduce the concept of "revealed ambiguity"). In other
words, the size of the setD measures the perception of ambiguity. The largerD is,

7In the context of our experiment, where there are three outcomes and hence 6 capacities, then the relationship
between the two theories is given by the following, wherep.1/; p.2/; p.3/ are the objective probabilities andw.:/ is the
weighting function, and the capacities for CEU are as denoted above:
wE.i / D w.pi / for i D 1;2;3 and
wE. j /[E.k/ D w.p j C pk/ for j 6D k 2 1;2;3
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the more ambiguity the decision maker appears to perceive in the decision problem. In
particular, no decision maker perceives less ambiguity than one who reveales a singleton
setD D fp1; p2; p3g. In this case the decision maker is a SEU maximiser with subjective
probabilitiesp1; p2 and p3.

According to Alpha Expected Utility Theory, decisions are made on the basis of a
weighted average of the minimum expected utility over the setD of probabilities and the
maximum expected utility over this set:

(4) AEU D �min
p2D

3P
iD1

pi ui C .1� �/max
p2D

3P
iD1

pi ui

The parameter� can be interpreted as an index of the ambiguity aversion of the decision
maker. The larger is� the larger is the weight the decision maker gives to the pessimistic

evaluation given by min
p2D

3P
iD1

pi ui .

In order to estimate this model we need to characterise the setD. The theory offers no
advice and we chose the simplest: that the set is defined by three lower boundsp

1
; p

2
and p

3
(wherep

1
C p

2
C p

3
� 1) plus the condition that every element in the set has

p1 � p
1
; p2 � p

2
and p3 � p

3
. In addition, of coursep1 C p2 C p3 D 1 for each

element in the set. These conditions imply that the setD is a triangle properly within
the Marschak-Machina Triangle. It reduces to a single point, and hence AEU reduces to
SEU, if p

1
C p

2
C p

3
D 1.

VECTOREXPECTEDUTILITY

The Vector Expected Utility (VEU) theory has been recently proposed by Siniscalchi
(2009). In this model, an uncertain prospect is assessed according to a baseline expected
utility evaluation and an adjustment that reflects the individual’s perception of ambiguity
and his or her attitude toward it. This adjustment is itself a function of the exposure to
distinct sources of ambiguity, and its variability.

The key elements of the VEU model are a baseline probability and a collection of ran-
dom variables, or adjustment factors, which represent acts exposed to distinct ambiguity
sources and also reflect complementarity between ambiguous events.

The VEU model can be formally defined as follows:

(5) V EU D
3P

iD1
pi ui C A

 �
3P

iD1
pi � j i uzi

�
1� j<3

!

Here p D .p1; p2; p3/ is the baseline prior; for 1� j < 3, each� j D .� j 1; ::; � j 3/ is an

adjustment factor that satisfiesEp[� j ] D
3P

iD1
pi � j i D 0; and A:Rn ! R satisfiesA.0/ D

0 andA.�/ D A.��/. The functionA is an adjustment function that reflects attitudes
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towards ambiguity. We need to specify the functionA.:/ and also the values of the� :8

After some helpful e-mail correspondence with Marciano Siniscalchi (though we do not
imply that our modelling of the VEU model has his approval) and some simplification,
we find that the VEU objective function takes the form, under these assumptions:

(6) V EU D
3P

iD1
pi ui � �.ju1� u2j C ju2� u3j/

This has intuitive appeal: decisions are made on the basis of expected utility ’corrected’
for differences between the utilities of the various outcomes, weighted by a parameter
� that reflects the decision-maker’s attitude to ambiguity. We should note that the most
general version of VEU (as specified in equation.5/) has many implementable forms,
depending upon the specification of the function A(.), since the restrictions on A(.) do
not enable us to specify it precisely. It follows that equation.6/ is just one of many
possible specifications of the VEU preference functional. When we refer to "estimating
the VEU model" this restriction should be taken into account.

THE CONTRACTION MODEL

Gajdoset al (2008) proposed a model (the "Contraction Model" or COM) in which it
is possible to compare acts under different objective information structures. According
to this theory, preferences are given by

(7) C O M D �min
p2D

3X
iD1

pi ui C .1� �/
3X

iD1

Pi ui

where�measures imprecision aversion andP1; P2; P3 is a particular probability distrib-
ution in the setD of possible distributions. It is what is called the ’Steiner Point’ of the
set - which is, in a particular sense, the ’centre’ of the set (Neuberg, 1886). If we take
the setD of possible distributions as all points.p1; p2; p3/ such thatp1 C p2 C p3 D 1
and p1 � p

1
; p2 � p

2
; p3 > p

3
then the Steiner point is the point.P1; P2; P3/ where

Pi D p
i
C .1� p

1
� p

2
� p

3
/=3 for i D 1;2;3. We note that we have characterised

this setD (of possible probabilities) in the same way as we have done for the Alpha
Expected Utility model - as a triangle properly within the Marschak-Machina Triangle.
The Steiner point is the ’central’ point of this triangle.

II. Our Experimental Design

As we have already noted, in our experiment ambiguity was implemented with a Bingo
Blower and subjects were presented with a set of allocation problems, which were de-

8More details of the assumptions that we have made are available on the web-site:
http://www.york.ac.uk/economics/research/research-clusters/experimental-economics/research/ongoing-projects/
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termined after extensive Monte Carlo simulations. We implemented two separate treat-
ments, which we describe below.

Subjects completed the experiment individually at screened computer terminals. They
were given written instructions and then shown a PowerPoint presentation of the instruc-
tions. There was a Bingo Blower in action at the front of the laboratory throughout the
experiment.9 The Bingo Blower is a rectangular-shaped, glass-sided, object some 3 feet
high and 2 feet by 2 feet in horizontal section. Inside the glass walls are a set of balls
in continuous motion being moved about by a jet of wind from a fan in the base. In
addition, images of the Blower in action were projectedvia a video camera onto two big
screens in the laboratory. Subjects were free at any stage to go close to the Blower to ex-
amine it as much as they wanted. All the balls inside the Blower can at all times be seen
by people outside, but, unless the number of balls in the Blower is low, the number of
balls of differing colours can not be counted because they are continually moving around.
Hence the balls in the bingo can be seen but not counted (unless the total number of balls
is low), and the information available is not sufficient to calculate objective probabili-
ties. This ensures that, while objective probabilities do exist, the decision-makers cannot
know them. In this way, we have created a situation of genuine ambiguity which elimi-
nates: the problem of suspicion; the problem of using directly a second-order probability
distribution; and the problem of using real events, therefore keeping the problem more
similar to the original Ellsberg one (Ellsberg, 1961). We note that a further advantage of
this way of creating ambiguity in the laboratory is the fact that the information available
is the same for all subjects. Hence there is no role for the so called ‘comparative igno-
rance’ (Fox and Tversky, 1995), and hence we can exclude such a factor as a possible
explanation of behaviour.10

This Bingo Blower played a crucial role in representing ambiguity and in providing
incentives. Inside the Bingo Blower were balls of three different colours: pink, yellow
and blue. The number of each colour depended on the treatment:

Treatment 1 Treatment 2
pink 2 8

yellow 3 12
blue 5 20

In Treatment 1 the pink and blue balls could be counted, though one might not be
sure of the number of blue balls; this wasthe least ambiguous treatment. In Treatment
2 the balls of each colour could not be counted; this wasthe most ambiguous treatment.
Note that in this latter treatment subjects could get some idea of the relative numbers of
balls of the different colours but not count the numbers precisely. It was reasonably clear
that there were more blue balls than yellow, and more yellow than pink, though precise

9On our site http://www.york.ac.uk/economics/research/research-clusters/experimental-
economics/research/ongoing-projects/ can be found the instructions (both in Word and PowerPoint) and videos of
the Bingo Blower, as well as screenshots of the experimental software.

10One criticism concerning the implementation of ambiguity in the lab using the Bingo Blower comes from Morone
and Ozdemir (2011). The criticism consists of the observation that the ability of getting the right probabilities is subject
specific; that is, subjects have different counting skills, or might have problems in the perception of colours. This criticism
may be true but it is not clear how this could affect the validity of the Bingo Blower in generating ambiguity in the lab.
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calculations could not be made.
Sixty six subjects completed Treatment 1 and sixty three completed Treatment 2. In

both treatments, subjects were presented with a total of 76 questions. Each of these asked
them to allocate a given quantity of tokens between the colours. There were twotypes
of question. Type 1 asked them to allocate the tokens betweentwo of the colours (with
an implicit allocation of zero tokens to the third colour); Type 2 asked them to allocate
the tokens between one of the three colours and the other two. In each problem subjects
were told theexchange ratebetween tokens and money for each of the colours in the
question. Thus an allocation of tokens implied an allocation of money to two or three of
the colours.

We provided an incentive for carefully choosing the allocations with the following
payment scheme. We told subjects that, after answering all 76 questions, one of the
questions would be chosen at random, and the subject’s allocation to the two or three
colours for that problem retrieved from the computer. At that point the subject and the
experimenter went over to the Bingo Blower, and the subject rotated the tube to expell
one ball. The colour of the ball, the question picked at random and their answer to that
question determined their payment. To be precise: if the problem chosen was one of
Type 1, then they would be paid the money implied by their allocation to the colour of
the ball expelled; if it was the colour not mentioned in that question they would be paid
nothing; if the problem chosen was one of Type 2, then they would be paid the money
implied by their allocation to the colour of the ball expelled. In addition they received a
show-up fee of £5. They filled in a brief questionnaire, were paid, signed a receipt and
were free to go. A total of 129 subjects participated at the experiments, 40 of them at
CESARE at LUISS in Rome (Italy) and the remaining 89 at EXEC at The University
of York (UK). In both cases, subjects were recruited using the ORSEE (Greiner 2004)
software and the experiment was run using a purpose-written software written in Visual
Basic 6.11

III. Related Experimental Literature

Having described our experimental implementation and motivation we are now in a
position to survey the relevant experimental literature in more detail. We confine our-
selves to recent important contributions to the literature; earlier literature is surveyed in
Camerer and Weber (1992) and Camerer (1995) while more recent mainly theoretical
literature is surveyed by Etner, Jeleva and Tallon (2012).

Heyet al (2010), using the same implementation of ambiguity in the laboratory as we
use here, also with three possible outcomes, but asking a large number (162) of pairwise
choice questions, examined the descriptive and predictive ability of twelve theories of
behaviour under ambiguity: some very old and not using a preference functional (pro-
ceeding directly to a decision rule) such as the original MaxMin and MaxMax; and some
very recent, such as the Alpha Expected Utility model. The findings were that the very

11Which can be found and downloaded from http://www.york.ac.uk/economics/research/research-
clusters/experimental-economics/research/ongoing-projects/
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old simple models (those without a preference function) were largely discredited, but
that more modern and rather sophisticated models (such as Choquet) did not perform
sufficiently better than simple theories such as Subjective Expected Utility theory. Esti-
mation of the preference functions was done using maximum likelihood techniques with
the stochastic specification determined by a model of how subjects made errors in their
pairwise choices.

Ahn et al (2010) used allocation questions, like we do here, but implemented ambigu-
ity by not telling the subjects the true objective probabilities of two of the three possible
outcomes of the experiment. They did not look at the predictive ability of any models;
neither did they examine the descriptive performance of any specific theory. Instead they
examined two broad classes of functionals, smooth and kinked, which are special cases
of various theoretical models that we specifically estimate. Econometrically, they esti-
mated, subject by subject, the risk-aversion parameter of an assumed Constant Absolute
Risk Aversion utility function, and a second parameter measuring ambiguity aversion,
using Non Linear Least Squares (NLLS), that is by minimising the sum of squared dif-
ferences between actual allocations and the theoretically optimal allocations for those
risk and ambiguity aversion coefficients. They comment in a footnote that "...for sim-
plicity, the estimation technique for both specifications is NLLS, rather than a structural
model using maximum likelihood (ML). We favor the NLLS approach, because it pro-
vides a good fit and offers straightforward interpretation." They do not provide a formal
justification to the choice of NLLS instead of ML.

Halevy (2007) implemented ambiguity in the laboratory using traditional Ellsberg
Urns and asked reservation price questions. Because of the way that his ’Ellsberg Urns’
were implemented, his set of models includes some models that we do not consider here,
particularly two-stage-probability models such as Recursive Nonexpected Utility and Re-
cursive Expected Utility. But we include some that he does not - making the two papers
complementary. He usedreservation pricequestions; we should describe and discuss
these - as they are an alternative to pairwise choice questions and to allocation questions.
Essentially he wants to know how much subjects value bets on various events. Let us
consider a particular Ellsberg Urn and a particular colour. The subject is asked to imag-
ine that he or she owns a bet which pays a certain amount of money ($2) if that coloured
ball is drawn from that particular urn. Halevy wanted to elicit the subject’s reservation
price for this bet; this reservation price telling us about the subject’s preferences. Halevy
used the Becker-DeGroot-Marschak mechanism: "the subject was asked to state a min-
imal price at which she was willing to sell the bet... The subject set the selling price by
moving a lever on a scale between $0 and $2. Then a random number between $0 and $2
was generated by the computer. The random number was the “buying price” for the bet.
If the buying price was higher than the reservation price that the subject stated, she was
paid the buying price (and her payoff did not depend on the outcome of her bet). How-
ever, if the buying price was lower than the minimal selling price, the actual payment
depended on the outcome of her bet." This BDM technique is well-known in the liter-
ature, but is complicated to describe and difficult for subjects to understand. Moreover
there are well-known problems, see Karni and Zafra (1979), with using this technique
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when preferences arenot expected utility preferences - which, of course, is precisely the
concern of the paper. Halevy did not use his data to estimate preference functionals and
hence did not compare their descriptive and predictive power; instead he carried out an
extensive set of tests of the various theories. Unfortunately this econometric procedure
does not help to draw unique conclusions about the ’best’ preference functional, even for
individual subjects. Indeed Halevy concludes that his "...findings indicate that currently
there is no unique theoretical model that universally captures ambiguity preferences".

Abdellaouiet al (2011) investigated only Rank Dependent Expected Utility theory.
They did not explicitly examine its descriptive (nor predictive) ability, being more con-
cerned with the effect on the estimated utility and weighting functions of differentsources
of ambiguity. As we have already noted, they implemented ambiguity in the laboratory in
two ways: in one part of the experiment, using 8-colour ’Ellsberg Urns’; and in the other
part using ’natural’ events. They elicited certainty equivalents (or reservation prices) in
order to infer preferences, not using the BDM mechanism (presumably because of the
problems we have alluded to above), but instead using Holt-Laury price lists.12 This
mechanism seems to be a better way of eliciting certainty equivalents, even though the
outcome does appear to be sensitive to the elements in the list – the number of them and
their range. The resulting certainty equivalents are a valuation, just as Halevy’s reser-
vation prices, even though they come from a set of pairwise choice questions. However
econometrically it must be the case that the valuation resulting from a list withn ele-
ments is less informative thann independent pairwise choice questions. They estimated
utility functions (assumed to be power or CRRA) "using nonlinear least squares estima-
tion with the certainty equivalent as dependent variable"; similarly they estimated the
weighting function by "minimising the quadratic distance". They do not explain why.

Andersonet al (2009) use a technique similar to that used by Ahnet al (2010) in
estimating two parameters (one a measure of risk aversion and the other a measure of
ambiguity) in a minimalist non-EU model. They comment that this minimalist model
comes either from the Source-Dependent Risk Attitude model or the Uncertain Priors
model; in our termininology it is a two-stage-probability model13 that looks exactly like
Recursive Expected Utility. The bottom line is the following: suppose that there are
I possible outcomesi D 1;2; :::; I with unknown probabilities. The decision-maker
has a set ofJ possible values for these probabilities; we denote thej ’th possible value
p1 j ; p2 j ; :::; pI j and the decision-maker considers that the probability that this is the
correct set is� j . The preference function is the maximisation of

JX
jD1

� j v[
IX

iD1

pi j u.xi /]

12In which subjects are presented with a set of pairwise choices arranged in a list. In each pair subjects are asked
to choose between some ambiguous lottery and some certain amount of money. As one goes down the list, the certain
amount increases. The subject’s certainty equivalent is revealed by the point at which the subject switches from choosing
the lottery to choosing the certain amount. See Holt and Laury (2002).

13Chamberset al (2010) also investigate a generic Multiple Priors model.
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Note that there are two functions here:u.:/which can be considered as a normal utility
function, capturing attitude to risk; andv.:/ which can be considered as an ambiguity
function; note that ifv.y/ D y then this model reduces to Expected Utility theory. It
is the non-linearity ofv.:/ that captures aversion to ambiguity. Anderson et al (2009)
assumed that both these functions are power functions - so thatu.x/ D x� andv.y/ D y�

They estimated the two parameters� and� using maximum likelihood techniques (with
careful attention paid to the stochastic specification) and assumptions14 about the� ’s and
p’s.

IV. Technical Assumptions

Before proceeding to our estimates we need to make some technical assumptions.
In particular we need to decide on our stochastic specifications and those concerning
the form of utility function. These are interelated decisions. Both are important, as
Wilcox (2007, 2008 and 2011) makes clear, though our context is different from his as
the experimental task in our experiment requires subjects to make a series ofallocations,
rather than to make a series ofpairwise choices. This has implications for the stochastic
strucure, but this, in turn, depends upon the assumed utility function: as we have already
noted the two issues are inter-related.

The two most commonly assumed utility functions are CARA (Constant Absolute Risk
Aversion) and CRRA (Constant Relative Risk Aversion). If we take the CARA form15

u.x/ D
1� exp.�r x/

1� exp.�75r /
if r 6D 0(8)

D x=75 if r D 0

wherer , the coefficient of absolute risk aversion, is subject-specific, then we can find
the solution to the subjects’ optimisation problem. This, for all the preference function-
als, can be written as the maximisation of the expression

(9) w1u.e1x1/C w2u.e2x2/

subject to the constraint thatx1 C x2 D m. Herem denotes the amount of tokens to
allocate,xi the tokens allocated to colouri and ei the exchange rate between tokens
allocated to colouri and money (i D 1;2). The weightsw1 andw2 depend upon the
problem and the preference functional. The solution to this problem can be shown to be:

x�1 D
e2mC fln[.w1e1/=.w2e2/]g=r

e1C e2
(10)

x�2 D
e1mC fln[.w2e2/=.w1e1/]g=r

e1C e2

14We note that the authors admit that the assumptions were quite strong and discuss the serious identification problems
with two-stage-probability models.

15£75 was the maximum payoff from the experiment.
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We note that there is no guarantee that the optimal allocations are positive and less than
m.

Before discussing the CRRA functional, we turn to the stochastic specification ’most
naturally’ associated with this CARA function: namely a normal distribution with zero
mean. So while subjects, under this CARA specificationshouldallocate thex�1 (andx�2)
above, we assume that theiractualallocations arex1 D x�1 C " (andx2 D x�2� ") where
" is a normally distributed error term with zero mean. We follow precedent in assuming
that the variance of" is constant16 and equal to 1=s2. We estimates, the precision, along
with the other parameters. We should, of course, note that, ifx�1C" is larger thanm, then
the subject is forced to truncate the actual value tom; similarly if x�1C " is negative, then
the subject is forced to truncate the actual value to 0. In addition subjects could specify
their desired allocations to just two decimal places. All of this was taken into account in
the maximum likelihood estimation program. We call this Specification 1.

Specification 2 differs from Specification 1 in two respects. First we assume a CRRA
utility function of the following form:

u.x/ D
x1� 1

r � 1

1� 1
r

if r 6D 1(11)

ln.x/ if r D 1

This particular parameterisation (the parameterr is the inverse of the usual coefficient of
risk aversion) may appear unusual but it allows us to express the optimality conditions in
a particularly elegant form. Given the same objective as above, the solution is:

x�1 D
er�1

1 wr
1

er�1
1 wr

1 C er�1
2 wr

2

m(12)

x�2 D
er�1

2 wr
2

er�1
1 wr

1 C er�1
2 wr

2

m

In this case, the optimal allocationsarebounded between 0 andm. Hence the propor-
tions x�1=m andx�2=m, are bounded between 0 and 1. This suggests an alternative sto-
chastic specification, which fits in more naturally with the boundedness of these optimal
proportions, namely a Beta distribution. Specifically in Specification 2 we take the actual
proportional allocationx1=m to have a beta distribution with parametersx�1.s� 1/ and
x�2.s � 1/. This guarantees that the mean ofx1 is x�1 and its variance isx�1x�2=s. So
the variance ofx1is not constant but is zero at 0 andm and reaches a maximum when
x�1 D m=2. It also follows (sincex�1 C x�1 D 1) thatx2 has a beta distribution with pa-

16Wilcox discusses the possibility that the variance might be question-specific and gives good arguments why this
might be so. But it is not clear how his arguments, relevant to his pairwise-choice context, carry over to our allocation
context.
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rametersx�1.s� 1/ andx�2.s� 1/. Of course we may still observe actual proportional
allocations equal to 0 and 1 because of the rounding of subjects’ choices.

Finally we consider Specification 3, in which we assume a CRRA utility function
plus a zero mean normal heteroscedastic error term added to the absolute allocation (this
latter part being the same as in Specification 1). While Specification 2 might appear more
’natural’ there is nothing illogical about specification 3.

V. Results

We estimated each of the 5 preference functionals for each of the 129 subjects and for
each of the three specifications on a subset of the data – namely a randomly chosen 60
of the 76 questions17 – using the constrained maximum likelihood procedure in GAUSS.
We thus have, for each preference functional, for each subject, and for each specification,
estimates of the parameters of the functional, ofs (the precision) and ofr (the risk aver-
sion parameter). In addition, we have the maximised log-likelihood.18 We then used, for
each subject and each preference the estimated parameters to predict behaviour on the
remaining 16 questions. This gives us a prediction log-likelihood for each functional and
for each subject - this is, of course, a measure of the predictive ability of the theory. In
the tables that follow we break down some of the summary information by Treatment;
recall that Treatment 1 (66 subjects) was essentially a case of risk; while Treatment 2 (63
subjects) was clearly one of ambiguity.19

If we are looking for a ’bottom line’ at this stage, it is this:there is much more vari-
ability across subjects and across specifications than across preference functionals and
across treatments, though there is an interesting treatment effect. We will explore the
implications of this in our conclusions.

We start with Table 1 which shows the mean and standard deviation (across all subjects
in each Treatment and in both Treatments) of the fitted log-likelihoods. It should be
noted that, for each preference functional the means are consistently higher (the fit better)
in Specification 2. However this Table does not allow us to compare the goodness of
fit acrosspreference functionals, for the simple reason that they have different degrees
of freedom (SEU has 4 estimated parameters, CEU 8, AEU 6, VEU 5 and COM 6).
If we correct the fitted log-likelihoods for the degrees of freedom by calculating the
Bayesian Information Criterion (BIC)20, we get Table 2; recall that thelower the BIC the
better. Once again we get the same message: on average Specification 2 is better than the
other two specifications. As these BIC values are comparable, we can also conclude that

17Because the subjects received the 76 questions in different orders (and with the colour on the left and the colour
on the right randomly selected) this means that the position of the 60 estimation questions (and hence the 16 prediction
questions) varied from subject to subject, but for each subject they were randomly positioned).

18Note that for specification 2, since the variables to be explained are theproportionsof the endowment allocated
the various colours, in order to make the log-likelihoods comparable with those in the other two specifications, we need
to subtract from the maximised log-likelihoods the sum of the natural logarithms of the amounts to be allocated in the
relevant problems.

19All this information is available at http://www.york.ac.uk/economics/research/research-clusters/experimental-
economics/research/ongoing-projects/

20This is given byk ln.n/ � 2LL, wherek is the number of estimated parameters,n the number of observations and
LL the maximised log-likelihood.
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there is a larger variation of the average BIC across specifications than across preference
functionals.

In order to demonstrate that the means shown in Tables 1 and 2 hide rather large
variations across subjects, we present histograms of the BIC across subjects in Figures
1, 2 and 3. Within any one specification, the shapes of the distributions of the subjects
across preference functionals are very similar, and there are high correlations between the
log-likelihoods over preference functionals. We note that the shapes of the distributions
vary across specifications.

If we now rank the various preference functionals and specifications using the BIC, we
get Table 3. Here we report the cumulative percentage in each ranking position: so for
example, in Treatment 1, SEU is ranked first for 23% of our subjects; is ranked first or
second for 29% of our subjects; and so on. It is very clear from this Table that SEU and
VEU on specification 2 are particularly good. Indeed for 59% of subjects one or other of
these two has the highest BIC in Treatment 1, and 63% for Treatment 2.

If we now turn to the prediction log-likelihoods, things are not so clear cut, though
Specification 2 still emerges as the best on aggregate. If we look at Table 4, we see
that the prediction log-likelihoods are, on average, higher for Specification 2 for all 5
preference functionals, though once again there are considerable variations across sub-
jects. Table 5 gives cumulative rankings and is the counterpart of Table 3 for the fitted
log-likelihoods. The findings are less clear-cut here; in Treatment 1, Specification 2 is
the best predicting specification with 43% of first places; SEU is first 5% of the time and
VEU 20% of the time; in Treatment 2, the corresponding figures are 60%, 5% and 32%.
We note that we are using hereuncorrectedlog-likelihoods.

Although Specification 2 is not always the best, on average it is, and from now on, to
save space and repetition we report results just for Specification 2. We now return to the
fitting and ask aboutstatistical significanceof our estimates. Because of the relationships
between the preference functionals, we need to carry out two kinds of tests: nested tests
and non-nested tests. We note that SEU is nested within all the other four preference
functionals, but none of them (in the way that we have implemented them here) are
nested inside any of the others. Hence for each of CEU, AEU, VEU and COM relative
to SEU a likelihood ratio test is appropriate; for each of CEU, AEU, VEU and COM
against the others a Clarke test is appropriate. The results are reported in Table 6, both
at 5% (Table 6A) and 1% (Table 6B). Looking at the first column of Table 6A, we note
that neither CEU nor COM do particularly well. Indeed, they are significantly better than
SEU only for 18% and 6% of the subjects, respectively, in Treatment 1 and only for 5%
and 2% of the subjects, respectively, in Treatment 2.

These statistical tests on the fitting of the various preference functionals tell us that
the best seem to be AEU and VEU. Indeed, these preference functionals are significantly
better than SEU for 45% and 64% of the subjects, respectively, in Treatment 1, and for
41% and 63% of the subjects, respectively, in Treatment 2 (see Table 6A). However, we
prefer to look at predictions rather than statistical tests. We present Table 7 which is the
counterpart of Table 5 and gives cumulative rankings. What is particularly striking is
that while VEU still seems to be particularly good, the average rankings are much closer
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together than they were for the BICs. At the same time, there is a very strong correlation
between the BICs (corrected log-likelihoods) and the prediction log-likelihoods, as Fig-
ure 4 makes clear: this suggests that the best (BIC) fitting preference functional is often
also the best predicting log-likelihood, as Table 8 confirms. At the same time, Figure 5
emphasises that there is a very high correlation over preference functionals (for any one
subject) and hence there are very small differences between the goodness of prediction
of the various preference functionals. But this was also the case for the Bayesian Infor-
mation Criteria: there is much more variation across subjects (and across Specifications)
than across preference functionals. This latter point is emphasised by Table 9 and Figure
7. Table 9 presents the average prediction error (as measured, for any one subject and
preference functional, by the square root of the mean squared difference between the
actual allocation and the predicted allocation using that preference functional). Figure
7 presents the distribution across subjects of this measure of prediction error. What is
noticeable is the big difference across subjects and the small difference across preference
functionals.

We conclude that, in terms of predictions, there is not much difference between the
preference functionals. One might as well use SEU.

VI. Conclusions

For a theorist, our conclusion that there is not much to choose between preference
functionals when it comes to predictions must be disappointing: SEU is no worse than
the others. Particularly disappointing is that there does not seem to be a treatment effect
with respect to preference functionals: relatively the different preference functionals per-
form similarly in the two treatments. This indeed seems odd, as it is clear that Treatment
1 is almost a situation of risk, while Treatment 2 is clearly a situation of ambiguity. It
seems, that in terms of preference functionals used by the subjects, SEU is as good as
any of the other preference functionals.

In the light of the nature of the results, we can legitimately ask: is there no treatment
effect? Is the experiment a failure? Fortunately for us we can give an answer to both
questions.

In order to explore whether there was any treatment effect, we should look at Table
10.21 This gives the averages of the estimated parameters for each preference functional
for each treatment. Let us just look at SEU, as a similar message emerges (appropriately
modified) for the other functionals22. The mean estimates of risk aversion are not signifi-
cantly different in the two treatments; neither are the mean estimates of the noise (though
the noise is slightly higher in Treatment 2). But examine the estimated probabilities: in
Treatment 1 the mean estimates of the three probabilities (pink, yellow and blue) are

21Which is just for Specification 2.
22With the other preference functionals we note the following, as far as the mean paramters are concerned:
(1) with CEU the estimated mean capacities are almost additive, but get slightly less so in Treatment 2;
(2) with AEU, the mean lower bounds on the probabilities are close to the SEU subjective probabilities, and get closer

to equality in Treatment 2;
(3) with VEU the mean� parameter is close to 0 and similar in the two treatments;
(4) with COM the mean lower bounds on the probabilities are close to the SEU probabilities and the� is close to 0.5.
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0.241, 0.347 and 0.412; in Treatment 2, 0.255, 0.363 and 0.381; the true probabilities are
0.2, 0.3 and 0.5. There are significant differences between Treatment 1 and Treatment
2: in Treatment 1 the mean estimated probabilities are close to the true ones; in Treat-
ment 2 they are significantly closer to equal probabilities for the three colours.Subjects
were responding to the ambiguity by working on the basis of almost equal probabilities.
So they were not working with a more sophisticated preference functional in the more
complicated environment of Treatment 2; on the contrary, they responded by simplifying
their decision problem. Perhaps their behaviour could suggest something to theorists?

In order to explore whether the experiment was a failure in terms of its ability to dis-
tinguish between the different preference functionals we should comment on the issue
of distinguishabilityof the different preference functionals. We have already noted that
the preference functionals "are" different (and thus lead to different decisions), which
implies that the models are distinguishable: we are simply reinforcing here the theoret-
ical point we have made earlier, at the end of section 1. We return to this point since
the theory ignores the existence of "noise" in subjects’ decisions. However there is noise
in subjects’ decisions and this noise could drown out the distinguishability that clearly
exists in the absence of noise, unless the number of questions asked to the subjects was
sufficiently high. So we carried out a simulation assuming a particular (realistic) level of
noise and the questions that we asked. With our implementation and our characterisation
of the preference functionals we can demonstrate with a simple example, shown in Table
11, that the preference functionals under analysis are fully distinguishable. In this ex-
ample we have assumed a reasonable set of parameters for each functional, a particular
specification (2) and a realistic value for the precisions.23, and simulated estimation with
100 repetitions Each cell reports the mean Bayesian Information Criterion (the lower the
better) of the column model when the row model is the true one. Table 11 shows that
the preference functionals under analysis are fully distinguishable. Indeed, in each row
the diagonal element is always a lot smaller than the off-diagonal elements. This means,
for example, that if we know that a specific subject has CEU preferences, then CEU best
fits behaviour in the experiment. Obviously this is for subjects who are ’clearly’ CEU:
if a subject has CEU preferences that are ’close’ to SEU preferences and there is a lot
of noise in that subject’s behaviour, then distinguishability is more problematic. But, of
course, if that is the case then SEU predictions will also be ’close’ to CEU predictions.

This property of the experimental design (distinguishability) was not simply by chance
as we carried out intensive pre-experimental simulations in order to select the set of ques-
tions to ask the subjects. The purpose of these simulations was precisely to select a num-
ber and a set of questions which would enable us to discriminate between the preference
functionals, given the amount of noise in the subjects’ responses. Clearly the greater the
noise the more questions are required; this explains the relatively large number of ques-
tions in our experiment. We had carried out a pilot experiment to determine how much

23We run 100 replications using a coefficient of risk aversion r equal to 0:8 and a coefficient of precision equal to
12. For each preference funcionals we set the following parameters’ values: SEU:p1 D 0:2, p2 D 0:3, p3 D 0:5;
CEU:wE.1/ D 0:10,wE.2/ D 0:20,wE.3/ D 0:30,wE.2/[E.3/ D 0:85,wE.1/[E.3/ D 0:75,wE.2/[E.2/ D 0:65; AEU:
p

1
D 0:10, p

2
D 0:15, p

3
D 0:25, � D 0:5; VEU: p1 D 0:2, p2 D 0:3, p3 D 0:5, � D 0:10; COM: p

1
D 0:10,

p
2
D 0:20, p

3
D 0:30,� D 0:75.
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noise there was in behaviour, and this informed the simulation and hence the number and
choice of questions.

Before we conclude we should note that the fitting and prediction parts of the exercise
give somewhat different results. In terms offitting, some of the more general models
(particularly AEU and VEU) do seem to fit better than SEU for many of the subjects.
However, when it comes toprediction, as is clearly shown in Table 9, much of this
superiority disappears (though AEU and VEU are still marginally better overall than
SEU): hence one does not lose a lot in predictive power in using SEU rather than one
of the more general functionals. An econometrician might regard this as an inevitable
consequence of over-fitting: as is well-known, if one fits annth-degree polynomial ton
observations from a truly linear relationship (with noise), the fit is better than a linear fit,
but extrapolative predictions are almost certainly worse. It should be noted, however, that
our prediction questions were a randomly chosen subset of all the questions, and cannot
be considered as extrapolative. Indeed it is not clear in our case what "extrapolative
questions" means.

So the bottom line appears to be that SEU performs as well as some of the recent,
more sophisticated models of behaviour: when we move from Treatment 1 (almost a
case of risk) to Treatment 2 (clearly a situation of ambiguity) subjects do not respond
by moving to a more sophisticated preference functional. Instead they seem to respond
by using SEU with subjective probabilities further away from the true probabilities and
nearer to equality. In our view, this is a rational response: if a situation is ambiguous, and
hence complicated, why complicate it further by using a more complicated preference
functional?
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Tables and Figures

Uncorrected log-likelihoods

Specification 1 SEU CEU AEU VEU COM Obs.

All -176.94 -168.94 -171.90 -175.66 -171.01129

(43.83) (44.75) (43.52) (44.21) (42.83)

Treatment 1 -179.43 -170.99 -174.12 -178.16 -173.24 66

(38.48) (40.06) (38.84) (38.92) (38.30)

Treatment 2 -174.33 -166.79 -169.57 -173.04 -168.68 63

(48.99) (49.42) (48.15) (49.33) (47.32)

t-stat diff. -0.656 -0.529 -0.589 -0.652 -0.600

Specification 2 SEU CEU AEU VEU COM Obs.

All -168.92 -166.55 -165.56 -163.02 -168.27129

(57.21) (56.79) (56.93) (56.59) (57.15)

Treatment 1 -171.54 -168.77 -168.11 -165.72 -170.71 66

(48.93) (48.59) (48.99) (48.78) (48.91)

Treatment 2 -166.19 -164.22 -162.88 -160.19 -165.72 63

(65.06) (64.60) (64.50) (64.03) (64.97)

t-stat diff. -0.526 -0.450 -0.516 -0.550 -0.491

Specification 3 SEU CEU AEU VEU COM Obs.

All -183.15 -179.13 -181.05 -179.52 -169.16129

(34.32) (33.29) (33.76) (33.41) (43.08)

Treatment 1 -182.76 -178.59 -180.57 -179.32 -170.48 66

(32.43) (31.54) (31.94) (31.73) (39.55)

Treatment 2 -183.57 -179.69 -181.55 -179.73 -167.78 63

(36.46) (35.28) (35.81) (35.33) (46.77)

t-stat diff. 0.134 0.186 0.163 0.069 -0.352

TABLE 1—AVERAGE FITTED LOG-LIKELIHOODS (STANDARD DEVIATION IS IN PARENTHESIS)
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Bayesian Information Criterion

Specification 1 SEU CEU AEU VEU COM Obs.

All 370.26 370.62 368.36 371.79 366.59 129

(87.66) (89.49) (87.04) (88.42) (85.67)

Treatment 1 375.24 374.73 372.80 376.79 371.04 66

(76.95) (80.11) (77.67) (77.84) (76.60)

Treatment 2 365.03 366.33 363.70 366.56 361.93 63

(97.99) (98.84) (96.29) (98.66) (94.65)

t-stat diff. 0.656 0.529 0.589 0.652 0.600

Specification 2 SEU CEU AEU VEU COM Obs.

All 354.23 365.86 355.68 346.51 361.11 129

(114.43) (113.59) (113.85) (113.17) (114.29)

Treatment 1 359.45 370.30 360.78 351.91 365.99 66

(97.87) (97.18) (97.97) (97.57) (97.81)

Treatment 2 348.75 361.20 350.33 340.85 356.00 63

(130.12) (129.20) (129.00) (128.06) (129.95)

t-stat diff. 0.526 0.450 0.516 0.550 0.491

Specification 3 SEU CEU AEU VEU COM Obs.

All 382.69 391.01 386.67 379.52 362.89 129

(68.64) (66.58) (67.51) (66.82) (86.15)

Treatment 1 381.89 389.94 385.71 379.12 365.52 66

(64.86) (63.08) (63.88) (63.47) (79.09)

Treatment 2 383.52 392.14 387.67 379.93 360.13 63

(72.91) (70.56) (71.63) (70.67) (93.55)

t-stat diff. -0.133 -0.186 -0.163 -0.069 0.352

TABLE 2—BAYESIAN INFORMATION CRITERION (STANDARD DEVIATION IS IN PARENTHESIS)
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Treatment 1

Model 1st 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 Aver. Rank

Spec. 1 SEU 8 14 20 23 27 39 42 52 52 61 67 73 82 98 100 8.44

CEU 8 8 12 15 23 33 33 33 36 39 42 55 67 73 100 10.23

AEU 2 8 15 20 29 36 38 42 44 53 65 85 91 100 100 8.73

VEU 9 21 23 26 29 32 39 44 45 53 59 61 73 82 100 9.05

COM 6 11 21 32 35 39 45 52 56 62 70 83 95 100 100 7.92

Spec. 2 SEU 23 29 53 58 59 59 67 79 86 88 91 97 100 100 100 5.12

CEU 0 2 8 17 39 42 45 47 48 55 61 65 76 80 100 9.15

AEU 3 24 36 47 52 61 64 67 73 85 92 94 97 100 100 6.06

VEU 36 55 62 65 70 73 85 92 95 97 98 100 100 100 100 3.71

COM 0 2 8 29 41 47 52 55 70 77 86 88 91 98 100 7.58

Spec. 3 SEU 2 5 9 14 18 36 45 62 68 73 74 94 100 100 100 8.00

CEU 0 0 2 3 5 9 12 15 30 39 50 52 58 74 100 11.52

AEU 0 5 6 11 14 18 29 35 47 53 64 67 73 94 100 9.86

VEU 5 14 17 21 26 36 55 65 71 77 89 94 100 100 100 7.30

COM 0 6 9 21 35 38 48 61 77 88 91 94 98 100 100 7.33

Treatment 2

Model 1st 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 Aver. Rank

Spec 1 SEU 10 14 22 22 30 41 46 49 57 62 70 78 79 100 100 8.19

CEU 10 11 16 16 16 29 30 40 43 48 54 62 75 78 100 9.75

AEU 2 6 11 22 27 35 38 46 52 59 67 89 97 100 100 8.49

VEU 6 17 22 24 25 33 38 46 52 57 62 70 79 83 100 8.84

COM 3 8 17 25 41 46 52 60 62 75 83 83 92 100 100 7.52

Spec 2 SEU 22 35 51 56 60 60 68 79 89 94 97 98 100 100 100 4.90

CEU 0 0 3 5 40 41 46 46 48 52 57 59 73 84 100 9.46

AEU 0 19 49 54 63 65 67 68 75 84 87 94 98 98 100 5.78

VEU 41 67 67 70 70 70 84 92 92 95 98 100 100 100 100 3.54

COM 0 0 2 43 48 52 54 54 65 71 81 86 89 98 100 7.57

Spec 3 SEU 5 6 8 13 14 24 41 49 63 71 78 95 100 100 100 8.32

CEU 0 0 0 2 2 3 5 11 17 32 40 46 52 68 100 12.22

AEU 0 0 2 8 10 16 24 33 40 48 52 59 68 90 100 10.51

VEU 2 13 21 24 25 37 51 62 68 71 83 89 100 100 100 7.56

COM 0 3 10 17 29 48 56 63 76 81 92 94 97 100 100 7.35

TABLE 3—RANKINGS BASED ON THE BAYESIAN INFORMATION CRITERION (ALL VALUES REPRESENT CUMULA-

TIVE PERCENTAGES- LAST COLUMN SHOWS THE AVERAGE RANKING)
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Prediction Log-Likelihoods

Specification 1 SEU CEU AEU VEU COM Obs.

All -49.19 -50.83 -49.16 -49.67 -48.68 127

(15.84) (21.28) (16.51) (18.97) (16.53)

Treatment 1 -49.09 -49.46 -48.92 -49.35 -48.45 65

(11.20) (11.76) (11.79) (11.68) (11.56)

Treatment 2 -49.31 -52.26 -49.41 -50.02 -48.91 62

(19.66) (28.04) (20.42) (24.49) (20.59)

t-stat diff. 0.076 0.728 0.167 0.195 0.154

Specification 2 SEU CEU AEU VEU COM Obs.

All -46.70 -47.69 -46.38 -45.74 -46.61 127

(17.99) (18.96) (18.02) (18.08) (18.09)

Treatment 1 -47.41 -48.24 -47.07 -46.57 -47.36 65

(14.89) (15.93) (14.97) (15.05) (15.15)

Treatment 2 -45.96 -47.11 -45.64 -44.86 -45.84 62

(20.85) (21.82) (20.85) (20.88) (20.84)

t-stat diff. -0.278 -0.194 -0.274 -0.326 -0.288

Specification 3 SEU CEU AEU VEU COM Obs.

All -50.77 -51.31 -50.86 -50.62 -50.78 127

(11.69) (12.99) (11.81) (12.71) (11.89)

Treatment 1 -50.22 -50.41 -50.26 -49.80 -50.18 65

(9.30) (9.79) (9.56) (9.63) (9.41)

Treatment 2 -51.36 -52.26 -51.51 -51.48 -51.40 62

(13.83) (15.70) (13.87) (15.33) (14.09)

t-stat diff. 0.517 0.681 0.557 0.642 0.531

TABLE 4—AVERAGE PREDICTION LOG-L IKELIHOODS (STANDARD DEVIATION IS IN PARENTHESIS)
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Treatment 1

Model 1st 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 Aver. Rank

Spec. 1 SEU 6 11 18 21 27 32 35 45 50 61 68 71 77 91 100 8.86

CEU 8 18 21 29 41 45 52 55 58 67 74 80 88 91 100 7.74

AEU 6 9 17 24 33 39 47 53 59 70 74 80 85 92 100 8.11

VEU 2 12 18 27 27 33 44 52 61 64 65 67 77 89 100 8.62

COM 14 18 30 39 42 52 62 68 71 73 76 85 89 94 100 6.86

Spec. 2 SEU 5 12 17 35 39 41 45 50 56 68 79 86 92 98 100 7.76

CEU 6 12 20 21 41 45 52 59 64 70 76 79 89 89 100 7.77

AEU 3 23 33 42 45 47 55 61 70 74 79 88 92 95 100 6.92

VEU 20 26 35 42 50 65 68 73 76 79 86 89 91 100 100 6.00

COM 9 17 29 35 42 50 53 58 70 74 79 85 92 97 100 7.11

Spec. 3 SEU 5 9 11 15 20 29 36 45 52 59 64 68 80 88 100 9.20

CEU 8 8 11 14 20 32 42 48 55 61 73 82 85 86 100 8.77

AEU 0 8 14 20 24 27 33 41 47 59 64 73 86 94 100 9.11

VEU 8 15 21 23 27 33 42 53 59 65 77 88 92 97 100 7.99

COM 3 3 6 12 20 29 33 39 55 58 67 79 82 97 100 9.18

Treatment 2

Model 1st 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 Aver. Rank

Spec 1 SEU 3 8 11 16 25 25 33 41 54 62 71 81 90 98 100 8.79

CEU 8 16 17 21 29 41 44 48 57 68 70 71 78 78 100 8.54

AEU 5 11 19 24 29 43 46 51 62 67 78 86 87 100 100 7.94

VEU 10 14 19 24 32 33 43 48 57 63 68 78 83 90 100 8.38

COM 6 17 29 33 41 46 49 57 63 71 76 79 94 97 100 7.40

Spec 2 SEU 5 16 30 46 52 52 56 59 68 75 84 89 94 100 100 6.75

CEU 10 10 21 24 41 48 54 57 59 68 73 78 79 84 100 7.95

AEU 2 27 33 49 57 57 68 76 79 83 86 87 90 97 100 6.08

VEU 32 41 48 60 67 79 83 84 86 86 89 89 95 100 100 4.62

COM 11 17 33 46 52 59 62 70 78 83 86 95 97 98 100 6.13

Spec 3 SEU 0 3 8 11 14 17 33 44 48 52 62 73 81 89 100 9.64

CEU 2 2 3 5 6 21 27 35 40 51 63 73 83 87 100 10.03

AEU 2 3 6 11 16 24 31 44 48 56 66 73 84 98 100 9.37

VEU 2 3 6 11 16 24 31 44 48 56 66 73 84 98 100 9.37

COM 2 2 3 10 13 24 33 43 49 56 60 68 79 89 100 9.70

TABLE 5—RANKINGS BASED ON PREDICTION LOG-LIKELIHOODS (ALL VALUES REPRESENT CUMULATIVE

PERCENTAGES- LAST COLUMN SHOWS THE AVERAGE RANKING)
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Treatment 1

Model SEU CEU AEU VEU COM

CEU 18 n.a. 0 0 0

AEU 45 0 n.a. 0 0

VEU 64 0 5 n.a. 0

COM 6 0 5 0 n.a.

Treatment 2

Model SEU CEU AEU VEU COM

CEU 5 n.a. 2 0 0

AEU 41 0 n.a. 0 0

VEU 63 0 13 n.a. 2

COM 2 0 0 0 n.a.

TABLE 6—A) SIGNIFICANCE TEST FOR SUPERIORITY OF PREFERENCE FUNCTIONALS- 5 PERCENT LEVEL

Treatment 1

Model SEU CEU AEU VEU COM

CEU 8 n.a. 0 0 0

AEU 38 0 n.a. 0 0

VEU 52 0 2 n.a. 0

COM 2 0 0 0 n.a.

Treatment 2

Model SEU CEU AEU VEU COM

CEU 2 n.a. 0 0 0

AEU 33 0 n.a. 0 0

VEU 56 0 6 n.a. 2

COM 0 0 0 0 n.a.

TABLE 6 — B) SIGNIFICANCE TEST FOR SUPERIORITY OF PREFERENCE FUNCTIONALS- ONE PERCENT LEVEL
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Treatment 1

Model 1st 2nd 3rd 4th 5th Average Ranking

SEU 9 26 44 85 100 3.36

CEU 17 29 48 58 100 3.48

AEU 8 52 67 85 100 2.89

VEU 50 58 68 82 100 2.42

COM 17 36 73 91 100 2.83

Treatment 2

Model 1st 2nd 3rd 4th 5th Average Ranking

SEU 8 22 51 89 100 3.30

CEU 16 22 37 38 100 3.87

AEU 2 46 63 87 100 3.02

VEU 59 71 78 94 100 1.98

COM 16 38 71 92 100 2.83

TABLE 7—RANKINGS BY PREDICTION LOG-LIKELIHOODS WITHIN SPECIFICATION 2 (ALL VALUES REPRESENT

CUMULATIVE PERCENTAGE- THE LAST COLUMN SHOWS THE AVERAGE RANKING)

Treatment 1

Bayesian Information Criterion

Prediction Log-Likelihoods SEU CEU AEU VEU COM

SEU -0.821 -0.820 -0.818 -0.814 -0.819

CEU -0.770 -0.767 -0.768 -0.766 -0.768

AEU -0.815 -0.813 -0.813 -0.810 -0.813

VEU -0.804 -0.802 -0.805 -0.807 -0.802

COM -0.808 -0.807 -0.806 -0.801 -0.806

Treatment 2

Bayesian Information Criterion

Prediction Log-Likelihoods SEU CEU AEU VEU COM

SEU -0.939 -0.938 -0.939 -0.935 -0.933

CEU -0.918 -0.915 -0.918 -0.915 -0.912

AEU -0.929 -0.927 -0.929 -0.926 -0.923

VEU -0.921 -0.919 -0.923 -0.921 -0.915

COM -0.939 -0.937 -0.938 -0.934 -0.933

TABLE 8—CORRELATIONS BETWEENPREDICTION LOG-L IKELIHOODS AND BICS- SPECIFICATION 2
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SEU CEU AEU VEU COM

All 8.05 8.25 8.04 7.91 8.04

(4.00) (4.17) (3.95) (3.95) (4.00)

Treatment 1 7.05 7.21 7.10 6.99 7.03

(3.29) (3.48) (3.47) (3.40) (3.29)

Treatment 2 9.10 9.35 9.02 8.87 9.10

(4.41) (4.57) (4.21) (4.27) (4.41)

TABLE 9—AVERAGE DEPARTURE FROM BEST PREDICTION(STANDARD DEVIATION IS IN PARENTHESES)
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Specification 2

Theory Parameter All Treatment1 Treatment2 t-test diff.

SEU p1 0.248 0.241 0.255 -1.422

p2 0.355 0.347 0.363 -1.955

p3 0.397 0.412 0.381 3.129

r 0.801 0.815 0.788 0.655

s 11.821 12.846 10.747 1.145

CEU wE.1/ 0.249 0.235 0.263 -2.177

wE.2/ 0.354 0.345 0.364 -1.990

wE.3/ 0.381 0.396 0.365 2.785

wE.2/[E.3/ 0.764 0.761 0.766 -0.242

wE.1/[E.3/ 0.611 0.622 0.601 1.459

wE.1/[E.2/ 0.604 0.568 0.642 -3.115

r 0.803 0.818 0.787 0.746

s 12.536 13.762 11.252 1.303

AEU p
1

0.230 0.222 0.239 -1.723

p
2

0.334 0.325 0.344 -1.920

p
3

0.375 0.388 0.361 2.536

� 0.220 0.241 0.198 0.862

r 0.790 0.807 0.772 0.820

s 12.709 13.836 11.528 1.150

VEU p1 0.248 0.241 0.256 -1.433

p2 0.354 0.346 0.363 -1.984

p3 0.397 0.413 0.381 3.206

� -0.039 -0.033 -0.045 1.398

r 0.786 0.804 0.767 0.847

s 13.178 14.187 12.120 0.982

COM p
1

0.242 0.232 0.252 -1.805

p
2

0.346 0.335 0.359 -2.912

p
3

0.389 0.401 0.378 2.309

� 0.517 0.524 0.509 2.055

r 0.803 0.817 0.788 2.055

s 11.935 13.063 10.753 1.238

TABLE 10—DESCRIPTIVE STATISTICS AVERAGE ESTIMATED PARAMETERS- SPECIFICATION 2
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Bayesian Information Criterion

True Model SEU CEU AEU VEU COM

SEU 471.21 484.64 479.03 474.46 479.40

CEU 529.03 440.82 537.69 449.09 530.93

AEU 561.17 496.39 469.24 514.19 569.83

VEU 487.69 456.30 496.35 446.31 478.52

COM 485.44 471.19 493.40 475.53 465.80

TABLE 11—BAYESIAN INFORMATION CRITERION WHEN THE ROW MODEL IS THE TRUE ONE
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FIGURE 1. HISTOGRAMS BIC BY PREFERENCE FUNCTIONALS - SPECIFICATION 1
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FIGURE 2. HISTOGRAMS BIC BY PREFERENCE FUNCTIONALS - SPECIFICATION 2
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FIGURE 3. HISTOGRAMS BIC BY PREFERENCE FUNCTIONALS - SPECIFICATION 3

32



-2
00

-1
50

-1
00

-5
0

0
50

pr
ed

ic
te

d

-200 0 200 400 600
BIC fitted ll

Subjective Expected Utility

-2
00

-1
50

-1
00

-5
0

0
50

pr
ed

ic
te

d

-200 0 200 400 600
BIC fitted ll

Choquet Expected Utility

-2
00

-1
50

-1
00

-5
0

0
50

pr
ed

ic
te

d

-200 0 200 400 600
BIC fitted ll

Alpha Expected Utility

-2
00

-1
50

-1
00

-5
0

0
50

pr
ed

ic
te

d

-200 0 200 400
BIC fitted ll

Vector Expected Utility

-2
00

-1
50

-1
00

-5
0

0
50

pr
ed

ic
te

d

-200 0 200 400 600
BIC fitted ll

Contraction Model

FIGURE 4. SCATTER PREDICTION LOG-LIKELIHOODS VS BICS - SPECIFICATION 2
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FIGURE 5. SCATTER PREDICTION LOG-LIKELIHOODS SEU VS OTHER PREFERENCE FUNCTIONALS – SPECIFICATION 2
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FIGURE 6. SCATTER BICS SEU VS OTHER PREFERENCE FUNCTIONALS - SPECIFICATION 2
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FIGURE 7. DIFFERENCES ACTUAL VS PREDICTED ALLOCATIONS - SPECIFICATION 2
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