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Abstract
We focus on the implications of strategic interactions among research

intensive Þrms on the rates of growth when the number of competing
Þrms is small and Þrms recognise the effects their investment decisions
have on the production behaviour of their rivals. Similar to other results,
we Þnd that the mode of oligopolist competition can have a great effect on
the rate of growth, but we present novel channels of these effects. More
importantly and unlike standard results, we show that for the Cournot
type of competition, a (constrained) socially optimal rate of growth can
be attained. On the other hand, this can never be achieved under the
more severe Bertrand competition. These Þndings are thus parallel to the
conclusions in strategic trade literature. Our results demonstrate that
conclusions from the �strategic trade� literature are robust enough, if ex-
tended into an explicitly dynamic general equilibrium framework. More
importantly, though, they make evident that the questions of optimal
policy design related to organisational structure and strategic conduct
are tractable in the framework of endogenous growth models in sufficient
detail.

1 Introduction

The seminal achievements of the early 1990s in the area of endogenous growth

(Grossman and Helpman, 1990a,b, and Romer, 1990a,b) have greatly con-

tributed to our understanding of economic development and growth of nations.

In particular, they revealed important links through which the integration of

the world economy and international trade may inßuence a country�s growth

prospects. All of these important contributions highlighted the signiÞcance of
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scale technology and the imperfect mode of competition. In such a setting, the

engine of growth was ascribed to private incentives, unlike deus ex machina

forces in previous growth literature.

The failure of the earlier literature to account for private incentives behind

growth was remedied by introducing economies internal to Þrms. Typically these

Þrms, whose products are vertically differentiated, engage in R&D activities

that have a positive impact on the level of technology as a production factor.

The introduction of technology with internal returns shifted attention to the

structure of private incentives, because it simultaneously raised the issue of

the organisational structure of the economy, i.e. more narrowly, the nature of

competition.

No matter how distinct these issues may appear, they are nevertheless closely

related. As Romer (1990b) observes, no Þrm facing a downward sloping average

cost curve can survive pricing at marginal cost. If the Þrm is to be viable,

it must enjoy some sort of monopoly power. He continues by arguing that the

problem is not in marginal cost pricing, but rather in the price-taking behaviour

assumed by perfect competition per se. In fact, monopolistic competition can be

as close to marginal cost pricing as the average cost curves are close to marginal

ones, yet, it is a necessary analytical tool that allows the increasing returns to

scale technology to be operational (Krugman 1995).

Although an imperfectly competitive environment enable the analysis of how

private motivation affects growth, many channels of this vehicle remain unex-

plored. As Baldwin (1998) in his survey asserts, the treatment of Þrms continues
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to be largely atomistic. Many authors (e.g. Grossman and Helpman, 1990a,b,

and, Rivera-Batiz and Romer, 1991a,b) introduce a monopolistically competi-

tive environment in the models of vertical differentiation with the Dixit-Stiglitz

(1977) large number of Þrms approximation. Such treatment of oligopolist com-

petition disregards the possibility of sophisticated decision-making taking place

on a Þrm level. Vertically differentiated Þrms in their competition on product

markets disregard the adverse effects their actions may have on the behaviour of

their rivals. Such adverse effects are likely to arise from decisions about pricing

policies as well as investment in R&D. In addition, the mode of competition in

product markets is an important factor for these effects.

Thus, the design of monopolistic competition in most endogenous growth lit-

erature makes it impossible to explore many important incentive schemes that

might shape a country�s development. For instance, it is believed that multi-

national enterprises (MNEs) are crucial to a country�s growth performance, al-

though we still know little about how this channel might operate, how these Þrms

interact, what the key considerations are that make the Þrm invest abroad and

what the potentially adverse effects are of such an activity, or how indigenous

Þrms react to it. This is the case despite the fact that the Þelds of international

trade and industrial organisation recognise many approaches of modelling such

issues (Krugman, 1995). As a result, many important policy related questions

continue to go unanswered. For instance, the nature of competition plays a

prominent role in strategic trade literature when the optimal level and form of

government intervention towards R&D is sought, but is scarce in questions ad-
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dressed by endogenous growth models. This seems especially puzzling, as R&D

is the channel of sustained growth for many of them. Indeed, theorists involved

in strategic trade literature recognise this failure of endogenous growth models,

but consider them to be inappropriate for optimal policy design. In the words

of Neary (1998):

One branch of the Þeld which considers R&D in detail is the re-

cent work on endogenous growth. However, the assumptions made

about industrial structure and Þrm behaviour in that literature seem

unattractive in the context of discussions of policy design. R&D is

often assumed to be carried out by different Þrms from those en-

gaged in production. Moreover, notwithstanding the complexities

of the models in other respects, equilibrium is typically assumed to

be monopolistically competitive, so Þrms do not engage in strategic

behaviour and entry into industry is free. For many purposes these

assumptions are not a drawback. However, for designing optimal

policies towards R&D they seem less appropriate.

There have been few attempts in the literature to address growth-related

issues in the market structure and strategic interactions of Þrms. Van de Klun-

dert and Smulders (1997, henceforth denoted as K-S) and Smulders and van de

Klundert (1995) are among the few who do not resort to the large number of

Þrms approximation of Dixit and Stiglitz, and who openly consider static inter-

actions among Þrms in product markets. As Yang and Heidra (1993) demon-

strate, more insight can be gained from studying monopolistic competition of
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the Dixit-Stiglitz type if the number of Þrms is in fact small. The microeco-

nomics of interactions on the Þrm level then gets more complex, because the

Þrms behave strategically in the sense that they recognise the effects of their

actions on the behaviour of their rivals in a simple static game theoretical set-

ting. K-S treatment of this oligopolist set-up enables exploration of various

growth-related issues according to the mode of competition in product markets:

Bertrand and Cournot in a unifying manner. Yet, their analysis is conÞned

to strategic interactions in the product markets and disregards the possibility

of interactions between investment and production decisions. Therefore, many

policy questions related to R&D cannot be analysed with sufficient complexity.

The present paper belongs into this strand of literature. It aims at extending

the framework of K-S to account for strategic interactions of Þrms between

investment and production (pricing) decisions, without recourse to a differential

game approach. We do so in a standard endogenous growth model of horizontal

differentiation with accumulation of cost-reducing, Þrm-speciÞc knowledge. In

this setting, we consider some of the adverse effects a Þrm�s decision about its

R&D expenditure may have on another Þrm�s proÞts and behaviour during that

period.

These adverse effects may occur through two channels. First, decisions about

research investment inßuence the cost schedule of rival Þrms (and hence their

pricing decisions) through knowledge spill-overs. Second, even without knowl-

edge spill-overs, the reduction of costs in one Þrm has an impact on the pricing

decisions of other Þrms in a static Nash equilibrium. Typically, the Þrst channel
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(see, e.g. Smulders and van de Klundert, 1995) ignores these adverse effects

and assume Þrms are myopic in this sense. In models of vertical differentiation,

this assumption is often advocated as an approximation, if (i) knowledge spill-

overs are small, (ii) product types are well differentiated. The second channel

is ignored altogether by assuming symmetric equilibrium in production/pricing

actions unaffected by investment decisions.

The spill-over effect is generally known and relies solely on the non-rival

nature of the R&D knowledge stock. We concentrate instead on the second

channel, since we feel that its approximation may conceal other potentially im-

portant channels through which strategic interactions of Þrms affect growth

and welfare. For instance, K-S Þnd that oligopolist pricing always leads to

under-investment in Þrm-speciÞc knowledge, irrespective of the mode of com-

petition, essentially because it distorts relative prices in the economy in favour

of non-technologically intensive goods. However, we show that a more careful

consideration of static strategic effects creates an additional externality that

may (depending on the mode of competition) enhance the motivation to invest,

in a strategic manner, in order to increase proÞts and market share through the

reaction of rivals. We demonstrate that this externality can not only offset the

distortion created by relative prices, but potentially other externalities as well1.
1Although our model assumes that the core of the knowledge is Þrm-speciÞc, we allow

for external returns to knowledge accumulation, not appropriable by private decision makers.
The negative externality presented by non-appropriability makes the market rate of growth
fall short of that chosen by an idealised social planner, unless it is offset by another positive
externality or removed by subsidies or taxes. The models based on �creative destruction�, for
instance, usually display a type of positive externality that may entirely counterweight the
negative knowledge spill-over effect. This effect is based on the fact that the innovating Þrm
does not internalise the negative effect it may have on another Þrm�s innovation. For that
reason, it is called �business stealing� externality. On the other hand, the common result
in models of horizontal differentiation is that taxes and subsidies are required to restore the
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These Þndings are thus similar to conclusions in strategic trade literature

where Þrms are engaged in a generic partial equilibrium two stage game: invest-

ing in cost reducing technology in the Þrst stage and producing (or pricing) in

the other. The common result is that Þrms tend to under-invest from the social

(cost-minimising) perspective in Bertrand and over-invest in the Cournot (Bran-

der, 1995) mode of competition. Our results demonstrate that conclusions from

this strategic trade literature are robust if extended into an explicitly dynamic

general equilibrium framework. More importantly, though, the results make it

evident that questions of optimal policy design related to organisational struc-

ture and strategic conduct are tractable in the framework of endogenous growth

models in sufficient riskness.

Similar in spirit to our paper is the work of Peretto (1996), who also recog-

nises the need to analyse the interactions of Þrms with in-house R&D in oligopolist

competition. His theoretical game framework allows for the interaction of incen-

tives from investment to pricing decisions through knowledge spill-overs. Yet,

his analysis lacks an important channel of these interactions by assuming a

symmetric equilibrium in product markets not affected by investment decisions.

Nor does he explicitly consider different assumptions about market structure

the way K-S do.

Even though we extend the K-S framework to more complex strategic con-

duct, our treatment of the channels through which strategic behaviour affects

growth is not exhaustive. We disregard, for instance, the strategic interactions

social optimum, as shown in K-S.
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of investment decisions in different periods. This is a simpliÞcation, because

even if the core of the knowledge is Þrm-speciÞc, Þrms still beneÞt from their ri-

val�s research. As standard in the literature, we treat these eventual spill-overs

as unintentional and thus disregard the possibility that today�s R&D invest-

ment affects the rival�s proÞts in future periods. Nevertheless, yet more insight

about the channels through which interactions among Þrms affect growth could

be gained from considering the Þrms� decision making in an explicitly dynamic

game setting, an approach commonly referred to as differential games. However,

this strand of literature suffers from great computational difficulties, which seri-

ously constrain functional forms if the closed form solutions are to be analytically

tractable. Hence, we do not pursue this here, although Vencatachellum (1998)

shows the capacity of such a treatment using a modiÞed version of Romer�s 1990

model.

In the next two sections, we introduce a basic endogenous growth model with

Þrm-speciÞc knowledge that is a variant to that of van de Klundert and Smulders

(1997) and characterise its equilibrium. We chose to follow this model, because

by avoiding unnecessary deviations, we may directly compare the results and

extract the novel effects of our exposition in a clear way. In the third section,

we study how these extra channels modify the traditional effects of competition

on growth rates and how the market equilibrium compares to the one chosen by

an idealised social planner. As expected, the standard results in the literature

are special cases of ours when the part of strategic decision making which is a

subject of this paper is ignored. In the fourth section, we investigate whether
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strategic interactions alter the traditional result that growth rises with higher

concentration. The last section presents the conclusions.

2 Model

Because our general equilibrium model is essentially a standard one (see e.g.

van de Klundert and Smulders, 1997), we leave out most of the commentary

and concentrate on developing the basic results. This is best accomplished by

independently considering the private decisions and incentives of households,

R&D Þrms, and traditional Þrms, and Þnally characterising the market and

social equilibria.

2.1 Households

There are a total of L households in the economy who own all production units

and supply them with a unit of labour as the only factor of production. In

each period, households consume two types of goods: a traditional one and

N varieties of technology intensive (hi-tech) goods. They trade off future for

current consumption according to an intertemporal utility function of the form:

U =

Z ∞

0

e−θt ln(Ct)dt, (1)

where θ is the rate of time preference and C is a consumption bundle consisting

of a traditional good Y , and a bundle of N imperfectly substitutable hi-tech

goods X, tied together by preferences of the form:

C = XσY 1−σ,X =

 NX
j=1

x
²−1
²

j

 ²
²−1

, ² > 1,σ ∈ (0, 1) ,
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where σ, the elasticity of intratemporal substitution between Y and X, is the

share of hi-tech goods in the overall expenditure2 . Since the utility function

is weakly separable in subutilities C and X, we may treat them as composite

consumption bundles and assign to them relevant composite price indices PC and

PX , which correspond to the unit expenditure functions necessary for achieving

a unit of subutility C and X. Hence these price indices are given as

PC =

µ
PY
1− σ

¶1−σ µ
PX
σ

¶σ
and PX =

1³PN
j=1 p

1−²
i

´1/(²−1) , (2)

where PY and {pi}Ni=1 are prices of Y and X goods faced by households in each

period3.

This separation enables us to examine a representative households decision

making in three steps: the intertemporal problem of choosing the time path of C,

the intratemporal problem of allocating C into X and Y , and the intratemporal

problem of allocating X into {xi}Ni=1.

2.1.1 The intertemporal problem

Choosing an optimal path of C in (1) is equivalent to choosing a path of total

expenditure on all types of goods EC = PCC in a modiÞed problem:

max
{Et,St}∞t=0

U =

Z ∞

0

e−θt ln(
EC,t
PC,t

)dt, s.t. úSt = Yt + rtSt −EC,t , (3)

where St is the total amount of saving at period t, rt is the period�s interest

rate and Yt is the household�s income from factor ownership, treated in the
2 In terms of the van de Klundert and Smulders paper, we choose the degree of risk aversion

ρ = 1. Their results are therefore comparable to ours only with this substitution.
3For brevity we suppress time indices in the following text where they are unambiguous.
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problem as exogenous, but consisting of labour income and distributed proÞts

of X and Y Þrms net of interest payments. It is given as follows for the total of

L households:

Y = wL+
NX
j=1

πi + πY − rS, (4)

where w is the wage rate of homogenous labour and symbols πi, πY denote per

period proÞts of a representative hi-tech Þrm, and the total of traditional Þrms.

From the standard solution to the problem in (3), it follows that the optimal

path of expenditure must satisfy the following condition:

úEC,t
EC,t

= rt − θ. (5)

The necessary condition for the time path of Ct can be readily obtained from

condition (5) and price formula (2).

2.1.2 The intratemporal problem of choosing X and Y

Given the time path of total expenditure in (5), consumers allocate this ex-

penditure in every period between good Y and a bundle of hi-tech goods X,

given the prices PY and PX . The demand functions follow from the necessary

conditions of optimal allocation:

X =
ECσ

PX
and Y =

EC(1− σ)
PY

. (6)
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2.1.3 The intratemporal problem of choosing xi

Consumers allocate the optimal expenditure on X type goods, EX = PXX, from

(6) among individual varieties facing prices {pi}Ni=1. The symmetric demand

functions, from necessary conditions of optimality, are obtained as:

xi =
EX

p²i
PN
j=1 p

1−²
j

=
ECσ

p²i
PN
j=1 p

1−²
j

, i = 1, ..., N. (7)

Demand functions deÞned as such (i.e. {xi}Ni=1 in terms of {pi}Ni=1) appear

natural if Þrms choose prices when maximising their proÞts. If, on the other

hand, Þrms choose quantities, the demand system (7) is better thought of as

deÞning {pi}Ni=1 in terms of {xi}Ni=1. Inverting the system in (7), we obtain:

pi =
ECσ

x
1/²
i

PN
j=1 x

²−1
²

j

. (8)

This completes the description of households behaviour.

2.2 Y good Þrms

We assume an inÞnite number of competitive Þrms producing a traditional good4

using CRS technology with the unitary unit labour requirements:

Y = LY , (9)

where LY is the number of people employed in the traditional sector. Because

of perfect competition, traditional Þrms will not generate any surplus over their

labour cost, but will follow marginal cost pricing:
4 In the original paper, this sector is described as having exhausted its learning opportuni-

ties.
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PY = w,

where w is the nominal wage rate prevailing in the economy. Since only real

variables can be determined in the equilibrium, we later normalise w = 1 by a

choice of units.

2.3 X good Þrms

Each variety is produced using IRS technology with a Þxed ßow of labour, f,

necessary to maintain production, and efficiency depending on the accumulated

level of Þrm-speciÞc knowledge:

xi = hiLXi
. (10)

Lxi is the number of people employed in Þrm i in the production itself (i.e.

manufacturers), and hi is the level of Þrm-speciÞc knowledge that accumulates

according to:

úhi = γh
1−α
i HαLIi , (11)

where LIi is the number of employees in Þrm i involved in innovative R&D,

which improves the productivity of the workforce in production, and H is the

industry average level of knowledge across Þrms5. Hence, the total amount of

labour employed by a Þrm is:
5The speciÞcation in (11) asserts that research productivity depends on the ratio of a Þrm-

speciÞc level of knowledge to an industry average, rather than on an industry-wide stock of
knowledge. This is clearly seen by rewriting (11) as úhi = γ

¡
H
hi

¢α
hiLIi . As a corollary, the

average productivity in research relative to industry,
γh1−α

i
Hα

hi
= γ

¡
H
hi

¢α
, is independent of
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f + LXi
+ LIi.

Research activity beneÞts from its own research base hi and spill-overs from

an average level of knowledge in industry H with diminishing returns to both.

We also assume that each variety is produced by a single Þrm and vice versa. It

will be clear from the equilibrium below that no Þrm would Þnd it optimal to

produce a variety already produced by another company, if it can enter its own

proÞtable niche. Because we only analyse symmetric equilibria along the BGP,

we assume that all Þrms start with the same level of Þrm-speciÞc knowledge.

At every instant, each Þrm chooses a price ( pi,s) or quantity (xi,s) for its

production and the amount of labour devoted to research so as to maximise

its net present value, not taking into account the effects of its actions on the

knowledge accumulation of other Þrms. Under this assumption, we conÞne

ourselves to strategic interactions at the level of the production/pricing decisions

of Þrms for the beneÞt of standard dynamic optimisation techniques, unlike the

differential game approach. These strategic interactions take place in two modes

of competition: Bertrand (Þrms compete in prices), and Cournot (Þrms compete

in quantities). According to the mode, Þrms solve one of the following problems:

V Bi,t = max
{pi,LIi ,hi}∞t=0

Z ∞

t

e
−
R s

t
rτdτ ... (12)

the number of competing hi-tech Þrms. For this reason, the speciÞcation precludes analysing
the effects which a varying number of competing Þrms might have on the possibility of inter
Þrm learning. See, for instance, Smulders and van de Klundert (1995) for these types of effects.
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... [xi,spi,s −ws(f + LXi,s + LIi,s)]ds (13)

s.t. (7), (10), (11), i = 1, ..., N., or

V Ci,t = max
{xi,LIi ,hi}∞t=0

Z ∞

t

e
−
R s
t
rτdτ [xi,spi,s −ws(f + LXi,s + LIi,s)] ds,

s.t.(8), (11),(10), i = 1, ..., N.

Because the choice of price (or quantity) has no dynamic effect between

periods, each Þrm�s actions at every instant can be thought of as taking place

in two stages: In the second stage, the Þrm chooses its price (or quantity) given

the path of its research base hi,t and the input to research process Li,t chosen

in the Þrst stage. In the Þrst stage, the Þrm chooses the optimal time path of

the research base by allocating labour to research, and envisaging the outcomes

of the second stage. Hence the problem in 12 is equivalent to:

max
{LIi ,hi}∞t=0

Z ∞

t

e
−
R s

t
rτdτ

heV li (h)−wLIi,si ds, (14)

s.t. 11, i = 1, ..., N., l = C,B

eV Bi = max
pi
{xi,spi,s−ws(f + LXi,s)| s.t.(7), (10),h} (15)

eV Ci = max
xi
{xi,spi,s−ws(f + LXi,s)| s.t.(8), (10),h}, (16)

where h = {hi}Ni=1 denotes a vector of knowledge stocks for all hi-tech Þrms.

This decomposition allows us to solve the two problems separately in stages.
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2.3.1 The intratemporal problem

The solution to the inner problem in (14) is a standard one which leads to the

following pricing rules:

pi =
w

hi

ei
ei − 1 , (17)

where e is the perceived price elasticity of output for Þrm i. The higher the

perceived elasticity is, the lower the mark-up and proÞts are at every moment,

ceteris paribus. In our context, the elasticity depends on the mode of competi-

tion. It can be shown that for the Bertrand case:

eBi = ²+
(1− ²)p1−²iPN

j=1 p
1−²
j

, (18)

and for the Cournot case6:

eCi =
1

1
² +

²−1
²

x
²−1
²

iPN

j=1
x
²−1
²

j

. (19)

Later we will be concerned only with analysing symmetric equilibria, thus

these elasticities will become independent of choice variables and will be func-

tions of parameters only:

eB = ²+
1− ²
N

, and eC =
²

1 + ²−1
N

. (20)

6 It seems worthwhile to emphasise that although both are own price elasticities of demand,
they differ in variables that are kept constant (which are in both cases decision variables of
other Þrms). For Bertrand they are prices and for Cournot, quantities. Hence, a more precise
general notation might look like:
eB ≡ −²(xi; pi | p−i) and eC ≡ −²(xi; pi | x−i), where subindex −i denotes a vector of

variables other than i.

16



Because of their distinct effects on pricing, proÞts and welfare, we interpret,

in line with Sutton (1991), the different modes of competition as two extremes

on the scale of toughness of competition7. In the symmetric equilibria studied

later, we will examine the effects of competition severity by simply substituting

eB or eC from (20) in place of e in (17). It is, however, too simplistic to impose

such symmetry on the solution of the second (production) stage before the Þrst

(intertemporal) stage of problem (14) is solved. This is our point of departure

from the conventional treatment, and from Smulders and van de Klundert�s in

particular.

The distinction between the two modes of competition is meaningful only

when the number of competing Þrms is relatively small (Dixit and Stiglitz, 1977,

Yang and Heidra,1993); for large N the two coincide. Because different strategic

interactions lie at the heart of our interest, implicit in our subsequent analysis

will be the requirement for a small number of hi-tech Þrms, achieved either by

keeping the Þxed cost of entry (f) large enough to sustain only a few Þrms in

a free entry equilibrium, or by preventing free entry and keeping the number of

Þrms exogenously small.

Before symmetry is imposed, the optimal pricing decision for Bertrand com-

petition is given by the system of (17) and (18) for all i = 1, ..., N , while the

optimal quantity decision for Cournot competition is determined by the system

of (8), (17) and (19) for all i = 1, ..., N . Hence for Bertrand, the system deÞnes:
7 Sutton, in fact, considers the weakest competition the case of joint proÞt maximisation.
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pi = pi(h) = pi(hi,h−i), (21)

where h denotes a vector of knowledge stocks for all Þrms, {hl}Nl=1 , and h−i

denote a vector of knowledge stocks for all other Þrms except i. The motivation

for this functional notation is the apparent functional asymmetry of hi and

hj,j 6=i in pi given by (17), and the symmetry of hl,l6=i and hk,k 6=i given by

(18). The intratemporal operational proÞts resulting from this optimisation

and distributed at every moment among households are given as:

πBi = xi(p)

µ
pi(h)− w

hi

¶
−wf (22)

= xi(pi,p−i)
µ
pi(hi,h−i)− w

hi

¶
−wf, (23)

where p−i denotes a price vector of pj 6=i 8 and where again we made use of the

functional symmetry in (7). This functional form appears cumbersome, but we

Þnd it useful for intertemporal optimisation later on. In fact, in a symmetric

equilibrium, it will take on a very simple form. Employing (20) and (7), we Þnd

that under symmetry:

πBi =
Eσ

NeB
−wf = Eσ

²(N − 1) + 1 −wf. (24)

Likewise, for Cournot competition, optimisation deÞnes the system of:

xi = xi(h) = xi(hi,h−i), (25)
8More formally p−i ≡ {pj(hj , {hl}Nl=16=j)}Nj=16=i
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and

πCi = xi(h)

µ
pi(x)− w

hi

¶
−wf, (26)

xi(h) = xi(hi,h−i) (27)

pi(x) = pi(xi,x−i). (28)

In a symmetric equilibrium, proÞts become:

πCi =
Eσ

NeC
−wf = Eσ(N + ²− 1)

N2²
−wf. (29)

2.3.2 The intertemporal problem

With the intratemporal proÞts deÞned in (26) and (22), we may now characterise

the Þrst stage of a Þrm�s decision making. The Þrm decides on its investment

in research (LI,i) given the evolution of its knowledge base (11) and facing the

path of interest rates rt and the average level of knowledge in industry Ht.

With respect to the Ht, we assume that the Þrm is myopic in the sense that

it does not realise the effect it has over the industry average. We assume this

for computational convenience, as it is not central to the argument we pursue

here. As a result, the Þrm does not consider the effects of its actions on its

rivals� proÞts that work through knowledge spill-overs, but instead considers

the effects its research allocation has on the pricing of its rivals:

max
{LIi ,hi}∞t=0

Z ∞

t

e
−
R s

t
rτdτ

£
πki,s −wsLIi,s

¤
ds, (30)

s.t. (11), i = 1, ..., N, k = B,C.
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The present value Hamiltonian for this problem is:

Hi,s = e
−
R
s

t
rτdτ

£
πki,s −wsLIi,s

¤
+ λsγh

1−α
i,s H

α
s LIi,s,

where λi, the co-state variable, is the present shadow value of knowledge base

h. The necessary condition for optimal development of this shadow price can

be obtained as:

λi,t =
e
−
R
s

t
rτdτwt

γh1−αi,t H
α
t

, (31)

irrespective of the mode of competition. From this, the shadow value evolves

according to:

úλi,t
λi,t

=
úwt
wt
− (1− α)

úhi,t
hi,t

− α
úHt
Ht

− rt. (32)

On the other hand, the necessary condition describing the Þrm�s indifference

between investing in research or production differs according to competition.

Bertrand competition Making use of (22), we obtain the following for

Bertrand competition:

∂HB
i

∂hi
= (33)

e
−
R s
t
rτdτ

 ∇xi(p)
Ã

∂pi(hi,h−i)
∂hi

∂p−i(hi,h−i)
∂hi

!³
pi(h)− w

hi

´
+ ...

...+ xi(p)
³
∂pi(hi,h−i)

∂hi
+ w

h2i

´
+

+ λi(1− α)γ
µ
H

hi

¶α
LIi = − úλi,

20



where time subscripts have been suppressed for notational convenience. ∇xi(p)

denotes the (row) vector of partial derivatives with respect to elements of p,

while ∂p−i(hi,h−i)
∂hi

refers to a (column) vector of partial derivatives of elements

of p−i with respect to hi. It is this assumption in the formulation of the Þrst

order condition where we deviate from the treatment by K-S. They assume that

Þrms do not account for adverse effects of their own R&D choice on other Þrms�

behaviour through knowledge spill-overs, which is a standard treatment. In

addition, they impose symmetry on human capital stock across Þrms before the

decision about R&D is made, and Þrms treat this path as given in the rational

expectations equilibrium. Hence, the term ∂p−i(hi,h−i)
∂hi

is implicitly missing in

their characterisation of the Þrms� behaviour9.

Substituting (31) and (32) and multiplying by hi, we obtain the following

characterisation of the Þrst order condition:

hi∇xi(p)
Ã

∂pi(hi,h−i)
∂hi

∂p−i(hi,h−i)
∂hi

!µ
pi(h)− w

hi

¶
+

+hixi(p)

µ
∂pi(hi,h−i)

∂hi
+
w

h2i

¶
+

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

The expression can be simpliÞed using the functional symmetry noted above:
9 If we extended our analysis to comprise the strategic interactions working through knowl-

edge spill-overs, we would Þrst have to recognise that the level of Þrm-speciÞc knowledge is

a function of the other�s research stock hi (h−i) . Then the partial derivative
∂p−i(hi,h−i)

∂hi
in

the Þrst order condition would have to be replaced by the total derivative
dp−i(hi,h−i(h))

dhi
=

∂p−i(hi,h−i)
∂hi

+∇p−i(h−i)
³
∂h−i
∂hi

´
. Noting that the cross derivative

∂hj
∂hi6=j

= −αhj
H

1
N
, we

observe that the second term disappears when we ignore spill-overs (α = 0). See Appendix 5
for more details.
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all cross price derivatives of demand functions will have the same functional

form, different from own price derivative, and all cross knowledge derivatives of

pricing functions will have the same functional form, different from own knowl-

edge derivative. In addition, in the symmetric equilibrium analysed below, these

cross derivatives of demand and pricing functions will have the same value.

Therefore, we may consider only two subindexes: i and j as referring to own

and cross effects. More formally, h−i = {hl}l6=i and p−i = {pl}l6=i . Thus, index

j simply refers to any other Þrm except i. This allows us to rewrite the condition

for symmetric equilibria as:

hi

·
∂xi(p)

∂pi

∂pi(h)

∂hi
+ (N − 1)∂xi(p)

∂pj

∂pj(h)

∂hi

¸
+

+hixi(p)

µ
∂pi(h)

∂hi
+
w

h2i

¶
+

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
,

where ∂xi(p)
∂pj

and ∂pj(h)
∂hi

refer to partial derivatives with respect to price or

knowledge base of any other Þrm, evaluated at symmetry. Simplifying and

using the condition for optimal pricing from the second stage in (17), we get:

hi

·
(N − 1)²(xi; pj | p−j)xi

pj

∂pj(hj ,h−j)
∂hi

(pi − w

hi
) +

w

h2i

¸
+ (34)

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

We need to evaluate the expressions for the cross price elasticity of demand

in the Bertrand case (i.e. holding prices of others constant), ²(xi; pj | p−j), and
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the cross derivative of pricing function with respect to the other�s knowledge

base, ∂pj(...)
∂hi

10. The elasticity can be readily obtained from (7) as ²−1
N , and

Appendix 1 demonstrates that from (7) and (17), we may obtain:

∂pj(hj ,h−j)
∂hi

= − w
h2i
dB , dB =

²(N − 1) + 1
(N − 1)(²N2 − ²(N − 1)− 1) > 0.

By substituting these expressions for (34) and then simplifying, we Þnd the fol-

lowing expression a necessary condition for intertemporal optimality of a Þrm�s

decision making:

xi(p)pi(h)
eB − 1
eB

AB(N, ²) + ...

+(1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht
+ rt

#
,

AB(N, ²) =
(N − 1)(1− ²)dB +NeB

eBN
.

The behaviour of term AB, which is a function of a number of Þrms existing

in equilibrium and a degree of substitutability of X varieties, will later prove very

useful when comparing market equilibria to socially optimal outcomes. Finally,

noting that LXi =
xi
hi
from (10), and making use of (17), we obtain:

LXiA
B(N, ²) + (1− α)LIi =

1

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht
+ rt

#
(35)

Cournot competition The necessary condition for describing the Þrm�s in-

difference to investing in its knowledge base or production for Cournot compe-
10 If we extended the strategic effects to comprise the spill-over channel, the cross derivative

(N − 1)∂pj(...)
∂hi

would be replaced by
∂pj(...)

∂hi

h
1− (N − 2) α

N

hj
H

i
− α

N

hj
H

∂pj
∂hj

.
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tition takes the following form:

∂HC
i

∂hi
= (36)

e
−
R s
t
rτdτ

"
∂xi(hi,h−i)

∂hi
+ xi(h)∇pi(x)

Ã
∂xi(hi,h−i)

∂hi
∂x−i(hi,h−i)

∂hi

!
+ xi(h)

w

h2i

#
+

+ λi(1− α)γ
µ
H

hi

¶α
LIi = − úλi.

Substituting (31) and (32), we obtain:

hi

"
∂xi(hi,h−i)

∂hi
+ xi(h)∇pi(x)

Ã
∂xi(hi,h−i)

∂hi
∂x−i(hi,h−i)

∂hi

!
+ xi(h)

w

h2i

#
+

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

Again, conventional treatment disregards the role research decisions have on

the production behaviour of rivals. Hence, the term ∂x−i(hi,h−i)
∂hi

is missing in

the standard approach (see K-S).

Using the functional symmetry of prices with respect to the rival Þrms� levels

of production, and production with respect to the rivals� stock of knowledge we

may rewrite this condition for a symmetric equilibrium as follows:

hi

 ∂xi(hi,h−i)
∂hi

+ xi(h)
w
h2
i
+ ...

+xi(h)
³
∂pi(x)
∂xi

∂xi(h)
∂hi

+ (N − 1)∂pi(xi,x−i)∂xj

∂xj(hj,h−j)
∂hi

´ +
+ (1− α)wLIi =

w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
,

where again we employed notational convention of index j denoting any other

Þrm except i. By invoking the pricing condition from the second stage (17) and
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simplifying, we receive:

hixi(h)

µ
(N − 1)²(pi;xj | x−j)pi(x)

xj

∂xj(h)

∂hi
+
w

h2i

¶
+ (37)

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

We need to evaluate the expressions for the cross price elasticity of demand

in the Cournot case (i.e. holding quantities of others constant), ²(xi; pj | x−j),

and the cross derivative of the quantity function with respect to another�s knowl-

edge base, ∂xj(h)∂hi
. The elasticity can be readily obtained from (8) as 1−²

²N , and

Appendix 1 demonstrates that from (8) and (17), we may obtain:

∂xj(...)

∂hi
= − w

h2i

xi
pi
dC , dC =

²(N − 2)
(N − 1)(²+N − 2) ≥ 0. (38)

Upon using these expressions in (37) and simplifying, we obtain the following

expression as a necessary condition (in a symmetric equilibrium) for intertem-

poral optimality of a Þrm�s decision making when playing Cournot in the second

stage:

xipi
eC − 1
eC

AC(N, ²) + (1− α)wLIi =

=
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
,

AC(N, ²) =
(²− 1)(N − 1)dC + ²N

²N
.

Finally, noting that LXi =
xi
hi
from (10) and making use of (17), we obtain:
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LXi
AC(N, ²) + (1− α)LIi =

1

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht
+ rt

#
. (39)

We can observe that the intertemporal condition for a Þrm�s behaviour,

when Cournot is played at the second stage (39), has the same form as the

condition when Bertrand is played (35) with term AB replaced by AC . These

terms are different functions of the elasticity of substitution ² and the number

of Þrms N . Hence, when the number of Þrms is kept exogenously small (when

free entry is prohibited), such a formulation of intertemporal conditions makes

the effects of different modes of competition on equilibrium particularly easy

to analyse. The terms can be understood as measures of strategic interactions

linking the decisions about R&D with those about pricing and production. Note

in particular that when Þrms ignore the effects of their research investment on

the others� pricing and quantity decisions (the terms ∂pj(...)
∂hi

, and ∂xj(...)
∂hi

above

are set to zero), the terms dC and dB are both zero, and AB and AC are equal

to one. In this case, these measures of strategic interactions disappear from the

above conditions and the mode of competition is not important. Similarly, if

the number of Þrms N reaches inÞnity, both strategic terms converge to unity,

because strategic interactions become unimportant. This is a standard result

(van de Klundert and Smulders, 1997). Note also that the effects of strategic

interactions we consider here do not hinge on the existence of knowledge spill-

overs.

Having characterised the paths of a Þrm�s optimal choices, we may also

characterise the Þrm�s intertemporal proÞts, i.e. the value of a Þrm in (12) in a
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symmetric equilibrium by using (24) or (29):

Vi,t =

Z ∞

t

e
−
R
s

t
rτdτ [πi,s −wsLIi,s] ds (40)

=

Z ∞

t

e
−
R s

t
rτdτ

·
Esσ

Nse
−wsf −wsLIi,s

¸
ds. (41)

This completes the description of the behaviour of X sector Þrms and we

move next to characterisation of equilibria.

3 Market Equilibrium

For analytical purposes, we are only interested in symmetric equilibria among

X sector Þrms. Hence, all hi-tech Þrms are identical in equilibrium, producing

the same quantities at identical prices and investing the same resources in the

development of their knowledge bases. This makes an average industry level

of knowledge, H, identical to a representative Þrm�s knowledge, h, signiÞcantly

simplifying the analysis.

Market equilibrium is the combination of all allocations and prices in the

model economy such that the behaviour of all agents is optimal and all markets

clear. The clearance of goods markets has already been ensured by the opti-

mal behaviour of Þrms. The clearance of bond markets implies that household

savings are used to Þnance R&D investment:

úS = w
NX
i=1

LI,i.

The intertemporal budget constraint in (3) and (4) can be, after substituting for

the Þrm�s proÞts (22 and 29) and labour demands (46, 9 and 6), manipulated
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to yield in symmetry:

EC = wN [LX + f ] +wLY +Nπ. (42)

EC = wNLX +wLY +
Eσ

e
(43)

EC =
Ew

e− σ (NLX + LY ) (44)

EC =
NLXew

σ(e− 1) . (45)

The only other market that matters here is the labour market in which all the

workforce must equal the exogenously given supply of labour, L:

L = LY +N(LX + f) +NLI . (46)

Using (45) in labour demand in sector Y given by equations (9) and (6) we ob-

tain the following expression regarding the optimal allocation of labour between

production and research:

NLX
e− σ
σ(e− 1) +NLI = L−Nf.

The symmetric equilibrium with a Þxed number of X varieties (henceforth

denoted as a constrained equilibrium) can then be characterised by the following

system of equations:

úEC,t
Et

= rt − θ, (47)

úht
ht

= γLIi,t , (48)
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LX,t
úht
ht
AB(N, ²) = LI,t

"
− úwt
wt
+ α

úhi,t
hi,t

+ rt

#
, (49)

EC,t =
NtLX,tewt
σ(e− 1) , (50)

NtLX,t
e− σ
σ(e− 1) +NtLI,t = L−Ntf. (51)

The system deÞnes the evolution of allocations E,h,LI , LX , and prices r, w,

for the given parameters and number of X Þrms. The Þrst equation describes

the consumer�s intertemporal behaviour as in (5). The second is a symmetric

equilibrium version of the technological constraint in (11). The third describes

the optimal behaviour of X sector Þrms. It is derived from (35) (or 39) by

imposing symmetry and Þrst substituting LIi by (48) and then
LIi
úhi/h

by 1
γ in the

resulting expression. The last two are products of the asset market and labour

market clearing conditions and were already derived earlier.

In a free entry equilibrium, new X Þrms enter as long as the intratemporal

proÞts are positive, so the number of Þrms can be pinned down by the following

condition:

V = 0. (52)

V may be determined from (41) and (45) as:

V =

Z ∞

t

e
−
R s
t
rτdτ

·µ
Lxi,s
(e− 1) − f − LIi,s

¶¸
ds.

The value of a Þrm on a balanced growth path (BGP) decreases in the num-

ber of competing X sector Þrms, other things being equal, because the partial

derivative of ∂e
B,C

∂N > 0 (see 20). If the number is determined exogenously, the
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value of an incumbent Þrm will be non-negative.

Because only relative prices can be solved in the equilibrium, we employ the

normalisation suggested above, namely w = PY = 1, and express all variables

in terms of traditional goods. As usual, we will concentrate on analysing the

system at a balanced growth path (BGP). There are no transitional paths, and

the system, once off the BGP, immediately jumps back. We are looking for

balanced growth paths with knowledge accumulating at a constant rate g. This

implies that a constant fraction of labour resources is devoted to knowledge

accumulation, and hence also to the production of X goods. Then, total expen-

diture will be constant at the BGP, which can only be if the interest rates are

also constant and equal to the subjective discount rate. Hence, the balanced

growth (constrained) equilibrium is described by the following modiÞcation to

the above differential system:

rt = θ, (53)

g =
úhi
h
= γLIi , (54)

LXigA
B(N, ²) = LI (αg + rt) , (55)

E =
NLXew

σ(e− 1) , (56)

NLX
e− σ
σ(e− 1) +NLI = L−Nf. (57)

If we allowed a free entry, this system would be accompanied by the free-

entry condition (52) which on the BGP implies:
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Lxi,s
(e− 1) − f − LIi = 0. (58)

The system can be easily solved for the balanced rate of growth. Solving the

system of (57) and (55) for LI and LX and substituting the resulting expression

for LI in (54) we obtain the following expression for the balanced rate of growth

as a function of parameters and the number of X sector Þrms:

g(N, e) =
γσ(e− 1)( LN − f)A− θ(e− σ)

α(e− σ) +Aσ(e− 1) , (59)

where e and A take the form according to the mode of competition. Examining

the expressions for A offers direct insight into the effects of competition on

growth for a given level of concentration (deÞned as 1/N). In a free entry

equilibrium (when the level of concentration is endogenous), the reduced form

expression for g andN are difficult to obtain. Nevertheless, it would be beneÞcial

to complement condition (59) with a condition determining the number of Þrms

in a free entry equilibrium. Substituting the expression obtained above for LX

in equation (58) and using (54), we Þnd:

g(N, e) = γ(
L σ

N e
− f). (60)

The system of (59) and (60) determines the equilibrium values of growth

and the number of hi-tech Þrms along the BGP as functions of the model�s

parameters.
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4 The effects of strategic interactions

The constrained rate of growth in condition (59) differs from the conventional

result by featuring strategic terms AC or AB. SpeciÞcally, if we were to follow

the K-S analysis to the letter, we would have found the equivalent condition to

be:

g(N, e) =
γσ(e− 1)( LN − f)− θ(e− σ)

α(e− σ) + σ(e− 1) .

Regarding terms AC and AB, we have already said informally that their

values indicate a measure of strategic interactions among X sector Þrms, ap-

proaching unity as the number of Þrms goes to inÞnity. The appendix 2 pro-

vides further details about the behaviour of these expressions on the domain of

plausible parameter values. The main difference between the two is that while

AB approaches unity from below, AC does it from above. The second difference

is that while the partial derivative of AB with respect to N is monotonic, AC

is generally non-monotonic and reaches its maximum at values of N close to 3.

Third, at the limit value N = 2, AB approaches exactly 2/3 as ² reaches inÞn-

ity while AC is unity. This Þnding implies that when there are only two Þrms

playing Cournot at the second stage, there cannot be any strategic interactions

among them in the Þrst stage. These only become important at lower levels of

concentration. The reason for this peculiar result is that when there are only

two Þrms playing Cournot at the second stage, an increase in one�s production

has no effect on the marginal revenues of the other (see Appendix 2). These

observations are best manifested in Figure 1 depicting the expressions in ²,N
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space.

To better understand the mechanisms operating in these strategic variables,

we rewrite them in terms of various elasticities considered throughout the paper.

It can be shown that for Bertrand competition11:

AB = 1− (N − 1)²(xi; pj | p−j)²(pj ;hi)
1− eB . (61)

The variable differs from 1 by the expression (N − 1) ²(xi;pj |p−j)²(pj |hi)1−eB > 0.

Consider now the elasticities in the numerator of this expression. They show

the anticipated percentage effect of the R&D investment of a representative Þrm

i on the contraction of demand for its products through the pricing reaction of

a rival Þrm j. Elasticity ²(pj ;hi) describes the channel through which the R&D

investment alters optimal pricing by its rivals. Elasticity ²(xi; pj | p−j), on the

other hand, shows the response of consumer demand to a pricing reaction of the

rival Þrm, holding the prices of others constant. It is the ordinary cross price

elasticity of demand for Bertrand competition. As there are N − 1 identical

rival Þrms in the symmetric equilibrium, the total effect on the demand for

the goods of the investing Þrm results after multiplying by this number. The

fraction part of the expression has this total effect of R&D investment on the

Þrm�s own demand expressed relative to the percentage demand effect of the

own price decision (its excess over 1).

In Cournot competition, AC can be rewritten as12:
11From condition (34) and the subsequent exposition, we observe that AB = 1 + (N −

1)
²(xi;pj |p−j)
eBc0(hi)

∂pj(.)

∂hi
= 1 + (N − 1) ²(xi;pj |p−j)

eBc0(hi)
pj
hi
²(pj ;hi).

Recalling further that
pj

c0(hi)hi
= eB

eB−1 gives us the result.
12Note that from (37) and the subsequent exposition we can write AC as AC = 1− (N −
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AC = 1 + (N − 1)e
C²(pi;xj | x−j)²(xj ;hi)

1− eC . (62)

Although seemingly different, the expression by which AC exceeds 1, (N −

1)
eC²(pi;xj |x−j)²(xj |hi)

1−eC > 0, is interpreted identically to the equivalent expression

in the Bertrand case. Elasticity ²(xj | hi) comprises the link, in percentage

terms, through which a Þrm�s own R&D investment affects the production de-

cision of a representative rival. Elasticities ²(pi;xj | x−j)eC then translate this

effect into the impact on consumer demand for the production of the investing

Þrm. We note too that eC ≡ −²(xi; pi | x−i). As before, the total effect is

normalised with respect to the percentage demand effect of the Þrm�s own price

decision (its excess over 1).

In both cases, therefore, the strategic term A measures the effect of R&D

expenditure on the consumer demand of the investing Þrm, which can be antic-

ipated from the reaction of its rivals. In Appendix 5, we demonstrate that so

deÞned strategic expressions and their position in the deÞnition of the equilib-

rium remain intact, even when allowing for the interactions to pass through the

knowledge spill-over channel (although, if expressed in primitive parameters,

the expressions would differ substantially). This is an important result, because

it permits us to think about these expressions as conjectural variables reßecting

the �anticipated� strategic effects of R&D investment. Such an interpretation

makes way for their easier empirical calibration.

1)
²(pi;xj |x−j)

c0(hi)
pi
xj

∂xj(.)

∂hi
= 1−(N−1) ²(pi;xj |x−j)

c0(hi)
pi
hi
²(xj ;hi). Recalling further that

pi
c0(hi)hi

=

eC

eC−1 gives us the result.
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5 The effects of competition and social optimal-
ity

In order to grasp the implications of different modes of competition for balanced

growth rates, we need to analyse the relationship between terms eB and eC ,

and between AC and AB. As for the elasticities, the expressions in (20) clearly

show that in a symmetric equilibrium eB > eC . In other words, because the

perceived price elasticity of demand is higher, mark-ups over marginal costs

must be lower under the tougher Bertrand competition. We may then establish

the implications of competition toughness for growth by partially differentiating

the expression in (59):

∂g(N, e,A)

∂e
=

Aσ(1− σ)
[α(e− σ) +Aσ(e− 1)]2

·
γ(
L

N
− f)α+ θ

¸
≥ 0. (63)

The higher price elasticity perceived under Bertrand competition leads to higher

balanced rates of growth for any given level of concentration and strategic in-

teraction terms13 . This is a standard result, analysed, for instance, by van de

Klundert and Smulders: Intuitively, lower prices of hi-tech goods under Bertrand

competition make them relatively cheaper than traditional goods, and so the

market and proÞts of hi-tech Þrms are larger. This increases incentives for re-

search investment. However, the two modes of competition differ not only in

pricing rules, but also in the impacts of strategic interactions, as exempliÞed

by terms AC and AB. These were missing in original van de Klundert and
13Note that the gradient of AC − AB also contains the difference between eC and eB,

because in general, A is a function of e. Thus, the partial derivative above, holding A constant,
underestimates the elasticity effect because it ignores the channel that works through strategic
interactions (see below).
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Smulders� original exposition.

If we look solely to the implications of the strategic terms, condition (59) sug-

gests that when AB ≤ 1 and AC ≥ 1, the balanced growth rates under Bertrand

competition will probably fall short of Cournot rates for any given degree of con-

centration, N , and perceived price elasticity, e. This intuition is supported by

condition (55), which gives the ratio of resources devoted to research and output

implied by the intertemporal optimisation of Þrms: for any given combination

of parameters and growth rate, the relative resources devoted to research will

be higher for Þrms engaged in Cournot, and not Bertrand, competition. To

support this intuition, we differentiate the expression for constrained balanced

growth (59) with respect to the degree of strategic interactions A, holding the

level of concentration and the perceived price elasticity constant14:

∂g(N, e,A)

∂A
=

σ(e− 1)(e− σ)
[α(e− σ) +Aσ(e− 1)]2

·
γ(
L

N
− f)α+ θ

¸
≥ 0. (64)

Indeed, because AC ≥ AB, the constrained balanced growth under Cournot

competition is higher than under Bertrand, for any given level of concentration

(and perceived price elasticity). And, as condition (60) remains unaffected by

the mode of competition, this result implies that when ignoring different price
14 It may seem inconsistent to differentiate the growth rate with respect to A, while keeping

the perceived elasticity constant, when, in fact, it changes across the mode of competitions for
the same parameter values. This is certainly true for the well-speciÞed strategic game space
considered here. But empirically, it helps to understand the perceived price elasticity e as a
measure of competition toughness, as for instance in Sutton (1991). Under such circumstances,
e may be treated as the primitive parameter of the remaining system, even though it does not
result from a properly deÞned intratemporal game. The perceived elasticity may function as
an ad hoc conjecture, just as the �conjectural variation� parameter in the IO literature (see
e.g. Brander, 1995). If we likewise treat A as a primitive conjecture on strategic effects, the
derivative of the growth rate with respect to A, holding e constant, would be meaningful.
In addition, the derivative below examines the effect of including a strategic term in the
conventioanal functional form for the constrained growth rate.
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elasticities in a free entry equilibrium, Cournot growth rate is higher and the

number of hi-tech Þrms lower than under Bertrand.

This result can be understood as follows. Because the choice variables

(prices) under Bertrand are strategic substitutes, while under Cournot they

(quantities) are complements, a Þrm�s rivals react to its lower price by follow-

ing suit. The implication is that by investing in its own R&D, the Þrm is

able to charge lower prices. This triggers an optimal response from its rivals,

who adjust their prices downward to eliminate the price disadvantage. When

the investing Þrm takes this into account, its perceived proÞts from production

decrease, making the incentive to invest in R&D lower than under Cournot.

Under Cournot, by contrast, rival Þrms react to a Þrm�s increased production

by decreasing their own production. Because investment in research enables

the Þrm to increase production, the rival Þrms� optimal response is to decrease

their production, which in turn makes the proÞts of the investing Þrm com-

paratively higher. This enhances the beneÞts of research and leads to a higher

rate of knowledge accumulation. However, note that reallocation of more labour

resources to R&D under Cournot competition actually decreases the life-time

proÞts of hi-tech Þrms (conditions 52 and 58) as compared to the Bertrand case,

so only fewer Þrms can be supported in a free entry market equilibrium.

The effects of competition toughness and strategic interaction, therefore,

have contrary implications for constrained growth rates under the two modes of

competition. Which of them dominates is difficult to tell in general, but we can

make few observations. For instance, both effects disappear as N → ∞. Note

37



also that the effect of tougher competition relies on the presence of traditional

goods. Ignoring the traditional sector (by setting σ = 1) removes the relative

price distortion, so only strategic interactions remain to distinguish between the

two modes.

In this context, Cournot constrained growth rates exceed those of Bertrand.

As we show in Appendix 3 using numerical simulations, the share of hi-tech

goods in consumption is a critical parameter determining which mode of com-

petition brings about a higher balanced growth rate. We demonstrate, that in

an approximation of the problem, for several levels of concentration there exists

a critical level of this share (�σ) for any degree of substitutability among hi-tech

goods (²) above which Cournot growth rates dominate those of Bertrand. This

critical value rises with higher substitutability, making higher Bertrand growth

rates more likely (Figure 2). On the other hand, it falls with a greater number of

competing Þrms, making higher Bertrand growth rates more unlikely. From our

approximation of the problem, then, it appears that higher constrained growth

rates may be observed under Bertrand competition only at low levels of con-

centration (close to duopoly) when the share of hi-tech goods in consumption

is also relatively low; a constellation that may prove rare in practice.

Although the size of the approximating error remains undetermined, we

can Þrmly concluded that if the share of goods, for whose production learning

is important, is high enough, the more relaxed Cournot competition yields a

higher balanced growth rate. We could not obtain these kinds of results in a

standard treatment, which ignores the effects of strategic interactions linking
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decisions about R&D with those of pricing and production.

5.1 Social optimality

A detailed solution to the problem of an idealised social planner looking for the

growth rate and the number of Þrms which would maximise households� utility

can be found in Smulders and van de Klundert (1997). There, the socially

optimal balanced rate of growth for a given number of hi-tech Þrms (i.e. socially

optimal constrained rate of growth) is given as:

g(N,e) =
γσ( LN − f)− θ

σ
, (65)

and the optimal number of Þrms is determined by:

g(N, e) = γ(
L σ

N (²− 1 + σ) − f). (66)

As the authors note, market equilibrium will in general differ from the so-

cial optimal outcome because of three types of imperfections. First, because

of knowledge spill-overs in investing (α > 0), Þrms do not appropriate all the

beneÞts of R&D investment, causing it to be suboptimally low (ceteris paribus).

Second, because of imperfect competition in the X sector, the relative price of

hi-tech versus traditional goods is higher than the marginal rate of technical

substitution, again leading to lower production of hi-tech goods and a lower

rate of innovation. It is easily demonstrated that by removing these distortions

through the elimination of spill-overs (α = 0), elimination or taxation of the tra-

ditional sector (σ = 1 or tax to correct for the relative price) and ignorance of
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the strategic terms, condition (59) becomes identical to (65). Then the market

and social rates of growth, conditional on a given rate of concentration, coincide

in the absence of strategic interactions. The third type of distortion involves the

optimal number of Þrms in a free-entry equilibrium. Because Þrms base their

pricing on perceived demand elasticities (e) which are different (for small values

of N) from consumers� demand elasticities (²), the Þrms� proÞts are too large

and too many Þrms co-exist in the equilibrium. In addition to the three outlined

by K-S, there is also a forth type of imperfection caused by strategic interactions

when the number of Þrms is small, and depending on the mode of competition.

Under Cournot, strategic complementariness of production (as the choice vari-

able of Þrms) motivates further research investment, making it too high from a

social point of view. Under Bertrand, by contrast, the strategic substitutability

of prices decreases the beneÞts of research, leading to a suboptimally low level

of investment.

As we are primarily interested in the effects of competition on market growth

rates, we dismiss the other imperfections. First, we remove the traditional sector

(σ = 1), and second, we only work with a Þxed number of X-sector Þrms, thus

avoiding the second and third types of imperfections. The (constrained) market

growth rate is then given by:

g(N, e) =
γ( LN − f)A− θ

α+A
, (67)

while the socially optimal rate becomes:
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gSP (N, e) = γ(
L

N
− f)− θ. (68)

Note that when the number of Þrms goes to inÞnity (strategic interactions

lose importance, A = 1) and there are no spill-overs (externality disappears, α =

0), the market and social rates of growth coincide. It follows that if we ignore

only strategic interactions (A = 1), then the market growth rate will always fall

short of the social rate and the spill-over imperfection will never be corrected

without introducing taxes or subsidies. This is the same result obtained by

van de Klundert and Smulders, who ignored the strategic interactions when

investing in R&D. We Þnd, however, that incorporating these interactions may

trigger their result either way.

In order to support intuition Þrst note that with no spill-overs the market

growth rate becomes:

g(N, e) = γ(
L

N
− f)− θ

A
(69)

and will either exceed the social rate (Cournot) or fall short (Bertrand). That

Cournot delivers too high growth rate is a consequence of strategic interactions

linking decisions about R&D to production, which do not rely on the spill-over

channel. These results thus parallel the discussion in strategic trade literature

(Brander, 1995).

With spill-overs and interactions back in place, the two rates may coincide

under the following condition for A:
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A = 1− α+ αγ(
L
N − f)
θ

= 1 + α
gSP (N)

θ
≥ 1.

Because AB ≤ 1, it follows that Bertrand balanced growth rates will al-

ways fall short of socially optimal (constrained) growth rates, for any degree of

concentration. This is easily understood, since in this case both the spill-over

externality and strategic substitutability of prices decrease research investment.

In addition, the rate of knowledge accumulation will be lower than what is im-

plied by van de Klundert and Smulders. But for Cournot competition, AC ≥ 1

and hence the socially (constrained) optimal rate of growth may in principle

be attained. The reason is that this time, spill-over externality works against

the strategic complementariness of production in the Þnal effect on knowledge

accumulation. In this vein, strategic interactions may act as a device that re-

moves the imperfection caused by the inappropriability of research spill-overs.

This effect could not be obtained in the original Smuldert and van de Klundert

treatment. Formally, the condition for N under which the market and social

constrained rates of growth coincide is:

(²− 1)(N − 2)
N(²+N − 2) = α

gSP (N)

θ
. (70)

This condition gives a cubic equation in N which is non-trivial to analyse

explicitly. Nevertheless, we show in Appendix 4 that when restricting ourselves

to values of N greater than or equal to 2, we may have only one or no solution

satisfying the above condition. Figures in the Appendix suggest where such
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a solution may lie. There we also Þnd that for the coincidence of social and

market constrained growth rates on this domain, hi-tech goods must be good

enough substitutes. Under this condition, the socially optimal rate of growth

may be attained even at fairly high levels of concentration, without imposing

taxation on the traditional sector.

6 Concentration and growth

The preceding analysis enables us to draw a qualitative conclusion about the re-

lationship between concentration and growth. While ordinarily (ignoring strate-

gic interactions), one would expect balanced growth rates to fall with lower

concentration because lower market power reduces proÞts from innovation, this

may not be the case when the number of Þrms is small and the strategic in-

teractions among them are important. The reason is that different levels of

concentration alter the growth implications of strategic interactions. The total

effect of a change in the market growth rate when the number of Þrms increases

may thus be decomposed into two effects: a fall in market power and a change

in strategic impact. Put formally:

∂g(N)

∂N
=
∂g(N,A)

∂N
+
∂g(N,A)

∂A

∂A(N)

∂N
. (71)

The Þrst term, attributable to a fall in market power, is always nega-

tive15. The second reßects a change in the growth effect of strategic inter-
15 In fact, this Þrst element comprises two effects: a fall in market power (negative sign) and

a decline in the hi-tech sector relative to the traditional one (positive sign). It is easy to see,
though, that the former always dominates the latter for any level of concentration. However,
this would not need to be the case if productivity in a Þrm�s R&D sector depended on an
industry-wide stock of knowledge capital rather than on an industry average as in the present
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actions. We know from (64) that ∂g(N,A)∂A is always positive and that the sign of

∂A(N)
∂N depends on the mode of competition. Because for Bertrand competition

∂AB(N)
∂N > 0, the overall effect on growth is ambiguous. Nonetheless, as is shown

in Appendix 2, ∂A
B(N)
∂N falls rapidly towards zero, much faster than ∂g(N,A)

∂N .

We thus draw a qualitative conclusion that at lower levels of concentration, the

market growth rate probably falls with a rising number of Þrms. The speed of

this fall is however slower than predicted under a conventional market power

analysis, and at lower levels of concentration this relationship may even break

down.

Only marginally more precise conclusions can be made for Cournot compe-

tition. We show in Appendix 2 that ∂A
C(N)
∂N < 0 for N ≥ �N = 2+

√
2². On this

interval ∂g(N)∂N < 0, that is, the market growth rate falls with a rising number

of Þrms. But this time, the speed of the fall is faster than predicted under

conventional loss of market power considerations. Yet, for N ∈ 2, 2 +√2²® the
partial derivative ∂g(N)

∂N is positive, and again the total effect is ambiguous. In

spite of this, we may still conclude that if the balanced growth rates rise at all

with lower concentration, then it can only be at very high concentration levels

close to duopoly. This unconventional result arises from the consideration of

strategic effects.

case. In such a setting with fewer Þrms, possibilities of inter-Þrm learning diminish, impacting
negatively on growth. This effect is sometimes called the public knowledge effect. Smulders
and van de Klundert (1995) show that this effect is likely to overturn the sign of the Þrst
element in expression (71) at high levels of concentration. Hence, the public knowledge effect
may also cause a non-monotonic relationship between levels of concentration and growth.
However, this effect is absolutely distinct from the effects of strategic impacts shown below,
even though they too may lead to non-monotonicity in the relationship between concentration
and growth.
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7 Conclusions

In this paper, we focused on the implications of strategic interactions among hi-

tech Þrms on the rates of growth when the number of competing Þrms is small

and Þrms recognise the effects their investment decisions have on the production

behaviour of their rivals. Like other results, we Þnd that a mode of oligopolist

competition can substantially affect rates of growth, but we present novel chan-

nels for these effects. These channels show that less severe Cournot competition

delivers rates of growth higher than socially optimal if knowledge spill-overs are

absent, although in their presence, the result depends upon parameterisation

and the two rates may coincide. On the other hand, a social optimum can never

be achieved under the more severe Bertrand competition, where subsidies re-

main the only means of restoring social optimality. These Þndings are parallel

to the conclusions in the strategic trade literature. There the standard result

is that Þrms tend to under-invest from the social (cost minimising) perspective

in Bertrand and over-invest in Cournot competition (Brander, 1995). Our re-

sults demonstrate that conclusions from the strategic trade literature are robust

enough if extended into an explicitly dynamic general equilibrium framework.

More importantly, though, our results make it evident that questions of opti-

mal policy design related to organisational structure and strategic conduct are

tractable in the framework of endogenous growth models in sufficient detail.

As is standard in the literature, we conÞrmed that modes of competition can

have opposite effects on balanced growth rates, depending on whether choice

variables in this competition are strategic substitutes (price competition) or
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complements (quantity competition). Unlike standard results that stress the

positive effect of tougher Bertrand competition on growth, we Þnd ambiguous

results depending upon parameterisation, which seems to favour Cournot com-

petition. In particular, if the consumption share of goods, for whose production

learning is important, is high enough, the less severe Cournot competition brings

about higher growth rates because the pro-growth effect of strategic interactions

dominates the traditional competitiveness effect. These interactions imply that

Þrms engaged in price competition face lower returns from their R&D invest-

ment than do Þrms engaged in quantity competition, and hence invest less,

because they correctly anticipate that rivals will react to their investment by

lowering prices. On the other hand, a Þrm engaged in quantity competition

anticipates that its rivals will lower production in response to its investment;

this increases the perceived proÞts from R&D.

While the relation of growth rates under the two modes of competition is

ambiguous, their relation to (constrained) socially optimal rates of growth is

not. In particular, we found that Bertrand balanced growth rates will fall short

of socially optimal (constrained) growth rates for any degree of concentration.

The reason is that, in the case of price competition, both the spill-over ex-

ternality and strategic substitutability of prices decrease research investment.

By contrast, for quantity competition the socially (constrained) optimal rate

of growth may in principle be attained. This time, the spill-over externality

goes against the strategic complementariness of production in the Þnal effect

on knowledge accumulation. In this vein, strategic interactions may serve as a
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device that removes the imperfection caused by the inappropriability of research

spill-overs. The directions and sizes of these effects could not be obtained in

the original Smulders and van de Klundert treatment. We also showed that in

the absence of knowledge spill-overs, Cournot competition will always deliver

excessively high growth rates.

Unfortunately, we were not able to say much about the relationship between

levels of concentration and market growth rates. Although we could not estab-

lish the standard result that growth rates will fall with a lower concentration,

we were able to do so for Cournot competition at low enough concentration

levels. Still, a reverse result remains possible for both Bertrand and Cournot

competition at high levels of concentration close to duopoly.

It should be noted that most of the effects we consider disappear with a large

number of Þrms. Likewise, some of the results must be modiÞed if we consider

free-entry into the hi-tech industry. Nevertheless, we argue that in practice

the barriers to entering such industries are very high and often fall under state

regulation, e.g. by way of licensing. We believe that these circumstances keep

the number of incumbent hi-tech Þrms small enough for the effects we describe

to be of realistic magnitudes.

In matters of policy, our results suggest that when the number of Þrms in the

hi-tech industry is inßuenced by government policy and Þrms engage in relatively

mild competition (as identiÞed by the size of mark-ups), a policy that aims at

creating more competition in order to bolster growth may in fact be counter-

productive. This concern relates to policies that attempt to facilitate entry into
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industry as well as other measures focused on lowering mark-ups. However,

licensing, which restricts the number of competing Þrms to low numbers, may

bring about higher and even socially optimal rates of growth. Our analysis

implies that taxation of the traditional sector (or alternatively subsidies, to

research) as a means of restoring (constrained) social optimality may not be

necessary; in fact, the direct opposite may happen.

Still many important issues remain unresolved. Although our treatment of

strategic interactions is not exhaustive, we do Þnd the differential game approach

too complicated to offer any practical policy suggestions. We feel that more

insight could be gained by partially relaxing the assumption that knowledge

spill-overs are completely unintentional, while still keeping the analysis tractable

along the lines of this paper. In a companion paper, we head in this direction

by assuming that the capacity of a rival Þrm to absorb the results of the rival�s

research is endogenous to the proportion of the resources allocated to research.

Further, it seems to us that the framework introduced in this paper could be

successfully applied in an international setting to address issues of optimal policy

design among exporting or importing companies. The seminal papers on trade

and growth (see e.g. Grossman and Helpman, 1990a,b) introduce endogenous

growth models into an international setting under very restrictive assumptions

that prevent the analysis of more subtle issues underpinning growth and devel-

opment. In particular, the propagation of technological change across nations

was often modelled on an ad hoc basis or was simply given exogenously. Under

such conditions, room for analysing the strategic effects of various policy tools
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such as tariff barriers or quantitative protection is conÞned, and the analysis

remains almost exclusively in the domain of strategic trade literature. Our be-

lief that the approach of this paper could help tackle these issues is especially

motivated by the close resemblance of our present results to those of strategic

trade literature.
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A Appendix

A.1 Appendix 1

A.1.1 Bertrand competition

We need to evaluate the expression ∂pj(hj ,h−j)
∂hi

from (34). Note that pi = pi(h) =

pi(hi,h−i) is deÞned in (21) as the result of the second stage competition in

prices. This relationship is a reduced form product of the system of F.O.C.s for

the following problem:

Fi(p) ≡ ∂Ri(p)

∂pi
− ∂xi(p)

∂pi
c(hi) = 0,∀i = 1, ..., N, (72)

where Ri(p) is the current revenue function of Þrm i, i.e. Ri(p) = pixi(p),

and c(hi) is the marginal cost function, deÞned for this problem as c(hi) = w
hi
.

With this implicit system, we may compute the derivative ∂pj(hj ,h−j)
∂hi

. Using

the implicit function theorem, we may differentiate the system in (72) totally

to obtain:


∇
h
∂R1(p)
∂p1

− ∂x1(p)
∂p1

c(h1)
i

...

∇
h
∂RN (p)
∂pN

− ∂xN (p)
∂pN

c(hN)
i
 (dp) = (73)
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=


∂x1(p)
∂p1

c0(h1) ... 0

... ... ...

0 ... ∂xN (p)
∂pN

c0(hN)

 (dh) . (74)

The matrix on the left-hand side of the equation is in fact:

A ≡


∇
h
∂R1(p)
∂p1

− ∂x1(p)
∂p1

c(h1)
i

...

∇
h
∂RN(p)
∂pN

− ∂xN(p)
∂pN

c(hN)
i


=


∂F1(p)
∂p1

... ∂F1(p)
∂pN

... ... ...
∂FN(p)
∂p1

... ∂FN(p)
∂pN


However, because we focus on symmetric equilibria, the functional symmetry of

demand with respect to rival Þrms� prices (noted in the main text) enables us

to distinguish only own and cross price derivatives. Denoting i as any Þrm and

j as any Þrm other than i, we may rewrite matrix A in the following form:

A =


a b ... b
b a ... b
... ... ... ...
b b ... a

 ,
a =

∂Fi(p)

∂pi
= 2

∂xi(p)

∂pi
+
∂2xi(p)

(∂pi)
2 (pi − c(hi))

b =
∂Fi(p)

∂pj
=
∂xi(p)

∂pj
+
∂2xi(p)

∂pi∂pj
(pi − c(hi)) .

This form of matrix A is particularly useful, since its determinant can be

readily computed. From the functional symmetry, we also know that in a sym-

metric equilibrium ∂pj(hj ,h−j)
∂hi

=
∂pi(hj ,h−j)

∂hj
. Hence, in system (73) we may

denote the Þrst row as corresponding to the ith Þrm and the last row as corre-

sponding to the jth Þrm. This allows us to study the effects of a variation in

hj on pi using a modiÞed system:
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 a ... b
... ... ...
b ... a




∂pi(h)
∂hj

...
∂pj(h)
∂hj

 =

 0
...

∂xj(p)
∂pj c

0(hj)

 . (75)

Invoking Crammer�s rule16 , we obtain

∂pi(h)

∂hj
=

a+ (N − 2)b
a2 + (N − 2)ba− (N − 1)b2

∂xj(p)

∂pj
c0(hj),

where N denotes the number of rows in matrix A (equal to the number of

Þrms). Substituting for a and b from above and for pi from (17), we receive

after computing the partial derivatives the following expression:

∂pj(hj ,h−j)
∂hi

=
∂pi(h)

∂hj
= − w

h2i
dB,

dB = eB
(²N + 1− ²)(²− 1)

N [eB(²(N − 1) + 1 +N) + 2(²(1−N)− 1)] ...
[N(²− eB) + 2(1− ²)]

[eB(²(1− 2N)− 1) + ²2(N − 2) + ²(N + 2)] .

If we now substitute expression (20) for the perceived price elasticity for

Bertrand competition, we obtain the expression that appears in the main text.

dB =
²(N − 1) + 1

(N − 1)(²N2 − ²(N − 1)− 1) > 0.

A.1.2 Cournot competition

We need to evaluate the expression ∂xj(h)
∂hi

from (73). Note that xi = xi(h) =

xi(hi,h−i) is deÞned in (21) as the result of second stage competition in quan-

tities. This relationship is a reduced form product of the system of F.O.C.s for

this problem:
16Details about the computation of matrix determinants involved in Crammer�s rule can be

obtained from the author upon request.
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Gi(x) ≡ ∂Ri(x)

∂xi
− c(hi) = 0,∀i = 1, ...,N, (76)

where Ri(x) is the current revenue function of Þrm i, i.e. Ri(x) = pi(x)xi, and

c(hi) is the marginal cost function, deÞned for this problem as c(hi) = w
hi
. With

this implicit system, we may compute the derivative ∂xj(h)
∂hi

. Using the implicit

function theorem, we may differentiate the system in (76) totally to obtain:


∇
h
∂R1(x)
∂x1

i
...

∇
h
∂RN (x)
∂xN

i
µ dx

¶
=

 c0(h1) ... 0
... ... ...
0 ... c0(hN)

µ
dh

¶
. (77)

The matrix on the left-hand side of the equation is in fact:
∇
h
∂R1(x)
∂x1

i
...

∇
h
∂RN(x)
∂xN

i
 =

 ∂G1(x)
∂x1

... ∂G1(x)
∂xN

... ... ...
∂GN(x)
∂x1

... ∂GN (x)
∂xN


However, because we are interested in symmetric equilibria, the functional

symmetry of demand with respect to the rival Þrm�s prices (noted in the main

text) enables us to distinguish only own and cross price derivatives. Denoting i

as any Þrm and j as any Þrm other than i, we may therefore rewrite this matrix

in the following form:

A =


a b ... b
b a ... b
... ... ... ...
b b ... a

 ,
a =

∂Gi(x)

∂xi
= 2

∂pi(x)

∂xi
+
∂2pi(x)

(∂xi)
2 xi

b =
∂Gi(x)

∂xj
=
∂pi(x)

∂xj
+
∂2pi(x)

∂xi∂xj
xi.
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From the functional symmetry, we also know that in a symmetric equilib-

rium ∂xj(h)
∂hi

= ∂xi(h)
∂hj

. Hence, in system (77) we may denote the Þrst row as

corresponding to the ith Þrm and the last row as corresponding to the jth Þrm.

This allows us to study the effects of a variation in hj on xi using a modiÞed

system:  a ... b
... ... ...
b ... a




∂xi(h)
∂hj

...
∂xj(h)
∂hj

 =

 0
...

c0(hj)

 .
Invoking Crammer�s rule17 , we obtain

∂xi(h)

∂hj
=

a+ (N − 2)b
a2 + (N − 2)ba− (N − 1)b2 c

0(hj),

where N denotes the number of rows in the matrix (equal to the number of

Þrms). Substituting for a and b from above and computing the partial deriva-

tives herein, we receive the expression that appears in the text:

∂xj(...)

∂hi
=
∂xi(h)

∂hj
= − w

h2i

xi
pi
dC , dC =

²(N − 2)
(N − 1)(²+N − 2) ≥ 0.

A.2 Appendix 2

The functional forms of the expressionsAC(N, ²) = 1+ (²−1)(N−2)
N(²+N−2) andA

B(N, ²) =

1− ²−1
²N2−²(N−1)−1 =

²N(N−1)
²N2−²(N−1)−1 make it difficult to analyse their behaviour

on a particular domain of interest, i.e. ² > 1 and N ≥ 2. Hence, we rely on

numerical simulations, shown in Figure 1, in order to support our intuition.

First, it is immediately seen thatAC(N, ²) > 1 > AB(N, ²) on this parameter

space. Second, the limit of these expressions for N →∞ is indeed 1, for every
17Details about the computation of matrix determinants involved in Crammer�s rule can be

obtained from the author upon request.
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². Similarly, the behaviour of the expressions at the boundary value of N = 2

can be readily established: AC(N = 2, ²) = 1, lim²→∞AB(N = 2, ²) = 2/3.

However, the behaviour inside the domain is quite different: while AB(N, ²) is

monotonic with respect to N (for a given ²), AC(N, ²) generally is not, as the

following partial derivatives reveal:

∂AB(N, ²)

∂N
=

²(²− 1)(2N − 1)
(²N2 + ²−N²− 1)2 > 0

∂AC(N, ²)

∂N
=

(²− 1)(−N2 + 4N + 2²− 4)
N2(²+N − 2)2 .

From inspecting the latter expression, we can establish that AC(N, ²) falls

in N for N larger or equal to a critical value ÿN = 2 +
√
2², which is obtained

by setting the partial derivative to zero and ignoring the irrelevant part of the

solution. We may infer, then, that the strategic term AC(N, ²) reaches its

maximum at values of N larger but relatively close to 3. Indeed, Figure 1

demonstrates that for plausible values of ² the strategic interactions have their

greatest impact at relatively high levels of concentration. On the other hand,

they have no impact with duopoly or when the number of Þrms is inÞnitely

large.

A.3 Appendix 3

A direct comparison of growth rates under the two modes of competition is

cumbersome, so to better probe the effect of competition on constrained growth

rates, we must weigh the two opposite effects (toughness of competition and

strategic interactions) in expressions (63) and (64) in a particular way. We
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choose a Þrst order Taylor approximation as one possibility, assuming that it

can give us reasonable intuition as long as the rates under the two modes of

competition are not too far apart. Our basic function to be approximated is the

general function for a constrained growth rate in (59):

g(l) =
γσ(el − 1)( LN − f)Al − θ(el − σ)

α(el − σ) +Aσ(el − 1) , l = B,C. (78)

Because evaluation of this function at the two points representing Bertrand

and Cournot modes of competition makes comparison difficult, we approximate

the growth rate for Bertrand at the point of Cournot. In other words, we

approximate the value of g(B) as the Þrst order Taylor expansion of g(l) at

l = C. Then we obtain for the approximate difference between the two rates as:

g(C)− g(B) ' ∂gC(N, e,A)

∂A
(AC −AB)− ∂g

C(N, e,A)

∂e
(eB − eC). (79)

The Þrst term corresponds to the impact of strategic effects (making Cournot

growth rates higher), while the second reßects the toughness of the competition

effect (favouring Bertrand). The differences between the strategic variables

AC−AB and perceived price elasticities eB−eC thus provide reasonable weights

for the two opposite effects. Substituting for the partial derivatives from (63)

and (64), we obtain:

g(C)− g(B) '
γα( LN − f) + θ

(α(eC − σ) +ACσ(eC − 1))2σ
·
(eC − 1)(eC − σ)(AC −AB)
−AC(1− σ)(eB − eC)

¸
.
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Let�s denote the term inside the square brackets as Z. The sign of this term,

which is a nontrivial function of two model parameters (²,σ) and a number

of Þrms N , determines the relationship between g(C) and g(B), because the

preceding terms are assumed to be positive. The parameter upon which the

relationship is likely to depend is the share of hi-tech goods in consumption σ.

We thus compute the critical value of σ at which the expression equals zero:

eσ = AC(eB − eC)− (eC − 1)eC(AC −AB)
AC(eB − eC)− (eC − 1)(AC −AB) .

As long as eσ ≤ 1, we can expect Cournot competition to yield higher rates
of growth for any σ > eσ, because we know that for σ = 1, it is always so.

Because eσ is a function of ² and N only, we may study its behaviour along these

two dimensions. It is possible to show that the critical value rises with both

the elasticity of substitution (and approaches unity for large ²) and the level of

concentration (approaches minus inÞnity for large N) in our domain of interest.

These properties are demonstrated with the help of numerical simulations in

Figure 2. The behaviour of ² is intuitive, because almost perfect substitutability

reduces the scope for strategic concentration, favouring Bertrand growth rates.

Not so straightforward is the behaviour of eσ with respect to N. It appears
from Figure 2 that eσ not only falls in N, but does so very rapidly. Interestingly,
at lower levels of concentration we observe that Cournot competition delivers

higher constrained rates of growth, almost irrespective of the degree of substi-

tutability. This is unusual, since one might expect that at high levels of con-

centration where the strategic interactions are unimportant, the effect of lower

monopoly power under Bertrand would dominate. Yet, it turns out that the
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difference between the perceived price elasticities (eB − eC = (²−1)2(N−1)
N(N+²−1) ) van-

ishes with higher N even more rapidly than the difference between the strategic

terms (AC −AB = (²−1)(N−2)
N(²+N−2) +

²−1
²N2−²(N−1)−1).

From the graphs in Figure 2, it becomes apparent that differentiability is

important for determining eσ only at concentrations close to duopoly. For realis-
tically differentiated markets (with values of ² up to 5), competition of as few as

5 companies and a relatively low share of differentiated goods in consumption

are required for dominating Bertrand growth rates.

A.4 Appendix 4

In this appendix, we provide further information about the coincidence of the

market and social constrained equilibria under Cournot competition. The level

of concentration at which this coincidence occurs is given by condition (70):

(²− 1)(N − 2)
N(²+N − 2) = α

gSP (N)

θ
. (80)

Instead of solving this cubic equation in N, we characterise the solution

indirectly, using mainly graphical tools. We denote the LHS of the condition

as G(N) and use expression (68) to substitute for the socially optimal rate of

growth:

G(N) =
αγL

θN
− α
θ
γf − θ ≡ a

N
− b. (81)

Because we want to place some restrictions on the model parameters, we

choose the substitutions of a and b for the various model parameters in order
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to characterise these restrictions in a parsimonious way. Even though a and

b contain some common elements, there are always enough free parameters to

think of them as independent. The most obvious restriction that we can place

on model parameters is the requirement that gSP (N) be positive for reason-

able levels of concentration. This requirement stems from the observation that

market long-run growth rates are typically positive and that socially optimal

growth rates tend to exceed market ones. For our new parametrisation, this

implies a
b > N , for a range of N where we Þnd such a restriction reasonable.

Because of the linearity of this relationship, as N increases from 2 or 3, the

value of b quickly becomes unimportant in relation to a. This allows us, at least

for the moment, to ignore b in condition (81) which thus results in the following

approximation:

G(N) ' a

N
. (82)

Unlike the original condition in (70), this equation can be solved relatively easily

for a single solution:

N = 2 +
a²

²− 1− a.

The solution exists on the plausible domain of N ≥ 2 only under speciÞc

circumstances, namely for high ² and low a, making the coincidence of social

and marker equilibria fairly unlikely. In other words, a social optimum will be

attained only if hi-tech goods are sufficiently good substitutes (² ≥ 1+a), which

is quite reasonable. Because these conclusions hold only in approximation ig-
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noring term b in (81), we support our intuition through a graphic representation

of condition (82) in Figure 3. There we plot separately the left- and right-hand

sides of the condition as functions of N for several parameter values of ², and a.

Apparently, the non-monotonic plots of G(N) scale upward for larger ², while

hyperbolic plots of a/N scale downward with lower a. The coincidence of mar-

ket and social constrained rates of growth arise where the two types of curves

intersect. From the Þgure, we observe that for any given a, the two curves

will always intersect for ² high enough. Because b is the long-run limit of the

right-hand side expression in (81) as N →∞, its inclusion would shift the corre-

sponding hyperbolic curve down in Figure 3, lowering N where the coincidence

may occur.

A.5 Appendix 5

In this appendix we show how the results in the main text would change if

we considered strategic interactions based on the existence of knowledge spill-

overs. This channel rests on the recognition that a Þrm�s stock of Þrm speciÞc

knowledge is in fact dependent on the knowledge stock accumulated by each of

its rivals through the industry average stock of knowledge. For instance hi(h−i),

because H =

P
l
hl

N . The inclusion of this strategic channel would call for a more

general treatment of condition ∂HB,C
i

∂hi
= − úλi characterising the intertemporal

allocation of resources between research and production within hi-tech Þrms.

We will therefore investigate the necessary modiÞcations of this condition for

each competition mode.
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A.5.1 Bertrand competition

Intertemporal condition (33) including the spill-over effect look as follows:

∂HB
i

∂hi
= (83)

e
−
R
s

t
rτdτ

 ∇xi(p)
Ã

∂pi(hi,h−i)
∂hi

dp−i(hi,h−i)
dhi

!³
pi(h)− w

hi

´
+ ...

...+ xi(p)
³
∂pi(hi,h−i)

∂hi
+ w

h2
i

´
+

+ λiγ

µ
H

hi

¶α
LIi

·
(1− α) + α

2

N

¸
= − úλi.

The condition has changed in two respects. First, the last term before the

equation sign features
h
(1− α) + α2

N

i
instead of (1 − α).The difference is the

extra effect of a Þrm�s own R&D investment on the speed of R&D accumulation

through its impact on the industry average. The extra effect is, however, of the

third order, even at high levels of concentration, provided the extent of spill-

overs (α) remains reasonably small. As the growth engine of this model rests

on accumulation of Þrm speciÞc knowledge, we assume α to be small enough

to ignore α2

N term. This assumption lets us preserve all other computations

performed in the main text save those leading up to conditions (35) or (39)

which we compute below.

As a second modiÞcation of condition (33), the vector of partial derivatives

∂p−i(hi,h−i)
∂dhi

featured in (33) has been replaced by the corresponding vector of

total derivatives dp−i(hi,h−i)
dhi

, because each element of vector h−i is a function

of hi as well. Performing this total derivative, we obtain:

dp−i(hi,h−i(h))
dhi

=
∂p−i(hi,h−i)

∂hi
+∇p−i(h−i)

µ
∂h−i(h)
∂hi

¶
,
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where the matrix of gradients ∇p−i(h−i) contains only derivatives of pricing

functions with respect to elements of the vector h−i. Consider now a represen-

tative element of this vector in a symmetric equlibrium:

dpj 6=i(hi,h−i(h))
dhi

=
∂p

j 6=i(hi,h−i)
∂hi

+∇pj 6=i(h−i)
µ
∂h−i(h)
∂hi

¶
=

∂pj 6=i(hi,h−i)
∂hi

+
∂p

j 6=i(h−i)
∂hj

∂hj(h)

∂hi
+ (N − 2)∂pj 6=i(h−i)

∂hl 6=i,j
∂hl6=i,j(h)
∂hi

= .
∂p

j 6=i(hi,h−i)
∂hi

µ
1 + (N − 2)∂hl6=i,j(h)

∂hi

¶
+
∂pj 6=i(h−i)

∂hj

∂hj(h)

∂hi

In deriving the second and third equalities, we have made use of the fact

that p
i(hi,h−i) is functionally symmetric with respect to the rivals� stocks of

knowledge. Hence, the cross derivatives
n
∂p

j 6=i (h−i)
∂hl6=i,j

o
and

∂p
j 6=i(hi,h−i)
∂hi

are all

functionally identical and in a symmetric equilibrium would take on the same

value. Functional symmetry is also apparent in hi(h−i) and so the cross deriv-

atives ∂hj
∂hi6=j

in vector ∂h−i
∂hi

would also have the same value, namely ∂hj
∂hi6=j

=

α
hj
H

1
N = α

N . We thus obtain:

dpj 6=i(hi,h−i(h))
dhi

=
∂p

j 6=i(hi,h−i)
∂hi

µ
1 +

N − 2
N

α

¶
+
∂p

j 6=i(h−i)
∂hj

α

N
. (84)

We do observe that in the absence of spill-overs (α = 0), the vectors of

partial and total derivatives in conditions (33) and (83) coincide. It is also

apparent that all rows of gradient ∇p−i(h−i) have the same functional form,

and in the symmetry would be identical. As a corollary, all elements of vector

dp−i(hi,h−i)
dhi

in (83) share the same functional form as well, so in a symmetric

equilibrium would all have the same value. This enables us to treat the vector
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in our subsequent analysis in the same way as we did with vector ∂p−i(hi,h−i)
∂hi

in the main text.

Following the line of argument after condition (33) in the main text, we may

simplify condition (83) to obtain the equivalent of (34):

hi

·
(N − 1)²(xi; pj | p−j)xi

pj

dpj(hj ,h−j)
dhi

(pi − w

hi
) +

w

h2i

¸
+ (85)

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

The only element that needs evaluating is total derivative dpj(hj ,h−j)
dhi

given

in (84). To better understand its meaning, we should recall that it represents

two channels of strategic interactions. One works through the direct link be-

tween investment decisions in the Þrst stage of the game and pricing decisions

of rival Þrms in the second. This, as well as (33) is exempliÞed by derivative

∂p
j 6=i (hi,h−i)
∂hi

. From the analysis above we know that the effect is negative: in-

vestment in R&D enables lower prices, which triggers a similar reaction of the

rival Þrms. The other channel works indirectly through the impact of R&D

investment on the cost (and so pricing) decisions of the rival Þrms. It has two

components. First, on the impact, R&D investment of a representative Þrm low-

ers the cost functions of the rival Þrms, who can then charge lower prices as well,

keeping prices of other Þrms unchanged. This is the term
∂p

j 6=i (h−i)
∂hj

α
N , which is

negative and is evaluated in Appendix 6. Second, the possibility of lower prices

enabled by the lower industry-wide costs triggers a corresponding strategic price

response from all the Þrms before a new static equilibrium is reached. This is
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term
∂p

j 6=i (hi,h−i)
∂hi

(N−2) αN , which is also negative. By including the knowledge

spill-over channel, total derivative dpj 6=i(hi,h−i(h))dhi
unambiguously exceeds in ab-

solute value the partial derivative
∂p

j 6=i (hi,h−i)
∂hi

considered in the analysis of the

main text. As a consequence, the inclusion of this channel increases the impact

of strategic interaction on the decisions of investing Þrms.

Since
∂p

j 6=i (hi,h−i)
∂hi

has already been evaluated in Appendix 1, the last el-

ement to examine is
∂p

j 6=i(h−i)
∂hj

. In Appendix 6, we show that
∂p

j 6=i (h−i)
∂hj

=

c0(hi)GB, where GB is a function of the primitive parameters of the model.

Because
∂p

j 6=i(h−i)
∂hj

has the same form as
∂p

j 6=i(hi,h−i)
∂hi

= c0(hi)dB, we can ma-

nipulate (85) in much the same way as (34) in the main text to arrive at the

analogue of (35):

LXiA
B + (1− α)LIi =

1

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht
+ rt

#
.

Although both expressions look equivalent, term AB is a different function

of primitive parameters than the same term in (35). This notwithstanding, this

term has an indentical economic interpretation as a measure of the extent of

strategic interactions. It quantiÞes the perceived impact of R&D investment on

consumer demand for the production of the investing Þrm, which arises from

the price reaction of its rivals. To see this, note that following the computation

which leads to the formulation of (61) we arrive at the following expression for

AB :

AB = 1− (N − 1)²(xi; pj | p−j)²(pj ;hi)
1− eB ,

where this time, elasticity ²(pj ;hi) =
dpj
dhi

hi
pj
, unlike ∂pj

∂hi
hi
pj
previously. The ab-
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solute value of this elasticity is higher than before, because the perceived effects

of R&D investment on the pricing decisions of the rival Þrms include the ad-

ditional spill-over channel. As a consequence, AB will differ from 1 by more

than the same expression considered in the main text (for any given combina-

tion of parameters), and thus its impact will be larger. All other analyses of

the main text, including the characterisation of the equilibrium and expressions

for the constrained growth rate, remain intact. Qualitative conclusions for the

Bertrand competition too remain unaffected.

A.5.2 Cournot competition

We will follow the argumentation in the preceding subsection, and leave out most

of the commentary. The analogue of condition (36) can obtained as follows:

∂HC
i

∂hi
= (86)

e
−
R s
t
rτdτ

"
∂xi(hi,h−i)

∂hi
+ xi(h)∇pi(x)

Ã
∂xi(hi,h−i)

∂hi
dx−i(hi,h−i)

dhi

!
+ xi(h)

w

h2i

#
+

+ λi(1− α)γ
µ
H

hi

¶α
LIi = − úλi,

where again the vector of total derivatives dx−i(hi,h−i)
dhi

replaced ∂x−i(hi,h−i)
∂hi

and the effect of R&D investment on the speed of the Þrm�s own knowledge

accumulation process is ignored. A representative element of this vector can be

expanded as follows:

dxj(hi,h−i)
dhi

=
∂xj(hi,h−i(h))

∂hi
+
∂xj(hi,h−i(h))

∂hj

∂hj(h)

∂hi
+ ... (87)
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...+ (N − 2)∂xj(hi,h−i(h))
∂hl6=i,j

∂hl(h)

∂hi
(88)

=
∂xj(hi,h−i(h))

∂hi

µ
1 +

N − 2
N

α

¶
+
∂xj(hi,h−i(h))

∂hj

α

N
,

where the symmetry in functions and values of the symmetric equilibrium is

employed. As in the Bertrand case, the total and partial derivatives of the main

text would coincide in the absence of spill-overs.

Following the arguments that led to condition (37) we obtain its analogue:

hixi(h)

µ
(N − 1)²(pi;xj | x−j)pi(x)

xj

dxj(h)

dhi
+
w

h2i

¶
+ (89)

+ (1− α)wLIi =
w

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
.

The only element of dxj(h)dhi
in (87) that remains to be evaluated is its own

derivative ∂xj(hi,h−i(h))
∂hj

(∂xj(hi,h−i(h))∂hi
= c0(hi)xipi d

C is evaluated in Appendix

1). In Appendix 6 we demonstrate that ∂xj(hi,h−i(h))
∂hj

= −c0(hi)xipiGC > 0,

where GC is a function of model parameters only. We observe that this term

has the opposite sign from ∂xj(hi,h−i(h))
∂hi

. To appreciate the implications of this

Þnding we should recall the two channels of strategic interactions present in

dxj(h)
dhi

. One is the direct link between investment decisions in the Þrst stage

of the game and production decisions of rival Þrms in the second. In (87), as

well as in the main text, this link is represented by derivative ∂xj(hi,h−i(h))
∂hi

.

From the analysis above we know that the effect is negative: investment in

R&D enables lower prices, which triggers a corresponding reaction of the rival

Þrms to produce less. The other channel works indirectly through the impact

of R&D investment on the cost (and pricing decisions) of the rival Þrms. It
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has two components. First, on the impact, R&D investment of a representative

Þrm lowers cost functions of the rival Þrms, which enables them to produce

more at given prices. This is term ∂xj(hi,h−i(h))
∂hj

α
N , which is positive and thus

works against the effect of the Þrst strategic channel considered in the main

text. However, the possibility of higher production (and lower prices), enabled

by the lower industry-wide costs, triggers a corresponding strategic response

from all the Þrms who contract their production before a new static equilibrium

is reached. This is term ∂xj(hi,h−i(h))
∂hi

(N−2) αN , which is negative. By including

the knowledge spill-over channel in Cournot competition, then, the relation of

total derivative dxj(h)
dhi

to the partial one ∂xj(h)
∂hj

is ambiguous. This stands

in contrast to the results for Bertrand competition, where the inclusion of this

channel strengthened the original results. It still seems fair to conclude, however,

that for numbers of Þrms exceeding 3, even the spill-over channel would likely

deliver negative effects and the original results are strengthened.

Because the functional forms of both ∂xj(hi,h−i(h))
∂hj

and ∂xj(hi,h−i(h))
∂hi

in

dxj(h)
dhi

are similar, we can work with dxj(h)
dhi

in much the same way as we did

with ∂xj(h)
∂hi

.Working along the lines of the main text we observe that condition

(39), as well as all other equations in the main text, remain intact:

LXiA
C + (1− α)LIi =

1

γ

hαi
Hα

"
− úwt
wt
+ (1− α)

úhi,t
hi,t

+ α
úHt
Ht

+ rt

#
. (90)

Although term AC will be a different function of model parameters than the

same term in the main text, its interpretation is the same. Like in the Bertrand

case, the term measures the perceived impact of R&D investment on consumer
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demand for the products of the investing Þrm arising from the price reaction

of its rivals. To see this, note that following the computation that lead to the

formulation of (62), we arrive at the following expression for AC :

AC = 1 + (N − 1)e
C²(pi;xj | x−j)²(xj ;hi)

1− eC , (91)

where ²(xj ;hi) ≡ dxj
dhi

hi
xj
, unlike ∂xj

∂hi
hi
xj
in the main text. The general relation

of this newly deÞned elasticity to its original counterpart is difficult to tell. It

seems likely, however, that at low levels of concentration it would exceed the

original one. This would enlarge the discrepancy between AC and 1 (for any

given combination of parameters) and strengthen the signiÞcance of strategic

effects in the analysis of the main text.

A.6 Appendix 6

In this appendix we evaluate the own partial derivatives of choice variable func-

tions with respect to R&D investment,
∂p

j 6=i (h−i)
∂hj

and ∂xj(h−i)
∂hj

, as functions of

model parameters. The procedure for their evaluation is identical to that eval-

uating the corresponding cross derivatives in Appendix 1. For this reason, we

leave out the discussion and concentrate on the results only.

A.6.1 Bertrand competition

The derivative of price function with respect to a Þrm�s own R&D investment

can be found in the following equation:

A


∂pi(h)
∂hi
...
∂pj(h)
∂hj

 =

 ∂xi(p)
∂pi c

0(hj)
0...
0

 ,
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where matrix A has been deÞned in the Bertrand part of Appendix 1. Invoking

Crammer�s rule, we obtain:

∂pi(h)

∂hj
= c0(h)GB,

GB =
(²N + 1− ²)(²N2 − 2²(N − 1) +N − 2)
(N − 1)(²− 1)(²N(N − 1) + ²− 1) .

A.6.2 Cournot competition

The derivative of production with respect to a Þrm�s own R&D investment can

be found in the following equation:

A


∂xi(h)
∂hj

...
∂xj(h)
∂hj

 =

 c0(hi)
0...
0

 ,
where matrix A has been deÞned in the Cournot part of Appendix 1. Invoking

Crammer�s rule, we obtain:

∂xj(h−i)
∂hj

= −c0(h)xi
pi
GC ,

GC = ²
−2²(N − 1) + ²N2 +N − 2
(N − 1)(²− 1)(N − 2 + ²) .

B Figures
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Figure 1: Strategic terms
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Figure 2: Critical values of �σ
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Figure 3: Coincidence of social and market constrained growth rates
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