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Abstract

This paper analyzes the role of private storage in a market for a
commodity (e.g. natural gas) whose supply is subject to the threat
of an irreversible disruption. We focus on the medium term in which
seasonality of demand and exhaustibility can be neglected. We char-
acterize the price and inventory dynamics (accumulation, drainage
and limit stocks) in a competitive equilibrium with rational expecta-
tions. We show the robustness of our results to alternative scenarios
in which either a disruption has finite duration or the crisis is foreseen.
During the crisis consumers may put pressure on the Government to
intervene, but too severe antispeculative measures would inefficiently
discourage storage. Practical solutions to this dilemma cause welfare
losses that we characterize and quantify.
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1 Introduction

Natural gas consumption has grown fast in the European Union over the last
decades. In 2005, about one-quarter of the EU primary energy consumption
was based on natural gas, and imports from neighboring producers, mainly
Russia, accounted for 35% of the total EU25 demand (DG TREN, 2006).
Dependence on external supplies is going to increase in the next years, as gas
consumption in Europe is expected to grow whereas indigenous sources are
forecasted to slow down. This prospect raises serious concerns about security
of supply.

What can be done? Pipelines and a diversified portfolio of long-term
contracts with producers are the primary insurance against supply inter-
ruptions. Security of supply targets can also be met by increasing system
flexibility (fuel switching, interruptible contracts and liquid spot markets).
However, these mechanisms have a limited capacity to absorb shocks such
as extreme weather, technical breakdown, terrorism, which would endanger
all the European countries at the same time and trigger a crisis (Weisser,
2007). In the short-medium term, precautionary gas storage is indispensable
to ensure uninterrupted services in face of events of “low probability but high
potential market impact” (Stern, 2004).1

The issue is a very complex one, so simplification is essential if any
progress is to be made. We focus on the medium term in which both the
seasonality of demand and the exhaustibility of gas can be practically ne-
glected. All the agents know that there is a probability of an irreversible
crisis. Storers are assumed to be risk-neutral and price-takers; they keep a
stock of gas if expected price gains balance storage and interest cost. When
the crisis occurs, the supply price jumps and the economy enters in a com-
petitive Hotelling regime: storers gradually sell their stock and the price rises
towards a ceiling, at which a stationary equilibrium is reached.

During the abundance phase, the anticipation of the crisis dynamics de-
termines precautionary actions. The expected gains with respect to current
prices provide a rationale for stockpiling. This stage is not trivial as we have
to characterize a dynamic equilibrium consisting of both price and stocks
trajectories. As long as the crisis has not hit the economy, accumulation
starts fast and declines smoothly to approach but never reach limit stocks.
Indeed, as time passes, storers become gradually cautious in their purchases
and relieve pressure on the current price.

1After the liberalization of the gas market, the European Union has addressed security
of supply in Directive 2004/67/EC. It obliges member countries to define the roles and
responsibilities of all market players in ensuring gas availability and set minimum targets
for gas storage, at national or industry level.
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The basic insights of our analysis hold if we relax the irreversibility hy-
pothesis, by analyzing crises of finite duration and foreseen supply disrup-
tions. Thus the idea of a permanent supply shock, besides allowing explicit
resolution of the model, is less restrictive than it would appear to be.2

Security of supply has an inevitable political dimension: consumers are
reluctant to pay high prices in the crisis period and they put pressure on the
Government to intervene. Stockholders may fear that if the consumers’ lobby
prevails, antispeculative measures would dramatically decrease the capital
gains they could expect. This might discourage storage completely. The
Government has to find a practical solution to the trade-off between the
costs of controlling prices and the benefits of strategic reserves. The resulting
second best equilibrium inevitably creates welfare losses that we characterize
and quantify.

Our approach is a useful complement to the models on oil supply security.
We focus on the medium-term horizon analysis of the supply disruption, an
issue that has been largely neglected in the works inspired by the theory of
exhaustible resources.3 It is our opinion that this strand of the literature does
not adequately represent the actual EU gas security of supply problem. Due
to the high import dependence and the fast decline of internal gas production,
it is unlikely that European countries are willing to further slow down the
gas extraction rate in order to ensure future supply. Moreover, gas producers
like Russia, Norway, Algeria do not seem to form a proper gas cartel.

Our work is related to Teisberg (1981), who developed a macroeconomic
dynamic programming model. Our model shares with this paper the stochas-
tic specification of the supply disruption. However, we put forth a rather dif-
ferent perspective, since our model focuses on a microeconomic foundations
(in particular arbitrage) to explain stocks formation and drawdown. This is
also a noticeable difference with respect to Bergström et al. (1985) in which
stocks are built up at the exogenous world price as they analyze the case
of a “small country” that does not influence the international trade of the
commodity exposed to an embargo threat.

Our analysis resembles the Wright and Williams (1982)’s approach in

2Creti and Villeneuve (2007) develop an algorithm for solving a Markovian version of
the present model in which the economy alternates between abundance and crisis. Though
this latter approach may be deemed more realistic, its drawback is that most results are
based on simulations.

3There are two sets of models: works that consider the extraction rate of one country
when foreign import, though needed to complement national production, can suddenly
default (for example Stiglitz, 1977; Sweeney, 1977; Tolley and Wilman, 1977; Hillman
and Van Long, 1983; Hugues Hallet, 1984); those that introduce strategic behavior of
consuming countries confronting oligopolistic or cartelized supply (Nichols and Zeckhauser,
1977; Crawford, Sobel and Takahashi, 1984; Devarajan and Weiner, 1987; Hogan, 1983).
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that we derive the equilibrium dynamics of accumulation and drawdown in
a continuous time context. Furthermore, like Williams and Wright (1991),
we analyze welfare effect of public interventions. However, the assumption
of i.i.d. shocks used by those authors cannot capture the persistence that
supply crises are likely to exhibit. Moreover, in Williams and Wright, the
complexity of the dynamic models makes the policy evaluation impossible to
solve analytically. Our method, which uses only information on supply and
demand fundamentals and the stochastic process, allows full description and
evaluation of the trajectories of the economy.

The paper is organized as follows. Section 2 presents the dynamic model.
Section 3 provides the characterization of the competitive equilibrium. We
find equilibrium prices, limit stocks and drainage time. In Section 4, we
show the robustness of our results to alternative scenarios in which either a
disruption has finite duration or the crisis is foreseen. Section 5 is devoted to
policy issues. To give useful orders of magnitude, we illustrate our method
with parameters roughly calibrated on the UK gas market. We suggest in
Section 6 two important extensions of the basic model: non negligible injec-
tion and release costs, and limited storage capacity. We conclude by pointing
out that the methodology can be adapted to other commodities or regions.
Proofs and technical results are relegated to the Appendix.

2 The model

The economy starts at date 0 in a state of abundance A and passes irreversibly
at a random date in a state of crisis C. Time is continuous. The probability
that the economy switches from A to C in a time interval dt is λdt, where λ is
the publicly known parameter of this survival process. Thus, if the economy
is in state A at some date, the economy will still be this state t periods
later with probability e−λt. This simple modeling has three properties: (1)
irreversibility ; (2) the crisis is certain only when it happens (no warning);
(3) λ is independent of the state of inventories. The first two properties are
relaxed in Section 4 whereas the third is kept throughout the paper.4 In
any case, this structure represents the notion of low probability/high impact
event (Stern, 2004).

We assume that consumers and producers only respond to the current
price and the state σ = A, C. These responses are summarized by the “excess

4Since disruption risk linked with terrorist attack, civil war or pipeline breakdown can
reasonably be seen as independent of accumulated reserves. Teisberg (1981) considers the
deterrence effect of having sufficient reserves. However, the specification is given a priori
and not founded on an explicit game between producer countries and the US.
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supply functions” ∆σ[·] defined over R∗
+, where ∆σ[p] is the difference in

state σ and for price p between current primary production and current final
consumption. For example, ∆C [·] incorporates the supply shock and the
adaptation of demand to the new state (e.g. use of interruptible contracts,
fuel switching).5

Excess supply function ∆σ[·] is increasing and has a unique finite positive
zero in R∗

+, denoted by p∗σ; this is the price at which the spot market would
be balanced without recourse to storage. Therefore, if the current price p is
above p∗σ, then the economy stores (∆σ[p] > 0); if p is below p∗σ, then the
economy draws on gas inventories (∆σ[p] < 0). Naturally, we assume that
the abundance static equilibrium price p∗A is strictly smaller than the crisis
static equilibrium price p∗C . See Figure 1 for an illustrative example.

∆σ[·] is a flow in the sense that if price p is sustained for the interval
dt, then the quantity that is stored is ∆σ[p]dt. Thus, if we denote the total
inventories in the economy by S ≥ 0, conservation of matter imposes the
following conditions{

dS
dt

= ∆σ[p] if S > 0 or ∆σ[p] > 0,
dS
dt

= 0 if S = 0 and ∆σ[p] ≤ 0.
(1)

Storers are assumed to be risk-neutral price-takers, so that the price dy-
namics will be driven by arbitrage.6 Storage exhibits constant returns to
scale. Carrying costs consist of the opportunity cost of capital (r being the
interest rate) and a cost c (per unit of commodity and per unit of time).7

We define the equilibrium as follows.

Definition 1 A competitive equilibrium starts at date 0, in state A, with
some initial stocks S0; it consists of contingent prices and stocks trajectories

{pA[t], pC [t, τ ]}t≥0,τ≥0 and {SA[t], SC [t, τ ]}t≥0,τ≥0 (2)

where t is the current date and τ the (random) date at which the crisis breaks
out.

Three conditions must hold: (1) price-taking behavior by all agents (con-
sumers, producers, storers); (2) rational expectations; (3) conservation of
matter.

5This modeling is rationalizable with agents maximizing intertemporal utility or profit,
provided objectives are time separable and quasi-linear. For a full justification, see Ap-
pendix A.4 where surpluses are calculated.

6We should rather write “quasi arbitrage”, since speculators break even in expectation
only.

7A more general structure with injection and withdrawal costs and limited storage
capacity is discussed in Section 6.
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Figure 1: Supply disruption in the linear case.

The date of the crisis τ has no impact on pA[·] nor SA[·]; moreover pC [·]
and SC [·] are defined only for dates posterior to the disruption. Non-strategic
behavior of the agents, strictly increasing excess supply functions, linearity of
the storage technology, risk-neutrality, all these hypotheses suffice to ensure
that the competitive equilibrium is Pareto optimal.

3 Price and stock dynamics

Storers keep a stock of gas if expected price gains balance storage and interest
cost. Whenever storages are non-empty, for a time increment dt, the no-
arbitrage equations read

pC [t, τ ] + cdt = (1− rdt)pC [t + dt, τ ], t ≥ τ, (3)

pA[t] + cdt = (1− rdt) ((1− λdt) pA[t + dt] + (λdt)pC [t + dt, t]). (4)

In the above equations, the LHS is the unit price plus stockholding cost in
states of crisis C and abundance A respectively. The RHS is the expected
present unit value of the stocks after dt has elapsed. Equation (4) incorpo-
rates the risk of a regime switch. After elimination of second order terms,
we get

∂pC [t, τ ]

∂t
= rpC [t, τ ] + c, t ≥ τ, (5)

dpA[t]

dt
= (r + λ)pA[t]− λpC [t, t] + c. (6)
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We solve the model backwards. Once the crisis has broken out, the econ-
omy follows the Hotelling (competitive) dynamics; the gas price increases
and the stocks shrink. Equation (5) is integrated for a fixed date τ and gives
for all t ≥ τ :

pC [t, τ ] = min
{

(pC [τ, τ ] +
c

r
) exp[r(t− τ)]− c

r
, p∗C

}
. (7)

The price stops at p∗C when the precautionary reserves are exhausted. Indeed,
if the price were to overpass p∗C , the economy would start accumulating gas
without bound or time limit, which cannot be an equilibrium.

The economy drains the stocks that were in place at date τ, thus conser-
vation of matter implies:

SC [t, τ ] = −
∫ +∞

t

∆C [pC [s, τ ]]ds, (8)

SA[t] = S0 +

∫ t

0

∆A[pA[s]]ds, (9)

SA[t] = SC [t, t] for all t. (10)

None of the model’s parameters—interest rate, costs, crisis probability—
depend on time. This simplifies the representation of the equilibrium, as the
following proposition shows.

Proposition 1 The equilibrium prices are only functions of current stocks.
Functions pA[S] and pC [S] are continuous and decreasing for all S ≥ 0; pC [S]
has a simple implicit expression

S = −
∫ p∗C

pC [S]

∆C [p]

rp + c
dp. (11)

By using the results of Proposition 1 and equation (7), we obtain drainage
duration for stocks S:

D[S] =
1

r
ln

[
rp∗C + c

rpC [S] + c

]
. (12)

This confirms that larger stocks always need more time to be drained. Drainage
duration is necessarily finite: once the price has reached p∗C , it would be un-
economical to keep costly stocks whose value will never increase.

The following proposition contains the fundamental properties of the equi-
librium trajectories.

Proposition 2
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1. The maximum inventories during abundance S∗ is

S∗ = −
∫ p∗C

pC

∆C [p]

rp + c
dp, (13)

where

pC ≡
(

r + λ

λ

)
p∗A +

c

λ
. (14)

S∗ is positive if and only if p∗C > pC. Moreover, S∗ verifies pC [S∗] = pC

and pA[S∗] = p∗A.

2. The protection offered to the economy by the stocks has a maximum
duration

D∗ = D[S∗] =
1

r
ln

[
λ

r + λ

rp∗C + c

rp∗A + c

]
. (15)

3. When S∗ > 0, the economy approaches S∗ without reaching it.

The price threshold and the limit stocks are remarkably useful to describe
the behavior of the economy. During the state of abundance, storers are
willing to pay a premium proportional to the expected capital gains. As
stocks approach S∗, these gains are progressively eroded and storers relax
their pressure on prices. Accumulation slows down so much that the limit
stock is never attained.

The time length D∗ is positive if and only if S∗ is positive. Maximum
duration of drainage in equation (15) only depends on the boundary prices p∗C
and p∗A, the interest rate and the unit cost. As a purely illustrative example,
let’s take c negligible with respect to the opportunity cost of the stock (price
times interest rate). Limit stock and drainage time are non null if:

p∗C
p∗A

>
r + λ

λ
. (16)

For instance, with an interest rate of 5% and a “one-in-twenty-years” crisis
(λ = 5% approximately), equation (16) implies that some precautionary
storage takes place if the ratio p∗C/p∗A is larger than 2.

The impacts of parameters c, r, λ are unambiguous. With a higher unit
storage cost or interest rate, the integrand in (13) decreases (the denominator
increases) and the lower bound of integration pC increases, thus S∗ decreases.
With a higher crisis probability, pC is smaller, which gives a larger S∗. The
effects on D∗ are similar.
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4 Weakening the irreversibility hypothesis

In this section, we somewhat relax the irreversibility hypothesis by extending
the model in two directions: first, we consider finite duration of the crisis,
and second, we study the impact of “alerts” in the management of stocks.

Crisis of finite duration. The notion of excess supply function ∆C [·] in-
corporates the short-term reactivity of the economy to the shock via demand
curtailment or fuel switching. Liberalized gas market also offer interest-
ing possibilities to overcome disruption problems: the supply crisis can be
solved by negotiating new contracts with gas producers and developing ad
hoc transport infrastructure. Since these solutions entail long and complex
procedures, a crisis may be of long but finite duration.

Assume that agents know that the crisis will last a period of length L, after
which the economy returns to abundance. When L > D∗, the accumulation
and drainage dynamics behave as if the crisis were irreversible. If L < D∗,
the limit stock, denoted by SL, is smaller than S∗ and it increases with the
crisis duration L; in fact when the crisis duration approaches the threshold
D∗ from below, the limit stock SL goes to S∗. If the shock occurs early,
the accumulated stocks might be insufficient to last the whole duration of
the crisis. If, in contrast, the economy has approached SL sufficiently, the
price will pass from pC at the beginning of the crisis, as we saw earlier, to
a maximum value (pC + c

r
) exp[rL] − c

r
< p∗C at the end of the crisis which

coincides with complete stockout. Quite intuitively, storage is more effective
at keeping moderate prices for short crises.

Alert and crisis. Assume that the crisis is announced (the “alert”) before
it happens. In the abundance state, an alert occurs with probability λdt in
a time interval dt; after a delay of T time units, T being perfectly known,
the disruption itself takes place. We could think of T as being a few weeks
or months (up to now, everything was as if we had assumed T = 0).

There are two finite thresholds T and T with T < T separating the
three different regimes that we are going to describe (see Appendix A.3 for
calculations).

Assume that the date of the crisis τ has always been known. As stockpil-
ing too early is not profitable, there is a unique T such that at date τ − T ,
the economy starts storing and does so until date τ ; from then on, the stock
is drained.

Clearly, if T > T , accumulation starts after T −T time units spent in the
alert state and continues until the crisis actually occurs. Thus, the price stays
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at p∗A until T time units before the crisis, and then grows continuously up to
p∗C . In the transition, stocks are piled up during the alert and drained once
the crisis has hit the economy. A consequence of the increasing price is that
accumulation accelerates as the date of disruption approaches, a remarkable
difference with the basic model.

If T is slightly below T , the price of gas jumps as soon as the crisis is
announced and storers accumulate until the crisis occurs. Quite intuitively,
the jump increases as T shortens.

If T is small enough, the price just after the alert could jump to pC or
more if inventories were quasi empty. The threshold is denoted by T . Thus,
if T < T (with 0 < T < T ), some accumulation takes place before the alert.
In that case, accumulation can be broken down into two phases. Before
announcement of the disruption, the stock converges towards a limit; during
this phase, the price decreases smoothly towards p∗A. The alert starts a new
phase in which the price jumps and increases until stocks are exhausted.

5 Dynamic welfare costs of antispeculative

policy

In theory, governments should not interfere with security of supply, as com-
petitive markets realize efficient solutions (Bohi et al., 1996). However, the
Government might pursue short term political goals, supported by the con-
sumers’ pressure groups demanding stable supply of energy at an affordable
price, no matter what the circumstances are (Mulder and Zwart, 2006). In
view of this, storers would anticipate strict price controls.8 Given the dis-
couraging effects of this threat, the Government may wish to mitigate in
advance its own foreseeable antispeculative intervention.9 Our objective is
to quantify the welfare loss of such second best policies.

The result of this political process can be summarized in terms of our
model as follows. The policy consists of an “antispeculative” price pG

C which

8As Wright and Williams (1982) put it: “the oil industry has abundant reason to believe
that there is some oil price at which Government will intervene to control the realizations of
oil drawn down from private storage in times of shortage, when profit-maximizing private
storers and importers may well be branded as “speculators” or “price gougers”. In fact, it
may well be impossible for any administration credibly to guarantee against such action
by itself or its successors.”

9An alternative view is the following, described, for trade policy, in the lobby model of
Grossman and Helpman (1994). Storers, requiring protection of their industry interest, can
make implicit offers to the Government. The Government maximizes the sum of voters’
welfare and total contributions from storers. A full-fledged version of this approach is
beyond our scope.
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is smaller than p∗C and independent of S for clarity. It is the price at which
gas is sold and purchased as long as there are stocks to be drained. Since pG

C

induces a fixed drainage rate ∆C [pG
C ], the price pG

C is guaranteed for a fixed
period only. From then on, stocks stay empty and the price is p∗C . Since
storing during crisis yields negative returns (the price cap prevents capital
gains), storers sell all they have as soon as the crisis starts. To accommodate
this, the Government can establish a public stabilization fund, which may
either directly manage storage, or remunerate owners of storage facilities for
their services, or pay stockholders their opportunity cost. All these schemes
are equivalent as they engender the same surplus in total, though they differ
as for how it is distributed across actors.

There are two cases, leading to very different equilibrium outcomes. If the
crisis controlled price pG

C is expected to be below pC , the smallest price that
makes stockholding profitable, storage is totally discouraged in the abun-
dance phase. If, on the contrary, pG

C is above pC , storers see it as a price floor
and they will not stop accumulation on their own in the abundance phase.
Any inventory level can be attained if the crisis occurrence lags. To avoid
this distortion, the Government has to put an upper bound on gas invento-
ries, denoted by SG. Here two variations are possible: either the abundance
price is endogenous or it is also controlled by the Government.

We take the second option. Indeed, if pG
A were determined by the market,

arbitrage would make it equal to λ
r+λ

pG
C − c

r+λ
all along the accumulation

phase. The stabilization fund established by the Government can replicate
this price, hence our approach may deemed rather general. Moreover, the
theory of the second best says that pG

C being distorted by political pressure,
pG

A may be voluntarily distorted by the Government: along with SG, pG
A serve

to mitigate post crisis inefficiencies generated by the price cap.
To evaluate the antispeculative policy, we calculate the expected present

surplus based on generated price and stocks trajectories. This yields a func-
tion of S, the stocks at the date the value is computed. Welfare being
determined up to some arbitrary constant, we normalize our comparisons by
setting at zero the value of the counterfactual no-storage policy (as if storage
were impossible or too costly).

We denote the value of the optimal policy by V ∗
A [S] and the value of

the antispeculative policy by V G
A [S]. The following index measures welfare

performance:

v =
V G

A [S]

V ∗
A [S]

. (17)

The maximum possible index is 1. A negative v would indicate a clear failure
as the evaluated policy would do worse that no storage at all: the policy spoils
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resources by, e.g., building exaggerated stocks too fast and by using them too
timidly. Such examples are (unfortunately for the society) quite easy to find
as we shall see.

The detailed calculations of the total expected present surplus and of the
index in equation (17) are relegated to Appendix A.4.

Linear model. The application assumes linear excess supply functions:

∆C [pC ] = bpC − a ; ∆A[pA] = βpA − α. (18)

The reference prices are p∗C = a/b > p∗A = α/β. Figure 1 illustrates the
supply disruption in the linear case.

We compare now the two scenarios:

1. Competitive/surplus maximizing scenario;

2. Antispeculative policy summarized by
(
pG

A, pG
C , SG

)
.

The surplus maximizing limit stock S∗ and drainage time D∗ have explicit
formulas that are calculated by using equations (13) and (15) respectively.10

Moreover, pC [S] can also be calculated, whereas pA[S] and V ∗
A [S] are solved

numerically.
To give realistic orders of magnitude, we take parameters as roughly cal-

ibrated on the 2006 UK gas market. The UK having recently moved from a
position of relative self-sufficiency to one of import-dependence, the need to
implement precautionary gas stocks has been debated and much data have
been released (see Appendix A.5 for details).

In Figure 2(a), we show prices as a function of the stocks. Figure 2(b)
depicts accumulation and drainage for alternative scenarios.11 Accumu-
lation starts at date t = 0 with S = 0 and the shock occurs at dates
t = 10, 20, · · · , 80. During the abundance phase, stocks are gradually piled
up to approach S∗ = 7.7 and the price decreases toward p∗A = .6. When
the crisis hits the economy, the price jumps to pC [S] and increases toward
p∗C = 12. Though it can take as long as D∗ = 5.4, drainage appears as much
faster than accumulation.

10The limit stock is

S∗ =
bc + ar

r2
ln

[
λ

r + λ

rp∗C + c

rp∗A + c

]
+

b

r

((
r + λ

λ
p∗A + c

)
− p∗C

)
. (19)

The expression for D∗ involves Lambert’s W function, the inverse of f(w) = wew.
11Time unit is the year, prices are in £/therm and quantities in billion therm.
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Figure 2: The equilibrium prices and trajectories.

As for the second best policy, we numerically calculated the surplus
maximizing antispeculative storage.12 We found pG

A = .84, pG
C = 10.5 and

SG = 4.9. Accumulation takes 21.4 years, if no crisis breaks out before;
drainage itself takes a maximum of 3.4 years.

Welfare comparison. Figure 3(a) displays the relative value v of the an-
tispeculative policy. Over the interval [0, 4.9) where both surplus are defined,
the index approaches 1 as inventories S increase:

• At S = 0, the suboptimal policy achieves 86% of the potential surplus;

• Gains increase very fast at the beginning of accumulation: at S = 1
(that is 20% of SG), 64% of the initial efficiency loss are recouped;

• At SG, 95% of the maximum surplus are captured by the suboptimal
policy.

The latter effect is easily explained: as storage increases, the inefficiency
of the accumulation strategy is sunk and thus disappears from the welfare
comparison.

The expected present surplus is quite sensitive to the chosen policy. An
simple example of a policy that dramatically underperforms the no storage
option is proposed. Assume that the Government keeps SG as a target but
imposes a twice larger accumulation rate and a twice slower drainage rate
than those obtained under the surplus maximizing antispeculative policy.

12V G
A [0] can be expressed as an explicit function of constrained prices and target stock

(pG
A, pG

C , SG).
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Figure 3: Relative value of suboptimal policies.

As Figure 3(b) shows, at zero stocks and up to S = 1.4 approximately, the
policy imposes huge welfare costs (the index starts at −.72). This means
that the economy would be better off if storage were impossible. Due to fast
accumulation, the price is very high during the accumulation phase, which
penalizes consumers; in addition, the economy sustains the cost of excessive
reserves. This effect becomes attenuated as storage expenditures get sunk,
but to a much lesser extent than with the constrained optimum.

6 Extensions

Injection and release costs. The analysis can be easily extended to the
case where the costs of injecting and releasing gas are non negligible. Denote
unit injection cost by i and unit release cost by s. With perfect competition,
gas outside and inside the reservoir state can be traded at prices that we
denote respectively by pσ[S] and pI

σ[S] (with σ = A, C and S ≥ 0). The
market equilibrium between outside and inside gases implies that, whenever
S > 0,

pA[S] + i = pI
A[S] and pC [S] = pI

C [S] + s. (20)

The structure of the system of equations is preserved, with pI
σ replacing pσ.

Arbitrage conditions (27) and (28) become

∆C [pI
C + s] · dpI

C

dS
= rpI

C + c, (21)

∆A[pI
A − i] · dpI

A

dS
= (r + λ)pI

A − λpI
C + c. (22)
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Remark that the excess supply functions are shifted, thus boundary condi-
tions are

pI
C [0] = p∗C − s, (23)

pI
A[S∗] = p∗A + i. (24)

The range of pI
σ is narrower than that of pσ: the minimum is higher, the

maximum is lower. As a result, the condition ensuring positivity of the limit
stock is more restrictive, i.e.

p∗C − s >

(
r + λ

λ

)
(p∗A + i) +

c

λ
. (25)

Expressions of optimal limit stock and drainage time are now based on shifted
excess supply functions and shifted boundary prices.

Limited storage capacity. Gas is mostly stored in depleted fields and
aquifers; the development of such facilities is naturally limited. If the capacity
devoted to precautionary storage K exceeds S∗ previously calculated, then
the unconstrained solution remains valid; otherwise, the maximum stock is
constrained to equal K, which in turn affects price trajectories and the value
of storage facilities.

During the crisis, pC [S] is unchanged compared to the unconstrained case.
Reserves are gradually drained, meaning that the storage price, under com-
petitive assumption, remains fixed at the marginal cost c. In the abundance
state, the price function pK

A [S] depends on K: the accumulation process must
stop when capacity is saturated, therefore pK

A [K] = p∗A. The storage price is
also c as long as some capacity remains vacant; when K is attained, it jumps
to πK

A > c, with
πK

A = λ(pC [K]− p∗A)− rp∗A. (26)

The net rent πK
A −c, captured by the owners of the storage capacity, balances

the carrying costs of a fixed stock with its expected benefits. Storage capacity
units gain value as K diminishes. This combines two effects: the smaller
K becomes, the larger πA, and also the shorter the time before saturation
will be. The first effect (the monotonicity of πA) derives directly from the
monotonicity of pC [K]. The second effect is shown in Appendix A.6.

7 Conclusion

We developed a model of optimal stockpiling and reserve duration to face
up to a potential irreversible supply shock. Our key ingredient is that price
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trajectories, accumulation and drainage behavior are interdependent in equi-
librium. This differentiates the approach from inventory management models
in which prices are given, or precautionary reserve studies in which the wel-
fare costs of building the stocks are ignored.

We found results that might prove useful not only in the context of the
gas industry, but also for all those primary commodities whose market is ex-
posed to a supply disruption threat. A simple condition determines whether
precautionary stocks should be accumulated. General cost structures, in par-
ticular limited storage capacity, or a richer timing of the crisis occurrence are
shown to have intuitive and calculable effects on the main properties of the
equilibrium. The impact of expropriation threats that discourage storage
can be dramatic. Our insights into politically sustainable solutions could be
easily transposed to other examples or market structures beyond the specific
application we have analyzed.

A Appendix

A.1 Proof of Proposition 1

The RHS of (8) is strictly increasing in the value of pC [τ, τ ], thus it gives a
unique strictly decreasing relationship between pC and S ≥ 0, denoted by
pC [S]. We can then define pA[S] by backwards induction.

We can now replace the price dynamics in (5) and (6) by

∆C [pC [S]] · dpC [S]

dS
= rpC [S] + c, (27)

∆A[pA[S]] · dpA[S]

dS
= (r + λ)pA[S]− λpC [S] + c, (28)

for S > 0.
Equation (27) can be integrated directly to get equation (11). The RHS

of (28) cannot be positive (otherwise storers would liquidate inventories at

once) implying that dpA[S]
dS

< 0.

A.2 Proof of Proposition 2

1. Remark that pC is the minimum value pC [·] can take: storers are just
indifferent between keeping or selling their stocks if the abundance price is
as low as p∗A, since the carrying costs (rp∗A + c per unit) equals the expected
earning (λ(pC [S∗]− p∗A) per unit). The corresponding stocks are denoted by
S∗; S∗ being the maximum stocks, it verifies pC [S∗] = pC and pA[S∗] = p∗A.
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This reasoning implies in particular that if pC ≥ p∗C , then S∗ = 0: holding
inventories cannot be profitable and the crisis will simply cause a price jump
from p∗A to p∗C .

2. By plugging pC into (11), we obtain the expression in the text.
3. The price pA must converge continuously towards p∗A before the occur-

rence of the gas disruption. As pA covers half its difference with the limit p∗A,
the variation rate of the stock per unit of time ∆A is approximately halved
(the derivative of excess demand at p∗A is not zero), meaning that the conver-
gence speed dS/dt is approximately halved. This implies that, whatever the
proximity of the limit, the duration to cover half the distance to the limit is
approximately constant, thus the limit is not attained in finite time.

A.3 Alert duration thresholds

Derivation of T . Assume that T is large. Once the economy is in alert, un-
certainty vanishes and the price passes continuously from p∗A to p∗C following
the differential equation

dp

dt
= rp + c. (29)

Let p ∈ (p∗A, p∗C) be the price reached when the crisis occurs. Using the same
change of variable as in the text, we know that conservation of matter implies∫ p

p∗A

∆A[p]

rp + c
dp +

∫ p∗C

p

∆C [p]

rp + c
dp = 0. (30)

p is unique since both terms increase as p increases, whereas the LHS is
negative for p = p∗A and positive for p = p∗C .

T is the time required for the price to pass from p∗A to p, i.e.

T =
1

r
ln

[
rp + c

rp∗A + c

]
. (31)

Derivation of T . For all T between T and T , the immediate post-alert
price pT

A must be such that, prior to alert, storage is not profitable, i.e.

pT
A < pC . (32)

Let p̃ be the price of gas at the instant the crisis occurs; it is uniquely defined
by the conservation of matter equation∫

ep

pT
A

∆A[p]

rp + c
dp +

∫ p∗C

ep

∆C [p]

rp + c
dp = 0. (33)
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Given the price dynamics, the time T̃ required for the price to pass from p̃
to p∗C is

T̃ =
1

r
ln

[
rp∗C + c

rp̃ + c

]
. (34)

Thus T̃ decreases when p̃ increases, which implies in turn that the quantity
to be drained is decreasing w.r.t. p̃ (drainage time is an increasing function
of the inventories).

To accumulate these smaller stocks, the price finishes higher in the abun-
dance phase (last accumulation price is p̃, meaning that this phase of duration
T has to be shorter when p̃ increases). Given that T is the time to pass from
pT

A to p̃, pT
A has to increase.

We conclude that T decreases as pT
A increases in the interval [p∗A, pC ]. In

particular that pT
A = p∗A and pT

A = pC , thus T < T .

A.4 Expected present surplus

Consider a representative consumer whose intertemporal utility function val-
orizes gas consumption and a separable numéraire. Leaving aside uncertainty
at this stage, the consumer’s objective can be written as

+∞∫
0

(uσ[qt]− ptqt) e−rtdt, σ = A, C, (35)

where uσ is a state dependent, increasing and concave utility, qt is date t gas
consumption and ptqt is date t expenditure. Consider also a representative
producer whose technology can by aggregated at t by a state dependent
convex cost function Cσ[qt].

For a given price p, final demand is u′−1
σ [p] and primary production is

C ′−1
σ [p], thus excess supply functions as we defined them can be expressed

∆σ[p] = C ′−1
σ [p]− u′−1

σ [p]. (36)

The instantaneous surplus depends only on the state σ, S and the current
price p

W 0
σ + Wσ[p]− cS (37)

where W 0
σ denotes the reference surplus, i.e. calculated at price p∗σ, and where

cS is the cost of keeping the inventories. The key point is that Wσ[p] can be
derived from the excess supply function ∆σ[p]:

Wσ[p] =

∫ p

p∗σ

∆σ[x]dx− p∆σ[p], (38)
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Figure 4: Instantaneous surpluses in abundance and crisis states.

as we can directly see in Figure 4.
The final step consists of calculating the expected present surplus, by dis-

counting all future instantaneous surpluses and then taking the expectation.
Given the initial state A, stock S0 at date 0 and the stockholding dynamics,
the expected intertemporal surplus of the optimal policy is denoted:

V 0
A + V ∗

A [S0], (39)

where V 0
A is defined as

V 0
A =

W 0
A

r + λ
+

λW 0
C

r(r + λ)
, (40)

and

V ∗
A [S0] = E


+∞∫
0

(
Wσt [p

∗
σt

[St]]− cSt

)
e−rtdt

 , (41)

σt being the (random) state at date t.
The antispeculative policy (summarized by pG

σ and constrained accumu-
lation and drainage functions ∆σ[pG

σ ]) will generate the instantaneous surplus
W ∗

σ + WG
σ [pG

σ ]− cS. Total expected present surplus is:

V 0
A + V G

A [S0], (42)

where V 0
A is defined by (40) and

V G
A [S0] = E


+∞∫
0

(
Wσt [p

G
σt

]− cSt

)
e−rtdt

 . (43)
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The Bernoulli process driving the evolution of σt being exogenous and
time independent, the terms comprising W 0

A and W 0
C are identical whatever

the policy evaluated and therefore V 0
A can be normalized at zero. This is

why we state that the no storage policy (a useful reference) can be given null
value. The relative value of a given policy with respect to the optimum is
therefore correctly captured by the index:

v =
V G

A [S]

V ∗
A [S]

. (44)

A.5 Calibration on UK data

To calibrate our model, we take the following parameters values:

Table 1: Parameters
Excess supply in C b = .95 a = 11.48 p∗C = 12
Excess supply in A β = .95 α = .57 p∗A = .6
Costs r = .035 c = .15
Crisis arrival λ = .02

Time unit is the year, prices are in £/therm (1 therm = 2.76 m3), quanti-
ties are expressed in billion therm. As for the probability of crisis (λ = .02),
we consider the value that DTI (2006, p. 90) estimates as a “realistic chance
of a significant supply interruption”, based on ILEX (2006), JESS (2006), Ox-
era (2006) reports. The interest rate r and the maximal crisis price (a/b = 12)
is taken from ILEX (2006, p. 106).13 The average 2006 price (α/β = .6) and
annual consumption (about 36 billion therm) is documented by DTI (2007).
The marginal cost of storage c is evaluated from available information, re-
leased by Centrica Storage Ltd, on the largest UK storage facility. Missing
parameters are calculated with identifying assumptions: in case of major
crisis, consumption could be reduced by 30% (price 12, inventories release
notwithstanding). Finally we adopt a last (arbitrary) condition: b = β.

A.6 Monotonicity of the scarcity rent

The function pK
A follows ODE (28), with boundary condition pK

A [K] = p∗A. As
the function pC is independent of K, the Cauchy-Lipschitz theorem implies
that the price functions for two different capacities below S∗ never cross.

13This value, corresponding to an emergency cash out price, is assumed to reflect the
damages to the economy of a sudden supply interruption.
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Thus for all S ∈ [0, K] and K < K ′, pK
A [S] < pK′

A [S] with both functions
decreasing. We now show that the time TK needed for the price to pass from
pK

A [0] to p∗A is longer the larger is the capacity K. Using equation (28), we
have

TK = −
∫ pK

A [0]

p∗A

dpA

(r + λ)pA − λpC [p
K(−1)
A [pA]] + c

. (45)

Given the monotonicity of pK
A with respect to K, the above sum with a larger

K integrates a function of higher absolute value over a longer interval. This
gives us the announced result.
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