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Abstract. The paper analyzes the simulated long-term behavior of well diver-
sified portfolios in continuous financial markets. It focuses on the equi-weighted
index and the market portfolio. The paper illustrates that the equally weighted
portfolio constitutes a good proxy of the growth optimal portfolio, which max-
imizes expected logarithmic utility. The multi-asset market models considered
include the Black-Scholes model, the Heston model, the ARCH diffusion model,
the geometric Ornstein-Uhlenbeck volatility model and a multi-asset version of
the minimal market model. All these models are simulated exactly or almost
exactly over an extremely long period of time to analyze the long term growth
of the respective portfolios. The paper illustrates the robustness of the diversi-
fication phenomenon when approximating the growth optimal portfolio by the
equi-weighted index. Significant outperformance in the long run of the market
capitalization weighted portfolio by the equi-weighted index is documented
for different market models. Under the multi-asset minimal market model
the equi-weighted index outperforms remarkably the market portfolio. In this
case the benchmarked market portfolio is a strict supermartingale, whereas
the benchmarked equi-weighted index is a martingale. Equal value weighting
overcomes the strict supermartingale property that the benchmarked market
portfolio inherits from its strict supermartingale constituents under this model.
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1 Introduction

Diversification is a concept that has been successfully applied in risk management
for centuries. When constructing a diversified portfolio (DP) in the sense of this
paper, the proportion of the value of the holding in each individual security, rela-
tive to the total portfolio value, converges sufficiently fast to zero as the number
of securities increases. A prominent DP is the equi-weighted index (EWI). In
the classical literature related to portfolio optimization and capital asset pricing
the market portfolio or market capitalization weighted index (MCI), plays a sig-
nificant role, see for instance Markowitz (1959), Lintner (1965), Sharpe (1964)
and Merton (1973). This paper demonstrates via simulation that well diversified
portfolios approximate the growth optimal portfolio (GOP), which is the portfolio
that maximizes expected logarithmic utility, see Kelly (1956). They are likely to
outperform the long run growth of the market portfolio. Asymptotic properties
of diversified portfolios have been analyzed by Björk & Näslund (1998), Hofmann
& Platen (2000), Guan, Liu & Chong (2004), Platen (2005) and Platen & Rendek
(2010). A different notion of diversification than the one used in the current paper
has been introduced in Fernholz (2002), see also Fernholz, Karatzas & Kardaras
(2005).

The current paper considers DPs in a rather general setting under the bench-
mark approach, see Platen (2002, 2004) and Platen & Heath (2006). This ap-
proach is built upon the notion of the numéraire portfolio (NP) that when used as
benchmark makes all benchmarked nonnegative securities supermartingales. The
NP, which in the setting of this paper equals the GOP, is almost surely path-
wise the best performing portfolio in the long run. It can be used in derivative
pricing as numéraire and in portfolio optimization as benchmark, see Platen &
Heath (2006). The numéraire portfolio appears in a range of literature including,
for instance, Long (1990), Artzner (1997), Bajeux-Besnainou & Portait (1997),
Karatzas & Shreve (1998), Kramkov & Schachermayer (1999), Becherer (2001),
Platen (2002), Goll & Kallsen (2003) and Karatzas & Kardaras (2007).

In practice, it is difficult to construct the GOP in the real market since such a
construction would need a valid model and accurate estimates of the parameters
characterising the model. Unfortunately, it is not possible to estimate any drift
parameter with sufficient significance to be useful in a sample-based Markowitz
style portfolio optimization for a large financial market. This has been made clear
by a recent study in DeMiguel, Garlappi & Uppal (2009). On the other hand, a
Diversification Theorem derived in Platen (2005) shows under minor regularity
assumptions that for a sequence of markets, a corresponding sequence of DPs
is a sequence of approximate GOPs, see also Platen & Rendek (2010). The re-
sult allows one to approximate the GOP, for instance, by the equi-weighted index
(EWI). It holds for continuous market dynamics where the benchmarked pri-
mary security accounts are local martingales. It covers also the case when these
nonnegative local martingales are strict supermartingales. Nonnegative strict su-
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permartingales show in the long run a systematic downward trend. This raises
the practically important question, whether significantly better performance can
be detected for the EWI when compared to the market capitalization weighted
index (MCI) for a market model where the constituents are strict supermartin-
gales? This paper demonstrates that this is indeed the case. It also shows the
robustness of the diversification phenomenon. It simulates the EWI and MCI
under various continuous financial market models. An important feature of this
study is that these simulations are exact or at least almost exact. In an almost
exact simulation the only numerical approximations performed are discrete time
approximations of integrals with integrators of finite variation. This kind of nu-
merical approximation can be handled by effective quadrature rules. The almost
exact simulation avoids the typical problems that may arise in standard discrete
time numerical approximations, see Kloeden & Platen (1999). These are often
due to the non-Lipschitzness of coefficient functions and discrete time approxima-
tion, potentially causing long run numerical stability problems or even negative
approximate values for positive price processes. By focusing on exact or at least
almost exact approximations, the long-term simulation results of the study be-
come extremely reliable. They give a realistic perspective on the closeness of the
EWI to the GOP and show the divergence from the MCI under various models.
When one constructs these portfolios from real market data, as in Platen & Ren-
dek (2008) and Platen & Rendek (2010), then one observes effects very similar
to those discussed in the current paper. Of particular importance is the realistic
case where benchmarked primary security accounts are strict supermartingales,
as will be explained below.

Another contribution of this paper is the exact and almost exact simulation
of asset prices for a selection of market models. Along the lines of Platen &
Rendek (2009), the paper simulates asset prices under the multi-asset Black-
Scholes model, see Black & Scholes (1973); the multi-asset Heston model, see
Heston (1993); the multi-asset ARCH-diffusion model, see Nelson (1990) and
Frey (1997); the multi-asset geometric Ornstein-Uhlenbeck volatility model, see
Wiggins (1987) and Bergomi (2004); and a multi-asset version of the minimal
market model, see Platen (2001, 2002). The simulation study demonstrates that
the convergence of the EWI towards the GOP appears to be remarkably robust.
For the minimal market model, where the primary security accounts when ex-
pressed in units of the GOP are strict supermartingales, the EWI outperforms in
the long run the MCI significantly. This can be explained by the fact that the
benchmarked MCI, as the sum of strict supermartingales, is a strict supermartin-
gale, whereas, the benchmarked GOP is constant.
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2 Diversified Portfolios

The aim of the paper is to demonstrate the diversification phenomenon for par-
ticular market models with emphasis on the EWI and the MCI. The paper relies
on a selection of continuous financial market models, which are typical in the
continuous time finance literature.

Let be given a filtered probability space (Ω,A,A, P ), where A = (At)t∈[0,∞) is the
filtration which models the evolution of information in the market and satisfies
the usual conditions, see Protter (2004). For simplicity, the paper considers
market models with continuous security prices. Traded uncertainty is modeled
by the independent standard (A, P )-Wiener processes W k = {W k

t , t ∈ [0,∞)},
k ∈ {1, 2, . . .}.
Consider a sequence (SC

(d))d∈{1,2,... } of continuous financial market models (CFMs)

where the dth market SC
(d) is indexed by the number d ∈ {1, 2, . . .} of its risky

assets. For given d, the corresponding CFM comprises d + 1 primary security
accounts, denoted by S0

(d), S
1
(d), . . . , S

d
(d). These include a savings account S0

(d) =

{S0
(d)(t), t ∈ [0,∞)}, which is the locally riskless primary security account of the

domestic currency expressed by

S0
(d)(t) = exp

{

∫ t

0

rsds
}

(2.1)

for t ∈ [0,∞), where r = {rt, t ∈ [0,∞)} denotes the finite adapted short rate
process.

Fix for the moment d ∈ {1, 2, . . .}. As shown in Platen & Heath (2006), in the
dth CFM SC

(d) there exists a unique GOP Sδ∗
(d) = {Sδ∗

(d)(t), t ∈ [0,∞)}, which is a
strictly positive portfolio that maximizes the expected log-utility from terminal
wealth, see Kelly (1956). More precisely, it maximizes E(ln(Sδ

(d)(T ))) for any

T ∈ [0,∞), over all strictly positive portfolios Sδ
(d) formed by the primary security

accounts S0
(d), . . . , S

d
(d).

Define in the dth CFM the jth benchmarked primary security account process
Ŝj

(d) = {Ŝj

(d)(t), t ∈ [0,∞)} by setting

Ŝj

(d)(t) =
Sj

(d)(t)

Sδ∗
(d)(t)

(2.2)

for t ∈ [0,∞), j ∈ {0, 1, . . . , d}. Assume that, as shown in Platen & Heath (2006),
Ŝj

(d)(t) satisfies the stochastic differential equation (SDE)

dŜj

(d)(t) = Ŝj

(d)(t)

d
∑

k=1

σj,k

(d)(t) dW k
t (2.3)

for t ∈ [0,∞) and predictable volatility processes σj,k

(d), j, k ∈ {0, 1, . . . , d}.
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For a benchmarked portfolio process Ŝδ
(d) = {Ŝδ

(d)(t), t ∈ [0,∞)}, its value at time
t is given by the sum

Ŝδ
(d)(t) =

d
∑

j=0

δj
t Ŝ

j

(d)(t). (2.4)

Here, the vector process of the predictable number of units invested δ = {δt =
(δ0

t , δ
1
t , . . . , δ

d
t )

⊤, t ∈ ℜ+} represents the corresponding strategy. Assume that the
Itô integral

∫ t

0

δj
sdŜj

(d)(s) (2.5)

exists in a suitable sense, see Protter (2004), for all j ∈ {0, 1, . . . , d}, d ∈ {1, 2, . . .}
and t ∈ [0,∞). All portfolios that the paper considers are assumed to be self-
financing, which is expressed via the SDE

dŜδ
(d)(t) =

d
∑

j=0

δj
t dŜj

(d)(t) (2.6)

for t ∈ [0,∞).

This study will focus on portfolios that remain strictly positive. Define the frac-
tion πj

δ,t of Ŝδ
(d)(t) that is invested in the jth benchmarked primary security ac-

count Ŝj

(d)(t) at time t, which is given by the formula

πj
δ,t = δj

t

Ŝj

(d)(t)

Ŝδ
(d)(t)

(2.7)

for j ∈ {0, 1, . . . , d}. Note that fractions can be negative but always sum to one,
such that

d
∑

j=0

πj
δ,t = 1 (2.8)

for t ∈ [0,∞).

To give some theoretical background to the following simulations the following
definition prepares a formulation of the Diversification Theorem derived in Platen
(2005).

Definition 1 For a sequence of CFMs (SC
(d))d∈{1,2,...} a corresponding sequence

(Sδ
(d))d∈{1,2,...} of strictly positive portfolio processes Sδ

(d) is called a sequence of di-

versified portfolios (DPs) if some constants K1, K2 ∈ (0,∞) and K3 ∈ {1, 2, . . .}
exist independently of d, such that for d ∈ {K3, K3 + 1, . . .} the inequality

|πj
δ,t| ≤

K2

d
1

2
+K1

(2.9)

holds almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞).
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This means, for a DP the fractions decline faster than d− 1

2 for increasing d.
Note that they do not need to be equal and can vary substantially. The equi-
weighted index (EWI) is an example for a diversified portfolio. Note that a
market capitalization weighted index (MCI) has fractions that may not always
satisfy the bounds given in (2.9).

Assume that in a given CFM the primary security accounts are sufficiently differ-
ent. Otherwise, one cannot expect any substantial diversification effect to emerge.
Introduce σ̂k

(d)(t) as the k-th total specific volatility, defined by the sum

σ̂k
(d)(t) =

d
∑

j=0

|σj,k

(d)(t)| (2.10)

for k ∈ {1, 2, . . .}. The (j, k)th specific volatility σj,k

(d), is the volatility of the jth
benchmarked primary security account with respect to the kth source of trading
uncertainty W k, see (2.3).

To guarantee a sequence of markets with sufficiently different primary security
accounts the following condition is imposed.

Assumption 1. Assume a regular sequence of CFMs, which means that each of
the independent sources of trading uncertainty influences only a restricted range
of benchmarked primary security accounts such that

E
(

(σ̂k
(d)(t))

2
)

≤ K5 (2.11)

for all t ∈ [0,∞), d ∈ {1, 2, . . .}, k ∈ {1, 2, . . . , d}, with fixed constant K5 ∈
(0,∞).

To introduce some kind of a distance between an approximating portfolio Sδ
(d)

and the GOP Sδ∗
(d) define the tracking rate Rδ

(d)(t) at time t by

Rδ
(d)(t) =

d
∑

k=1

(

d
∑

j=0

πj
δ,tσ

j,k

(d)(t)

)2

(2.12)

for t ∈ [0,∞). Obviously, the tracking rate vanishes when Sδ
(d) equals Sδ∗

(d). This
is a consequence of the fact that the benchmarked GOP equals the constant one
and, thus, has zero returns and zero volatility. We emphasize that a benchmarked
portfolio with small tracking rate has a small volatility. This would be a necessary
property of a portfolio that aims to approximate the GOP.

Definition 2 For a sequence (SC
(d))d∈{1,2,...} of CFMs a sequence of strictly posi-

tive portfolios (Sδ
(d))d∈{1,2,...} is called a sequence of approximate GOPs when the

corresponding sequence of tracking rates vanishes in probability, that is, for each
ε > 0 it holds

lim
d→∞

P
(

Rδ
(d)(t) > ε

)

= 0 (2.13)

for all t ∈ [0,∞).
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In reality one observes that well diversified equity portfolios have small volatilities
and behave very similarly. This can be verified by the following Diversification
Theorem:

Theorem 2.1 For a regular sequence of CFMs, any sequence of DPs is a
sequence of approximate GOPs. Moreover, for any d ∈ {K3, K3 + 1, . . .} and
t ∈ [0,∞), the expected tracking rate of a given DP can be shown to satisfy the
estimate

E
(

Rδ
(d)(t)

)

≤ (K2)
2K5

d2K1
. (2.14)

Here, K1, K2, K5 ∈ (0,∞) and K3 ∈ {1, 2, . . .}.

The proof of this result is an application of the Markov inequality and given in
Platen (2005). This result is model independent and, therefore, very robust.

It is well-known that the GOP is in many ways the best performing portfolio.
In particular, its long-term growth rate is almost surely greater or equal than
the long-term growth rate of any other strictly positive portfolio, see Platen
(2004). This means, if one observes proxies of the GOP over sufficiently long
time periods, then one can most likely identify the better proxies by their larger
long-term growth rates.

The aim of this paper is to analyze via simulation the long-term growth behavior
of EWIs as proxies of the corresponding GOPs under various market models. It
shall be demonstrated that a good approximation of the GOP can be asymptoti-
cally achieved by using the EWI, thus, avoiding any estimation of drift parameters
for the calculation of the theoretical GOP fractions. This circumvents the seem-
ingly unsolvable practical problem of estimating trends or risk premia, needed
under the sample-based Markowitz (1959) portfolio optimization, as pointed out
in DeMiguel, Garlappi & Uppal (2009).

To keep the presentation focused the paper only considers additionally to the sim-
ulation of the GOP the market capitalization weighted index (MCI) and the equi-
weighted index (EWI), which are all self-financing portfolios. The simulations
will be performed on an equi-distant time discretization 0 = t0 < t1 < t2 < . . .
with tn = ∆n for ∆ > 0, n ∈ {0, 1, 2, . . .}.
For an MCI in the dth CFM the fraction of wealth invested in the jth primary
security account at time tn is given by the ratio

πj
δMCI,tn

=
δj
MCI,tn

Sj
tn

∑d
i=1 δi

MCI,tn
Si

tn

, (2.15)

for j ∈ {1, 2, . . . , d}, where δj
MCI,tn

denotes the number of units of the jth primary
security account available in the market at time tn. Note that in the market
models to be considered, the GOP does not invest in the savings account and
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only in stocks. The interest rate will be set to zero for simplicity. An EWI is
obtained in the dth CFM by setting all fractions equal at the beginning of each
trading period. The jth fraction of an EWI is simply given by the ratio

πj
δEWI,tn

=
1

d
(2.16)

for j = {1, 2, . . . , d}.
Given the fractions πj

δ,tn
of a strategy δ, the value of the portfolio Sδ

tn
at time tn

is recursively obtained by the relation

Sδ
tn

= Sδ
tn−1

(

1 +

d
∑

j=1

πj
δ,tn−1

Sj
tn
− Sj

tn−1

Sj
tn−1

)

, (2.17)

which is equivalent to

Sδ
tn

= Sδ
tn−1

+
d
∑

j=1

δj
tn−1

(

Sj
tn
− Sj

tn−1

)

, (2.18)

for n ∈ {1, 2, . . .} using (2.7).

The following simulation studies will illustrate the robustness of the diversification
effect under various market models. For each market model the simulation of
benchmarked primary security accounts will be performed exactly or at least
almost exactly. This is highly important since the obtained accuracy allows to
check the diversification phenomenon accurately over long periods of time.

For given market dynamics the study simulates for the long period of T = 150
years the benchmarked trajectories of d = 1000 primary security accounts, sam-
pling 100 times per year. Since the interest rate is set to zero, the inverse of the
benchmarked savings account provides the GOP when denominated in domestic
currency, that is,

Sδ∗
t = (Ŝ0

t )
−1. (2.19)

The product of the GOP with the jth benchmarked primary security account
yields the value of the jth primary security account denominated in domestic
currency, that is,

Sj
t = Ŝj

t Sδ∗
t , (2.20)

for j ∈ {0, 1, . . . , d}.
In reality, the market capitalization of stocks is very different from each other.
Statistical analysis of market data suggests that the size of companies and simi-
larly the market capitalization of their stocks seem to be Pareto distributed, see
Simon (1958). To generate realistic MCIs in the following simulations, the initial
values Sj

0, j ∈ {0, 1, . . . , d}, of primary security accounts follow here a Pareto
distribution

Fj(x) = 1 −
(x0

x

)λ

(2.21)

with the parameters λ = 1.1 and x0 = λ−1
λ

, see Simon (1958).
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3 Multi-asset Black-Scholes Model

When using discrete time numerical schemes for the simulation of solutions of
SDEs, as studied in Kloeden & Platen (1999), there may be issues arising when
dealing with non-Lipschitz continuous drift or diffusion coefficients. Furthermore,
problems concerning numerical stability may emerge for long-term simulations or
even negative values could be simulated by standard discrete time approximations
for strictly positive price processes, see Platen & Bruti-Liberati (2010). In the
following sections exact and almost exact simulations of various market models
are described. These avoid the above indicated numerical problems in scenario
simulations when using standard discrete time approximations. For the following
simulation studies market models have been selected where exact or almost exact
simulations are possible. A contribution of this paper is, therefore, also the
description of highly accurate scenario simulation methods for several frequently
used market model classes in finance.

To begin with, recall first the simulation under the standard market model, which
is the multi-asset version of the Black-Scholes model, see Black & Scholes (1973).
Under this model the benchmarked primary security accounts satisfy the following
vector SDE

dŜt =

d
∑

k=1

B
k
ŜtdW k

t , (3.1)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} is a vector of bench-
marked primary security accounts, and B

k = [Bk,i,j]di,j=1 is a d × d diagonal
volatility matrix, with elements

Bk,i,j =
{ bj,k for i = j

0 otherwise
(3.2)

for k, i, j ∈ {1, 2, . . . , d}. Note that the benchmarked primary security accounts
Ŝj, j ∈ {1, 2, . . . , d}, represent under this model martingales.

The multi-asset Black-Scholes model can be simulated exactly. The vector SDE
(3.1) has an explicit solution. The jth benchmarked primary security account is
represented by the exponential

Ŝj
t = Ŝj

0 exp

{

−1

2

d
∑

k=1

(

bj,k
)2

t +
d
∑

k=1

bj,kW k
t

}

. (3.3)

Throughout all simulation studies the paper employs the equi-distant time dis-
cretization 0 = t0 < t1 < . . ., where ti = i∆, i ∈ {0, 1, . . .}. For simplicity, the
simulation of benchmarked primary security accounts is performed for the case of
independent benchmarked primary security accounts. However, for most of the
market models the case of dependent benchmarked primary security accounts can
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Figure 3.1: Simulated benchmarked primary security accounts under the Black-
Scholes model

be handled analogously as shown in Platen & Rendek (2009). For the jth inde-
pendent benchmarked primary security account one obtains at time ti+1 under
the Black-Scholes model the exponential

Ŝj
ti+1

= Ŝj
0 exp

{

−1

2

(

bj,j
)2

ti+1 + bj,j W j
ti+1

}

. (3.4)

The phenomenon of diversification is now illustrated by simulating in a Black-
Scholes market the GOP, the EWI and the MCI. This simulation can be exactly
performed without generating any error by using the explicit expression described
above. The study simulates d = 1000 benchmarked primary security accounts
over 150 years, each with volatility bj,j = 0.2 for j ∈ {1, . . . , 1000}. The first
20 simulated trajectories are displayed in Fig. 3.1. Note that these benchmarked
primary security accounts are modeled by martingales. As mentioned earlier, the
independent initial values Ŝj

0 are generated using a Pareto distribution. Conse-
quently, there is great variety in the market capitalization of stocks.

Fig 3.2 shows the simulated trajectories of the GOP, the EWI and the MCI. In
this case the EWI approximates rather well the GOP and the differences between
both portfolio values are difficult to see, in particular, in the earlier parts of the
trajectories. As one will see in Fig.3.3 the MCI seems to be initially a reasonable
proxy of the GOP, however, after some time it diverges from the GOP due to
its lower long term performance. As can be seen in Fig. 3.1, a large total value
for some stocks is present in the simulated market. The resulting large fractions
of these stocks in the MCI are likely to distort its long run performance because
the market portfolio appears to be not well diversified in the sense of this pa-
per. The emerging fractions of the corresponding primary security accounts are
probably too large to be acceptable as those of a DP under the conditions of
the mentioned Diversification Theorem. This phenomenon becomes even clearer
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Figure 3.2: Simulated GOP, EWI and MCI under the Black-Scholes model
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Figure 3.3: Simulated benchmarked GOP, EWI and MCI under the Black-Scholes
model

in Fig. 3.3, which displays the constant benchmarked GOP, Ŝδ∗
t = 1, as well as,

the benchmarked EWI and the benchmarked MCI. Note that initially, sometimes
the benchmarked EWI and sometimes the benchmarked MCI performed better.
However, in the long run the benchmarked EWI fluctuates around the bench-
marked GOP, while the benchmarked MCI diverges downwards. Additionally,
one notes in this figure that the benchmarked MCI has much larger volatility
than the benchmarked EWI. This is typical also for the other market models
considered and for the real market as well. The described simulation has been
repeated many times for other scenarios. The better performance in the long run
of the EWI over the MCI was similarly evident.
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4 Multi-asset Heston Model

The multi-asset version of the Heston model, see Heston (1993), can be described
by a set of two vector SDEs in the form

dŜt = diag
(

√

V t

)

diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (4.1)

dV t = (a − EV t) dt + F diag
(√

V t

)

dW̃
1

t , (4.2)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} is a vector of bench-
marked primary security accounts, which are local martingales but not neces-
sarily martingales or strict supermartingales, see Platen & Heath (2006). More-

over, W̃
1

= {W̃ 1

t = (W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)} and W̃

2
= {W̃ 2

t =
(W̃ 2,1

t , W̃ 2,2
t , . . . , W̃ 2,d

t )⊤, t ∈ [0,∞)} are independent vectors of correlated Wiener
processes. That is, one has

W̃
k

t = C
k
W

k
t , (4.3)

where C
k = [Ck,i,j]di,j=1, and with W

k = {W k
t = (W k,1

t , W k,2
t , . . . , W k,d

t )⊤, t ∈
[0,∞)} for k ∈ {1, 2}, denoting again a vector of independent Wiener processes.

Additionally, A = [Ai,j ]di,j=1 is a diagonal matrix with elements

Ai,j =
{ ̺i for i = j

0 otherwise,
(4.4)

and B = [Bi,j]di,j=1 is a diagonal matrix with elements

Bi,j =
{

√

1 − ̺2
i for i = j

0 otherwise.
(4.5)

Moreover, V = {V t = (V 1
t , V 2

t , . . . , V d
t )⊤, t ∈ [0,∞)} is a vector of squared

volatilities, a = (a1, a2, . . . , ad)
⊤; and E = [Ei,j]di,j=1 is a diagonal matrix with

elements

Ei,j =
{

κi for i = j
0 otherwise,

(4.6)

and F = [F i,j]di,j=1 is a diagonal matrix with elements

F i,j =
{ γi for i = j

0 otherwise.
(4.7)

One method for the exact simulation of the Heston model has been suggested in
Broadie & Kaya (2006). The study in the current paper uses a slightly different,
possibly more convenient, almost exact simulation for the benchmarked primary
security accounts under the Heston model. The method involves exact simula-
tion of the squared volatility processes and some almost exact simulation of the
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independent benchmarked primary security accounts. The latter simulation is
conditional on the exactly simulated trajectories of the squared volatilities, see
Platen & Rendek (2009).

One obtains the value of the jth squared volatility V j
ti+1

at time ti+1, i ∈ {0, 1, . . .},
by sampling directly from the noncentral chi-square distribution χ

′2
νj

(λj) with νj

degrees of freedom and noncentrality parameter λj , that is,

V j
ti+1

=
γ2

j (1 − exp{−κj∆})
4κj

χ
′2
νj

(

4κje
−κj∆

γ2
j (1 − e−κj∆)

V j
ti

)

, (4.8)

where νj =
4aj

γ2
j

. Details on sampling from noncentral chi-square distributions can

be found, for instance, in Glasserman (2004). The resulting simulation method
for the jth squared volatility V j is exact.

It remains to describe the almost exact simulation of the vector of the logarithms
of benchmarked assets. By following first Broadie & Kaya (2006), the jth value

Xj
ti+1

= ln
(

Ŝj
ti+1

)

at time ti+1 can be represented in the form

Xj
ti+1

= Xj
ti

+
̺j

γj

(

V j
ti+1

− V j
ti
− aj∆

)

+

(

̺jκj

γj

− 1

2

)
∫ ti+1

ti

V j
u du (4.9)

+
√

1 − ̺2
j

∫ ti+1

ti

√

V j
u dW 2,j

u .

Furthermore, the distribution of the integral increment

∫ ti+1

ti

√

V j
u dW 2,j

u , (4.10)

given the path of V j, is conditionally Gaussian with mean zero and variance
∫ ti+1

ti
V j

u du, since V j is independent of the Brownian motion W 2,j for all j ∈
{1, 2, . . . , d}. Moreover, one needs to evaluate the variance

∫ ti+1

ti
V j

u du conditioned

on the path of the process V j . The proposed almost exact simulation method
uses as an approximation via the trapezoidal rule

∫ ti+1

ti

V j
u du ≈ ∆

2

(

V j
ti

+ V j
ti+1

)

. (4.11)

It is well-known that this quadrature rule generates by its symmetry excellent
approximations, see Kloeden & Platen (1999). Consequently, one has the ap-
proximate conditionally Gaussian random variable

∫ ti+1

ti

√

V j
u dW 2,j

u ≈ N
(

0,
∆

2

(

V j
ti

+ V j
ti+1

)

)

(4.12)

to compute. This approximation can be achieved with practically negligible error
by using a sufficiently small time step size. Since it is here the aim to illustrate
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Figure 4.1: Simulated benchmarked primary security accounts under the Heston
model

the diversification effect, the paper omits any particular error analysis. The above
approximation converges in distribution as the time step size decreases, as can be
deduced from (4.12). For the multi-asset Heston model this results in an efficient,
almost exact simulation technique. Alternatively, one could have used the Broadie
& Kaya (2006) exact simulation method, which leads from the perspective of this
paper to the same conclusions.

Benchmarked primary security accounts are simulated under the multi-asset Hes-
ton model. Fig. 4.1 displays the first 20 simulated benchmarked primary security
accounts. These benchmarked primary security accounts are nonnegative local
martingales and, thus, supermartingales. The parameters in (4.8) are chosen ac-
cording to market data, see Gatheral (2006). The jth squared volatility process
is simulated according to (4.8) for the initial value V j

0 = 0.0174, aj = 0.0469,
κj = 1.3253, γj = 0.3877, j ∈ {1, . . . , 1000}. The correlation parameter is here
set to ̺j = −0.7165 in order to reflect the typically observed leverage effect, see

Black (1976). The initial values Ŝj
0 are again generated from the Pareto distri-

bution mentioned earlier. For illustration, Fig. 4.2 displays a typical trajectory
of the squared volatility process V j under the Heston model, simulated exactly
according to the formula (4.8).

Fig 4.3 exhibits the simulated GOP, EWI and MCI under the Heston model.
Also here the EWI provides an excellent proxy for the GOP and it is difficult to
distinguish both trajectories. The MCI, however, does not perform as well as the
EWI. Finally, Fig. 4.4 illustrates the constant benchmarked GOP Ŝδ∗

t = 1, the
benchmarked MCI and the benchmarked EWI. This plot shows the closeness of
the benchmarked EWI to the benchmarked GOP. Note that, the benchmarked
MCI has a larger volatility than the benchmarked EWI and fluctuates in the long
run significantly.
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Figure 4.2: Simulated squared volatility under the Heston model
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Figure 4.3: Simulated GOP, EWI and MCI under the Heston model

5 Multi-asset ARCH-diffusion Model

Some continuous time limits of popular time series models in finance, including
several ARCH and GARCH models, can be captured by the multi-dimensional
ARCH-diffusion model that is considered below. The class of ARCH and GARCH
time series models was initiated in Engle (1982). The ARCH-diffusion model is
obtained as a continuous time limit of the innovation process of the GARCH(1, 1)
and NGARCH(1, 1) models, see Nelson (1990) and Frey (1997). The ARCH-
diffusion model can be described by the following set of two vector SDEs

dŜt = diag
(

√

V t

)

diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (5.1)

dV t = (a − EV t) dt + F diag (V t) dW̃
1

t , (5.2)
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Figure 4.4: Simulated benchmarked GOP, EWI and MCI under the Heston model

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} denotes again a
vector of benchmarked primary security accounts, where one knows that these

are local martingales and, thus, supermartingales. Furthermore, W̃
1

= {W̃ 1

t =

(W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)} and W̃

2
= {W̃ 2

t = (W̃ 2,1
t , W̃ 2,2

t , . . . , W̃ 2,d
t )⊤,

t ∈ [0,∞)} are independent vectors of correlated Wiener processes. Addition-
ally, A = [Ai,j]di,j=1 is a diagonal matrix with elements as in (4.4), and B =
[Bi,j]di,j=1 is a diagonal matrix with elements given in (4.5). Moreover, V =
{V t = (V 1

t , V 2
t , . . . , V d

t )⊤, t ∈ [0,∞)} is a vector of squared volatilities, a =
(a1, a2, . . . , ad)

⊤ is a vector; E = [Ei,j ]di,j=1 is a diagonal matrix with elements as
in (4.6); and F = [F i,j]di,j=1 is a diagonal matrix with elements as in (4.7).

In the given case one can simulate the jth squared volatility process V j, j ∈
{1, 2, . . .}, almost exactly by approximating the time integral via the trapezoidal
rule in the following exact representation

V j
ti+1

= exp

{(

−κj −
1

2
γ2

j

)

ti+1 + γjW
1,j
ti+1

}

(5.3)

×
(

V j
t0

+ aj

i
∑

k=0

∫ tk+1

tk

exp

{(

κj +
1

2
γ2

j

)

s − γjW
1,j
s

}

ds

)

.

This yields the approximation

V j,∆
ti+1

= exp

{(

−κj −
1

2
γ2

j

)

ti+1 + γjW
1,j
ti+1

}

(5.4)

×
(

V j
t0

+ aj

∆

2

i
∑

k=0

[

exp

{(

κj +
1

2
γ2

j

)

tk − γjW
1,j
tk

}

+ exp

{(

κj +
1

2
γ2

j

)

tk+1 − γjW
1,j
tk+1

}

])
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for i ∈ {0, 1, . . .}.
The following describes the almost exact simulation of the logarithms of stocks

Xj
ti+1

= ln
(

Ŝj
ti+1

)

, j ∈ {1, 2, . . . , d}. One can represent the value of Xj
ti+1

at time

ti+1 as

Xj
ti+1

= Xj
ti
− 1

2

∫ ti+1

ti

V j
u du +

2̺j

γj

(

√

V j
ti+1

−
√

V j
ti

)

(5.5)

−2̺j

γj

∫ ti+1

ti

(

aj

2
√

V j
u

−
(

κj

2
+

γ2
j

8

)
√

V j
u

)

du

+
√

1 − ̺2
j

∫ ti+1

ti

√

V j
u dW 2,j

u .

Furthermore, the distribution of

∫ ti+1

ti

√

V j
u dW 2,j

u , (5.6)

conditioned on the path of V j , is conditionally Gaussian with mean zero and
variance

∫ ti+1

ti
V j

u du because V j is independent of the Brownian motion W 2,j for

all j ∈ {1, 2, . . . , d}. Moreover, it is possible to approximate
∫ ti+1

ti
V j

u du given the

path of the process V j. One can use here again the trapezoidal approximation

∫ ti+1

ti

V j
u du ≈ ∆

2

(

V j
ti

+ V j
ti+1

)

(5.7)

to obtain the conditionally Gaussian integral increment

∫ ti+1

ti

√

V j
u dW 2,j

u ≈ N
(

0,
∆

2

(

V j
ti

+ V j
ti+1

)

)

. (5.8)

Similarly, it is possible to approximate the second integral on the right hand side
of (5.5) given in the form

∫ ti+1

ti

(

aj

2
√

V j
u

−
(

κj

2
+

γ2
j

8

)
√

V j
u

)

du ≈ (5.9)

∆

2





aj

2
√

V j
ti

−
(

κj

2
+

γ2
j

8

)

√

V j
ti

+
aj

2
√

V j
ti+1

−
(

κj

2
+

γ2
j

8

)

√

V j
ti+1



 .

This approximation can be achieved with high accuracy when the time step size
is small by using again the trapezoidal quadrature formula. In this manner one
obtains an efficient almost exact simulation technique for the multi-asset ARCH-
diffusion model, which converges in distribution as the time step size decreases.
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Figure 5.1: Simulated benchmarked primary security accounts under the ARCH-
diffusion model
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Figure 5.2: Simulated squared volatility under the ARCH-diffusion model

Now, benchmarked primary security accounts are simulated as multi-dimensional
ARCH diffusions. For simplicity, the same squared volatility process is used for
all benchmarked primary security accounts, where a = 0.0469, κ = 1.3253, γ = 1
and V0 = 0.0174, similar as for the Heston squared volatility model of the previous
section. Furthermore, the driving noise of each of the benchmarked asset prices
is correlated with ̺ = −0.7165 to the noise that drives the squared volatility
process. The extra Wiener processes that drive the benchmarked asset prices are
independent from each other. Fig. 5.1 shows the first 20 simulated benchmarked
risky primary security accounts with Pareto distributed initial values. A typical
trajectory of the squared volatility under the ARCH-diffusion model is displayed
in Fig. 5.2.

Fig. 5.3 shows the constant benchmarked GOP, the benchmarked EWI and the
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Figure 5.3: Simulated benchmarked GOP, EWI and MCI under the ARCH-
diffusion model

benchmarked MCI. Also here the EWI appears to be an excellent proxy of the
GOP, while the MCI diverges from the GOP in the long run. Also here one notes
the smaller volatility of the benchmarked EWI compared to the benchmarked
MCI.

6 Geometric Ornstein-Uhlenbeck Volatility

Model

One can generate benchmarked asset prices also by using as stochastic volatility
a geometric Ornstein-Uhlenbeck process, as proposed in Bergomi (2004) for mod-
eling volatility derivatives. The geometric Ornstein-Uhlenbeck volatility model
can be described by the following two vector SDEs

dŜt = diag (exp{V t}) diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (6.1)

dV t = (a − EV t) dt + F dW̃
1

t , (6.2)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} denotes again a

vector of benchmarked primary security accounts. Furthermore, W̃
1

= {W̃ 1

t =

(W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)} and W̃

2
= {W̃ 2

t = (W̃ 2,1
t , W̃ 2,2

t , . . . , W̃ 2,d
t )⊤,

t ∈ [0,∞)} are independent vectors of correlated Wiener processes. Additionally,
A = [Ai,j]di,j=1 is a diagonal matrix with elements as in (4.4), and B = [Bi,j ]di,j=1

is a diagonal matrix with elements (4.5). Moreover, the elementwise exponential

exp{V } =
{

exp{V t} =
(

exp{V 1
t }, exp{V 2

t }, . . . , exp{V d
t }
)⊤

, t ∈ [0,∞)
}

(6.3)

represents a vector of volatilities, whose elements are correlated exponents of
the Ornstein-Uhlenbeck processes. Additionally a = (a1, a2, . . . , ad)

⊤ is a vector;
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E = [Ei,j]di,j=1 is a diagonal matrix with elements as in (4.6); and F = [F i,j]di,j=1

is a diagonal matrix with elements as in (4.7).

As before, one can simulate independent benchmarked primary security accounts.
The value of the jth volatility, exp

{

V j
ti

}

, is obtained at time ti, i ∈ {0, 1, . . .}, by
the following exact expression

exp{V j
ti
} = exp

{

V j
0 e−κjti +

aj

κj

(

1 − e−κjti
)

+ γje
−κjti

i
∑

k=1

∫ tk

tk−1

eκjsdW 1,j
s

}

,

(6.4)
where

∫ tk

tk−1

eκjsdW 1,j
s ∼ N

(

0,
1

2κ

(

e2κjtk − e2κjtk−1
)

)

. (6.5)

Note, the resulting simulation method for generating exp{V j
ti
} is exact.

The following describes the almost exact simulation of Xj
ti+1

= ln
(

Ŝj
ti+1

)

. One

can represent the jth value of Xj
ti+1

at time ti+1 as

Xj
ti+1

= Xj
ti
− 1

2

∫ ti+1

ti

e2V
j
u du +

̺j

γj

(

e
V

j
ti+1 − eV

j
ti

)

(6.6)

−̺j

γj

∫ ti+1

ti

((

aj +
γ2

j

2

)

eV
j
u − κjV

j
u eV

j
u

)

du

+
√

1 − ̺2
j

∫ ti+1

ti

eV
j
u dW 2,j

u .

Furthermore, the distribution of

∫ ti+1

ti

eV
j
u dW 2,j

u , (6.7)

conditioned on the path of V j , is conditionally Gaussian with mean zero and

variance
∫ ti+1

ti
e2V

j
u du, because V j is independent of the Brownian motion W 2,j

for all j ∈ {1, 2, . . . , d}. Moreover, it is possible to approximate
∫ ti+1

ti
e2V

j
u du given

the path of the process V j . One can use here again the trapezoidal approximation

∫ ti+1

ti

e2V
j
u du ≈ ∆

2

(

e2V
j
ti + e

2V
j
ti+1

)

(6.8)

to obtain the conditionally Gaussian random variable

∫ ti+1

ti

eV
j
u dW 2,j

u ≈ N
(

0,
∆

2

(

e2V
j
ti + e

2V
j
ti+1

)

)

. (6.9)
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Figure 6.1: Simulated squared volatility under the geometric Ornstein-Uhlenbeck
volatility model

Similarly, it is possible to approximate the second integral on the right hand side
of (6.6) in the form

∫ ti+1

ti

((

aj +
γ2

j

2

)

eV
j
u − κjV

j
u eV

j
u

)

du ≈ (6.10)

∆

2

((

aj +
γ2

j

2

)

eV
j
ti − κjV

j
ti
eV

j
ti +

(

aj +
γ2

j

2

)

e
V

j
ti+1 − κjV

j
ti+1

e
V

j
ti+1

)

.

Also this approximation can be achieved with any desired accuracy by choosing
a small enough time step size, where the approximation converges in distribu-
tion. In this manner one obtains an efficient almost exact simulation method by
conditioning for the multi-asset geometric Ornstein-Uhlenbeck volatility model.

Now, one can simulate the benchmarked primary security accounts from a multi-
dimensional geometric Ornstein-Uhlenbeck volatility model of the above form.
The squared volatility process e2V j

is calibrated similarly to the Heston squared
volatility process. Here one sets aj = −2.2143, κj = 1.3253, γj = 0.52 and
V j

0 = −2.0257, j ∈ {1, . . . , 1000}. The driving noise of each of the benchmarked
asset prices is assumed to be correlated with ̺j = −0.7165 to the correspond-
ing squared volatility process. The extra noise sources driving the benchmarked
primary security account process are assumed to be independent from the oth-
ers. A typical trajectory of the squared volatility under the geometric Ornstein-
Uhlenbeck volatility model is displayed in Fig. 6.1.

Fig. 6.2 exhibits the constant benchmarked GOP, the benchmarked EWI and the
benchmarked MCI. Also here the EWI appears to be a very good proxy of the
GOP. As before, the benchmarked MCI diverges from the benchmarked GOP in
the long run and has a larger volatility than the benchmarked EWI.
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Figure 6.2: Simulated benchmarked GOP, EWI and MCI under the geometric
Ornstein-Uhlenbeck volatility model

7 Stylized Minimal Market Model

The previous models can be interpreted as rather direct generalizations of the
Black-Scholes model, obtained by introducing some stochastic volatility process.
In most versions of these models, when applied in practice, the benchmarked
primary security accounts are rather close to martingales. Consider now the styl-
ized minimal market model (MMM), which is similar to the version of the MMM
described in Platen (2001) and Platen & Heath (2006). This model generates by
its nature strict supermartingales as benchmarked primary security accounts out
of scalar diffusion processes. Each benchmarked primary security account is the
inverse of a time transformed squared Bessel process of dimension four and, thus,
a strict supermartingale, see Revuz & Yor (1999). The MMM models the jth
benchmarked primary security account by the expression

Ŝj
t =

1

Y j
t αj

t

, (7.1)

where αj
t = αj

0 exp{ηjt}, j ∈ {1, . . . , d}. Here ηj is the jth net growth rate for
j ∈ {1, . . . , d}, and Y j

t is the time t value of the square root process Y j, which
satisfies the SDE

dY j
t =

(

1 − ηjY j
t

)

dt +

√

Y j
t dW̃ j

t (7.2)

for t ∈ [0,∞), where Y j
0 = 1

ηj for j ∈ {1, . . . , d}. Here W̃ = {W̃ t = (W̃ 1
t , W̃ 2

t , . . . ,

W̃ d
t )⊤, t ∈ [0,∞)} is a vector of correlated Wiener processes.

Note that under the MMM, Sj(ϕj(t)) = Y j
t αj

t is a squared Bessel process of
dimension four in the, so called, ϕj-time. That is, one has the SDE

dSj(ϕj(t)) = 4dϕj(t) + 2
√

Sj(ϕj(t))dW̄ j(ϕj(t)) (7.3)
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for t ∈ [0,∞), where

ϕj(t) =
αj

0

4ηj

(

exp{ηjt} − 1
)

(7.4)

and

dW̄ j(ϕj(t)) = dW̃ j
t

√

dϕj(t)

dt
. (7.5)

The inverse Ŝj(ϕj(t)) of the jth squared Bessel process of dimension four in ϕj-
time satisfies the SDE

dŜj(ϕj(t)) = −2
(

Ŝj(ϕj(t))
)

3

2

dW̄ j(ϕj(t)) (7.6)

for t ∈ [0,∞). Note that, Ŝj is a local martingale. More precisely, it can be shown
that Ŝj is a nonnegative strict local martingale and, thus, a strict supermartingale,
see Revuz & Yor (1999).

It remains to explain the exact simulation of benchmarked primary security ac-
counts under the MMM. Given the time discretization 0 < t0 < t1 < . . ., where
ti = i∆, i ∈ {0, 1, . . .}, one first generates by (7.4) for j ∈ {0, 1, . . . , d} the ϕj-time
at the physical time ti.

The next step is to simulate four independent Wiener processes W̄ k,j, k ∈ {1, 2, 3,
4}, in ϕj-time. This can be achieved by calculating

W̄ k,j
ti+1

= W̄ k,j
ti

+
√

ϕj(ti+1) − ϕj(ti)Z
k
i+1, (7.7)

where Zk
i+1 ∼ N (0, 1) is a standard Gaussian random variable. Here k ∈ {1, 2, 3,

4}, j ∈ {0, 1, . . . , d} and i ∈ {0, 1, . . .}.
Then the jth benchmarked primary security account at time ti+1 is obtained by
the expression

Ŝj
ti+1

= Ŝj
(

ϕj(ti+1)
)

=
1

∑4
k=1

(

wk + W̄ k,j
ti+1

)2 , (7.8)

for i ∈ {0, 1, . . .}, where Ŝj
0 =

∑4
k=1(w

k)2.

Now, one can simulate the independent benchmarked risky primary security ac-
counts according to the MMM dynamics. The simulation uses the net growth
rate ηj = 0.09 and the scaling parameter αj

0 = 0.05. Fig. 7.1 plots the first 20
simulated benchmarked primary security accounts. These processes are strict
supermartingales and one clearly observes their systematic long run downward
trend. Remarkable are the extreme values of benchmarked asset prices that typi-
cally appear from time to time under the MMM. The jth volatility equals under
the MMM at time ti the expression Ŝj

ti
αj

ti
. Fig.7.2 plots a typical path of squared

volatility under the MMM.
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Figure 7.1: Simulated benchmarked primary security accounts under the MMM
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Figure 7.2: Simulated squared volatility under the MMM

The constant benchmarked GOP, benchmarked EWI and benchmarked MCI are
shown in Fig.7.4. The EWI represents a good proxy for the GOP. In this case the
benchmarked MCI does by far not reach the long run performance of the bench-
marked EWI. One observes a qualitative difference between these two processes.
This difference is explained by the fact that the benchmarked MCI, as the sum of
strict supermartingales, is a strict supermartingale. It therefore exhibits a signifi-
cant long run downward trending mean. On the other hand, the return process of
the EWI, by keeping the fractions constant, becomes a martingale with asymptot-
ically vanishing fluctuations as d → ∞. Consequently, the return process for the
benchmarked EWI tends for d → ∞ to zero, which makes its benchmarked value
to a constant. Equal value weighting can be interpreted as a form of hedging. It
turns out that one needs to hedge to avoid the strict supermartingale property of
the constituents to be inherited by the resulting benchmarked portfolio. It is not
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Figure 7.3: Simulated GOP, EWI and MCI under the MMM model in log-scale
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Figure 7.4: Simulated benchmarked GOP, EWI and MCI under the MMM model

enough to diversify over the constituents as happens in the MCI. The exposure
to each source of uncertainty needs to be controlled by some kind of hedging. In
this paper the hedging is facilitated by equal value weighting.

The important observation of this paper is that if the strict supermartingale prop-
erty of benchmarked primary security accounts is what needs to be modeled to
reflect realistically the real market dynamics, then portfolio management should
focus on well diversified portfolios that when benchmarked form martingales.
These portfolios when hedged in an appropriate form should perform in the long
run better than market capitalization weighted portfolios.
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