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1 Introduction

Credit risk can be considered the oldest and most significant form of risk faced by
a commercial bank in its business of taking deposits and giving loans. Large scale
borrower default carries the potential to force a bank into bankruptcy. Managing
credit risk therefore has always been one of the prime challenges in running a bank.
For decades this was mainly achieved through selecting and monitoring borrowers
and through creating a well–diversified loan portfolio. More recently, new financial
instruments and risk sharing markets have evolved (see Neal 1996, Bank for Interna-
tional Settlements 2001), and banks and specialized consulting firms alike put a lot
of effort into developing sophisticated models (carrying fancy names such as Credit
Metrics, Credit Monitor, CreditRisk+, or CreditSmartRisk) for measuring credit
risk (for a survey on credit risk measurement see Altman and Saunders 1997). In
particular, markets for credit derivatives virtually exploded during the 1990s. Data
collected by the Bank for International Settlements which are probably broadest
in coverage and have been corrected for double–counting indicate an increase from
$ 118 billion in mid-1998 to $ 693 billion in mid-2001 (see Jeanneau 2002, p. 38).
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The British Bankers’ Association in its Credit Derivatives Report 2002 predicted an
increase of about 400% from end of 2001 to end of 2004. In this London–dominated
market so–called credit default swaps (CDS) are the most popular financial con-
tracts traded, capturing nearly half of the market (British Bankers’ Association
2002). Such a CDS is a unique contract based on a specific reference credit or a
pool of credits between a purchaser and a seller of protection against losses from a
credit event (default or other event). The buyer of protection removes credit expo-
sure while retaining ownership of the asset and paying a premium or fee to the seller
who in case of the credit event usually makes a cash payment to the seller. Fol-
lowing the International Swaps and Derivatives Association’s (ISDA) conventions,
credit events are typically defined as one or more of the following: bankruptcy, fail-
ure to pay, restructuring, repudiation, moratorium, obligation default, or obligation
acceleration.

Against the background of this recent surge in the use of credit derivatives as
financial instruments to transfer credit risk from lenders to third parties, we ask
how the availability of such derivatives affects a bank’s decisions concerning interest
rates or loan and deposit volumes and what can be said about the optimal level of
insurance against this type of risk. Before addressing these questions, we observe
that it is by no means self–evident that credit risk can easily be transferred. The in-
formational advantage of the risk seller from its existing relationship with the debtor
creates a barrier to this kind of transaction. Furthermore, in the parlance of capital
market theory “credit risk has both an idiosyncratic and a systematic component”
(Loubergé and Schlesinger 2002, p. 1), i.e., there is risk of creditor default originat-
ing from the creditor herself and from factors unrelated to the creditor. Systematic
risk of a loan may arise, for example, from the business cycle or from general polit-
ical instability. According to Wilson (1998) only a small number of macroeconomic
factors are sufficient to explain this type of risk which determines most part of all
risk related to a loan contract. From the Capital Asset Pricing Model (CAPM) and
the Arbitrage Pricing Theory (APT) we have an understanding that systematic risk
can not be diversified away, but is tradeable, whereas unsystematic risk ought to be
eliminated through diversification. Regional, sectoral or institutional constraints,
however, may get in the way of this diversification of a bank’s loan portfolio which
will be far from perfect for, say, a bank focused on car or real estate financing, or a
German savings or cooperative bank which by its statutes is confined to a local mar-
ket. Furthermore, the information asymmetry mentioned above makes substituting
risk diversification by selling risk difficult. Seen from this angle, a credit default
swap looks like a rather crude instrument to reduce a bank’s exposure to credit risk.
Macro derivatives (sometimes also called economic derivatives) as an even more re-
cent innovation in financial markets carry the potential to improve matters. They
enable a bank to sell the systematic, tradeable part of credit risk while retaining the
specific part which lies, due to informational aspects, in the core competence of the
bank (for macro derivatives see Marshall et al. 1992, Topping 2001, Schweimayer
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2003). Deutsche Bank and Goldman Sachs, for example, in October 2002 started to
auction off derivatives on an U.S. retail sales index, a manufacturing index, and on
the change in U.S. non-farm payrolls (The Wall Street Journal 2002).

In this paper we use the industrial economics approach to the microeconomics
of banking to analyze the management of credit risk for the case of a large bank
active in the deposit and loan markets. While this approach does not explicitly
account for informational problems, our analysis of credit and macro derivatives
which do not exactly offset the bank’s credit risk nevertheless captures in a stylized
way features of optimal bank behavior under asymmetric information. For example,
the combination of uncertainty and asymmetric information suggests that the bank
retain some of the risk in order to give an incentive for proper monitoring. This
retention of risk will be included in all but one of our analyses. We follow the lead
of Wong (1997) and supplement the industrial economics approach by risk aversion
and uncertainty, more specifically credit risk in our case. As for the assumption of
risk aversion and the need of active corporate risk management we refer our readers
to the seminal work of Froot et al. (1993) and Froot and Stein (1998). Pausch and
Welzel (2002) provide an application to the banking industry, showing that even a
per se risk neutral bank exhibits risk averse behavior, if there is capital adequacy
regulation. Our two main objectives are the following: First, we want to help close
the gap between theoretical analysis and practice of credit derivatives as hedging
instruments. We explicitly model a credit default swap as the main instrument
traded and show how the design of the derivative affects its hedge properties and
optimal bank decisions. Second, we split up credit risk into a systematic and a
specific part and introduce the notion of a macro derivative used to hedge against
systematic risk. Both the credit default swap and the macro derivative extend the
scope of banking from a mere buy–and–hold strategy to active management of credit
risk.

The plan of the paper is as follows: In section 2 we present the basic model
which we use for an analysis of a credit default swap in section 3. In the section 4
we introduce a macro derivative as an alternative instrument to hedge against credit
risk. Section 5 concludes.

2 The Model

In the framework of the industrial economics approach to the microeconomics of
banking (see e.g. Freixas and Rochet 1997, chpt. 3) we consider a large bank in a
one–period framework taking deposits D and giving loans L. By “large” we mean
a bank with influence on interest rates both in the deposit and the loan market.
Since we are not interested in the strategic interactions between banks, we focus
on a monopolistic bank. As further motivation recall the estimations by Neven
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and Röller (1999) of a structural model of the type used below which indicate for
seven European banking industries that the hypothesis of non–cooperative Nash
competition can be rejected and actual competition is closer to the collusive, i.e.,
monopolistic, type. Let the interest rate on loans rL(L) be negatively related to
the loan volume L, i.e., drL(L)/dL = r′L < 0. In analogy to this assumption
of normal demand behavior we also assume normal supply conditions implying a
positive relationship between the deposit rate rD(D) and the volume of deposits D,
i.e., drD(D)/dD = r′D > 0. The bank also faces operational costs C(D,L) with
strictly positive marginal costs C ′

D and C ′
L.

To our knowledge Wong (1997) was the first author to introduce uncertainty
and risk aversion to this framework. We deviate from his analysis of credit risk
by using an endogenously determined non–stochastic deposit rate and adding hedge
instruments — a credit derivative or a macro derivative — to the model. A potential
influence from credit risk through a rating of the bank on the cost of refinancing is
neglected, as is a potential direct link between the bank’s decision on a loan and the
volume of deposits held by the loan applicant (for this kind of link see Chiappori
et al. 1995).

Loans are subject to credit risk which is modelled by a random variable θ̃ ∈
[0, 1]. We want to emphasize the two components of credit risk: the default event
δ̃ ∈ {0, 1} itself and the severity of default, the so–called loss given default (LGD)
λ̃ = (θ̃ | δ̃ = 1) ∈ (0, 1]. More precisely,

θ̃ = λ̃ · δ̃ ∈ [0, 1]. (1)

Given a credit default, the bank loses a share λ̃ of the payment (1 + rL)L from
its debtors due at the end of the period. Notice that we use as an implicit, but
important, simplifying assumption that credit risk θ̃ is not affected by the level of
interest rates rL and rD which result from the bank’s decisions.

To keep the notation as simple as possible, we ignore a voluntary or mandatory
holding of reserves on deposits, as we ignore regulatory capital requirements for
loans.1 The bank has a given equity capital K. The positive or negative balance M

of capital available, deposits taken, and loans given is invested in or financed from
an interbank market at a given deterministic interest rate r.2 We abstract from a
market risk in the bank’s refinancing operations. This can be summarized in the
balance sheet constraint

M + L = K + D. (2)

1For an analysis of capital requirements issues in the framework of the industrial economics
approach with credit risk see Pausch and Welzel (2002).

2Think for example of banks being local monopolists meeting only in a competitive interbank
market. Other interpretations for this given opportunity rate r found in the literature refer to a
central bank giving and taking money at this rate or to international capital markets offering this
rate.
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Denoting the uncertain end–of–period profit by Π̃, the bank’s profit function is given
by

Π̃ = (1− θ̃)rL(L)L− θ̃L + rM − rD(D)D − C(D, L). (3)

Substituting for M from (2) and rearranging terms yields

Π̃ =
(
(1− θ̃)rL(L)− r

)
L− θ̃L + rK + (r − rD(D)) D − C(D, L), (4)

where the first term includes the interest margin from the loan business corrected
for credit default, the second is the loss of principal due to default, the third term
is interest income from investing equity capital at the opportunity interest rate, the
fourth includes the interest margin from the deposit business, and the fifth accounts
for operating costs. The risk averse bank management maximizes a von Neumann-
Morgenstern utility function U(Π) with U ′ > 0 and U ′′ < 0.

3 Credit Derivatives

As noted in the introduction, credit derivatives have become increasingly popular to
hedge against credit risk. As credit default swaps are by far the most widely used and
liquid instrument, we will focus in this section on a stylized representation of such
a CDS. We proceed in three steps: Initially a credit default swap is analyzed which
pays the (ex ante) random amount λ̃ per (marginal) contract in case of default, i.e.,
if δ̃ = 1 holds at the end of the period. This is analyzed under the assumption of no
basis risk which amounts to assuming a perfect negative correlation between credit
risk and the credit default swap (3.1). In a second step we relax this assumption and
examine the case of a CDS which carries so–called basis risk because its underlying
is not perfectly correlated with the bank’s credit risk (3.2). Finally, we examine
the case of a CDS in which the random payment is replaced by a conditional but
contractually pre–determined payment λH, more specifically, λ̃ ≡ λ (3.3). It will
turn out that the ability of a bank to hedge its credit risk crucially depends on the
specifics of the CDS at hand.

3.1 Hedging without basis risk

Under a typical credit default swap the protection buyer pays a premium to the
protection seller and receives the difference between face value and recovery value,
if the credit event defined by the contract occurs (Prato 2002). In our first step,
we model this in the following way: The bank as seller of credit risk and buyer of
protection pays a given premium θ̄ for one unit of credit risk. By selling a volume
H the bank makes a deterministic payment θ̄H in exchange for a stochastic claim
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θ̃H at the end of the period.3 This stochastic claim offsets the loss due to credit
default to an extent which is controlled by the decision variable H. Notice that this
interpretation implicitly presumes rational bank behavior to lead to H > 0 which
will be shown to be true later. The hedge operation described contributes (θ̃− θ̄)H
to the bank’s profit. We therefore modify our profit definition (4) to arrive at

Π̃ =
(
(1− θ̃)rL(L)− r

)
L− θ̃L + rK + (r − rD(D)) D + (θ̃ − θ̄)H − C(D,L). (5)

The definition in (5) is a correct representation of the profit because credit default
swaps by law do not enter the balance sheet and therefore do not affect the balance
constraint (2). The decision problem of the bank management can then be described
in terms of the expected utility maximization problem

max
D,L,H

E
[
U(Π̃)

]
. (6)

Since the bank is modelled as a monopolist both in the deposit and the loan markets,
quantity setting is equivalent to setting interest rates in these two markets, and we
therefore formulate the whole problem in terms of quantities.

To simplify our exposition we suppress the optimal value arguments of the func-
tions rD, rL and C in the sequel. (6) leads to first–order necessary conditions with
respect to D, L and H:

E
[
U ′(Π̃∗) ((r − rD)− r′DD∗ − C ′

D)
]

= 0 (7)

E
[
U ′(Π̃∗)

(
(1− θ̃)rL − r + (1− θ̃)r′LL∗ − θ̃ − C ′

L

)]
= 0 (8)

E[U ′(Π̃∗)(θ̃ − θ̄)] = 0 (9)

Inspection of (7), (8) and (9) leads to the following

Proposition 1 Given a credit derivative with perfect negative correlation with the
bank’s exposure to credit risk, (a) the bank can separate its decision on credit risk
management from its decisions on deposit and loan volumes, (b) the bank fully hedges
its credit risk exposure, if the market for the credit default swap used as hedge in-
strument is unbiased.

Proof (a) Substituting E[U ′(·)θ̄] for E[U ′(·)θ̃] from (9) into (8), rearranging terms
and dividing by E[U ′(·)] in both (7) and (8) yields two deterministic equations in D

and L which can be solved for the optimal values D∗ and L∗:

r = rD + r′DD∗ + C ′
D (10)

(1− θ̄)(rL + r′LL∗)− θ̄ = r + C ′
L (11)

As the system (10)–(11) is totally independent from H∗ and contains no stochastic
term, the “production” decisions on deposit and loan volumes can be separated from

3To keep the model as simple as possible we assume that the premium is paid at the end of the
period, so there is not need for discounting.
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the risk management decision on the hedging volume.
(b) Using the covariance decomposition Cov(X, Y ) = E(XY )− E(X)E(Y ), we can
write (9) in the form

Cov
[
U ′(·), θ̃

]

E [U ′(·)] + E(θ̃) = θ̄. (12)

If the market for the CDS is unbiased, i.e., E(λ̃·δ̃) = E(θ̃) = θ̄, then (12) is equivalent
to Cov[U ′(Π̃∗), θ̃] = 0, which can only be true for a deterministic bank profit Π∗.
This in turn implies that the bank has no exposure to risk. From (5) we conclude
that H∗ = rLL∗ + L∗, i.e., the bank in the optimum completely hedges its risky
position in the loan market, it uses a full hedge. q.e.d.

Part (a) of Proposition 1 is an example for the well–known (Fisher) separation
property in the presence of a hedging instrument without basis risk which is familiar
from analyses of optimal firm behavior under uncertainty. As a consequence the bank
will choose the same volumes of deposits and loans under uncertainty as in the case
of a deterministic default rate at level θ̄ = Eθ̃ (certainty equivalence). In contrast
to a weaker notion of separation to be derived later in our paper, we call this strong
separation. Our analysis includes as a special case the situation with a deterministic
default rate E(θ̃). First–order conditions for this case are given by (7) for D∗ (after
dividing by E(U(·)), and (1−E(θ̃))(rL +r′LL∗)−E(θ̃) = r+C ′

L for L∗. These are the
familiar conditions of equality between marginal revenues and marginal costs in the
deposit and loan markets. A stochastic default rate affects only the latter optimality
condition by an additive term Cov[U ′(·), θ̃]·(rL+r′LL∗+1)/E[U ′(·)] on the righthand
side. Due to U ′′ the sign of this covariance is positive. Closer inspection shows that
under increasing marginal costs and in the absence of an instrument to hegde credit
risk uncertainty about the default rate unambiguously implies a lower loan volume
whereas the impact on the deposit volume depends on the cross derivative C ′′

DL, i.e.,
on economies or diseconomies of scope between taking deposits and giving loans.
Returning briefly to our separation result we notice that the optimality conditions
(10) and (11) contain the familiar Lerner Index (price minus marginal cost divided
by price) formulation (cf. Freixas and Rochet 1997, p. 58)

r − rD − C ′
D

rD

=
1

εD

, (13)

(1− θ̄)rL − θ̄ − r − C ′
L

(1− θ̄)rL

=
1

εL

, (14)

where εD = (dD/drD)(rD/D) and εL = −(dL/drL)(rL/L) are the elasticities of
deposit supply and loan demand, respectively, and the term −θ̄ on the lefthand side
of (14) accounts for the marginal loss of principal in case of loan default.

The assumption of unbiasedness of the hedging market which we use in part (b)
of Proposition 1 clearly is a simplifying one, defining a benchmark case of a deriva-
tives market where buyers of risk are a large number of well–diversified investors.
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Introducing a constant risk premium would lead to an optimal hedge below the full
hedge, without substantially changing our analysis. The more challenging task of
endogenizing the price of the credit derivative, i.e., explicitly including the deriva-
tives market in the model, is beyond the scope of this paper. However, this is an
issue which ought to be addressed in future research because market data shows
that banks which we consider sellers of risk also play a major role on the buying
side of the derivatives market.

3.2 Hedging with basis risk

In our introduction we mentioned already that a complete transfer of credit risk
from the bank as initial lender to a third party is hard to imagine. We capture the
notion of non–tradeable risk by introducing so–called basis risk into our model. The
most important causes of basis risk discussed in the literature are differences in the
maturities of the hedging instrument and the bank’s risky position, and differences
in the stochastic properties between the underlying of the hedging instrument and
the risk the bank faces. In the case of credit risk the first problem could arise when
the derivatives contract matures at an earlier date than the underlying loan contract.
This, however, is not only beyond the scope of our one–period model, but should
also be of relatively minor importance since credit derivatives are traded over the
counter, enabling the contracting parties to adequately match maturity dates. We
think that the second cause of basis risk is more relevant in our framework. Infor-
mation asymmetries related to the individual loan contract create an unsystematic
component of credit risk, put potential buyers of credit risk at an informational
disadvantage and make a complete transfer of credit risk to a third party hard to
imagine. This problem is augmented by the fact, that the unsystematic part of
credit risk may be hard to diversify for institutional reasons mentioned earlier. In
essence this means that a bank will not be able to find a hedging instrument per-
fectly offsetting the credit risk it currently holds. Our approach to model this in a
simple and stylized way is now to add basis risk to our model.

Consider availability of a credit default swap at a given price as before. To model
basis risk we introduce the following modification: The market uses no longer the
share of non–performing loans θ̃, but a share g̃ as underlying of the derivatives con-
tract. g̃ can be interpreted as the portion of loans non–performing due to systematic
risk. From this definition it is apparent that the two risks are not necessarily inde-
pendent. We assume regression dependence between the two random variables (cf.
Benninga et al. 1984), i.e.,

θ̃ = b + βg̃ + s̃, (15)

where b ≥ 0, β > 0, and s̃ is a zero mean noise term stochastically independent
from g̃. For each unit of the credit derivative sold the bank makes a deterministic
payment ḡ in exchange for the stochastic amount g̃.



Credit and Macro Derivatives 9

We assume unbiasedness of the derivatives market, i.e., E(g̃) = ḡ, with ḡ denoting
the market price of the underlying chosen by the contracting parties. This implies
θ̄ = βḡ, where we assume b = 0 without loss of generality.

Suppressing arguments of rD and rL, the bank’s profit can now be re–written as

Π̃ =
(
(1− θ̃)rL − r

)
L− θ̃L + (r − rD)D + rK − C(D, L) + (g̃ − ḡ)H. (16)

Maximization of expected utility yields (7) and (8) as in the case without basis risk.
Condition (9) for the optimal hedge volume, however, is replaced by

E
[
U ′(Π̃∗)(g̃ − ḡ)

]
= 0. (17)

Inspection of the first–order conditions leads us to

Proposition 2 (a) In the presence of basis risk in an unbiased CDS market the
bank hedges a portion β of its risky position rLL∗ + L∗ (beta–hedge rule). (b) The
usual separation property no longer exists. Instead, a weaker notion of separation
holds. (c) In the absence of economies or diseconomies of scope, the optimal volume
of deposits D∗ can be determined as in the case of certainty.

Proof (a) Unbiasedness of the derivatives market implies that (17) can be written
as Cov[U ′(Π̃∗), g̃] = 0. Replacing Π̃∗ by (16) and using (15) yields

Cov [U ′ (−s̃(rLL∗ + L∗)− g̃(βrLL∗ + βL∗ −H∗) + const) , g̃] = 0. (18)

Due to the stochastic independence of s̃ and g̃ this can only be true, if

β =
H∗

rLL∗ + L∗
. (19)

(b) Inserting (15) and the optimal hedge rule (19) into the first–order condition (8)
for loans shows that L∗ still depends on probabilities and risk preferences, even if
D∗ were known. This in turn implies from (7) that D∗ also cannot be determined
without knowledge of probabilities and risk preferences. More than market data is
required to decide the optimal loan and deposit volumes, which prevents the tra-
ditional notion of separation of production and risk management. Notice, however,
that the optimal hedge rule derived holds for any pair (D,L). We can therefore
imagine a bank choosing loan and deposit volumes arbitrarily (or on the basis of
a simulation) and still minimizing its risk exposure by applying the beta–hedge.
While the bank may find it impossible to determine the optimal values of D∗ and
L∗ in the presence of basis risk, it can still separate its hedging decision from its
production decisions. We call this a weak notion of separation.
(c) Inspection of (7) shows that for C ′′

DL = 0 (neither economies nor diseconomies
of scope) D∗ can be determined on the basis of market data alone, i.e., without
knowledge of probabilities, risk preferences, or the bank’s hedging decision. q.e.d.
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3.3 Hedging with a fixed pre–determined payment

We now turn to yet another situation where the bank cannot perfectly sell all its
credit risk even if it wishes to do so. Consider the case of a fixed pre–determined
payment of the insurance seller to the insurance buyer, i.e., the bank, in case of
default. This situation, where a deterministic recovery value is included in the CDS
contract, making the payment defined as face value minus recovery value in case of
default also deterministic, is can be found in real world CDS markets, in particular
when risk of individual loans is to be transferred. We denote this payment by the
deterministic variable λ which we normalize to 1. This creates no loss of generality
because H can always be adjusted to meet the bank’s preferences. After replacing
θ̃ in (5) by λδ̃ = δ̃ the profit function can be re–written as

Π̃ =
(
(1− θ̃)rL − r

)
L− θ̃L + rK + (r − rD) D + (δ̃ − θ̄)H − C(D, L), (20)

where θ̄ again denotes the given price of the (modified) CDS. The optimality con-
dition (9) is replaced by

E
[
U ′(·)(δ̃ − θ̄)

]
= 0 ⇔ (21)

Cov
[
U ′(·), δ̃

]

E [U ′(·)] + E(δ̃) = θ̄, (22)

where E(δ̃) is equal to the probability of the default event Pr(δ̃ = 1) because δ̃ ∈
{0, 1}.

Condition (22) explicitly accounts for the role of the default probability when
determining the optimal hedge against credit risk. We are now in a position to
prove

Proposition 3 An optimal decision (D∗, L∗, H∗) with a CDS paying a pre–determin-
ed fixed amount in the credit event has the following properties:
(a) A perfect hedge is not possible, i.e., even with the optimal hedge position in the
derivatives market the bank retains credit risk.
(b) Even for an unbiased CDS market, there is no simple hedge rule. Neither strong
nor weak separation between deposit and loan volumes on the one hand and hedging
volume on the other holds. The optimal values of all three decision variables depend
on probabilities and risk preferences.
(c) If the market for the credit derivative is unbiased, the optimal hedge volume H∗

is (i) in the interval (E(λ̃)(1 + rL)L∗, (1 + rL)L∗], if the utility function has the
property U ′′′ > 0 (prudence), (ii) in the interval [0, E(λ̃)(1 + rL)L∗) for U ′′′ < 0,
and (iii) equal to E(λ̃)(1 + rL)L∗, if U ′′′ = 0 (quadratic utility function).

Proof (a) It is almost trivial to state that with a fixed amount to be paid to the
bank in case of default and a stochastic loss given default there can be no perfect
hedge eliminating all risk.
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(b) Using unbiasedness (E(δ̃) = θ̄) (22) can be simplified to Cov[U ′(Π̃∗), δ̃] = 0
which in turn can be written as

Cov
[
U ′ (δ̃H∗ − (1 + rL)λ̃δ̃L∗ − θ̄H + const

)
, δ̃

]
= 0. (23)

Contrary to (18) in the case with basis risk examined before, (23) does not lend
itself to the derivation of a simple and general hedge rule. The first–order condition
(21) for H∗ can no longer be used to eliminate E[U ′(·)θ̃] from (8). L∗ depends on
probabilities and risk preferences, and on the optimal value H∗. This in turn implies
that for C ′′

DL 6= 0 D∗ also cannot be determined without knowledge of probabilities,
risk preferences and H∗. More than market data is required to decide the optimal
deposit, loan and hedging volumes in this fully interdependent system.
(c) For a given L∗ and for arbitrarily fixed U ′(·) we show that one can choose a
volume H such as to obtain Cov(U ′(Π̃), δ̃) = 0, even though U ′(Π̃) obviously depends
on δ̃.4 Moreover, an optimal value H∗ must lie in the superset [0, (1 + rL)L∗] which
can be narrowed down by applying Jensen’s Inequality, when appropriate conditions
on the third derivative of the utility function are imposed. We write the profit
definition (20) in the form Π̃ = δ̃H − (1 + rL)λ̃δ̃L∗ − θ̄H + const. For given values
δ̃ = 0 and δ̃ = 1 we conclude

δ̃ = 0 ⇒ Π̃|δ̃=0 = const− θ̄H,

δ̃ = 1 ⇒ Π̃|δ̃=1 = H − λ̃(1 + rL)L∗ + const− θ̄H.
(24)

Assume E[U ′(Π̃|δ̃=1)] to be a twice differentiable and strictly decreasing function

f(H). Further, consider g(H) = E[U ′(const − θ̄H)] = U ′(const − θ̄H) as a twice
differentiable function that is strictly increasing, as θ̄ > 0. Let H1 = 0 and H2 =
(1 + rL)L∗. For these values we get

f(H1) = E[U ′(const− θ̄H1 − λ̃(1 + rL)L∗)]
λ̃∈(0,1],U ′′<0

> U ′(const− θ̄H1) = g(H1)

f(H2) = E[U ′((1− λ̃)(1 + rL)L∗ + const− θ̄H2)]
λ̃∈(0,1],U ′′<0

≤ U ′(const− θ̄H2) = g(H2).

(25)

The intermediate value theorem of Bolzano implies ∃H ∈ [0, (1 + rL)L∗] : f(H) −
g(H) = 0, i.e. E[U ′(Π̃|δ̃=0)] = E[U ′(Π̃|δ̃=1)]. In addition, ∀H /∈ [0, (1 + rL)L∗]

the necessary condition Cov(U ′(Π̃), δ̃) = 0 does not hold, because f − g is strictly
decreasing. Therefore, as H∗ is an optimal value, we obtain [0, (1 + rL)L∗] as a
superset. This interval can be further narrowed down by using Jensen’s Relationship
E[U ′(X)] > U ′(E(X)), E[U ′(X)] < U ′(E(X)), and E[U ′(X)] = U ′(E(X)) for U ′′′ >

4Note that independence implies Cov(·, ·) = 0,, but the converse is not true in general. The
proof exploits the relationship E(U ′(Π̃|δ̃=0)) = E(U ′(Π̃|δ̃=1)) ⇔ Cov(U ′(Π̃), δ̃) = 0.
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0, U ′′′ < 0, and U ′′′ = 0, respectively. We focus our interest on the case of prudence,
i.e., U ′′′ > 0; results for the other two cases can be obtained analogously. For
arbitrary H and δ̃ = 0

E[U ′(Π̃|δ̃=0)] = E[U ′(const− θ̄H)] (26)

holds. Setting again H = E(λ̃)(1 + rL)L∗ + ε with ε ∈ IR, and δ̃ = 1 leads to

E[U ′(Π̃|δ̃=1)] = E[U ′(H − λ̃(1 + rL)L∗ + const− θ̄H)]
U ′′′>0,∀ε

> U ′(H − E(λ̃)(1 + rL)L∗ + const− θ̄H)

= U ′(ε + const− θ̄H)
<ε>0

≥ε≤0

E[U ′(const− θ̄H)].

(27)

Thus, equality can be achieved with ε > 0 only. Therefore, H > E(λ̃)(1 + rL)L∗

holds. Taking into account the superset determined before, we arrive at H ∈
(E(λ̃)(1 + rL)L∗, (1 + rL)L∗]. q.e.d.

Despite this rather pessimistic result concerning simple rules for production and
hedging decisions of a commercial bank, we note in passing that our first–order
conditions suggest a numerical or simulation approach which could lead to deposit,
loan and hedging volumes. (22) implicitly defines an optimal hedge H∗ as a func-
tion (influenced by risk preferences and probabilities) of deposit and loan volumes.
Denote this by a function H(D∗, L∗) and replace H∗ in (8) by this function. (7)–(8)
is then a system in D∗ and L∗ which depends, however, on the utility function (risk
preference) and the probability distributions of δ̃ and λ̃. In a very weak sense this
could be interpreted as return of our weak separation property, now in the frame-
work of a simulation approach. But we need to emphasize that to make practical
use of this insight, one would have to specify the bank management’s von Neumann-
Morgenstern utility function and to simulate the distributions of credit event and
loss given default.

While we are not able to theoretically identify a simple and intuitive hedge rule
(like the beta–hedge before) for a CDS with a pre–determined fixed payment in
case of default, we can at least present intervals for the optimal hedge volume and
thereby narrow down the bank’s choice, if there is prior knowledge about the third
derivative of the utility function. Notice that this derivative has meaningful and
intuitive interpretation: The term “prudence” was introduced by Kimball (1990)
for U ′′′ > 0 to capture the “propensity to prepare and forearm oneself in the face of
uncertainty”. Menezes and Wang (2002) emphasize that prudence is equivalent to
downside–risk aversion. A further useful interpretation has been offered by Huang
(2002) who relates “risk aversion” to investment, “prudence” to the incentive for
saving, and “cautiousness” to the hedging of risk. He derives that “if an investor
is always more prudent than the others, given that her marginal utility of infinite
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consumption is zero, then he/she will be always more risk–averse than the others”.
One can regard an investor with U ′′′ > 0 as downside–risk averse, U ′′′ = 0 as
downside–risk neutral, and U ′′′ < 0 as downside–risk loving. Note that U ′′′ = 0
implies a quadratic utility function, and U ′′′ > 0 should be considered the normal
case.

We conclude this section by observing that optimal decisions become much more
difficult, if credit default swaps offer a pre–determined fixed payment as opposed
to a payment (perfectly or imperfectly) correlated with the risky position. Readers
may wonder why such a design of credit derivatives exists in real world markets,
if it makes optimal behavior so cumbersome. For an intuitive explanation, return
to the issues of information asymmetries tied to loan contracts. If there is a joint
problem of sharing uncertainty (between the bank and the third party willing to
take on credit risk) and providing incentives (for proper monitoring of the loan),
conventional wisdom from incentive theory suggests that the bank in an optimal
arrangement ought to retain some of the risk. This is exactly what happens for the
from of CDS considered in this section. Our next section turns to macro derivatives
as devices to hedge the systematic part of credit risk and investigates if and how
their implications differ from those of credit derivatives as analyzed before.

4 Macro Derivatives

It is commonly acknowledged that systematic credit risk is primarily driven by
macroeconomic conditions (cf. Wilson 1998), whereas unsystematic risk arises from
specific properties of the debtor which are independent from the market. As the bank
normally has a rather close relationship to a debtor, there is information asymmetry
vis-a-vis the capital market and thus the bank has a comparative advantage in
managing specific credit risk. Because of this, specific credit risk should not be sold
and probably cannot be sold. To capture this idea, we now split off our random
variable θ̃ capturing credit risk into a systematic and a specific part

θ̃ = βθ̃syst + θ̃spec, (28)

where in analogy to capital market theory we include a parameter β to describe how
closely the credit risk of a given loan or loan portfolio follows the systematic risk.
Unfortunately, these components in general, and θ̃syst in particular, are not directly
observable, but have to be inferred from macroeconomic indicators. Suppose, there is
a vector of observable macroeconomic variables (x̃1, ..., x̃k) which can be aggregated
into a macroeconomic index g̃ by an aggregation function A(·) such that

g̃ = A(x̃1, ..., x̃k) ∈ [0, 1]. (29)

At the moment we take this aggregation as given and carry on with the variable g̃.
We interpret g̃ as systematic risk, i.e., θ̃syst = g̃ and introduce a random variable
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s̃ stochastically independent from g̃ to capture specific risk, i.e., θ̃spec = s̃. Our
specification of credit risk then is

θ̃ = βg̃ + s̃. (30)

While this is an idealized assumption, in reality there should be at least a sufficient
approximation θ̃syst ≈ g̃. Since in our model of credit risk we require θ̃ ∈ [0, 1], the
logistic distribution looks like a natural choice, leading to the logistic regression.

Consider now a macro derivative which we call macro default swap (MDS) with
underlying g̃. The bank’s profit function is5

Π̃ =
(
(1− θ̃)rL − r

)
L− θ̃L + (r − rD) D + rK + (g̃ − ḡ)H − C(D, L), (31)

where ḡ is the given market price of the hedge instrument. Notice that (31) is iden-
tical to (16), i.e., the bank’s decision problem with the macro derivative MDS is
formally equivalent to the one with the credit default swap with basis risk. Assum-
ing unbiasedness in the derivatives market which means E(g̃) = ḡ, the first–order
conditions are therefore given by (7), (8), and (17), where we need to replace θ̃ in
(8) by βg̃ + s̃. This immediately leads to our

Proposition 4 Given an unbiased market and a macro derivative with an underlying
matching the systematic part of credit risk (a) a perfect hedge is not possible because
the specific part of credit risk is not sold, (b) the bank hedges a portion β of its risky
position rLL∗ + L∗ (beta–hedge rule), if β describes the influence of systematic risk
on total credit risk according to (30). (c) Weak separation holds, i.e., the bank is able
to decide deposit and loan volumes first, and then use optimal risk management. (d)
In the absence of economies or diseconomies of scope, the optimal volume of deposits
D∗ can be determined as in the case of certainty.

Proof Given the perfect analogy to proposition 2 the proof is almost identical to
the one for proposition 2.
(a) Since only a derivative on the systematic part of credit risk is traded, the bank
retains risk even if it uses its optimal hedge.
(b) Unbiasedness of the derivatives market, i.e., E(g̃) = ḡ implies Cov[U ′(Π̃∗), g̃] = 0
which after inserting (31) and using (30) implies (18) as in the proof of proposition 2.
As long as g̃ and s̃ are independent, this can only be true, if H∗ is chosen such that
(19) holds.
(c) See proof of part (b) of proposition 2.
(d) See proof of part (c) of proposition 2. q.e.d.

We conclude that macro derivatives capturing the systematic component of credit
risk from a bank’s point of view create a setup analogous to the one with a credit

5Thereby, we assume that an MDS is treated as an off-balance-sheet product like the CDS
considered earlier.
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derivative carrying basis risk. The full optimum (D∗, L∗, H∗) depends on probabil-
ities and risk preferences. Separation in the strong sense does not hold. However,
there is again the weaker notion of separation, enabling the bank to fix deposit and
loan volumes, and use the beta–hedge rule afterwards no matter how deposits and
loans were determined. In our model the bank can hedge systematic credit risk
directly and retain the specific part of risk. As the macro index used as underlying
of the MDS is publicly observable, no information asymmetry arises. Macro deriva-
tives seem to be an innovation in financial markets which extend existing credit risk
products in an interesting way.

Let us finally turn to the issues of liquidity in the markets for macro derivatives
and of generating a macro index from macroeconomic indicators. The aggregation
function A(·) was introduced above to map observable macroeconomic variables
(x̃1, ..., x̃k) into the macroeconomic index g̃ used as underlying of the macro deriva-
tive. Whereas liquidity in these new markets for macro derivatives is a problem
that will be solved over time as a consequence of increased market demand, it will
always be a challenging task to evaluate and maintain the optimal structure of a
macro index, i.e., specify the aggregation function A(·) and its arguments. Notice
first that different banks may need different macro indices (and βs) because they
may have different notions of systematic risk. Take banks focused on specific sectors
of the economy as an example: Systematic risk for a bank financing car sales will
not be identical to systematic risk from the point of view of a bank giving housing
loans. A standardized derivative on g̃ for all banks is hard to imagine. Bank–specific
underlyings g̃, however, would lead to very illiquid markets for macro derivatives.

One way to get around this problem would be to establish standardized financial
products on single macroeconomic indicators and let banks individually aggregate
these indicators into their own macro indices. There could be reasonable liquidity in
the markets for the single indicators and, if number and variety of macroeconomic
indicators traded are sufficiently high and trading is sufficiently frequent, a bank
would be able to dynamically replicate its individually optimal macro index by
trading on the components of this index. Technically this could be done by using
the following approximation of the aggregation function A(·):

∆A(x1, ..., xk) ≈ ∑k
i=1

∂A
∂xi
·∆xi = ∇AT ·∆x

linear A⇔ ∆A(x1, ..., xk) = mT ·∆x ⇔ A(x1, ..., xk) = mT · x + c,

(32)

where m denotes the constant vector of the gradient ∇ and ∆ is a delta–difference.
This separation enables risk management to trade on the single indicators. Thereby
each economic indicator xi contributes the volume mi ·H to the bank’s macro index.

A bank would now have to determine empirically the weights mT most appro-
priate for its macro index. When determining the macro index one can distinguish
causally and statistically motivated relationships θ̃ = βA(x̃1, ..., x̃k) + s̃. A causal
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relationship allows to evaluate the relevant economic variables and the functional
form of A(·) based on a theoretical model like the CAPM. In this case, only the pa-
rameter estimation requires statistical methods. A statistical relationship does not
allow to figure out the functional form and variables exactly, based on qualitative
reasoning. This may be due to a lack of theoretical insight as no adequate theory
has been developed yet. In this second case, the selection of proper explanatory
variables, and sometimes even the decision for a functional relationship, has to be
based on statistical methods.

The explanation of credit risk is an example for the second case. More precisely,
even though we suggested already to use the logistic regression and may have pre-
selected a set of potential variables (x̃1, ..., x̃n), with n ≥ k, by qualitative reasoning,
there is a need to further narrow down this set in order to receive an optimal vector
of economic indicators. The logistic distribution allows for a linear transformation
yielding the logistic regression model (cf. Gujarati 1995, p. 554):

ln(
θ̃

1− θ̃
) = c +

n∑

i=1

mi · x̃i + s̃. (33)

A bank would use its internal data on credit depreciation as observations of θ̃ and
use (33) to estimate optimal weights for macroeconomic indicators. To keep the
exposition simple, assume s̃ to be normally distributed in a homoskedastic manner,
and additionally θ̃ ∈ (0, 1). Under these assumptions one is able to apply ordinary
least squares.6 The restriction θ̃ /∈ {0, 1} means that even though there is always
some default, the bank will be able to recover a non–zero portion of its exposure.
An efficient procedure to use (33) as a tool for the selection of proper indicators is
a stepwise backward elimination of insignificant variables. The decision whether to
eliminate a variable from further regressions can be based on the t2 statistics of the
regression parameters.

5 Conclusion

Using the industrial organization approach to the microeconomics of banking, we
analyzed the implications of credit risk, credit derivatives and macro derivatives on
optimal behavior of a single large bank under risk aversion. In modelling credit
risk we distinguished between the probability of a credit default and the loss given
default. We were able to derive separation results and – in most cases – hedge rules.
For a credit default swap perfectly correlated with the credit risk, decisions on de-
posit and loan volumes on the one hand and hedge volume on the other are (strongly)
separable and can be made without knowledge of risk preferences and probabilities.

6The critical assumption of a homoskedastic disturbance can be relaxed by the use of WLS, cf.
Gujarati (1995), p. 557.



Credit and Macro Derivatives 17

If in this situation the derivatives market is unbiased the bank optimally chooses to
fully hedge its credit risk exposure. For the case of a credit derivative with basis
risk we found a beta–hedge rule to be optimal, irrespective of the volumes of de-
posits and loans chosen. Whereas a full optimum now depends on risk preferences
and probabilities, there still exists a (weak) form of separation between deposits
and loans on the one hand and hedging on the other. If the derivative in case of
default pays a pre–determined fixed amount, no simple hedge rule exists, neither
weak nor strong separation holds, but we can relate optimal hedging to the notion
of “prudence” and give intervals for the optimal hedge. We then examined macro
derivatives as one very recent innovation in financial markets. We argue that macro
derivatives are a valuable tool because as opposed to normal credit derivatives they
enable lenders to sell the systematic part of credit risk which is what capital market
theory suggests. The implications of a macro derivative for optimal bank behavior
are formally equivalent to the ones of a credit derivative with basis risk. Finally we
discussed how macro indices as underlyings of macro derivatives could be optimally
designed from financial products on macroeconomics indicators, such as the prod-
ucts traded since fall 2002 mentioned in the introduction. Whereas the industrial
economics approach to the bank does not consider issues of asymmetric information
explicitly, we were able at several stages of our analysis to point out that aspects of
asymmetric information were included in an implicit way.

Further work should be directed to generalizing the framework by modelling the
derivatives market and moving closer to a general equilibrium framework. This
should lead to an answer to the question of whether or not the existence of credit
derivatives and macro derivatives leads to more or less risk in the financial system
(see e.g. Instelfjord 2000 and Prato 2002 for some insights on this question).
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