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This study analyses, from an investor’s perspective, the performance
of several risk forecasting models in obtaining optimal portfolios.
The plausibility of the homoscedastic hypothesis implied in the classical
Markowitz model is dicussed and more general models which take into
account assymetry and time varying risk are analysed. Specifically, it
studies whether ARCH-type based models obtain portfolios whose
risk-adjusted returns exceed those of the classical Markowitz model. The
same analysis is performed with models based on the Lower Partial
Moment (LPM) which take into account the assymetry in the distribution
of returns. The results suggest that none of the models achieve a clearly
superior average performance. It is also found that models based on
semivariance perform as well as those based on the variance, but not
better than, even if the evaluation criterion is based on the Reward-to-
Semivariance ratio. When attention turns to the analysis of worst
case performance, the results are clearly different. Models which employ
LPM with a high degree of risk aversion (n>2) as the risk measure are
consistently superior to those which employ a symmetric measure, either
homoscedastic or heteroscedastic.

I. Introduction

Since the beginning of Modern Finance Theory there

has been a constant controversy about the concept of

risk, and an increasing interest in ways to measure it.

This controversy has been accompanied by a growing

investment industry in portfolio models based on

sophisticated quantitative methods which require a

huge computing power. One should not be surprised

by this fact since financial markets are now much

more volatile and the use of derivative instruments,

such as options, to hedge risks require ‘hi-tech’ devel-

opments in finance. In particular, the development

of new methods of portfolio management is now a

paramount issue in the financial community.1

The roots of the Modern Portfolio Theory (MPT

in what follows) can be traced back to Markowitz’s

(1952) seminal idea that investors should hold

mean–variance efficient portfolios. This idea rests

on mean–variance investors whose utility depends

only on these two factors. The appeal of the

mean–variance model is evident. It only requires

*Corresponding author. E mail: jdmoreno@emp.uc3m.es
1 It is also obvious that particular investors demand more sophisticated financial products as well as risk control systems
since the crash of 1987. Concepts such as ‘implied volatility’ and ‘Value at Risk’ are now terms commonly used by even the
most modest investor.
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one to know the first two moments of the probabil-

ity’s distribution in the considered asset’s returns to
create optimal portfolios which are the solution of a
well-defined and easily solvable quadratic program-
ming problem. Obviously, this approach would be

correct only if at least one of the underlying assump-
tions is correct, that is: (1) the utility function of the
investor is quadratic and (2) the distribution of

returns is conditionally normal.
The first of the assumptions of Markowitz

model does not conform to the observed behaviour
of investors: it requires that investors increase their

absolute risk aversion as their wealth increase, while
it is well known that they generally exhibit a higher
risk aversion with lower levels of wealth. The second

assumption implies that the unconditional mean and
variance fully describe the distribution of the asset’s
returns. Nevertheless, a large number of empirical
works document the inappropriateness of the nor-

mality hypothesis (see e.g. Taylor, 1995 for a review).
In particular, and among other properties, financial
returns are skewed and leptokurtic (Mandelbrot,

1963).
Despite of these well known facts, several authors2

continue to favour the mean–variance model, not

only because of its simplicity but also because it
allows one to obtain levels of utility highly correlated
with the expected satisfaction of an investor. At this
point it seems that one important question is: is it

possible to find some alternative measures of risk
that outperform the generally employed estimation
of unconditional variance?

Stochastic models whose variance evolves with
time may provide an explanation of the stylized
facts of financial returns. Since Mandelbrot (1963),
it is recognized by the financial community that vola-

tility ‘clusters’ with time. Engle (1982) was probably
the first to propose a model of changing volatility.
Since the inception of his Autoregressive Conditional

Heteroscedastic Model (ARCH, hereafter), an
impressive number of papers have employed it, and
many extensions and practical applications have been
proposed (see Bollerslev et al., 1992, for a review).

This study analyses:

(1) The effect of the modification of the

classical Markowitz scheme by introducing
heteroscedastic conditional variances in the
determination of the optimal portfolios.

(2) Another possible modification that comes from

an interpretation of risk aversion more coher-
ent to rationality: investors should employ risk
measures which allow them to reject decisions
which would produce rates of return lower than

a specific target, and accept decisions which
would produce rates of return higher than the
target.3 In this line of reasoning, downside risk

measures are employed (see Nawrocki, 1999,
for a review of all these measures) which have
that property. In fact, even Markowitz (1991)
recognizes that from a theoretical, practical,

and empirical perspective, these measures, in
particular semivariance, are more plausible.

In both modifications, the benefits of portfolio
optimization critically depend on how accurately
the involved measures can be forecasted. Here the

focus will be on the forecasts of risk, rather than of
expected returns for two reasons: first, many studies
have analysed the forecasts of returns in the context
of mean–variance optimization.4 The general opinion

is that expected returns are very difficult to predict,
and that the optimization process is extremely sensi-
tive to these differences. Second, there exists a general

impression that volatility, in a wide sense, is easier to
estimate than expected returns from historical data.5

Moreover, this kind of analyses, to our knowledge,

is much scarcer in the framework of portfolio
optimization.

The main contributions of our work are the follow-
ing: First, the approach adopted by other authors

(e.g. Nawrocki, 1991) is extended by explicitly con-
sidering forecasted instead of realized measures of
risk, that is, in the solution of Markowitz’s problem

the variances and semideviations obtained from
ARCH-type or autoregressive models are employed
instead of the historical ones. In this sense, the
work is closer to the real behaviour of investors

who extrapolate, in some pertinent way, the expected
optimal portfolio. Second, the performance of
dynamic forecasts of symmetric against asymmetric

measures of risk is compared. To the present authors’
knowledge, none of the studies in the literature have
done this type of comparative analysis. Third, a data-
base of country indices is employed whose behaviour

is presumably more diverse than if assets of any par-
ticular market had been employed, as other authors
do. The argument is that country indices may have,

2 Levy and Markowitz (1979), Pulley (1981, 1985), Kroll et al. (1984), among others.
3Note that the variance, employed as a risk measures does not have this property, it is symmetric and, consequently, penalizes
both gains and losses.
4 See Michaud (1989) and Best and Grauer (1991) among others, for a review.
5 See, e.g. Merton (1980) and Nelson (1992).
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compared to individual stocks, a more predictable
structure due to aggregation.

The remainder of the paper is organized as follows.
The next section introduces the models employed to
measure and forecast risk. Section III describes the
dataset as well as the procedure employed in the esti-
mation, prediction and evaluation phases. The proce-
dure is quite computationally intensive. Section IV
presents the results obtained with the procedure, as
will be seen, no significant differences are found
among the models when average performance is
evaluated. Finally, it will be seen that when market
conditions are adverse, there is a clear superiority of
assymetric models over the symmetric (heteroscedas-
tic or not) ones. The last section summarizes the main
results obtained.

II. Risk Models

Time varying models

Engle (1982) was probably the first who provided a
simple model of changing volatility, the ARCH
model. Though the catalogue of ARCH-type models
is huge, probably the most widely used models are
Engle’s ARCH, and the generalized ARCH process
(GARCH) of Bollerslev (1986).

ARCH-type models take into account the excess of
kurtosis and volatility clustering. Engle’s ARCH
assumes that returns are generated by stochastic pro-
cesses serially correlated, or not, with non-constant
variances conditional on the past and constant
unconditional variances. For such processes, the
recent past gives information about the one-period
forecasted variance. The conditional variance of the
innovations of an ARCH model of order p or ARCH
( p) is parameterized as:

�2
t ¼ !þ

Xp

j¼1

�j"
2
t j ð1Þ

where �2
t is the conditional variance (in this case we

assume p lags of the squared residuals), ! and �j>0,
to guarantee a positive variance. The parameters !, �j
and p are usually estimated by maximum likelihood.

Though the ARCH model allows a parsimonious
representation of heteroscedasticity, for practical
applications, especially when the volatility is persis-
tent, the usual formulation as an ARCH model

would require a relatively high number of parameters.
A more flexible structure is provided by a GARCH
model, first suggested by Bollerslev (1986). GARCH
stands for Generalized Autoregressive Conditional
Heteroscedasticity. GARCH models employ past
variances and squared innovations to predict future
variances. The conditional variances of the GARCH
( p, q) process have the following expression:

�2
t ¼ !þ

Xp

j¼1

�j"
2
t j þ

Xq

k¼1

�k�
2
t k ð2Þ

where !, �j and �k>0, to guarantee a positive vari-
ance, and are also estimated by maximum likelihood.

Asymmetric measures of risk

As has been noted earlier, the use of variance as a
measure of risk may be inappropriate, since financial
returns are asymmetric. Alternatively, one may
employ risk measures which penalize asymmetrically
both sides of the distribution of returns. By ‘downside
risk’ one refers to a risk measure which is computed
over a part of the distribution function, taking into
account only returns which are below a particular
target.6

The first, more obvious measure is the semi-
deviation, and a more general measure of downside
risk is the Lower Partial Moment (LPM, hereafter)
which has been employed by numerous authors (e.g.
see Nawrocki, 1999). The LPM measure is defined as
follows:

LPMðn, iÞ ¼
1

T

XT
t¼1

Maximum 0, �� Ritð Þ
� �� �n

ð3Þ

where n is the degree of the LPM, T is the total num-
ber of observations, � is the bound imposed by the
investor and Rit is the return of asset i in period t.
This measure is quite flexible since it is consistent
with many utility functions depending on the value
of n. Levy and Markowitz (1979) and Kroll et al.
(1984) showed that some utility functions can be
approximated by utility functions which involve
only the calculation of mean–variance, but the
n-degree LPM defines a much more general class of
utility functions. As n increases, one assumes a higher
risk aversion by the investor.7 This study computes
LPM with n¼ 2, 3, 4 and 5 to reflect several degrees
of risk aversion.

6 This view was first proposed by Roy (1952) who shows that investors try to obtain returns over a minimum or catastrofic
risk, this is the principle of Safety First.
7 For n smaller than one ‘risk lovers’ is considered, n 1 represents ‘risk neutrals’ and for n higher than one it is considered
that investors are ‘risk averse’ (see Fishburn, 1977). Note that semivariance is equal to LPM with n equal to 2.
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Note that since LPM measures below target
returns, it can be interpreted as an approximate
measure of skewness. Since investors prefer positive
skewness and dislike negative skewness, LPM
becomes a measure of risk. The higher the LPM
value, the greater the degree of negative skewness,
and the greater the risk of the investment. As n
increases, LPM is still measuring negative skewness.
It is simply providing a heavier utility penalty to
negative skewness as the degree (n) is increased.

Similarly to the computation of covariances in the
classical framework, we can define co-lower partial
moment (CLPM, Bawa, 1975; Fishburn, 1977) as8:

CLPMij, n 1 ¼
1

T

XT
t¼1

Max 0, ð��RitÞ
� �� �n 1

��Rjt

� �� �

ð4Þ

III. Database and Methodology

Database

The database consists of 35 MSCI (Morgan Stanley
Capital International) indices,9 expressed in US
dollars, covering the period from 31 December 1989
to 1 January 2002 (687 weekly observations). Thirteen
emerging markets and 22 developed ones are
considered.10 Returns are calculated as the first
difference of log prices.

The main statistics of the raw data are shown in
Table 1. As it is common in Finance literature,
evidence of leptokurtosis and asymmetry are docu-
mented in the returns distribution, which allow the
rejection of normality using the Jarque–Bera test.
Note that the existence of asymmetric distributions
justifies the use of downside risk measures employed
in the following section. Strong evidence of ARCH
effects are also found by applying Engle’s test for
four lags.

Methodology

To deal with heteroscedasticity, for each one of
the markets, the study estimated, by maximum
likelihood, sixteen different specifications of the
AR(z)–ARCH( p) and AR(z)–GARCH( p, q) process
(z¼ 0, 1, 2, 3; p¼ 1, 2; q¼ 0, 1). From this range

of models, the best one is selected according to the

Akaike Information Criterion (AIC). Then, this

model is used to forecast the conditional variance,

which is then incorporated into Markowitz’s model

to determine the optimal portfolio, that is, the tan-

gency between the Capital Allocation Line (CAL)

and the Efficient Frontier. Finally, the performance

of these portfolios is compared against that of the

portfolio derived from the classical Markowitz fra-

mework. To obtain the optimal portfolios constraints

are introduced to ensure non-negativity of the

weights, this is done because short selling is expensive

for individual investors and it is not generally permis-

sible for most institutional investors.

The covariances can be assumed constant or not.

They are considered to be constant in time, following

Jobson and Korkie (1980) and Jorion (1986) among

others. Other authors (e.g. Elton and Gruber, 1973;

Eun and Resnik, 1992 or Ledoit and Wolf, 2003)

assume that they evolve over time. In this case, more

sophisticated models have to be employed, but these

extensions are left for future work.

Changing assymmetry is modelled in the following

manner: to forecast semivariance a classical AR( p)

model is run, with p¼ 0, 1, . . . , 5 on the past values

of semivariance. Then, the specification model is

chosen which minimizes the AIC, and one proceeds

exactly as in the ARCH process, previously described.

A time span divided into two parts is considered:

the first one, the in-sample period, is employed for

fitting the econometric models. The estimated

parameters from the optimal models (in terms of

the minimum AIC) are then used to forecast the

risk for the next period. These forecasts of risk are

then used to compute the optimal portfolio by solving

the following quadratic programming formulation:

minimize
Xn
i¼1

Xn
j¼1

�ijxixj

subject to
Xn
j¼1

rjxj � �

Xn
j¼1

xj ¼ 1

0 � xj � 1, j ¼ 1, 2, . . . , n

8Note, again, that from this expression one can derive the cosemivariance, a particular case of LPM when the degree
is equal to two.
9 Since this database is well known to the financial researchers a full description is not provided here.
10 The emerging markets analysed are Indonesia (INO), Korea (KOR), Malaysia (MAL), Philippines (PHI), Taiwan (TAW),
Thailand (THA), Argentina (ARG), Brazil (BRA), Chile (CHE), Mexico (MEX), Greece (GRE), Jordan (JOR), and Turkey
(TUR). The developed markets are Australia (AUL), Austria (AUT), Belgium (BEL), Canada (CAN), Denmark (DEN),
Finland (FIN), France (FRA), Germany (GER), Hong Kong (HON), Ireland (IRE), Italy (ITA), Japan (JAP), Luxembourg
(LUX), Netherlands (NET), Norway (NOR), Portugal (POR), Singapore (SIP), Spain (SPA), Sweden (SWE), Switzerland
(SWI), United Kingdom (UKG) and United States (USA).
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where rj is the expected return, rj¼E[Rj], of

security j, �ij is the expected covariance

between returns of security i and of security

j, �ij¼E[(Ri� ri)(Rj� rj)], xj is the proportion

invested in asset Sj. � is a parameter represen-

ting the minimal rate of return required by an

investor.

In cases where the measure of risk employed is

the LPM a problem occurs: the CLPM matrix is

not symmetric and Markowitz’s model requires

symmetry, since it is solved through quadratic

programming optimization. Following Nawrocki

(1992), a symmetric matrix is built which

is then employed in the formulation of

Markowitz’s model. The alternative formulation
of the problem is:

minimize LPMn, p ¼
Xn
i¼1

Xn
j¼1

xixjLPMiLPMjrij

subject to
Xn
j¼1

rjxj � �

Xn
j¼1

xj ¼ 1

0 � xj � 1, j ¼ 1, 2, . . . , n

where rij is the correlation coefficient between
asset Si and asset Sj.

Table 1. Descriptive statistics of the weekly series

Mean Max Min Std. Dev Skewness Kurtosis Jarque Bera Engle Test

INO 0.248 0.295 0.411 0.065 0.467 11.340 0.000 0.934
KOR 0.091 0.204 0.403 0.053 0.536 9.392 0.000 0.739
MAL 0.038 0.297 0.371 0.049 0.677 14.634 0.000 0.943
PHI 0.039 0.247 0.207 0.046 0.008 6.416 0.000 0.999
TAW 0.011 0.231 0.222 0.051 0.183 5.125 0.000 0.990
THA 0.127 0.248 0.185 0.055 0.085 4.820 0.000 0.983
ARG 0.233 0.805 0.363 0.081 1.253 19.588 0.000 0.993
BRA 0.166 0.208 0.507 0.074 1.157 9.274 0.000 0.989
CHE 0.222 0.140 0.161 0.034 0.104 5.070 0.000 0.992
MEX 0.324 0.180 0.207 0.047 0.316 5.572 0.000 0.992
GRE 0.181 0.185 0.177 0.047 0.064 4.005 0.000 0.993
JOR 0.013 0.085 0.311 0.023 3.247 51.842 0.000 0.990
TUR 0.205 0.290 0.323 0.081 0.164 4.490 0.000 0.992
AUL 0.049 0.072 0.092 0.024 0.213 3.442 0.000 0.986
AUT 0.037 0.165 0.133 0.032 0.130 5.577 0.000 0.994
BEL 0.085 0.075 0.084 0.024 0.325 3.910 0.000 0.988
CAN 0.097 0.098 0.118 0.023 0.358 4.915 0.000 0.997
DEN 0.150 0.079 0.120 0.026 0.263 3.968 0.000 0.990
FIN 0.233 0.233 0.234 0.048 0.357 6.118 0.000 0.994
FRA 0.149 0.091 0.111 0.027 0.304 3.916 0.000 0.992
GER 0.129 0.090 0.131 0.029 0.428 4.389 0.000 0.992
HON 0.156 0.135 0.226 0.038 0.878 6.274 0.000 0.991
IRE 0.128 0.097 0.115 0.029 0.091 3.782 0.000 0.994
ITA 0.049 0.108 0.189 0.034 0.286 4.798 0.000 0.985
JAP 0.128 0.146 0.092 0.032 0.319 4.205 0.000 0.988
LUX 0.083 0.308 0.338 0.040 0.622 18.544 0.000 0.993
NET 0.176 0.067 0.129 0.023 0.481 5.373 0.000 0.987
NOR 0.059 0.137 0.099 0.031 0.025 3.757 0.000 0.995
POR 0.047 0.094 0.104 0.028 0.070 3.914 0.000 0.990
SIP 0.069 0.124 0.140 0.032 0.320 5.369 0.000 0.987
SPA 0.101 0.093 0.137 0.031 0.381 4.439 0.000 0.988
SWE 0.173 0.154 0.190 0.036 0.294 4.707 0.000 0.993
SWI 0.209 0.073 0.098 0.024 0.294 3.685 0.000 0.993
UKG 0.124 0.116 0.082 0.023 0.013 4.056 0.000 0.990
USA 0.213 0.078 0.091 0.021 0.431 4.718 0.000 0.990

Notes: The table shows the descriptive statistics for each of the countries, they are the mean, maximum (max),
minimum (min), standard deviation (Std. dev.), skewness and kurtosis. The p value of the Jarque Bera
statistic for testing the null hypothesis that the return series are normally distributed is also shown. The last
column is the 1 less p value for the Engle’s autoregressive conditional heteroscedasticity test. The mean is shown in
percentage terms.
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It must be noted that, in both formulations, the
specification of the conditional mean of each of
the models is only employed to obtain the resid-
uals, which are used in the specification of the
conditional variance, and not to forecast future
returns (which are estimated by the historical
average). This procedure is used to avoid mispeci-
fication in the conditional mean of some of the
models, which could lead to suboptimal portfolios.
Since the interest lies only in the alternative ways
to forecast risk, it is preferred to employ simpler
(less accurate) models and to establish the com-
parisons only in terms of alternative formulations
of the risk.

To obtain a number of simulations the above
procedure is repeated using non-overlaping and
out-of-sample rolling windows so that, say, at itera-
tion 1 the models are built using observations 1–50
and evaluated on observations 51–75, at iteration
two models are built using observations 26–75
and evaluated on observations 76–100 and so on.
This procedure allows one to obtain 25 different
non-overlapping test sets. The table below
summarizes the models considered in the work.

Expected
return Risk measure

Covariance or
CoLPM

Model 1 Historical Historical
(variance)

Historical
(covariance)

Model 2 Historical GARCH Historical
(covariance)

Model 3 Historical Historical
(semivariance)

Historical
(co LPM)

Model 4 Historical AR semivariance Historical
(co LPM)

Model 5 Historical Historical
LPM (n 3)

Historical
(co LPM)

Model 6 Historical Historical
LPM (n 4)

Historical
(co LPM)

Model 7 Historical Historical
LPM (n 5)

Historical
(co LPM)

To complete the analysis the worst case is studied,
that is, the most pessimistic situation for the investor.
From a risk-averse investor’s perspective, an
unresolved question is whether some of the models
perform worse than others in adverse situations, that

is, if it is possible to choose among models so that
the performance of one of them is always better than
the worst case performance.

In trying to answer the above question the follow-
ing procedure is proposed. At each time step, from
iteration 1 to 25, the performance of each one of the
models is registered. Then, an ideal ex-post portfolio
from the Markowitz model is considered, which
allows one to measure how the stock markets really
moved, and take the first five worst results. That
is, one considers 20% of the times that the market
performed worst. Afterwards, one checks what the
performance of the other models was and this set is
ordered for the previously detected worst cases. To
the extent that a particular model behaves better than
the others in these extreme conditions, one can say
that it should be, ceteris paribus, chosen by risk
adverse investors.

IV. Empirical Results

Table 2 shows the annualized returns generated by
the seven models in each of the evaluation periods.
The results indicate that, on average, the best port-
folios are those which employ the LPM and, signifi-
catively, those with a degree higher than 2. It seems
that the models which incorporate dynamic forecasts
of the risk measure (models 2 and 4) produce quite
similar results (actually slightly worse) to those which
employ the historic measure. On average, the models
which employ the LPM (n>2) obtain an annualized
return 2% greater than the one obtained with the
other models. Note that the results are equally robust
along all the testing periods, since all the variances
are quite similar.

In terms of annualized risk, all the models also
seem to be very similar (see Table 3). Interestingly,
the classical Markowitz model achieves the
lowest risk level (it is also the second more robust).
The worst results correspond to Model 4 which
employs forecasts of the semivariance. The less
robust models are the ones which employ the LPM
(n>2).

Now the possible trade-off between the perfor-
mance of the models in terms of risk and return will
be analysed. The first measure employed is the Sharpe
Ratio (Sharpe, 1966).11 The best model seems to be

11 The Sharpe Ratio can be defined as follows:

Sharpe Ratio
Ri rf

�i

where Ri is the return of portfolio i and rf is the risk free rate (3 month Treasury bills are employed) and �i is the standard
deviation of portfolio i.
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model 5 (see Table 4), but its ratio is almost equal to

the simplest model (the classical Markowitz model),

however, model 5 seems to provide more robust

results along the testing periods. The worst is,

again, model 4. It is also evident that the dynamic

versions (models 2 and 4) are worse than the static

ones (models 1 and 3). It can also be seen that models

which employ a symmetric risk measure (models 1

and 2) provide better results than the ones which

employ asymmetric measures (models 3 and 4).

It can be argued, though, that Sharpe’s ratio is

consistent with variance but not with semivariance.

For this reason12 we also compute the Reward-to-

Semivariability (R/SV) Ratio (Roy, 1952).13

In the case of the R/SV (see Table 5), it is

found that the differences among the models are

also not relevant. Unexpectedly, the models which

employ the semideviation do not perform better.

Again, the worst model is number four and the best

the classical Markowitz model.

12 Another argument to employ this alternative performance measure is that the Sharpe ratio is a biased estimator
(see e.g. Ang and Chua, 1979).
13 The Reward to Semivariability can be defined as:

R

SV

Ri Rf

SemideviationðRiÞ

Table 2. Mean annualized return in each testing period

Period Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 21.55 32.14 27.98 27.74 30.17 29.38 22.76

2 30.94 26.53 34.18 31.33 27.00 17.41 13.74

3 70.12 70.49 70.41 70.32 81.37 88.30 94.46

4 60.33 60.85 62.29 63.23 58.56 56.78 55.20

5 66.43 62.97 66.76 65.17 57.44 47.53 38.71

6 23.43 23.62 35.53 39.15 19.49 6.72 3.73

7 25.24 21.58 27.33 26.29 28.67 29.26 28.94

8 31.86 31.63 25.34 24.85 17.38 12.65 10.66

9 13.01 12.45 10.83 11.34 17.91 18.44 16.94

10 28.76 17.49 29.51 27.19 18.97 14.63 14.40

11 19.39 20.82 16.73 15.24 13.47 11.82 8.87

12 13.78 15.23 16.54 13.28 23.04 23.72 22.87

13 24.07 24.11 23.99 24.13 24.03 24.14 24.29

14 1.77 0.94 1.18 0.80 1.67 2.33 2.96

15 34.59 34.43 34.64 34.95 34.16 33.68 33.08

16 21.64 20.52 22.19 21.23 23.09 23.67 24.17

17 10.56 12.70 13.43 6.68 11.57 11.05 10.25

18 28.18 27.52 27.51 27.29 24.16 21.47 19.27

19 7.08 7.49 7.55 8.41 8.01 8.19 8.85

20 3.86 2.89 7.02 7.00 10.74 25.46 33.08

21 17.09 16.30 13.12 11.27 9.43 5.87 2.48

22 1.46 1.42 21.74 20.28 41.04 54.19 63.29

23 56.17 56.57 57.88 57.12 48.21 42.47 37.58

24 21.32 21.32 21.32 21.32 21.32 21.32 21.32

25 37.05 37.05 29.58 30.30 37.05 37.05 37.05

Mean 14.38 14.22 14.93 14.30 16.30 16.69 16.79
Std. dev. 29.92 29.53 30.62 30.47 29.12 28.86 29.13

Notes: The table shows the annualized returns generated by the seven models in each of the evaluation periods, and the mean
and the standard deviation (Std. dev.) of these returns for each model. To obtain 25 different non overlapping test sets the
next procedure is repeated using non overlapping out of sample rolling windows: at iteration 1 the models are built using
observations 1 50 and evaluated on observations 51 75, at iteration 2 models are built using observations 26 75 and
evaluated on observations 76 100 and so on.
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Table 6 shows the results obtained with the

Wilcoxon test for equal distribution for the values

of the previous tables. As can be seen, no statistically

significant differences are found among the models.

Tables 7 and 8 provide some insight about the

composition of the optimal portfolio for each one

of the models. The results of Table 7 show that,

on average, the number of assets considered by any

model is virtually the same (six or seven different

assets). Furthermore, it can be noted that, in gen-

eral, there is a clear relation among the models: the

number of assets increases (decreases) in all the

models during the same periods of time. In Table 8,

the number of assets which have a weight in the

optimal portfolio greater than 3% are considered

(which would be, approximately, the percentage in

an equally weighed portfolio). This analysis is

performed because the investor could consider not

holding an asset with a small weight in order to

avoid transaction costs. The difference between

emergent and developed stock markets is also

shown. The results agree with others studies

(e.g. Nawrocki, 1991) that show that the number

of assets considered by a LPM approach is lower

than from a variance perspective. Moreover, the

results also show that the number of assets

decreases as the degree of LPM increases. This is

due to the fact that this measure of risk takes into

account the skewness of the returns distribution

and the diversification is achieved more efficiently

with a smaller number of assets (see Nawrocki,

1992).

Table 9 shows the correlation coefficients of

the returns, generated by each one of the

Table 3. Mean annualized risk in each testing period

Period Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 10.99 14.61 13.72 13.53 16.23 18.35 18.01

2 25.57 22.15 25.03 23.99 24.75 24.73 25.11

3 19.94 19.86 19.78 19.84 19.14 19.06 19.72

4 20.67 20.61 22.24 22.56 23.01 24.59 26.12

5 16.85 17.06 15.97 16.92 17.12 17.29 16.92

6 14.83 14.94 17.82 18.35 15.61 13.22 10.85

7 8.05 7.30 8.27 9.06 8.96 9.49 9.71

8 10.38 9.78 14.59 14.66 18.83 21.31 22.21

9 15.66 16.05 16.30 16.36 15.67 14.85 15.28

10 10.49 9.01 10.88 10.43 9.18 9.86 10.91

11 10.81 11.71 10.23 11.17 9.14 8.85 8.53

12 8.99 10.79 8.70 10.81 7.47 7.04 6.91

13 8.14 8.09 8.57 8.71 8.53 8.52 8.55

14 9.92 9.92 10.00 9.96 10.27 10.45 10.55

15 7.69 7.65 7.93 8.13 8.20 8.24 8.40

16 12.15 12.19 14.73 15.82 14.75 14.43 14.14

17 19.92 20.03 18.50 20.43 14.89 12.68 10.98

18 22.61 22.50 23.08 23.68 21.01 19.14 17.47

19 25.24 25.72 24.35 24.47 24.09 24.12 24.18

20 23.39 24.37 25.41 24.82 22.54 20.14 18.54

21 20.20 21.65 23.87 25.23 17.61 15.12 15.32

22 24.71 25.20 32.25 30.90 38.44 43.59 43.68

23 20.10 20.31 20.57 19.66 20.62 21.32 21.11

24 19.12 19.12 19.12 19.12 19.12 19.12 19.12

25 14.78 14.78 12.85 13.00 14.78 14.78 14.78

Mean 16.05 16.22 16.99 17.26 16.80 16.81 16.68
Std. dev. 5.99 5.91 6.56 6.27 6.98 7.78 7.94

Notes: The table shows the annualized risk of the seven models in each one of the evaluation periods, and the mean and the
standard deviation (Std. dev.) for the entire periods. To obtain 25 different non overlapping test sets we repeat the next
procedure using non overlapping out of sample rolling windows: at iteration 1 the models are built using observations 1 50
and evaluated on observations 51 75, at iteration 2 models are built using observations 26 75 and evaluated on observations
76 100 and so on.
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models employed. It is found that the correlation

between the returns from all models is very high,

confirming the previous conclusions that models

provide similar results. An inspection of the correla-

tions reveals that one can identify two groups: the

one which employs a risk measure which assumes a

lower (symmetric or not and dynamic or not) degree

of aversion of the decisor (models 1 to 4) and the

other which penalizes risk more heavily (models

5, 6 and 7).

In Table 10 one finds interesting differences

among the models in terms of the empirical distri-

bution of the returns of the optimal portfolios. The

models which employ LPM show less negative, or

even, positive skewness. Also, for these models the

kurtosis is more than that of models which employ
the variance as the measure of risk; again the
kurtosis coefficient increases with the degree of
the LPM. The results are in line with those of
Nawrocki (1992); note, however that this author
performs an ex-ante analysis. From these and the
above results it is seen that models which employ
the LPM (n>2) as the risk measure constitute a
qualitatively different class.

Worst case analysis

Finally, the Worst case analysis has been run.
Figs 1 and 2 plot the results obtained in terms of
annualized returns and risk, respectively. As can

Table 4. Mean Sharpe ratio in each testing period

Period Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 1.26 1.67 1.47 1.48 1.38 1.18 0.83

2 1.50 1.53 1.66 1.61 1.39 1.00 0.84

3 3.22 3.25 3.26 3.25 3.94 4.32 4.49

4 2.67 2.70 2.57 2.57 2.32 2.10 1.91

5 3.71 3.46 3.94 3.62 3.13 2.52 2.06

6 1.80 1.80 2.17 2.31 1.45 0.75 0.05

7 2.76 2.54 2.94 2.57 2.86 2.77 2.67

8 2.78 2.92 1.53 1.49 0.76 0.45 0.34

9 0.62 0.57 0.47 0.50 0.94 1.02 0.90

10 2.33 1.46 2.31 2.19 1.59 1.04 0.92

11 2.31 2.25 2.18 1.86 2.08 1.96 1.69

12 0.92 0.90 1.27 0.72 2.35 2.59 2.51

13 2.33 2.35 2.20 2.18 2.22 2.23 2.24

14 0.33 0.42 0.39 0.43 0.33 0.26 0.20

15 3.85 3.85 3.73 3.68 3.56 3.48 3.34

16 1.36 1.27 1.16 1.02 1.22 1.29 1.35

17 0.28 0.38 0.45 0.08 0.44 0.47 0.47

18 1.03 1.00 0.98 0.94 0.91 0.86 0.82

19 0.11 0.12 0.13 0.16 0.15 0.16 0.18

20 0.36 0.30 0.10 0.10 0.67 1.49 2.02

21 0.60 0.52 0.34 0.25 0.25 0.06 0.16

22 0.17 0.17 0.50 0.47 0.92 1.11 1.32

23 3.09 3.08 3.11 3.21 2.63 2.27 2.06

24 1.34 1.34 1.34 1.34 1.34 1.34 1.34

25 2.33 2.33 2.10 2.13 2.33 2.33 2.33

Mean 0.85 0.82 0.82 0.75 0.86 0.84 0.82
Std. dev. 1.92 1.88 1.89 1.84 1.78 1.72 1.67

Notes: The table shows the possible trade off between the performance of the models in terms of risk and
return (through the Sharpe’s ratio) in each of the evaluation periods, and the mean and the
standard deviation (Std. dev.) of those ratios for each model. To obtain 25 different non
overlapping test sets the next procedure is repeated using non overlapping out of sample rolling
windows: at iteration 1 the models are built using observations 1 50 and evaluated on observations
51 75, at iteration 2 models are built using observations 26 75 and evaluated on observations 76 100
and so on.
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be seen, here there is a considerable gap between

the performances of the different portfolios,

obtained by each one of the models. It is quite

clear that the losses obtained with models

which incorporate the LPM (n>2) as the risk

measure (models 5, 6 and 7) are consistently

smaller than the ones of the other models (models

1 to 4). It is very relevant how model 7 dominates

the rest of the models (on average, it achieves

half of the losses obtained from the models

that do not use the LPM as the measure of risk).

In terms of risk, one can see how the portfolios

based on LPM (n>2) attain a reduction in risk

levels.

It must be noted that given that: (i) During the

studied time periods the mean return was negative,

and (ii) It is thought that the investors consider as

a risk the obtainment of a loss. It was decided to

measure the risk as the total returns under the return

zero. So the semideviation is employed with a target

equal to zero.

In conclusion, one can affirm that in the case of

considering the worst evolution in the market, the

portfolios obtained fromModels 5, 6 and 7 (LPM>2)

outperform all the other portfolios considered in the

present study, in terms of return adjusted to risk.

Consequently, if an investor is not only interested

in the mean performance of his portfolio but also

Table 5. Mean R/SV ratio in each testing period

Period Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 3.82 5.41 3.59 3.60 2.49 1.94 1.33

2 1.77 1.68 1.96 1.89 1.64 1.20 1.02

3 6.44 6.54 6.60 6.54 8.89 10.66 12.10

4 5.48 5.53 5.39 5.43 4.86 4.36 3.92

5 8.65 7.41 9.79 7.99 6.16 4.51 3.49

6 2.19 2.19 2.61 2.73 1.89 1.06 0.08

7 6.92 5.57 8.26 6.07 7.62 7.01 6.49

8 6.16 6.96 2.86 2.77 1.32 0.76 0.57

9 1.00 0.94 0.73 0.78 1.53 1.61 1.38

10 4.88 2.90 4.60 4.41 2.90 1.72 1.48

11 2.99 2.90 2.86 2.46 2.70 2.56 2.37

12 1.51 1.52 2.22 1.20 5.18 6.08 5.78

13 3.71 3.72 3.54 3.54 3.56 3.60 3.64

14 0.48 0.60 0.56 0.62 0.47 0.37 0.28

15 12.94 12.79 12.31 11.46 10.58 10.02 9.36

16 2.58 2.20 1.98 1.68 2.09 2.27 2.49

17 0.35 0.48 0.58 0.10 0.59 0.68 0.71

18 1.58 1.52 1.53 1.47 1.47 1.41 1.37

19 0.14 0.16 0.18 0.22 0.21 0.22 0.25

20 0.46 0.40 0.14 0.14 0.84 1.74 2.30

21 0.93 0.82 0.55 0.38 0.39 0.09 0.24

22 0.23 0.23 0.75 0.71 1.48 1.84 2.20

23 3.30 3.30 3.31 3.40 2.93 2.60 2.40

24 1.52 1.52 1.52 1.52 1.52 1.52 1.52

25 5.56 5.56 4.50 4.62 5.56 5.56 5.56

Mean 2.39 2.29 2.29 2.02 2.20 2.13 2.08
Std. dev. 4.00 3.89 3.97 3.62 3.62 3.61 3.61

Notes: The table shows the possible trade off between the performance of the models in terms of risk
and return in each of the evaluation periods, and the mean and the standard deviation (Std. dev.)
of those ratios for each model. To compute the Reward to Semivariability’s ratio (R/SV), 3 month
Treasury bills are employed as the risk free rate of return. To obtain 25 different non overlapping
test sets the next procedure is repeated using non overlapping out of sample rolling windows:
at iteration 1 the models are built using observations 1 50 and evaluated on observations
51 75, at iteration 2 models are built using observations 26 75 and evaluated on observations 76 100
and so on.
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in the worst case performance, our results clearly
indicate that he should employ measures of risk
consistent with this fact. Moreover, it has also been
shown that if an investor simply tries to maximize
his wealth in adverse conditions, he should also
employ a risk model that heavily penalizes abnormal
(under benchmark) returns, such as those based on
the LPM.

V. Conclusions

This study has analysed the performance of risk
forecasting models in the construction of optimal

portfolios. Models have been employed that
assume homoscedasticity as well as heteroscedastic-
ity. Models have also been considered which
assume an assymetric risk aversion of the decisor.
The main conclusion is that, on average, there
do not exist any relevant differences between
homoscedastic and heteroscedastic models and
between symmetric and asymmetric measures
of risk. This conclusion is robust along all the
criteria employed to evaluate the efficiency of the
models.

It was also found that there is a very high
and positive correlation between the returns
generated by the optimal portfolio, constructed by

Table 6. Statistical significance of the measures

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Returns

Model 1 1 0.93 0.87 0.96 0.81 0.87 0.90

Model 2 1 0.84 0.98 0.75 0.85 0.84

Model 3 1 0.81 0.87 0.96 0.90

Model 4 1 0.85 0.95 0.98

Model 5 1 0.95 0.87

Model 6 1 0.95

Model 7 1

Risk

Model 1 1 0.98 0.76 0.58 0.99 0.93 0.96

Model 2 1 0.78 0.61 0.95 0.87 0.87

Model 3 1 0.81 0.84 0.72 0.72

Model 4 1 0.61 0.55 0.54

Model 5 1 0.87 0.90

Model 6 1 0.99

Model 7 1

Sharpe Ratio

Model 1 1 0.98 0.95 0.72 0.96 0.87 0.81

Model 2 1 0.99 0.82 0.99 0.95 0.85

Model 3 1 0.82 0.95 0.93 0.88

Model 4 1 0.79 0.88 0.96

Model 5 1 0.93 0.84

Model 6 1 0.88

Model 7 1

R/SV Ratio

Model 1 1 0.99 0.88 0.73 0.92 0.92 0.81

Model 2 1 0.96 0.76 0.96 0.96 0.85

Model 3 1 0.85 0.99 0.99 0.85

Model 4 1 0.79 0.90 0.98

Model 5 1 0.98 0.92

Model 6 1 0.93

Model 7 1

Notes: The table shows the results from the Wilcoxon’s rank sum test that two populations are identical. A value greater
than 0.05 indicates the acceptance of the null.
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all the ex-ante models which means that all the
models provide quite similar investment decisions.
In particular, it was found that ARCH models
seem useless for optimal ex-ante portfolio selection
and that the models based on semivariance do not
show any improvement of efficiency even when
this is measured by a consistent statistic such as
the Reward-to-Semivariability Ratio. Interestingly,
it was found that the returns generated from mod-
els which employ LPM, as a measure of risk, have
a less negative skewness (which is appreciated by
investors) and higher kurtosis.

The most important result is that when one turn
one’s attention to the analysis of worst case
performance, the results are clearly different.
Models which employ LPM with a high degree

Table 7. Number of assets included in the optimal portfolio

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 13 8 14 14 12 11 10

2 12 10 12 11 11 10 11

3 3 3 4 3 4 4 4

4 3 3 4 3 4 4 4

5 5 5 5 4 6 5 5

6 8 8 7 7 7 7 7

7 9 9 9 8 9 7 7

8 11 11 10 10 9 7 6

9 19 16 17 17 16 15 10

10 11 11 10 10 11 8 5

11 7 7 7 7 6 5 6

12 7 7 7 7 6 6 7

13 4 4 3 3 3 3 3

14 6 7 6 7 6 5 5

15 7 7 7 6 6 6 7

16 8 8 8 9 7 8 7

17 11 11 10 9 10 9 8

18 7 6 5 5 6 6 6

19 6 6 5 4 3 3 3

20 4 4 4 4 3 3 2

21 7 8 6 6 5 4 4

22 10 9 10 10 10 10 7

23 6 5 6 6 5 5 5

24 1 1 1 1 1 1 1

25 1 1 3 3 1 1 1

Mean 7 7 7 7 7 6 6
Std. dev. 4.04 3.43 3.67 3.74 3.61 3.23 2.61

Notes: The table shows the composition of the optimal portfolio generated by the seven models in
each of the evaluation periods, and the mean and the standard deviation (Std. dev.) of
these number of assets for each model. To obtain 25 different non overlapping test sets the
next procedure is repeated using non overlapping out of sample rolling windows: at iteration
1 the models are built using observations 1 50 and evaluated on observations 51 75,
at iteration 2 models are built using observations 26 75 and evaluated on observations 76 100
and so on.

Table 8. Number of assets with a weight higher than 3%

Number
of assets

Number of
emerging
markets
assets

Number of
developed
markets
assets

Model 1 5.76 3.04 2.72

Model 2 5.16 2.88 2.28

Model 3 5.16 2.84 2.32

Model 4 5.08 2.80 2.28

Model 5 4.40 2.16 2.24

Model 6 3.64 1.56 2.08

Model 7 3.28 1.24 2.04

Notes: The table shows the number of assets that, on
average, compose the optimal portfolio generated by each of
the seven models, with a weight higher than 3%.
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Fig. 1. Worst cases: annualized returns

This graph shows the annualized return in percent obtained from each one of the seven models for the five worst cases. To
compute the worst case time periods we consider the five iterations in which the ex post evolution of the market really showed
the highest losses.

Table 10. Characteristics of the empirical distribution of portfolios

Portfolios from model i Mean Standard deviation Kurtosis Skewness

Model 1 14.38 17.27 4.65 0.54
Model 2 14.22 17.39 4.88 0.56
Model 3 14.93 18.33 4.94 0.33
Model 4 14.30 18.47 4.65 0.40
Model 5 16.30 18.25 6.22 0.14
Model 6 16.69 18.55 8.07 0.07
Model 7 16.79 18.51 8.36 0.13

Notes: The table shows the descriptive statistics of the empirical distribution of the optimal portfolio’s
returns, generated by each one of the seven estimated models. They are the mean, standard deviation
(Std. dev.), kurtosis and skewness.

Table 9. Correlation coefficients of the returns of the optimal portfolios

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Model 1 1 0.97 0.98 0.97 0.93 0.87 0.82
Model 2 1 0.94 0.95 0.90 0.84 0.80
Model 3 1 0.99 0.96 0.90 0.86
Model 4 1 0.96 0.90 0.85
Model 5 1 0.98 0.95
Model 6 1 0.99
Model 7 1

Notes: The table shows the correlation coefficients between the portfolios’ returns, generated by each one of
the models employed.
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of risk aversion (n>2) as the risk measure, are con-
sistently superior to those which employ a symmetric
measure, either homoscedastic or heteroscedastic. To
sum up, the results clearly indicate that the problem of
symmetry is much more important than the one of
homoscedasticity.
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Fig. 2. Worst cases: risk measured as annualized semideviation

This graph shows the risk level measured as the annualized semi deviation (considering a target equal to zero to compute it)
obtained from each one of the seven models for the five worst cases. To compute the worst case time periods the five iterations
are considered in which the ex post evolution of the market really showed the highest losses.
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