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Three-Dimensional Brownian Motion and
the Golden Ratio Rule

K. Glover, H. Hulley & G. Peskir

To appear in Ann. Appl. Probab.

Let X = (Xt)t≥0 be a transient diffusion process in (0,∞) with the diffusion
coefficient σ > 0 and the scale function L such that Xt → ∞ as t → ∞ , let It
denote its running minimum for t ≥ 0 , and let θ denote the time of its ultimate
minimum I∞ . Setting c(i, x) = 1−2L(x)/L(i) we show that the stopping time

τ∗ = inf
{

t ≥ 0 | Xt ≥ f∗(It)
}

minimises E(|θ − τ | − θ) over all stopping times τ of X (with finite mean) where
the optimal boundary f∗ can be characterised as the minimal solution to

f ′(i) = − σ2(f(i))L′(f(i))

c(i, f(i)) [L(f(i))−L(i)]

∫ f(i)

i

c′i(i, y) [L(y)−L(i)]

σ2(y)L′(y)
dy

staying strictly above the curve h(i) = L−1(L(i)/2) for i > 0 . In particular, when
X is the radial part of three-dimensional Brownian motion, we find that

τ∗ = inf
{

t ≥ 0
∣

∣

Xt−It
It

≥ ϕ
}

where ϕ = (1+
√
5)/2 = 1.61 . . . is the golden ratio. The derived results are applied

to problems of optimal trading in the presence of bubbles where we show that the
golden ratio rule offers a rigourous optimality argument for the choice of the well-
known golden retracement in technical analysis of asset prices.

1. Introduction

The golden ratio has fascinated people of diverse interests for at least 2,400 years (see e.g.
[24]). In mathematics (and the arts) two quantities a and b are in the golden ratio if the
ratio of the sum of the quantities a+b to the larger quantity a is equal to the ratio of the
larger quantity a to the smaller quantity b . This amounts to setting (a+b)/a = a/b =:
ϕ and solving ϕ2−ϕ−1 = 0 which yields ϕ = (1+

√
5)/2 = 1.61 . . . Apart from being

abundant in nature, and finding diverse applications ranging from architecture to music, the
golden ratio has also found more recent uses in technical analysis of asset prices (in strategies
such as Fibonacci retracement representing an ad-hoc method for determining support and
resistance levels). Despite its universal presence and canonical role in diverse applied areas, we
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golden ratio, the maximality principle, Fibonacci retracement, support and resistance levels, constant elasticity
of variance model, strict local martingale, bubbles.
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are not aware of any more exact connections between the golden ratio and stochastic processes
(including any proofs of optimality in particular).

One of the aims of the present paper is to disclose the appearance of the golden ratio in
an optimal stopping strategy related to the radial part of three-dimensional Brownian motion.
More specifically, denoting the radial part by X it is well known that X is transient in the
sense that Xt → ∞ as t → ∞ . After starting at some x > 0 the ultimate minimum of
X will therefore be attained at some time θ that is not predictable through the sequential
observation of X (in the sense that it is only revealed at the end of time). The question we are
addressing is to determine a (predictable) stopping time of X that is as close as possible to θ .
We answer this question by showing that the time at which the excursion of X away from the
running minimum I and the running minimum I itself form the golden ratio is as close as
possible to θ in a normalised mean deviation sense. We consider this problem by embedding
it into transient Bessel processes of dimension d > 2 and in this context we derive similar
optimal stopping rules. We also disclose further/deeper extensions of these results to transient
diffusion processes. The relevance of these questions in financial applications is motivated by
the problem of optimal trading in the presence of bubbles. In this context we show that the
golden ratio rule offers a rigourous optimality argument for the choice of the well-known golden
retracement in technical analysis of asset prices. To our knowledge this is the first time that
such an argument has been found/given in the literature.

The problem considered in the present paper belongs to the class of optimal prediction
problems (within optimal stopping). Similar optimal prediction problems have been studied
in recent years by many authors (see e.g. [1], [2], [9], [10], [11], [12], [14], [19], [25], [30],
[41], [42], [43]). Once the ‘unknown’ future is projected to the ‘known’ present we find that
the resulting optimal stopping problem takes a novel integral form that has not been studied
before. The appearance of the minimum process in this context makes the problem related
to optimal stopping problems for the maximum process that were initially studied and solved
in important special cases of diffusion processes in [7], [8] and [23]. The general solution to
problems of this kind was derived in the form of the maximality principle in [31] (see also
Section 13 and Chapter V in [35] and the other references therein). More recent contributions
and studies of related problems include [4], [15], [16], [20], [22], [26], [27], [29]. Close three-
dimensional relatives of these problems also appear in the recent papers [6] and [45] where the
problems were effectively solved by guessing and finding the optimal stopping boundary in a
closed form. The maximality principle has been extended to three-dimensional problems in the
recent paper [34].

Although the structure of the present problem is similar to some of these problems, it turns
out that none of these results is applicable in the present setting. Governed by these particular
features in this paper we show how the problem can be solved when (i) no closed-form solution
for the candidate stopping boundary is available and (ii) the loss function takes an integral form
where the integrand is a functional of both the process X and its running minimum I . This
is done by extending the arguments associated with the maximality principle to the setting of
the present problem and disclosing the general form of the solution that is valid in all particular
cases. The key novel ingredient revealed in the solution is the replacement of the diagonal and
its role in the maximality principle by a nonlinear curve in the two-dimensional state space of
X and I . We believe that this methodology is of general interest and the arguments developed
in the proof should be applicable in similar two/multi-dimensional integral settings.

2



2. Optimal prediction problem

1. We consider a non-negative diffusion process X = (Xt)t≥0 solving

(2.1) dXt = µ(Xt) dt+ σ(Xt) dBt

where µ and σ > 0 are continuous functions satisfying (2.4)+(2.5) below and B = (Bt)t≥0

is a standard Brownian motion. By Px we denote the probability measure under which the
process X starts at x > 0 . Recalling that the scale function of X is given by

(2.2) L(x) =

∫ x

exp
(

−
∫ y µ(z)

(σ2/2)(z)
dz

)

dy

and the speed measure of X is given by

(2.3) m(dx) =
dx

(σ2/2)(x)L′(x)

we assume that the following conditions are satisfied:

L(0+) = −∞ & L(∞−) = 0(2.4)
∫ 1

0+
L(dy) = ∞ &

∫ 1

0+
m(dy) <∞ &

∫ 1

0+
|L(y)|m(dy) <∞ .(2.5)

From (2.4) we read that X is a transient diffusion process in the sense that Xt → ∞ Px -a.s.
as t→ ∞ , and from (2.5) we read that 0 is an entrance boundary point for X in the sense
that the process X could start at 0 but will never return to it (implying also that X will
never visit 0 after starting at x > 0 ).

2. The main example we have in mind is the d-dimensional Bessel process X solving

(2.6) dXt =
d−1

2Xt
dt+ dBt

where d > 2 . Recalling that the scale function is determined up to an affine transformation
we can choose the scale function (2.2) and hence the speed measure (2.3) to read

L(x) = − 1

xd−2
(2.7)

m(dx) = 2
d−2

xd−1 dx(2.8)

for x > 0 . It is well known that when d ∈ {3, 4, . . . } one can realise X as the radial
part of d-dimensional standard Brownian motion. Similar interpretations of (2.6) are also
valid when d = 1 (with an addition of the local time at zero) and d = 2 but X is not
transient in these cases (but recurrent) and hence the problem considered below will have a
trivial solution. Other examples of (2.1) are obtained by composing Bessel processes solving
(2.6) with strictly decreasing and smooth functions. This is of interest in financial applications
and will be discussed below. There are also many other examples of transient diffusion processes
solving (2.1) that are not related to Bessel processes.
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3. To formulate the problem to be studied below consider the diffusion process X solving
(2.1) and introduce its running minimum process I = (It)t≥0 by setting

(2.9) It = inf
0≤s≤t

Xs

for t ≥ 0 . Due to the facts that X is transient (converging to +∞ ) and 0 is an entrance
boundary point for X , we see that the ultimate infimum I∞ = inf t≥0Xt is attained at some
random time θ in the sense that

(2.10) Xθ = I∞

with Px -probability one for x > 0 given and fixed (the case x = 0 being trivial and therefore
excluded). It is well known that θ is unique up to a set of Px -probability zero (cf. [44, Theorem
2.4]). The random time θ is clearly unknown at any given time and cannot be detected through
sequential observations of the sample path t 7→ Xt for t ≥ 0 . In many applied situations
of this kind we want to devise sequential strategies which will enable us to come as ‘close’ as
possible to θ . Most notably, the main example we have in mind is the problem of optimal
trading in the presence of bubbles to be addressed below. In mathematical terms this amounts
to finding a stopping time of X that is as ‘close’ as possible to θ . A first step towards this
goal is provided by the following lemma. We recall that stopping times of X refer to stopping
times with respect to the natural filtration of X that is defined by FX

t = σ(Xs | 0 ≤ s ≤ t)
for t ≥ 0 .

Lemma 1. We have

(2.11) |θ−τ | = θ +

∫ τ

0

(

2I(θ ≤ t)−1
)

dt

for all stopping (random) times τ of X .

Proof. The identity is well known (see e.g. [35, p. 450]) and can be derived by noting that

|θ−τ | = (θ−τ)+ + (τ−θ)+ =

∫ θ

0

I(τ ≤ t) dt+

∫ τ

0

I(θ ≤ t) dt(2.12)

=

∫ θ

0

(

1−I(τ > t)
)

dt+

∫ τ

0

I(θ ≤ t) dt

= θ −
∫ τ

0

I(θ > t) dt+

∫ τ

0

I(θ ≤ t) dt

= θ −
∫ τ

0

(

1−I(θ ≤ t)
)

dt+

∫ τ

0

I(θ ≤ t) dt

= θ +

∫ τ

0

(

2I(θ ≤ t)−1
)

dt

for all stopping (random) times τ of X as claimed. �

4. Taking Ex on both side in (2.11) yields a non-trivial measure of error ( from τ to θ )
as long as E xθ < ∞ for x > 0 given and fixed. The latter condition, however, may not
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always be fulfilled. For example, when X is a transient Bessel process of dimension d > 2
it is known (see [38, Lemma 1]) that Px(θ > t) ∼ t−(d/2−1) as t → ∞ . Hence we see that
Exθ =

∫∞

0
Px(θ > t) dt <∞ if and only if d/2−1 > 1 or equivalently d > 4 . It is clear from

(2.11) however that the pointwise minimisation of the Euclidean distance on the left-hand side
is equivalent to the pointwise minimisation of the integral on the right-hand side. To preserve
the generality we therefore ‘normalise’ |θ−τ | on the left-hand side by subtracting θ from it.
After taking Ex on both sides of the resulting identity we obtain

(2.13) Ex

(

|θ−τ |−θ
)

= Ex

∫ τ

0

(

2I(θ ≤ t)−1
)

dt

for all stopping times τ of X (for which the right-hand side is well defined). The optimal
prediction problem therefore becomes

(2.14) V (x) = inf
τ

Ex

(

|θ−τ |−θ
)

where the infimum is taken over all stopping times τ of X (with finite mean) and x > 0
is given and fixed. Note that the problem (2.14) is equivalent to the problem of minimising
Ex|θ−τ | over all stopping times τ of X (with finite mean) whenever Exθ < ∞ . To tackle
the problem (2.14) we first focus on the right-hand side in (2.13) above.

Lemma 2. We have

(2.15) Ex

∫ τ

0

(

2I(θ ≤ t)−1
)

dt = Ex

∫ τ

0

(

1−2
L(Xt)

L(It)

)

dt

for all stopping times τ of X (with finite mean) and all x > 0 .

Proof. Using a well-known argument (see e.g. [35, p. 450]) we find that

Ex

∫ τ

0

(

2I(θ ≤ t)−1
)

dt = Ex

∫ ∞

0

(

2I(θ ≤ t)−1
)

I(t < τ) dt(2.16)

=

∫ ∞

0

Ex

(

Ex

[

(2I(θ ≤ t)−1
)

I(t < τ) | FX
t

])

dt

=

∫ ∞

0

Ex

(

I(t < τ)Ex

[

(2I(θ ≤ t)−1
)

| FX
t

])

dt

= Ex

∫ τ

0

(

2Px(θ ≤ t | FX
t )−1

)

dt

= Ex

∫ τ

0

(

1−2Px(θ > t | FX
t )

)

dt

for any stopping time τ of X (with finite mean) and any x > 0 given and fixed. Setting
I t = inf s≥tXs and recalling that It = inf 0≤s≤tXs we find by the Markov property that

Px(θ > t | FX
t ) = Px(I

t< It | FX
t ) = Px(I

t< i | FX
t )

∣

∣

i=It
(2.17)

= Px(I∞ ◦ θt < i | FX
t )

∣

∣

i=It
= PXt(I∞< i)

∣

∣

i=It
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for t > 0 . To compute the latter probability we recall that M := L(X) is a continuous local
martingale and note that I∞< i if and only if L(I∞) < L(i) where L(I∞) = inf t≥0 L(Xt) =
inf t≥0Mt . This shows that the set {I∞< i} coincides with the set {inf t≥0Mt < L(i)} which
in turn can be expressed as {σ<∞} where σ = inf { t ≥ 0 |Mt < L(i) } . Taking x ≥ i we see
that the continuous local martingale Mσ = (Mσ∧t)t≥0 is bounded above by 0 and bounded
below by L(i) with Mσ

0 = L(x) under Px . It follows therefore that Mσ is a uniformly
integrable martingale and hence by the optional sampling theorem we find that

(2.18) L(x) = ExMσ = Ex[L(i)I(σ<∞)] + Ex[M∞ I(σ=∞)] = L(i)Px(σ<∞)

upon using that M∞ := lim t→∞Mt = 0 Px -a.s. on {σ =∞} . Combining (2.18) with the
previous conclusions we obtain

(2.19) Px(I∞< i) = Px(σ<∞) =
L(x)

L(i)

for i ≤ x in (0,∞) . From (2.17) and (2.19) we see that

(2.20) Px(θ > t | FX
t ) =

L(Xt)

L(It)

for all x > 0 and t ≥ 0 (for the underlying three-dimensional law see [5, Theorem A]).
Inserting this expression back into (2.16) we obtain (2.15) and the proof is complete. �

5. From (2.13) and (2.15) we see that the problem (2.14) is equivalent to

(2.21) V (x) = inf
τ

Ex

∫ τ

0

(

1−2
L(Xt)

L(It)

)

dt

where the infimum is taken over all stopping times τ of X (with finite mean) and x > 0 is
given and fixed. Passing from the initial diffusion process X to the scaled diffusion process
L(X) we see that there is no loss of generality in assuming that µ = 0 in (2.1) or equivalently
that L(x) = x for x > 0 (with L(Xt) → 0 Px -a.s. as t → ∞ ). Note that the time of the
ultimate minimum θ is the same for both X and L(X) since L is strictly increasing. Note
also that τ is a stopping time of X if and only if τ is a stopping time of L(X) . To keep
the track of the general formulae throughout we will continue with considering the general case
(when µ is not necessarily zero and L is not necessarily the identity function). This problem
will be tackled in the next section below.

6. For future reference we recall that the infinitesimal generator of X equals

(2.22) ILX = µ(x)
∂

∂x
+
σ2(x)

2

∂2

∂x2

for x > 0 . Throughout we denote τa = inf { t ≥ 0 | Xt = a } and set τa,b = τa ∧ τb for a < b
in (0,∞) . It is well known that

(2.23) Px

(

Xτa,b = a
)

=
L(b)−L(x)
L(b)−L(a) & Px

(

Xτa,b = b
)

=
L(x)−L(a)
L(b)−L(a)

6



for a ≤ x ≤ b in (0,∞) . The Green function of X is given by

Ga,b(x, y) =
(L(b)−L(y))(L(x)−L(a))

L(b)−L(a) if a ≤ x ≤ y ≤ b(2.24)

=
(L(b)−L(x))(L(y)−L(a))

L(b)−L(a) if a ≤ y ≤ x ≤ b .

If f : (0,∞) → IR is a measurable function, then it is well known that

(2.25) Ex

∫ τa,b

0

f(Xt) dt =

∫ b

a

f(y)Ga,b(x, y)m(dy)

for a ≤ x ≤ b in (0,∞) . This identity holds in the sense that if one of the integrals exists so
does the other one and they are equal.

3. Optimal stopping problem

It was shown in the previous section that the optimal prediction problem (2.14) is equivalent
to the optimal stopping problem (2.21). The purpose of this section is to present the solution
to the latter problem. Using the fact that the two problems are equivalent this also leads to
the solution of the former problem.

In the setting of (2.1)-(2.5) consider the optimal stopping problem (2.21). This problem is
two-dimensional and the underlying Markov process equals (I,X) . Setting I it = i∧inf 0≤s≤tXs

for t ≥ 0 enables (I,X) to start at (i, x) under Px for i ≤ x in (0,∞) and we will denote
the resulting probability measure on the canonical space by Pi,x . Thus under Pi,x the canonical
process (I,X) starts at (i, x) . The problem (2.21) then extends as follows

(3.1) V (i, x) = inf
τ

Ei,x

∫ τ

0

(

1−2
L(Xt)

L(It)

)

dt

for i ≤ x in (0,∞) where the infimum is taken over all stopping times τ of X (with finite
mean). In addition to σ and L from (2.1) and (2.2) above let us set

(3.2) c(i, x) = 1− 2
L(x)

L(i)

for i ≤ x in (0,∞) . The main result of this section may then be stated as follows.

Theorem 3. The optimal stopping time in the problem (3.1) is given by

(3.3) τ∗ = inf { t ≥ 0 | Xt ≥ f∗(It) }

where the optimal boundary f∗ can be characterised as the minimal solution to

(3.4) f ′(i) = − σ2(f(i))L′(f(i))

c(i, f(i)) [L(f(i))−L(i)]

∫ f(i)

i

c′i(i, y) [L(y)−L(i)]
σ2(y)L′(y)

dy
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staying strictly above the curve h(i) = L−1(L(i)/2) for i > 0 (in the sense that if the minimal
solution does not exist then there is no optimal stopping time). The value function is given by

(3.5) V (i, x) = −
∫ f∗(i)

x

c(i, y) [L(y)−L(x)]
(σ2/2)(y)L′(y)

dy

for i ≤ x ≤ f∗(i) and V (i, x) = 0 for x ≥ f∗(i) with i > 0 .

Proof. 1. It is evident from the integrand in (3.1) that the excursions of X away from the
running minimum I play a key role in the analysis of the problem. In particular, recalling the
definition (3.2) we see from (3.1) that the process (I,X) can never be optimally stopped in
the set C0 := { (i, x) ∈ S | c(i, x) < 0 } where we let S = { (i, x) ∈ (0,∞)×(0,∞) | i ≤ x }
denote the state space of the process (I,X) . Indeed, if (i, x) ∈ C0 is given and fixed, then
the first exit time of (I,X) from a sufficiently small ball with the centre at (i, x) (on which
c is strictly negative) will produce a value strictly smaller than 0 (the value corresponding to
stopping at once). Defining

(3.6) h(i) = L−1
(

1
2
L(i)

)

for i > 0 we see that c(i, x) < 0 for x < h(i) and c(i, x) > 0 for x > h(i) whenever
i ≤ x in (0,∞) are given and fixed. Note that the mapping i 7→ h(i) is increasing and
continuous as well as that h(i) > i for i > 0 with h(0+) = 0 and h(+∞) = +∞ . This
shows that C0 = { (i, x) ∈ S | i ≤ x < h(i) } . Note in particular that C0 contains the
diagonal { (i, x) ∈ S | i = x } in the state space.

2. Before we formalise further conclusions let us recall that the general theory of optimal
stopping for Markov processes (see [35, Chapter 1]) implies that the continuation set in the
problem (3.1) equals C = { (i, x) ∈ S | V (i, x) < 0 } and the stopping set equals D = { (i, x) ∈
S | V (i, x) = 0 } . It means that the first entry time of (I,X) into D is optimal in the
problem (3.1) whenever well defined. It follows therefore that C0 is contained in C and the
central question becomes to determine the remainder of the set C . Since Xt → ∞ Px -a.s.
as t → ∞ it follows that L(Xt) → 0 Px -a.s. as t → ∞ so that the integrand in (3.1)
becomes strictly positive eventually and this reduces the incentive to continue (given also that
the ‘favourable’ set C0 becomes more and more distant). This indicates that there should
exist a point f(i) at or above which the process X should be optimally stopped under Pi,x

where i ≤ x in (0,∞) are given and fixed. This yields the following candidate

(3.7) τf = inf { t ≥ 0 | Xt ≥ f(It) }

for an optimal stopping time in (3.1) where the function i 7→ f(i) is to be determined.

3. Free-boundary problem. To compute the value function V and determine the optimal
function f we are led to formulate the free-boundary problem

(ILXV )(i, x) = −c(i, x) for i < x < f(i)(3.8)

V ′
i (i, x)

∣

∣

x=i+
= 0 (normal reflection)(3.9)

V (i, x)
∣

∣

x=f(i)−
= 0 (instantaneous stopping)(3.10)

8



V ′
x(i, x)

∣

∣

x=f(i)−
= 0 (smooth fit)(3.11)

for i > 0 where ILX is the infinitesimal generator of X given in (2.22) above. For the rationale
and further details regarding free-boundary problems of this kind we refer to [35, Section 13]
and the references therein (we note in addition that the condition of normal reflection (3.9)
dates back to [18]).

4. Nonlinear differential equation. To solve the free-boundary problem (3.8)-(3.11) consider
the stopping time τf defined in (3.7) and (formally) the resulting function

(3.12) Vf(i, x) = Ei,x

∫ τf

0

c(It, Xt) dt

for i ≤ x ≤ f(i) in (0,∞) given and fixed. Applying the strong Markov property of (I,X)
at τi,f(i) = inf { t ≥ 0 | Xt /∈ (i, f(i)) } and using (2.23)-(2.25) we find that

(3.13) Vf(i, x) = Vf (i, i)
L(f(i))−L(x)
L(f(i))−L(i) +

∫ f(i)

i

c(i, y)Gi,f(i)(x, y)m(dy) .

It follows from (3.13) that

(3.14) Vf(i, i) =
L(f(i))−L(i)
L(f(i))−L(x) Vf (i, x)−

L(f(i))−L(i)
L(f(i))−L(x)

∫ f(i)

i

c(i, y)Gi,f(i)(x, y)m(dy) .

Using (3.10) and (3.11) we find after dividing and multiplying with x−f(i) that

(3.15) lim
x↑f(i)

Vf(i, x)

L(f(i))−L(x) = − 1

L′(f(i))

∂Vf
∂x

(i, x)
∣

∣

∣

x=f(i)−
= 0 .

Moreover, it is easily seen by (2.24) that

(3.16) lim
x↑f(i)

L(f(i))−L(i)
L(f(i))−L(x)

∫ f(i)

i

c(i, y)Gi,f(i)(x, y)m(dy) =

∫ f(i)

i

c(i, y) [L(y)−L(i)]m(dy) .

Combining (3.14)-(3.16) we see that

(3.17) Vf (i, i) = −
∫ f(i)

i

c(i, y) [L(y)−L(i)]m(dy) .

Inserting this back into (3.13) and using (2.24)+(2.25) we conclude that

(3.18) Vf (i, x) = −
∫ f(i)

x

c(i, y) [L(y)−L(x)]m(dy)

for i ≤ x ≤ f(i) in (0,∞) . Finally, using (3.9) we find that

(3.19) f ′(i) = − σ2(f(i))L′(f(i))

2c(i, f(i)) [L(f(i))−L(i)]

∫ f(i)

i

c′i(i, y) [L(y)−L(i)]m(dy)

9



for i > 0 . Recalling that C0 is contained in C we see that there is no restriction to assume
that each candidate function f solving (3.19) satisfies f(i) ≥ h(i) for all i > 0 . In addition
we will also show below that all points (i, h(i)) belong to C for i > 0 so that (at least
in principle) there would be no restriction to assume that each candidate function f solving
(3.19) also satisfies f(i) > h(i) for all i > 0 . These candidate functions will be referred to
as admissible. We will also see below however that solutions to (3.19) ‘starting’ at h play a
crucial role in finding/describing the solution.

Summarising the preceding considerations we can conclude that to each candidate function
f solving (3.19) there corresponds the function (3.18) solving the free-boundary problem (3.8)-
(3.11) as is easily verified by direct calculation. Note however that this function does not
necessarily admit the stochastic representation (3.12) (even though it was formally derived from
this representation). The central question then becomes how to select the optimal boundary
f among all admissible candidates solving (3.19). To answer this question we will invoke
the subharmonic characterisation of the value function (see [35, Chapter 1]) for the three-
dimensional Markov process (I,X,A) where At =

∫ t

0
c(Is, Xs) ds for t ≥ 0 . Fuller details

of this argument will become clearer as we progress below. It should be noted that among all
admissible candidate functions solving (3.19) only the optimal boundary will have the power
of securing the stochastic representation (3.12) for the corresponding function (3.18). This is
a subtle point showing the full power of the method (as well as disclosing limitations of the
optimal stopping problem itself).

5. The minimal solution. Motivated by the previous question we note from (3.18) that
f 7→ Vf is decreasing over admissible solutions to (3.19). This suggests to select the candidate
function among admissible solutions to (3.19) that is as far as possible from h . The subhar-
monic characterisation of the value function suggests to proceed in the opposite direction and
this is the lead that we will follow in the sequel.

To address the existence and uniqueness of solutions to (3.19), denote the right-hand side
of (3.19) by Φ(i, f(i)) . From the general theory of nonlinear differential equations we know
that if the direction field (i, f) 7→ Φ(i, f) is (locally) continuous and (locally) Lipschitz in the
second variable, then the equation (3.19) admits a (locally) unique solution. For instance, this
will be the case if along a (local) continuity of (i, f) 7→ Φ(i, f) we also have a (local) continuity
of (i, f) 7→ Φ′

f(i, f) . In particular, we see from the structure of Φ that the equation (3.19)
admits a (locally) unique solution whenever x 7→ σ2(x) is (locally) continuously differentiable.
It is important to realise that the preceding arguments apply only away from h since each
point (i, h(i)) is a singularity point of the equation (3.19) in the sense that f ′(i+) = ∞ when
f(i+) = h(i) due to c(i, h(i)) = 0 for i > 0 . In this case it is also important to note that
the preceding arguments can be applied to the equivalent equation for the inverse of i 7→ f(i)
since this singularity gets removed (the derivative of the inverse being zero).

To construct the minimal solution to (3.19) staying strictly above h we can proceed as
follows (see Figure 1). For any in > 0 such that in ↓ 0 as n→ ∞ let i 7→ fn(i) denote the
solution to (3.19) on (in,∞) such that fn(in+) = h(in) . Note that i 7→ fn(i) is singular at
in and that passing to the equivalent equation for the inverse of i 7→ fn(i) this singularity gets
removed as explained above. (Note that the solution to the equivalent equation for the inverse
can be continued below h(in) as well until hitting the diagonal at some strictly positive point
at which the derivative is −∞ . This yields another solution to (3.19) staying below fn and

10



Figure 1. Solutions fn and f∗ to the differential equation (3.4) from Theorem 3.
The optimal stopping boundary f∗ is the minimal solution staying strictly above
the curve h . This is a genuine drawing corresponding to the golden ratio rule of
Corollary 5 when X is the radial part of three-dimensional Brownian motion and
the optimal stopping boundary f∗ is linear.

providing its ‘physical’ link to the diagonal. We will not make use of this part of the solution
in the sequel.) Note that the right-hand side of the equation (3.19) is positive for f(i) > h(i)
so that i 7→ fn(i) is strictly increasing on [in,∞) . By the uniqueness of the solution we know
that the two curves i 7→ fn(i) and i 7→ fm(i) cannot intersect for n 6= m and hence we
see that (fn)n≥1 is increasing. It follows therefore that f∗ := limn→∞ fn exists on (0,∞) .
Passing to an integral equation equivalent to (3.19) it is easily verified that i 7→ f∗(i) solves
(3.19) wherever finite. This f∗ represents the minimal solution to (3.19) staying strictly above
the curve h on (0,∞) . We will first consider the case when f∗ is finite valued on (0,∞) .

6. Stochastic representation. We show that the function (3.18) associated with the minimal
solution f∗ admits the stochastic representation (3.12). For this, let i 7→ fn(i) be the solution
to (3.19) on (in,∞) such that fn(in+) = h(in) for in > 0 with in ↓ 0 as n → ∞ .
Consider the function (i, x) 7→ Vfn(i, x) defined by (3.18) for i ≤ x ≤ fn(i) and i ≥ in
with n ≥ 1 given and fixed. Recall that Vfn solves the free-boundary problem (3.8)-(3.11)
for i ≥ in . Consider the stopping time τn := τin ∧ τfn where τin = { t ≥ 0 | Xt = in } and
τfn = { t ≥ 0 | Xt ≥ fn(It) } . Applying Itô’s formula and using (3.8) we find that

Vfn(Iτn, Xτn) = Vfn(i, x) +

∫ τn

0

∂Vfn
∂i

(It, Xt) dIt +

∫ τn

0

∂Vfn
∂x

(It, Xt) dXt(3.20)

+
1

2

∫ τn

0

∂2Vfn
∂x2

(It, Xt) d
〈

X,X
〉

t

11



= Vfn(i, x) +

∫ τn

0

ILX(Vfn)(It, Xt) dt+

∫ τn

0

σ(Xt)
∂Vfn
∂x

(It, Xt) dBt

= Vfn(i, x)−
∫ τn

0

c(It, Xt) dt+Mτn

where we also use (3.9) to conclude that the integral with respect to dIt is equal to zero and
Mt =

∫ t∧τn
0

σ(Xs) (∂Vfn/∂x)(Is, Xs) dBs is a continuous local martingale for t ≥ 0 .
Since the process (I,X) remains in the compact set { (j, y) ∈ S | in ≤ j ≤ y ≤ fn(i) } up

to time τn under Pi,x , and both σ and ∂Vfn/∂x are continuous (and thus bounded) on this
set, we see that M is a uniformly integrable martingale and hence by the optional sampling
theorem we have Ei,xMτn = 0 . Taking Ei,x on both sides of (3.20) we therefore obtain

Vfn(i, x) = Ei,xVfn(Iτn , Xτn) + Ei,x

∫ τn

0

c(It, Xt) dt(3.21)

= Vfn(in, in) Pi,x(τin<τfn) + Ei,x

∫ τn

0

c(It, Xt) dt

since (Iτn , Xτn) = (in, in) on {τin < τfn} and Vfn(Iτn , Xτn) = 0 on {τfn <τin} . Using that
|c| ≤ 1 we find by (3.17), (2.23) and (3.6) that

|Vfn(in, in)| Pi,x(τin<τfn) ≤
∫ f(in)

in

|c(i, y)| |L(y)−L(in)|m(dy) Pi,x(τin<τfn)(3.22)

≤ |L(h(in))−L(in)|
∫ h(in)

in

m(dy)
L(f∗(i))−L(x)
L(f∗(i))−L(in)

=
1

2
|L(in)|

L(f∗(i))−L(x)
L(f∗(i))−L(in)

∫ h(in)

in

m(dy) → 0

as n→ ∞ since L(in) → −∞ and h(in) → 0 so that
∫ h(in)

in
m(dy) → 0 due to (2.5) above.

Hence letting n → ∞ in (3.21) and using that Vfn → Vf∗ by the monotone convergence
theorem, as well as that τn ↑ τf∗ since fn ↑ f∗ and in ↓ 0 , we find noting that Ei,xτf∗ < ∞
and using the dominated convergence theorem that

(3.23) Vf∗(i, x) = Ei,x

∫ τf∗

0

c(It, Xt) dt

for all i ≤ x in (0,∞) as claimed.

7. Non-positivity. We show that for every solution f to (3.19) such that f ≥ f∗ on (0,∞)
and the function Vf defined by (3.18) above we have

(3.24) Vf(i, x) ≤ 0

for all i ≤ x in (0,∞) . Clearly, since c(i, y) ≥ 0 for y ≥ h(i) in (3.18), it is enough to
prove (3.24) for f∗ and i ≤ x < h(i) with i > 0 . For this, consider the stopping time
τh = { t ≥ 0 | Xt ≥ h(It) } and note that τf∗ = τh+τf∗ ◦ θτh . Hence by the strong Markov
property of (I,X) applied at τh we find using (3.23) that

Vf∗(i, x) = Ei,x

∫ τh

0

c(It, Xt) dt+ Ei,x

∫ τh+τf∗◦θτh

τh

c(It, Xt) dt(3.25)
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= Ei,x

∫ τh

0

c(It, Xt) dt+ Ei,x

∫ τf∗◦θτh

0

c(It+τh , Xt+τh) dt

= Ei,x

∫ τh

0

c(It, Xt) dt+ Ei,x Ei,x

[

∫ τf∗

0

c(It, Xt) dt ◦ θτh | FX
τh

]

= Ei,x

∫ τh

0

c(It, Xt) dt+ Ei,x EIτh ,Xτh

[

∫ τf∗

0

c(It, Xt) dt
]

= Ei,x

∫ τh

0

c(It, Xt) dt+ Ei,x Vf∗(Iτh , Xτh) ≤ 0

where the final inequality follows from the facts that c(It, Xt) ≤ 0 for all t ∈ [0, τh] and
Vf∗(Iτh , Xτh) ≤ 0 due to Xτh = h(Iτh) upon recalling (3.18) as already indicated above. This
completes the proof of (3.24).

8. Optimality of the minimal solution. We will begin by disclosing the subharmonic charac-
terisation of the value function (3.1) in terms of the solutions to (3.19) staying strictly above
h . For this, let i 7→ f(i) be any solution to (3.19) satisfying f(i) > h(i) for all i > 0 .
Consider the function (i, x) 7→ Vf(i, x) defined by (3.18) for i ≤ x ≤ f(i) in (0,∞) and set
Vf (i, x) = 0 for x ≥ f(i) in (0,∞) . Let i ≤ x in (0,∞) be given and fixed. Due to the
‘double-deck’ structure of Vf we can apply the change-of-variable formula from [32] that in
view of (3.11) reduces to standard Itô’s formula and gives

Vf(It, Xt) = Vf (i, x) +

∫ t

0

∂Vf
∂i

(Is, Xs) dIs +

∫ t

0

∂Vf
∂x

(Is, Xs) dXs(3.26)

+
1

2

∫ t

0

∂2Vf
∂x2

(Is, Xs) d
〈

X,X
〉

s

= Vf (i, x) +

∫ t

0

ILX(Vf)(Is, Xs) ds+

∫ t

0

σ(Xs)
∂Vf
∂x

(Is, Xs) dBs

where we also use (3.9) to conclude that the integral with respect to dIs is equal to zero. The
process M = (Mt)t≥0 defined by

(3.27) Mt =

∫ t

0

σ(Xs)
∂Vf
∂x

(Is, Xs) dBs

is a continuous local martingale. Introducing the increasing process P = (Pt)t≥0 by setting

(3.28) Pt =

∫ t

0

c(Is, Xs) I(Xs ≥ f(Is)) ds

and using the fact that the set of all s for which Xs equals f(Is) is of Lebesque measure
zero, we see by (3.8) that (3.26) can be rewritten as follows

(3.29) Vf(It, Xt) +

∫ t

0

c(Is, Xs) ds = Vf(i, x) +Mt + Pt .

From this representation we see that the process Vf(It, Xt) +
∫ t

0
c(Is, Xs) ds is a local sub-

martingale for t ≥ 0 .
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Let τ be any stopping time of X (with finite mean). Choose a localisation sequence
(σn)n≥1 of bounded stopping times for M . Then by (3.24) and (3.29) we can conclude using
the optional sampling theorem that

Ei,x

∫ τ∧σn

0

c(It, Xt) dt ≥ Ei,x

[

Vf(Iτ∧σn , Xτ∧σn) +

∫ τ∧σn

0

c(It, Xt) dt
]

(3.30)

≥ Vf(i, x) + Ei,xMτ∧σn = Vf (i, x) .

Letting n → ∞ and using the dominated convergence theorem (upon recalling that |c| ≤ 1
as already used above) we find that

(3.31) Ei,x

∫ τ

0

c(It, Xt) dt ≥ Vf(i, x) .

Taking first the infimum over all τ , and then the supremum over all f , we conclude that

(3.32) V (i, x) ≥ sup
f
Vf (i, x) = Vf∗(i, x)

upon recalling that f 7→ Vf is decreasing over f ≥ f∗ so that the supremum is attained at
f∗ . Combining (3.32) with (3.23) we see that (3.3) and (3.5) hold as claimed.

Note that (3.30) implies that the function (i, x) 7→ Vf(i, x)+a is subharmonic for the

Markov process (I,X,A) where At =
∫ t

0
c(Is, Xs) ds for t ≥ 0 . Recalling that f 7→ Vf is

decreasing over f ≥ f∗ , and that Vf (i, x) ≤ 0 for all i ≤ x in (0,∞) by (3.24) above, we
see that selecting the minimal solution f∗ staying strictly above h is equivalent to invoking
the subharmonic characterisation of the value function (according to which the value function
is the largest subharmonic function lying below the loss function). For more details on the
latter characterisation in a general setting we refer to [35, Chapter 1]. It is also useful to know
that the subharmonic characterisation of the value function represents the dual problem to the
primal problem (3.1) (for more details on the meaning of this claim including connections to
the Legendre transform see [33]).

Consider finally the case when f∗ is not finite valued on (0,∞) . Since i 7→ f∗(i) is
increasing we see that there is i∗ ≥ 0 such that f∗(i) < ∞ for all i ∈ (0, i∗) when i∗ > 0
and f∗(i) = ∞ for all i ≥ i∗ with i 6= 0 when i∗ = 0 . If i∗ > 0 then the proof above can
be applied in exactly the same way to show that (3.3) and (3.5) hold as claimed under Pi,x for
all i ≤ x in (0,∞) with i < i∗ . If i ≥ i∗ with i 6= 0 when i∗ = 0 then the same proof
shows that (3.5) still holds with ∞ in place of f∗(i) , however, the stopping time (3.3) can no
longer be optimal in (3.1). This is easily seen by noting that the value in (3.5) is non-positive
( it could also be −∞ ) for any x ≥ h(i) for instance, while the Pi,x -probability for X hitting
i before drifting away to ∞ is strictly smaller than 1 so that the Pi,x -expectation over this
set in (3.1) equals ∞ (since the integrand tends to 1 as t tends to ∞ ) showing that the
stopping time (3.3) cannot be optimal. The proof above shows that the optimality of (3.5) in
this case is obtained through τn = τin ∧ τfn which play the role of approximate stopping times
(obtained by passing to the limit when n tends to ∞ in (3.21) above). This completes the
proof of the theorem. �
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4. The golden ratio rule

In this section we show that the minimal solution to (3.4) admits a simple closed-form
expression when X is a transient Bessel process (Theorem 4). In the case when X is the
radial part of three-dimensional Brownian motion this leads to the golden ratio rule (Corollary
5). We also show that X stopped according to the golden ratio rule has what we refer to as
the golden ratio distribution (Corollary 8).

In the setting of (2.6)-(2.8) consider the optimal prediction problem (2.14). Recall that this
problem is equivalent to the optimal stopping problem (2.21) which further extends as (3.1).
The main result of this section can now be stated as follows.

Theorem 4. If X is the d-dimensional Bessel process solving (2.6) with d > 2 , then the
optimal stopping time in (2.14) is given by

(4.1) τ∗ = inf { t ≥ 0 | Xt ≥ λIt }

where λ is the unique solution to

λd − (1+d) λ2 + 4
4−d

λ4−d − (d−2)2

4−d
= 0 if d 6= 4(4.2)

λ4 − 5 λ2 + 4 log λ+ 4 = 0 if d = 4(4.3)

belonging to (21/(d−2),∞) . The value function (3.1) is given explicitly by

V (i, x) = 2
d−2

[

x2
(

1
2
+
(

i
x

)d−2
)(

(

λi
x

)2−1
)

(4.4)

− x2

d

(

(

λi
x

)d−1
)

− 2λ4−d

d−4
i2
(

(

λi
x

)d−4−1
) ]

if d 6= 4

=
[

x2
(

1
2
+
(

i
x

)2
)(

(

λi
x

)2−1
)

− x2

4

(

(

λi
x

)4−1
)

− 2 i2 log
(

λi
x

)

]

if d = 4

for i ≤ x ≤ λi and V (i, x) = 0 for x ≥ λi with i > 0 .

Proof. By the result of Theorem 3 we know that the optimal stopping time τ∗ is given
by (3.3) above where the optimal boundary f∗ can be characterised as the minimal solution
to (3.4) staying strictly above the curve h(i) = L−1(L(i)/2) for i > 0 . Using (2.7) and (3.2)
it can be verified that (3.4) reads as follows

f ′(i) =

d−2
4−d

(f(i)
i

)

[

(4−d)
(f(i)

i

)d−2
+ (d−2)

(f(i)
i

)d−4 − 2
]

(

(f(i)
i

)d−2−1
)(

( f(i)
i

)d−2−2
) if d 6= 4(4.5)

=
2
(

f(i)
i

)

[

(

f(i)
i

)2 − 2 log
(

f(i)
i

)

− 1
]

(

( f(i)
i

)2−1
)(

( f(i)
i

)2−2
) if d = 4
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and h(i) = 21/(d−2)i for i > 0 . Hence it is enough to show that f∗(i) = λi is the minimal
solution to (4.5) staying strictly above the curve h(i) = 21/(d−2)i for i > 0 .

To show that f∗ is a solution to (4.5) staying strictly above h , insert f(i) = λi into (4.5)
with λ > 0 to be determined. Multiplying both sides of the resulting identity by λ4−d (to
be able to derive the factorisation (4.7) below) it is easy to see that this yields the equation
F (λ) = 0 where we set

F (λ) = λd − (1+d) λ2 + 4
4−d

λ4−d − (d−2)2

4−d
if d 6= 4(4.6)

= λ4 − 5 λ2 + 4 log λ+ 4 if d = 4

for λ > 0 . After some algebraic manipulations we find that

(4.7) F ′(λ) = d λ3−d
(

λd−2− 2
d

)(

λd−2−2
)

for λ > 0 and d > 2 . Hence we see that the equation F ′(λ) = 0 has two roots λ0 =
(2/d)1/(d−2) and λ1 = 21/(d−2) where 0 < λ0 < 1 < λ1 < ∞ . It is easy to check that
F ′′(λ0) < 0 and F ′′(λ1) > 0 showing that F has a local maximum at λ0 and F has a
local minimum at λ1 . Noting that F (0+) < 0 , F (1) = 0 and F (∞−) = ∞ this shows
that (i) F is strictly increasing on (0, λ0) with F (0+) < 0 and F (λ0) > 0 ; (ii) F is
strictly decreasing on (λ0, λ1) with F (1) = 0 and F (λ1) < 0 ; and F is strictly increasing
on (λ1,∞) with F (∞−) = ∞ . It follows therefore that the equation F (λ) = 0 has exactly
three roots λ∗0 < 1 < λ∗1 where λ∗0 ∈ (0, λ0) and λ∗1 ∈ (λ1,∞) . Setting λ = λ∗1 this shows
that f∗(i) = λi is a solution to (4.5) staying strictly above the curve h(i) = 21/(d−2)i for i > 0
as claimed.

To show that f∗ is the minimal solution satisfying this property, set κ(i) = f(i)/i and
note that (4.5) can then be rewritten as follows

(4.8) iκ′(i) = − F
(

κ(i)
)

κ3−d(i)
(

κd−2(i)−1
)(

κd−2(i)−2
)

for i > 0 . Since F (κ(i)) < 0 for κ(i) ∈ (21/(d−2), λ) we see from (4.8) that i 7→ κ(i) is
increasing for κ(i) ∈ (21/(d−2), λ) . Noting that (4.8) implies that

(4.9) −
∫ κ(i0)

κ(i)

κ3−d
(

κd−2−1
)(

κd−2−2
)

F (κ)
dκ =

∫ i0

i

di

i
= log

( i0
i

)

it follows therefore that the integrand on the left-hand side is bounded by a constant (not
dependent on i ) as long as κ(i) ∈ (21/(d−2), λ) for i ∈ (0, i0) with any i0 > 0 given and
fixed. Letting then i ↓ 0 in (4.9) we see that the left-hand side remains bounded while the
right-hand side tends to ∞ leading to a contradiction. Noting that κ(i) ∈ (21/(d−2), λ) if
and only if f(i) ∈ (h(i), f∗(i)) we can therefore conclude that there is no solution f to (4.5)
satisfying f(i) ∈ (h(i), f∗(i)) for i > 0 . Thus f∗ is the minimal solution to (4.5) staying
strictly above h and the proof is complete. �

Corollary 5 (The golden ratio rule). If X is the radial part of three-dimensional
Brownian motion, then the optimal stopping time in (2.14) is given by

(4.10) τ∗ = inf
{

t ≥ 0
∣

∣

Xt−It
It

≥ ϕ
}
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Figure 2. The golden ratio rule for the radial part X of three-dimensional
Brownian motion.

where ϕ = (1+
√
5)/2 = 1.61 . . . is the golden ratio (see Figure 2).

Proof. In this case d = 3 and the equation (4.2) reads

(4.11) λ3 − 4λ2 + 4λ− 1 = (λ− 1)(λ2 − 3λ+ 1) = 0

for λ > 0 . Solving the latter quadratic equation and choosing the root strictly greater than 1
we find that λ = 1 + ϕ where ϕ = (1+

√
5)/2 = 1.61 . . . is the golden ratio. The optimality

of (4.10) then follows from (4.1) and the proof is complete. �

Returning to the result of Theorem 3 above we now determine the law of the transient
diffusion process X stopped at the optimal stopping time τ∗ (for related results on the
Skorokhod embedding problem see [36, pp. 269-277] and the references therein).

Proposition 6. In the setting of Theorem 3 we have

(4.12) Px(Xτ∗ ≤ y ) = exp

(

−
∫ x

f−1
∗

(y)

dL(z)

L(f∗(z))−L(z)

)

for 0 < y ≤ f∗(x) with x > 0 .

Proof. Note that

τ∗ = inf { t ≥ 0 | Xt ≥ f∗(It) }(4.13)

= inf { t ≥ 0 | L(Xt) ≥ (L ◦ f∗ ◦ L−1)(L(It)) }
= inf { t ≥ 0 | XL

t ≥ fL
∗ (I

L
t ) }

where we set XL
t = L(Xt) , f

L
∗ = L◦f∗ ◦L−1 and ILt = L(It) = inf 0≤s≤t L(Xs) = inf 0≤s≤tX

L
s

for t ≥ 0 . Let x > 0 be given and fixed. For j ≤ L(x) set G(j) =
∫ j

−∞
g(k) dk where
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g : (−∞, L(x)] → IR is a continuously differentiable function with bounded support. Using
the fact that dILt = 0 when XL

t 6= ILt it is easily verified by Itô’s formula that the process
ML = (ML

t )t≥0 defined by

(4.14) ML
t = G(ILt ) + (XL

t −ILt )G′(ILt )

is a continuous local martingale. Moreover, since G′ = g is continuous and has bounded
support we see that ML is bounded and therefore uniformly integrable. By the optional
sampling theorem we thus find that

GL(x) = ExM
L
0 = ExM

L
τ∗ = ExG(I

L
τ∗) + Ex

[

(XL
τ∗−ILτ∗)G′(ILτ∗)

]

(4.15)

=

∫ L(x)

−∞

G(j) dF (j) + Ex

[

(fL
∗ (I

L
τ∗)−ILτ∗)G′(ILτ∗)

]

= G(j)F (j)
∣

∣

L(x)

−∞
−
∫ L(x)

−∞

F (j) dG(j) +

∫ L(x)

−∞

(fL
∗ (j)−j)G′(j) dF (j)

= GL(x)−
∫ L(x)

−∞

F (j) g(j) dj +

∫ L(x)

−∞

(fL
∗ (j)−j) g(j) dF (j)

where we set GL(x) = G(L(x)) and F denotes the distribution function of ILτ∗ under Px .
Since (4.15) holds for all functions g of this kind, it follows that

(4.16) F ′(j) =
F (j)

fL
∗ (j)−j

for j < L(x) with F (L(x)) = 1 . Solving (4.16) under this boundary condition we find that

(4.17) F (j) = exp

(

−
∫ L(x)

j

dk

fL
∗ (k)−k

)

for j ≤ L(x) . Recalling that fL
∗ = L ◦ f∗ ◦ L−1 and substituting k = L(z) it follows that

Px(Iτ∗ ≤ i) = Px(L(Iτ∗) ≤ L(i)) = Px(I
L
τ∗ ≤ L(i)) = F (L(i))(4.18)

= exp

(

−
∫ L(x)

L(i)

dk

fL
∗ (k)−k

)

= exp

(

−
∫ x

i

dL(z)

L(f∗(z))−L(z)

)

for i ≤ x in (0,∞) . Hence we find that

Px(Xτ∗ ≤ y) = Px(f∗(Iτ∗) ≤ y) = Px(Iτ∗ ≤ f−1
∗ (y)) = exp

(

−
∫ x

f−1
∗

(y)

dL(z)

L(f∗(z))−L(z)

)

(4.19)

for 0 < y ≤ f∗(x) with x > 0 . This completes the proof. �

Specialising this result to the d-dimensional Bessel process X of Theorem 4 we obtain the
following consequence.

Corollary 7. In the setting of Theorem 4 we have

(4.20) Px(Xτ∗ ≤ y ) =
( y

λx

)
d−2

1−(1/λ)d−2
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for 0 < y ≤ λx with x > 0 .

Proof. In this case f∗(i) = λi for i > 0 where λ is the unique solution to either (4.2)
when d 6= 4 or (4.3) when d = 4 and L is given by (2.7). Inserting these expressions into
the right-hand side of (4.12) it is easily verified that this yields (4.20). �

Specialising this further to the radial part X of three-dimensional Brownian motion in
Corollary 5 we obtain the following conclusion.

Corollary 8 (The golden ratio distribution). In the setting of Corollary 5 we have

(4.21) Px(Xτ∗ ≤ y ) =
( y

(1+ϕ)x

)ϕ

for 0 < y ≤ (1+ϕ)x with x > 0 .

Proof. In this case d = 3 and λ = 1+ϕ so that (d−2)/(1−(1/λ)d−2) = 1/(1−1/(1+ϕ)) =
(1+ϕ)/ϕ = ϕ2/ϕ = ϕ . Hence we see that (4.20) reduces to (4.21). �

Note from (4.21) that the density function of Xτ∗ under Px is given by

(4.22) fXτ∗
(y) =

ϕ

((1+ϕ)x)ϕ
yϕ−1

for 0 < y < (1+ϕ)x with x > 0 and equals zero otherwise. We refer to (4.21)+(4.22) as the
golden ratio distribution. It is easy to see that

(4.23) ExXτ∗ = ϕx

for x > 0 . The fact that this number is strictly greater than x (the initial point corresponding
to stopping at once) is not surprising since X is a submartingale. It needs to be recalled
moreover that the aim of applying the golden ratio rule τ∗ is to be as close as possible to the
time θ at which the ultimate minimum is attained. We will see in the next section that the
golden ratio distribution provides insight as to what extent the golden ratio rule has the power
of capturing the ultimate maximum of a strict local martingale.

5. Applications in optimal trading

In this section we present some applications of the previous results in problems of optimal
trading. We also outline some remarkable connections between such problems and the practice
of technical analysis. These applications and connections rest on three basic ingredients that
we describe first.

1. Fibonnaci retracement. We begin by explaining a few technical terms from the field of
applied finance. Technical analysis is a financial term used to describe methods and techniques
for forecasting the direction of asset prices through the study of past market data (primarily
prices themselves plus the volume of their trade). Support and resistance are concepts in tech-
nical analysis associated with the expectation that the movement of the asset price will tend to
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cease and reverse its trend of decrease/increase at certain predetermined price levels. A sup-
port/resistance level is a price level at which the price will tend to find support/resistance when
moving down/up. This means that the price is more likely to bounce off this level rather than
break through it. One may also think of these levels as turning points of the prices. Fibonacci
retracement is a method of technical analysis for determining support and resistance levels.
The name comes after its use of Fibonacci numbers Fn+1 = Fn+Fn−1 for n ≥ 1 with F0 = 0
and F1 = 1 . Fibonacci retracement is based on the idea that after reversing the trend at a sup-
port/resistance level, the price will retrace a predictable portion of the past downward/upward
move by advancing in the opposite direction until finding a new resistance/support level, after
which it will return to the initial trend of moving downwards/upwards. Fibonacci retracement
is created by taking two extreme points on a chart showing the asset price as a function of time
and dividing the vertical distance between them by the key Fibonacci ratios ranging from 0%
(start of the retracement) to 100% (end of the retracement representing a complete reversal to
the original trend). The other key Fibonacci ratios are 23.6% (shallow retracement), 38.2%
(moderate retracement) and 61.8% (golden retracement). They are obtained by formulae
(Fn/Fn+3)×100 ≈ ϕ−3×100 , (Fn/Fn+2)×100 ≈ ϕ−2×100 and (Fn/Fn+1)×100 ≈ ϕ−1×100
respectively (see the next paragraph). These retracement levels serve as alert points for a po-
tential reversal at which traders may employ other methods of technical analysis to identify and
confirm a reversal. Despite its widespread use in technical analysis of asset prices, there appears
to be no (rigourous) explanation of any kind as to why the Fibonacci ratios should be used to
this effect. We will show below that the golden ratio rule derived in the previous section offers
a rigourous optimality argument for the choice of the golden retracement ( 61.8% ). To our
knowledge this is the first time that such an argument has been found/given in the literature.

2. Golden ratio and Fibonacci numbers. The link between the two is well known and is
expressed by Binet’s formula

(5.1) Fn =
ϕn− ψn

ϕ−ψ =
ϕn− ψn

√
5

where ϕ = (1+
√
5)/2 and ψ = (1−

√
5)/2 = 1−ϕ = −1/ϕ . It follows that

(5.2) lim
n→∞

Fn+1

Fn
= ϕ .

This fact is used in the description of Fibonacci retracement above.

3. The CEV model. One of the simplest/tractable models for asset price movements that is
capable of reproducing the implied volatility smile/frown effect and the (inverse) leverage effect
(both observed in the empirical data) is the Constant Elasticity of Variance (CEV) model in
which the (non-negative) asset price process Z = (Zt)t≥0 solves

(5.3) dZt = µZt dt+ σZ1+β
t dBt

where µ ∈ IR is the appreciation rate, σ > 0 is the volatility coefficient, and β ∈ IR is the
elasticity parameter. If β = 0 then Z is a geometric Brownian motion which was initially
considered in [28] and [37]. For β 6= 0 this model was firstly considered in [3] for β < 0 and
then in [13] for β > 0 . Due to its predictive power and tractability, the CEV model is widely

20



used by practitioners in the financial industry, especially for modelling prices of equities and
commodities. If β < 0 then the model embodies the leverage effect (commonly observed in
equity markets) where the volatility of the asset price increases as its price decreases. If β > 0
then the model embodies the inverse leverage effect (often observed in commodity markets)
where the volatility of the asset price increases when its price increases. For example, it is
reported in [17] that the elasticity coefficient β for Gold on the London Bullion Market in the
period from 2000 to 2007 was approximately 0.49. Similar elasticity coefficients have also been
observed for other precious metals (such as Copper for instance).

In the remainder of this section we focus on the case when µ = 0 and β > 0 . It is well
known (cf. [13]) that Z solving (5.3) is a strict local martingale (a local martingale which
is not a true martingale) in this case due to the fact that t 7→ E z(Zt) is strictly decreasing
on IR+ for any z > 0 . This also implies that Z does not admit an equivalent martingale
measure so that the CEV model may admit arbitrage opportunities. One way of looking at the
models of this type is to associate them with asset price bubbles (see [21]). After soaring to
a finite ultimate maximum (bubble) at a finite time, the asset price will tend to zero as time
goes to infinity, and the central question for a holder of the asset becomes when to sell so as to
be as close as possible to the time at which the ultimate maximum is attained. More precisely,
introducing the running maximum process S = (St)t≥0 associated with Z by setting

(5.4) St = sup
0≤s≤t

Zs

and recalling that Zt → 0 as t→ ∞ , we see that the ultimate supremum S∞ = sup t≥0 Zt is
attained at some random time θ in the sense that

(5.5) Zθ = S∞

with Pz -probability one for z > 0 given and fixed. The optimal selling problem addressed
above then becomes the optimal prediction problem

(5.6) V (z) = inf
τ

Ez

(

|θ−τ |−θ
)

where the infimum is taken over all stopping times τ of Z (with finite mean) and z > 0 is
given and fixed. We will now show that due to the well-known connection between CEV and
Bessel processes (dating back to similar transformations in [3] and [13]) the problem (5.6) can
be reduced to the problem (2.14) solved above.

4. The golden ratio rule for the CEV process. For d > 2 given and fixed consider the
d-dimensional Bessel process X solving (2.6) under Px with x > 0 . Recall that the scale
function L is given by (2.7) and set K(x) = −cσL(x) for x > 0 with cσ > 0 given and
fixed. Then the process Z = K(X) defined by

(5.7) Zt = K(Xt) =
cσ

Xd−2
t

is on natural scale and Itô’s formula shows that Z solves

(5.8) dZt = σZ
1+ 1

d−2

t dB̃t
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Figure 3. The golden ratio rule for the CEV process Z = 1/X where X is the
radial part of three-dimensional Brownian motion. Note the presence of a bubble
and its relation to the golden ratio.

where σ = (d−2)/c
1/(d−2)
σ and B̃ = −B is a standard Brownian motion. Note that the

equation (5.8) coincides with the equation (5.3) for µ = 0 and β = 1/(d− 2) . By the
uniqueness in law for this equation (among positive solutions) it follows that Z = K(X) is
a CEV process. From the properties of X it follows that after starting at z = K(x) > 0 ,
the process Z stays strictly positive (without exploding at a finite time) and Zt → 0 with
Pz -probability one as t→ ∞ . This shows that θ in (5.5) is well defined. Moreover, due to the
reciprocal relationship (5.7) we see that the time of the ultimate maximum θ for Z in (5.5)
coincides with the time of the ultimate minimum θ for X in (2.10) and hence the problem
(5.6) has the same solution as the problem (2.14) (note also that the natural filtrations of Z
and X coincide so that τ is a stopping time of Z if and only if τ is a stopping time of X ).
Since Xt ≥ λIt if and only if Zt/cσ = X2−d

t ≤ λ2−d I2−d
t = λ2−d St/cσ it follows from (4.1) in

Theorem 4 that the optimal stopping time in (5.6) is given by

(5.9) τ∗ = inf { t ≥ 0 | St ≥ λd−2Zt }

where λ is the unique solution to either (4.2) or (4.3) belonging to (21/(d−2),∞) . In particular,
if d = 3 then we know from (4.11) that λ = 1+ϕ so that (5.9) reads

(5.10) τ∗ = inf
{

t ≥ 0
∣

∣

St−Zt

Zt
≥ ϕ

}

.

This is the golden ratio rule for the CEV process Z = 1/X where X is the radial part of
three-dimensional Brownian motion (see Figure 3).

To relate the golden ratio rule (5.10) to Fibonacci retracement discussed above, let a =
Sτ∗−Zτ∗ denote the larger quantity and let b = Zτ∗ denote the smaller quantity in the golden
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ratio rule. To determine the percentage of a in a+b we need to calculate

(5.11)
a

a+b
=
Sτ∗−Zτ∗

Sτ∗

= 1− Zτ∗

Sτ∗

= 1− 1

1+ϕ
=

ϕ

1+ϕ
=

1

ϕ
.

Multiplying this expression by 100 gives 61.8% and this is exactly the golden retracement
discussed above. In view of the optimality of (5.10) in (5.6) we see that the golden retracement
of 61.6% for the CEV process Z = 1/X (starting close to zero) where X is the radial part
of three-dimensional Brownian motion can be seen as a rational support level (in the sense that
rational investors who aim at selling the asset at the time of the ultimate maximum will sell
the asset at the time of the golden retracement and therefore the asset price could be expected
to raise afterwards). To our knowledge this is the first time that such a rational optimality
argument for the golden retracement has been established.
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