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Abstract

The e¤ects of two environmental policy options for the reduction of
pollution emissions, i.e. taxes and non-tradable quotas, are analyzed. In
contrast to the prior literature this work endogenously takes into account
the level of emissions before and after the adoption of the new environmen-
tal policy. The level of emissions is determined by solving the �rm�s pro�t
maximization problem under taxes and �xed quotas. We �nd that the op-
timal adoption threshold under taxes is always larger than the adoption
threshold under �xed quota, even in a setting characterized by ecological
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1 Introduction

The choice of the appropriate policy instrument to control pollution and reduce
environmental degradation caused by human activities has become a major con-
cern in the public debate in the last decades. It is often indicated as a key factor
to implement a more sustainable development worldwide. Environmental pol-
icy instruments are tools used by governments in order to prevent, reduce or
mitigate harmful e¤ects on terrestrial and marine ecosystems of accumulating
greenhouse gases1 . Examples of environmental policy instruments include: 1)
tradable emissions permits (also known as cap and trade) and environmen-
tal taxes (also referred to as market-based instruments); 2) quotas, targets for
cutting emissions and commands (also referred to as command-and-control in-
struments).
Market-based instruments, such as tradable permits of pollutants and en-

vironmental taxes, are rising up in the EU agenda. They aim to bring the
environmental and health costs of economic activities into market prices and
set a price on the use of natural resources like air, water and soil. Recent
examples are the EU emission trading scheme and harmonized environmental
taxation such as the Taxation of Energy Products Directive and the "Eurovi-
gnette" Directive for freight transport. Command-and-control instruments rely
on prescribing rules and standards and using sanctions to enforce compliance
with them. Command-and-control regulation requires polluters to meet speci�c
emission-reduction targets and often requires the installation and use of speci�c
types of equipment to reduce emissions2 . An example is the Kyoto protocol on
global warming. The major feature of the Kyoto protocol is that it sets binding
targets for 39 industrialized countries and the European Union (i.e. the Annex I
parties) for reducing greenhouse gas emissions. Emission quotas (also known as
"assigned amounts") were agreed by each participating Annex 1 country, with
the intention of reducing their average emissions during 2008-2012 to about 5
percent below 1990 levels3 .
As a consequence of a growing interest in the use of di¤erent types of policy

instruments to control pollution, a large number of articles have been published
in the environmental economics literature with the intent to investigate the rel-

1The principal greenhouse gases that enter the atmosphere because of human activi-
ties are: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulphur hexa�uoride
(SF6), hydro�uorocarbons (HFCs) and per�uorocarbons (PFCs), among many others. See:
http://www.epa.gov/climatechange/emissions/index.html.

2Source: European Environment Agency: http://www.eea.europa.eu/themes/policy/about-
policy-instruments.

3The Kyoto protocol was initially adopted on 11 December 1997 in Kyoto and entered
into force on 16 February 2005. Under the Kyoto Protocol, only the Annex I countries have
committed themselves to national or joint reduction targets that range from a joint reduction of
8% for the European Union and other (central and eastern) European countries, to 7% for the
United States, 6% for Japan, Canada, Hungary and Poland and 0% for New Zealand, Russia
and Ukraine; moreover, 8% for Australia and 10% for Iceland. The United States is the only
industrialized nation under Annex I that has not rati�ed the treaty and therefore is not bound
by it. See the UN Climate Change web: http://unfccc.int/kyoto_protocol/items/3145.php ,
for further information
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ative merits of price versus quantity instruments4 to achieve reduction of green-
house gases emissions. Weitzman (1974) initiated a discussion about the rela-
tive e¢ ciency of alternative environmental policies in a simple analytical model
characterized by uncertainty, second-best policy alternatives, and costly policy
adjustments. The main implication for policy-makers is that taxes are more
e¢ cient when marginal bene�ts are relatively �at and quantity mechanisms are
more e¢ cient when bene�ts are relatively steep. Newell and Pizer (2003) con-
�rm this result and show that taxes often generates the expected net bene�ts of
quantity instruments when correlation of cost shocks across time, discounting,
stock decay, and the rate of bene�ts growth are included. Hoel and Karp (2002)
compare the e¤ects of taxes and quotas for an environmental problem where
the regulator and polluter have asymmetric information about abatement cost
and environmental damage depends on a stock of pollutant. They �nd that
taxes tend to dominate quotas and this e¤ect is more pronounced for multi-
plicative uncertainty (Hoel and Karp, 2001). Although the so far cited papers
account for uncertainty, they do not consider irreversibility5 . Xepapadeas (2001)
studies the behaviour of polluting �rms regarding the expansion of abatement
capital and location decisions in the presence of emission taxes, tradable permits
and subsidies for the abatement investment under irreversibility. Insley (2003)
studies the decision of an electric power utility regarding the abatement of sul-
fur dioxide (SO2) emissions by installing a scrubber, assuming that SO2 permit
prices are stochastic and the construction process includes "time-to-build". Van
Soest (2005) analyzes the impact of emission taxes and quotas on the timing of
adoption of energy-saving technologies under irreversibility and stochastic ar-
rival rate of the new technologies, and shows that: (i) increased environmental
stringency (measured in tax and its equivalent in terms of quota) does not neces-
sarily induce early adoption, and (ii) there is no unambiguous ranking of policy
instruments in terms of the length of the adoption lag. Wirl (2006) investigates
the implications of two di¤erent kind of irreversibilities (i.e. of CO2 emissions
and of stopping) on the optimal intertemporal accumulation of greenhouse gases
in the atmosphere under uncertainty. He �nds that an irreversible stopping of
greenhouse gas emissions is never optimal and yields in the real option frame-
work a less conservative emission policy, i.e. a later stopping, in comparison
with the possibility to suspend emissions without sacri�cing future fossil fuel
uses. He then compares the e¤ects of emission taxes and quantities on the op-
timal timing for policy adoption and shows that both policy instruments are
equivalent in such a framework. Pindyck (2000) investigates how irreversibility
and uncertainty in�uence the timing of policy planning and adoption. Pindyck
(2002) generalizes Pindyck (2000) including two stochastic state variables: one
captures uncertainty over environmental change (i.e., ecological uncertainty),

4For example, an emission cap and permit trading system is a quantity instrument because
it �xes the level of emissions �ow (quantity) and allows the price to vary. In contrast, emission
taxes are a price instrument because the price is �xed and the level of emissions �ow is allowed
to vary according to economic activity.

5Arrow and Fisher (1974) �rst introduce the concept of quasi-option value in environmental
economics where both uncertainty and restriction on reversibility of acts are assumed.

3



and the other uncertainty over the social costs of environmental damage (i.e.,
economic uncertainty). While Pindyck (2000, 2002) consider the optimal tim-
ing for a single environmental policy adoption, Goto et al. (2009) consider the
choice of two alternative environmental policies under uncertainty. They do not
discriminate between price and quantity mechanisms as other papers do, but
simply index the two policies by 1 and 2 and �nd their ranking. The prob-
lem of the timing of policy intervention is also studied by Conrad (1997, 2000),
Saphores and Carr (2000) and Nishide and Ohyama (2009).
Our paper is about the optimal timing of a new environmental policy in

a framework where production causes pollution, �rms are regulated either by
environmental taxes or non-tradable quotas and the regulator is ambiguous
over the economic e¤ects of the policies6 . In contrast to the prior literature
we endogenously take into account the level of emissions before and after the
adoption of the new environmental policy. In this context, the level of emissions
is determined by solving the �rm�s pro�t maximization decisions under taxes and
�xed quotas as in van Soest (2005). The regulator solves an optimal stopping
problem in order to decide about the timing and ranking of the two policies.
First, in Section 3 we assume that the future evolution of the stock of pollutant
is deterministic, there is only uncertainty over the future economic net bene�ts
of policy adoption and obtain a closed form solution for the thresholds. Next, in
Section 4, we assume that there are both ecological uncertainty and ambiguity
on the future costs and bene�ts over adopting environmental policies. As Asano
(2010) emphasizes, the economic costs of policies aiming at reducing pollutants
are not predictable and the perceived ambiguity of the government towards them
may a¤ect adoption timing in a non trivial way. Our main results are that (i)
the optimal adoption threshold under taxes is always larger than the adoption
threshold under �xed quota, even in this setting, and (ii) depending on the
regulator�s attitude towards ambiguity, uncertainty may increase or decrease
the optimal timing of adopting the environmental policies.
Our model di¤ers from the previous literature in various aspects. First,

we extend and generalize the continuous-time model of environmental policy
adoption in Pindyck (2000, 2002) to the case of two alternative environmental
policy instruments. In contrast to Goto et al. (2009), who study the decision to
implement two unspeci�ed alternative environmental policies under economic
uncertainty, we investigate the e¤ects of environmental taxes and quotas on
the optimal timing of emission reductions in a real option framework under
ecological uncertainty and economic ambiguity. Second, in our paper ambigu-
ity is modelled through Choquet-Brownian motions, rather that relying on the
multiple-prior preferences which is based on the maximin criterion (see Gilboa
and Schmeidler, 1989; Chen and Epstein, 2002), as has been done so far in
the literature dealing with ambiguity and real options. A small number of pa-
pers have recently come out introducing ambiguity into real options (Miao and
Wang, 2009; Trojanowska and Kort, 2007; Nishimura and Ozaki, 2007; Asano,

6As in van Soest (2005), we focus on taxes and non-tradable quotas and hence do not
consider the dynamic incentives associated with a tradable permit system. See Requate (1998)
for an interesting analysis of permits.
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2010), although they are based on the maximin criterion, or the worst case
scenario, and show that the impact of ambiguity on valuation and timing is
often equivocal. Our approach employing Choquet-Brownian motions follows
Kast and Lapied (2008), which di¤ers from the literature so far, thereby avoid-
ing limits inherent to the maximin criterion. In contrast to Asano (2010), who
�nds that an increase in ambiguity decreases the optimal timing of the envi-
ronmental policy, we �nd that an ambiguity averse environmental regulator will
delay the adoption of the new policies, while an ambiguity lover regulator will
adopt them earlier than if neutral ambiguous. Third, di¤erently from van Soest
(2005) who analyzes the impact of taxes and quotas on the timing of �rm in-
vestment decisions with respect to energy saving technologies, we investigate
the environmental regulator�s decision about the timing and ranking of the two
environmental policies and also illustrate the e¤ects of a change in attitude
towards ambiguity on the value and timing of the two policies.
The paper is organized as follows. Section 2 describes the setup of the

model. Section 3 solves the optimal stopping problem of the environmental
regulator and �nds the ranking of the two environmental policies when the
stock of pollutant evolves deterministically and there is uncertainty over the
future economic net bene�ts of policy adoption (Propositions 1 and 2). Section 4
introduces both ecological uncertainty and economic ambiguity and contains the
most comprehensive result (Proposition 3). Numerical results are presented in
Section 5. In particular, a detailed sensitivity analysis is shown as to deepen our
understanding of the e¤ects of environmental taxes and quotas on the optimal
timing of emission reductions. Section 6 concludes the paper. All proofs are in
the Appendix.

2 The model

We present a simple partial-equilibrium model to illustrate our arguments. A
competitive industry consists of identical �rms producing a homogeneous prod-
uct. Output generates as a by-product environmental damages on society due
to some externality. Let us consider a representative �rm producing q units of
output at each instant of time according to the simple production function7 :

q (E) = �Ea;

where E is the energy used as an input in the production process, a is the
constant output elasticity, 0 < a < 1, and � is the parameter of energy e¢ ciency.
Let p be the �xed price of output and z the �xed unit cost of energy. The
production of output generates pollutant emissions. Let Mt be a state variable
denoting the stock of environmental pollutants, e.g. the average concentration
of CO2 or HFCs in the atmosphere. Let �t be a �ow variable that controls Mt:
Emissions are assumed to be determined by the function: �t = �qt; where qt is
the amount of output produced at time t and � are emissions per unit of output.
The evolution of Mt is given by (Pindyck, 2000, 2002):

7Time subscripts are suppressed when no confusion arises.
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dMt = (�t � �Mt) dt; M0 =M (1)

where � 2 [0; 1) is the rate of natural decay of the stock pollutant over time, i.e.,
a fraction � of the pollutant in the atmosphere di¤uses into the ocean, forests,
etc. In our model a policy involves a one-time reduction in �t. Denote by � i the
unknown adoption time of the new environmental policy i and assume that the
dynamics of Mt changes after � i :

dMt =

8>><>>:
�
�N � �Mt

�
dt for 0 � t < � i�

�A � �Mt

�
dt for t � � i

(2)

Here, superscripts N and A indicate the state of no-adoption and adoption of
the new environmental policy, respectively. Until a policy is adopted �t stays
at the constant initial level �N , while policy adoption implies a once-and-for-all
reduction to a new permanent level �A; with 0 � �A < �N . Therefore, when
the environmental regulator implements the new environmental policy, the level
of emission �ow is reduced by �N � �A8 . In the next section we endogenously
determine �N and �A by solving the �rm�s pro�t maximization problem under
taxes and �xed quotas.

2.1 The �rm�s problem

Given the unknown adoption time of the new environmental policy, the �rm has
to decide about output production. The pro�t �ow � in the absence of some
policy intervention (for 0 < t < � i) is:

�N = max
E
fpq(E)� zEg ; (3)

The value of E that maximizes the term within brackets is given by:

E = (ap� /z )
1/(1�a)

;

which leads to the following expression for �N :

�N = (1� a)
�a
z

�a/(1�a)
p1/(1�a) �1/(1�a) = 	N��;

where:
	N = (1� a)p1/(1�a) (a /z )a/(1�a)

and:
� = 1/(1� a) > 1: (4)

8This assumes that the speed of of pollution accumulation is reduced because of the policy
implementation.
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Pro�t maximization problem (3) allows us to determine the level of emissions
�t before the adoption of the new environmental policy:

�N = ��Ea = ��1/(1�a) (ap /z )
a/(1�a)

: (5)

Two environmental policy options will be considered here: the level of emis-
sion �ow can be reduced either by setting a per-unit energy tax rate (�) or a
non-tradable quota for energy use ( �E). To make a comparison between the e¤ect
of taxes and quotas on the optimal adoption time, we suppose that, in the initial
situation, energy use is the same under both regimes. Like van Soest (2005)9 ,
let us assume that the environmental regulator has determined the Pigouvian
tax (�) that equates the marginal bene�ts and costs of pollution. The equivalent
quota ( �E) is assumed to be equal to the amount of energy that the �rm will
employ, given this tax rate. It is obtained by solving the pro�t maximization
problem under taxes: maxE fpq(E)� (z + �)Eg :Thus,

�E = (ap� /(z + �) )
1/(1�a)

: (6)

Using i (i = T;Q) to denote the policy regime i.e. taxes or non-tradable quotas,
respectively, the �rm�s pro�t �ow when the new environmental policy is adopted
(for t � � i) is:

�Ai =

8><>:
max
E
fpq(E)� (z + �)Eg = 	AT �

� if i = T

pq( �E)� z �E = 	AQ�
� if i = Q

; (7)

where
	AT = (1� a)p1/(1�a) (a /(z + �) )

a/(1�a)
;

	AQ = [1� za /(z + �) ] p1/(1�a) (a /(z + �) )
a/(1�a)

;

and �E is given by (6)10 . Notice that the optimal level of E for i = T in (7)
coincides with �E.
By (7) and (6) the level of emissions �t after the adoption of the new envi-

ronmental policy i can be obtained:

�A = ��1/(1�a) (ap /(z + �) )
a/(1�a)

:

Note that emissions reduce to the same level �A under both regimes.
9See also Requate (1995) for further datails.
10 It is easy to show that �AT < �AQ for any � > 0: This result still holds if we use the

two inputs production function: q (E;L) = �EaLb; a; b � 0; a + b < 1; where L denotes the
variable labour input and w is the cost per unit of input in L: According to Van Soest (2005),
the instantaneous pro�t �ow can be calculated as:

�Ai =

8>><>>:
maxE;L

�
p�EaLb � (z + �)E � wL

	
=  AT �

�� if i = T

maxL

n
p�ÊaLb � zÊ � wL

o
=  AQ�

�� if i = Q
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3 The regulator�s problem

In each period the regulator is supposed to decide whether to adopt the new
environmental policy i or to postpone it to the next period.
Like Pindyck (2000, 2002), we assume that the �ow of social costs (i.e.

damages) associated with the stock variable Mt has the quadratic form:

D(Xt;Mt) = XtM
2
t ;

where Xt is a variable that stochastically shifts over time to re�ect the damage
due to the pollutant and is assumed to follow a geometric Brownian motion:

dXt = �Xtdt+ �XtdWt; X0 = X (8)

for constants � < r; � > 0: Wt is a standard Brownian motion and r denotes
the risk-free rate of interest. The process Xt is assumed to capture economic
uncertainty over future costs and bene�ts of policy adoptions. For example,
changes in Xt might re�ect the innovation of technologies that would reduce
the damage from a pollutant, or demographic changes that would increase the
social cost of Mt.
Let B (Xt;Mt) denote the net bene�t from emissions. If the regulator adopts

the policy i, the net bene�t, is:

BAi (Xt;Mt) = �
A
i �DA(Xt;Mt); for i = T;Q;

On the other hand, if the regulator never adopts the policy:

BN (Xt;Mt) = �
N �DN (Xt;Mt):

Let K
�
�N � �A

�
be the cost of permanently reducing the emission �ows which

is given by11 :

K
�
�N � �A

�
= k1

�
�N � �A

�
+ k2

�
�N � �A

�2
; (9)

where: �� = 1
1�a�b > 0;

 AT = (1� a� b)

 
p

�
a

z + �

�a � b

w

�b! 1
1�a�b

;

 AQ =

�
1� b� za

z + �

� 
p

�
a

z + �

�a � b

w

�b! 1
1�a�b

;

Ê is calculated as: argmaxE
�
p�EaL(E)b � (z + �)E � wL (E)

	
and L (E) is the optimal

amount of labour used as a function of energy input.
11For simplicity, it is assumed that both instruments require the same gross investment cost

(K) :

8



with k1; k2 � 0: This cost is assumed to be completely sunk.
The objective of the regulator is to choose the optimal timing of adopting

policy i that would reduce emissions to �A such that the expected net present
value function (using the discount rate r) of the di¤erence between the net

bene�t B (Xt;Mt) and the cost of policy adoption K
�
�N � �A

�
, is maximized:

Wi(X;M) = sup
� i2T

�
E
Z 1

0

e�rtB (Xt;Mt) dt�K
�
�N � �A

�
e�r� i

�
; for i = T;Q

(10)

subject to Eq. (2) for the evolution of Mt and Eq. (8) for the evolution of Xt.
Here, T is the class of admissible implementation times relative to the �ltration
generated by the stochastic process Xt:
Applying the Dixit and Pindyck (1994) methodology12 , we can derive the

optimal timing for the two environmental policies and the values to reduce emis-
sions under the two environmental policies (see the Appendix). In particular,
we can compute the two thresholds �Xi ,i = T;Q, such that it is optimal to
adopt policy i for X > �Xi , with:

�XT =

 �
	N �	AT

�
��

r
+K

!�
�1�2�3�1
2� (�1 � 1)

�
;

�XQ =

 �
	N �	AQ

�
��

r
+K

!�
�1�2�3�1
2� (�1 � 1)

�
;

where �1 = r+2���, �2 = r+ ���, �3 = r��, �1 is the positive solution
to the standard characteristic equation and � = �(�N ; �A;M; �3). From a
comparison between �XT and �XQ and between the two values of the option to
reduce emissions we can get the following main results:

Proposition 1 The optimal adoption threshold under taxes is larger than the
adoption threshold under �xed quota for any � > 0:

Proposition 2 The value of the option to reduce emission under taxes is smaller
than the value of the option to reduce emission under quota for any � > 0:

Proof. of Propositions 1 and 2: in the Appendix.

Thus, Propositions 1 and 2 provide us with a ranking between taxes and
non-tradable quotas in this setting, in a non equivocal way. It is found that
non-tradable quota are more conducive to early adoption than taxes. Regulators
may care about early adoption: in this case, non-tradable quotas outperform
taxes, i.e. they should be the preferred policy instrument.
12Real option methodology under taxation has been employed in several works, e.g. Agliardi

and Agliardi (2008, 2009), Sarkar and Goukasian (2006), Wong (2007, 2010), although these
papers do not deal with environmental issues.
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4 Optimal timing for the new environmental poli-
cies under ecological uncertainty and Choquet-
Brownian ambiguity.

In this section, we study the optimal timing of adopting the environmental
policies in the presence of ecological uncertainty and Choquet-Brownian motion
representing ambiguity13 . By ambiguity (or Knightian uncertainty) we mean
the fact that information is too imprecise to be summarized adequately by
probabilities, as is often the case in many decision-making settings characterized
by unpredictability. It seems to be particularly appropriate in the analysis of
the regulator�s optimal environmental policies, where the set of beliefs expands
and various scenarios of climate change, future costs and bene�ts from adopting
new policies need to be considered.
For the evolution of the stock of the environmental pollutant Mt we follow

Pindyck (2002) and assume thatMt can be described by an Ornstein�Uhlenbeck
process, that is:

dMt = (�t � �Mt) dt+ �1dW
1
t ; M0 =M (11)

with �1 > 0 and W 1
t is a standard Brownian motion. The deterministic part of

the process (11) is the same as before14 .
To analyze the e¤ects of ambiguity on the value of adopting the environmen-

tal policies we adapt Kast, Lapied and Roubaud (2010) and assume that the
regulator�s beliefs are represented by "c�ignorance", so that the new geometric
Brownian motion for Xt becomes15 :

dXt = (�+m�2)Xtdt+ s�2Xtd ~W
2
t ; X0 = X; (12)

with m = 2c � 1, s2 = 4c(1 � c) and c (0 < c < 1) is the constant conditional
capacity which summarizes the regulator�s attitude toward ambiguity. Indeed,
this representation is consistent both with ambiguity aversion (c < 1

2 ) and an
ambiguity lover regulator (c > 1

2 )
16 . The absence of ambiguity (or simple

13A Choquet-Brownian motion is a distorted Wiener process, where the distortion de-
rives from the nature and intensity of preferences towards ambiguity (see Kast, Lapied
and Roubaud, 2010, Section 2.2, for more details on the construction of Choquet-Brownian
processes).
14See Eq. (2) in Section 2
15We follow Kast, Lapied and Roubaud (2010) for the derivation of the modi�ed process

capturing economic uncertainty over future costs and bene�ts of policy adoptions. Speci�cally,
let Xt follow a geometric Brownian motion: dXt = �Xtdt + �2XtdW 2

t ; in the absence of
ambiguity. This is the same as for the process Xt in the previous section. Within the
framework of ambiguity in continuous-time of Kast, Lapied and Roubaud (2010), Eq. (12) is
obtained by dXt = �Xtdt + �2XtdW 2

t with dW 2
t = mdt + sd ~W 2

t ; where W
2
t is a standard

Brownian motion with mean m = 2c� 1 and variance s2 = 4c(1� c):
16For example, if the regulator is ambiguity averse c < 1

2
: Consequently, 0 < c < 1

2
implies

�1 < m < 0 and 0 < s < 1; and then � + m�2 < � and 0 < s�2 < �2: In other words,
ambiguity aversion generates a reduction of the instantaneous mean and also of the volatility.
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uncertainty) is included as a special case when c = 1
2 , so that m = 0 and s = 1.

As usual, it is assumed that the no-bubble condition holds, where �+m�2 < r:
Moreover, �2 > 0 and ~W 2

t is a standard Brownian motion which is assumed to

be independent of W 1
t , i.e. corr

h
W 1
t ; ~W

2
t

i
= 0.

As in the previous section, the �ow of social costs associated with the stock
variable Mt is the quadratic form:

D(Xt;Mt) = XtM
2
t ;

and the cost of permanently reducing the emission �ows is given by (9).

4.1 Optimal environmental policies

In this subsection, we discuss the solution for the optimal stopping problem
(10) subject to Eq. (11) for the evolution of Mt and Eq. (12) for the evolution
of Xt. In order to solve the corresponding Hamilton-Jacobi-Bellman equations
analytically and to provide the further characterization of the value of adopting
the environmental policies, it is assumed as in Pindyck (2002) that the pollutant
stock has a zero natural decay rate (i.e. � = 0)17 . In other cases, numerical
computations to solve the equations have to be performed.
Applying the Dixit and Pindyck (1994) methodology, we can derive the opti-

mal timing for the two environmental policies and the values to reduce emissions
under the two environmental policies (see the Appendix). In particular, in or-
der to compare the e¤ects of taxes and quotas on the optimal timing for policy
adoption in the presence of ecological uncertainty and Choquet-Brownian am-
biguity, we can compute the two thresholds X�

T and X
�
Q , such that it is optimal

to adopt policy i for X > X�
i , as:

X�
T =

"�
	N �	AT

�
��

r
+K

#�
�$3

2� (�� 1)

�
;

X�
Q =

"�
	N �	AQ

�
��

r
+K

#�
�$3

2� (�� 1)

�
;

where $ = (r � (�+m�2)), � = M$
�
�N � �A

�
+

��
�N
�2
�
�
�A
�2�

and

� is the positive solution (� > 1) to the standard characteristic equation. The
following Proposition 3 provides the most comprehensive result and con�rms
that quotas outperform taxes if early adoption is our concern:

17The assumption that � = 0 is appropriate in the case that the pollutant Mt represents
chloro�uorocarbon (CFCs) or methane (CH4) that cause severe damage on the environment
and do not depreciate at all once they are released into the atmosphere and the ocean.
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Proposition 3 In the presence of ecological uncertainty and Choquet-Brownian
ambiguity: (1) the optimal adoption threshold under taxes is larger than the
adoption threshold under �xed quota for any � > 0, (2) the value of the option
to reduce emission under taxes is smaller than the value of the option to reduce
emission under quota for any � > 0.

Proof. in the Appendix

Remark 4 In the special case when there is ecological uncertainty and no-
ambiguity (i.e. when c = 1

2) the optimal stopping boundary X
��
i (for i = T;Q),

is given by:

X��
i =

"�
	N �	Ai

�
��

r
+K

#�
�33

2� ( � 1)

�
;

and the variable A��i which enters the value option is given by:

A��i =

 
r ( � 1)�

	N �	Ai
�
�� + rK

!�1�
2�

�33

�
e��M ;

where �3 = r��, 
 =
�
�N + �A

�
+M�3, � =M�3

�
�N � �A

�
+

��
�N
�2
�
�
�A
�2�

,

the exponent � (M) is given by � = �3

 and

 =
�N�3
� 1

2�
2
2


2 + �
2

�22

2 + �21�

2
3

264�1 +vuut1 + 2r (�22

2 + �21�

2
3)�

�N�3 � 1
2�

2
2
+ �


�2
375 :

Note that this result is similar to Pindyck (2002), although we consider the
optimal timing of adopting two alternative environmental policies, i.e. taxes
and non-tradable quotas, while Pindyck (2002) considers the optimal timing for
a single environmental policy adoption.

In the next section some numerical results and a sensitivity analysis are
presented to deepen our understanding of the e¤ects of environmental taxes
and quotas on the optimal timing of emission reductions and to analyze the
e¤ects of a change in perceived ambiguity.
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5 Numerical application

In this section we provide some numerical applications to the optimal timing of
adopting the environmental policies in the presence of ecological uncertainty and
ambiguity. The change in perceived ambiguity will be examined as a deviation
from the base case (or neutral case) of c = 0:5, which describes absence of ambi-
guity. In order to implement the analytical solutions and study their sensitivity
analysis with respect to important value drivers we use Mathematica Program-
ming. We use as much as possible the same parameter values as in Pindyck
(2002) and Van Soest (2005). In particular, we assume that in the base case:
� = 0 (drift-rate of economic uncertainty in the absence of ambiguity); r = 0:06
(risk-free interest rate); c = 0:5 (absence of ambiguity); �1 = 1:000:000 (volatil-
ity of ecological uncertainty); �2 = 0:05 (volatility of economic uncertainty in
the absence of ambiguity); M = 10:000:000 (tons); k1 = 1 (proportional cost);
k2 = 1:5 (adjustment cost); � = 1 (emissions per unit of output); � = 1 (energy
e¢ ciency); a = 0:65 (output elasticity); p = 1 (price of output); z = 0:2 (cost of
energy); � = 0:1 (environmental tax).
Figure 1 shows the relation between the critical threshold X��

i (M) and the
current pollutant stock M in the absence of ambiguity (i.e. when c = 1

2 ). The
e¤ect of ecological uncertainty is investigated through two di¤erent curves. The
dashed curve illustrates the sensitivity of the critical threshold under taxes,
X��
T (M) ; with the current pollutant stockM , absent ambiguity, while the solid

curve illustrates the sensitivity of the critical threshold under quotas, X��
Q (M) ;

with the current pollutant stock M , absent ambiguity. We will consider current
pollutant stock M in the range of 10� 50 Million tons. As we would expect the
optimal adoption threshold under taxes is greater than the adoption threshold
under �xed quota. As in Pindyck (2002), a larger M implies a larger social cost
of environmental damage, and thus lower values of X at which it is optimal to
adopt the policies.
Figure 2 shows the relation between the critical threshold X��

i (M) and the
volatility �2 in the absence of ambiguity. The dashed curve illustrates the
sensitivity of the critical threshold under taxes with the volatility �2 absent
ambiguity, while the solid curve illustrates the sensitivity of the critical threshold
under quotas with the volatility �2 absent ambiguity. We will consider values
of the volatility �2 ranging from 0 to 1: As in Pindyck (2002), increases of
economic uncertainty over future payo¤s from reduced emissions increase the
value of waiting, and raise the critical thresholds X�

T (M) and X
�
Q (M) :

Figure 3 shows the relation between the critical threshold X��
i (M) and the

tax rate � in the absence of ambiguity. The dashed curve illustrates the sensi-
tivity of the critical threshold under taxes with the tax rate � absent ambiguity,
while the solid curve illustrates the sensitivity of the critical threshold under
quotas with the tax rate � absent ambiguity. We will consider values of the
tax rate � ranging from 0 to 1: A larger � a¤ects the net bene�t from reduced
emissions and thus induces a larger optimal timing of adopting the environmen-
tal policies. Thus, more stringent environmental policies, measured in terms of
higher tax rates, do not result in earlier adoption.
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Finally, Figure 4 shows the e¤ect of ambiguity on the optimal timing of
adopting the environmental policies. The dashed curve illustrates the sensitivity
of the critical threshold under taxes, X�

T (M) ; with the degree of c-ignorance,
while the solid curve illustrates the sensitivity of the critical threshold under
quotas, X�

Q (M) ; with the degree of c-ignorance. We will consider values of the
degree of c-ignorance ranging from 0 to 1. A move down the interval ]0; 0:5[ for c
so thatm < 0, �+m�2 decreases and $ increases, is associated with an increase
in ambiguity aversion and, correspondingly, an increase in the thresholds, that is,
the regulator cannot pin down the possible scenarios of changes in the future and
therefore becomes more cautious than before. A move up the interval ]0:5; 1[ for
c, so that m > 0, �+m�2 increases and $ decreases, is associated with a more
ambiguity lover regulator and, correspondingly, a decrease in the thresholds,
that is, early adoption is stimulated. As in Kast, Lapied and Roubaud (2010)
a larger c implies a lower value of the threshold X at which it is optimal to
adopt the policies. In particular, an ambiguity averse environmental regulator
(i.e. when 0 < c < 0:5) will delay the adoption of the new policies, while an
ambiguity seeker regulator (i.e. when 0:5 < c < 1) will adopt them earlier than
if he were ambiguity neutral (i.e. when c = 1

2 ).

FIGURE 1: Relation between the critical threshold X��
T (M) and the current pol-

lutant stock M absent ambiguity (dashed curve). Relation between the critical
thresholds X��

Q (M) and the current pollutant stock M absent ambiguity (solid
curve).
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FIGURE 2: Relation between the critical threshold X��
T (M) and the volatility �2

absent ambiguity (dashed curve). Relation between the critical thresholds X��
Q (M)

and the volatility �2 absent ambiguity (solid curve).

FIGURE 3: Relation between the critical threshold X��
T (M) and the energy tax �

absent ambiguity (dashed curve). Relation between the critical thresholds X��
Q (M)

and the energy tax � absent ambiguity (solid curve).
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FIGURE 4: Relation between the critical threshold X�
T (M) and the degree of

c�ignorance (dashed curve). Relation between the critical thresholds X�
Q (M) and

and the degree of c�ignorance (solid curve).

6 Conclusion

The choice of environmental policy instruments has been the object of a sub-
stantial amount of attention in the recent debate, both in the literature and
for policy prescriptions. Our paper contributes to the debate by discussing the
impact of alternative policy instruments, i.e. taxes and quotas, on the optimal
timing of emission reductions. A main conclusion is that the optimal adoption
threshold under taxes is always larger than under quotas. Thus, in our model
there is an unambiguous ranking of these policy instruments in terms of the
adoption lags: if regulators wish to speed up the implementation of technolo-
gies reducing pollution emissions, then they may prefer quotas to taxes. This
result is robust to various relevant parameters and changes in perceived am-
biguity. Actually, a more stringent environmental policy, measured in terms
of higher tax rates, further delays adoption. A more ambiguity averse regula-
tor becomes more cautious in adopting the environmental policy options. Our
sensitivity analysis provides a clue to regulators who are faced with environ-
mental issues where economic costs and bene�ts cannot be forecasted and a lot
of scenarios can be considered. Another alternative is to analyze the economic
and policy consequences of catastrophic events (such as catastrophic climate

16



change) and comprehensive damages, which should be fat tailed distributed, as
Weitzman (2009) points out. Despite its adequacy to deal with extreme events,
which are a realistic occurrence in environmental issues, a framework of fat-
tailed cost bene�t analysis of climate change within the real option approach
will be analytically untractable in general and require numerical methods.
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7 Appendix

Proofs of Propositions 1 and 2.

In this Appendix we derive the optimal timing for the environmental policy
i. We solve the problem by stochastic dynamic programming. Let WN

i =
WN
i (X;M) denote the value function for the non-adopt region ( in which �t =

�N ). The corresponding Hamilton-Jacobi-Bellman equation is:

rWN
i = BN (X;M) +

�
�N � �M

� @WN
i

@M
+ �X

@WN
i

@X
+
1

2
�2X2 @

2WN
i

@X2
:

It has the following general solution:

WN
i (X;M) = Ai1X

�1 +Ai2X
�2 +

264	N��
r

� XM
2

�1
� 2XM�

N

�1�2
�
2X
�
�N
�2

�1�2�3

375
(13)
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where Ai1 and Ai2 are unknowns to be determined, �1 = r+2���; �2 = r+���;
and �3 = r��: Here, �1 and �2 are the solution to the following characteristic
equation:

1

2
�2�(�� 1) + ��� r = 0

and are given by:

�1 =
1

2
� �

�2
+

s�
1

2
� �

�2

�2
+
2r

�2
> 1

�2 =
1

2
� �

�2
�

s�
1

2
� �

�2

�2
+
2r

�2
< 0:

The term between the squared parentheses in (13) is a particular solution, which
captures the expected net bene�t from emissions in the case the environmental
regulator has not adopted the policy and is calculated as18 :

E
�Z 1

0

e�rtBN (Xt;Mt) dt

�
=

=

Z 1

0

e�rt	N��dt�
Z 1

0

e�rtXe�t

"
�N

�
+

 
M � �

N

�

!
e��t

#2
dt

=
	N��

r
� XM

2

�1
� 2XM�

N

�1�2
�
2X
�
�N
�2

�1�2�3
;

where �N is given by (5). Therefore, the parenthesis in (13) represents the fun-
damental term and the exponential terms account for the perpetual American
option value.
Next, let WA

i = WA
i (X;M) denote the value function for the adopt region

(in which �t = �
A). The corresponding Hamilton-Jacobi-Bellman equation is:

rWA
i = B

A
i (X;M) +

�
�A � �M

� @WA
i

@M
+ �X

@WA
i

@X
+
1

2
�2X2 @

2WA
i

@X2
:

When we consider a one-time reduction in �t, there is no option term after
pollutant emissions have been reduced to �A; so the solution for WA

i (X;M) is
given by:

WA
i (X;M) =

	Ai �
�

r
� XM

2

�1
� 2XM�

A

�1�2
�
2X
�
�A
�2

�1�2�3
:

18When �t = �N , the solution of Eq. (1) is given by: Mt =
�N

�
+
�
M0 � �N

�

�
e��t:
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where the right-hand side captures the expected discounted value of BAi (Xt;Mt)
in the case the environmental regulator has adopted the policy i; and is calcu-
lated as:

E
�Z 1

0

e�rtBAi (Xt;Mt) dt

�
=
	Ai �

�

r
� XM

2

�1
� 2XM�

A

�1�2
�
2X
�
�A
�2

�1�2�3
:

We know that the solutions for WN
i (X;M) and W

A
i (X;M) must satisfy

the following set of boundary conditions (see Pindyck 2000, 2002):

WN
i (0;M) = 0; (14)

WA
i (0;M) = 0; (15)

WN
i (

�Xi (M) ;M) =W
A
i

�
�Xi (M) ;M

�
�K; (16)

and:
@WN

i (
�Xi (M) ;M)

@X
=
@WA

i

�
�Xi (M) ;M

�
@X

: (17)

Here, �Xi (M) is a free boundary, which must be found as part of the solution,
and which separates the adopt from the no-adopt regions. It is also the solution
to the stopping problem (10):

� i = inf
�
t > 0; X � �Xi (M)

	
Given M; the policy i should be adopted the �rst time the process Xt crosses
the threshold �Xi (M) from below. Boundary conditions (14) and (15) re�ect
the fact that if Xt is ever zero, it will remain at zero thereafter. Conditions (16)
and (17) are the value matching and the smooth-pasting conditions, respectively.
Conditions (14) and (15) imply:

WN
i (0;M) =

	N��

r

and

WA
i (0;M) =

	Ai �
�

r
:

Accordingly, we disregard the negative root in order to prevent the value from
becoming in�nitely large when Xt tends to 0; thus, we set Ai2 = 0 (see Dixit
and Pindyck 1994). So (13) becomes:

WN
i (X;M) = Ai1X

�1 +
	N��

r
� XM

2

�1
� 2XM�

N

�1�2
�
2X
�
�N
�2

�1�2�3
: (18)
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The �rst term on the right-hand side of Eq. (18) is the value of the option to
adopt policy i and reduce emissions to �A, while the remaining terms represent
the expected discounted value of BN (Xt;Mt) :
The value matching condition (16) can be rearranged in the following man-

ner:

Ai1
�
�Xi
��1 = 2� �Xi

�1�2�3
�
�
	N �	Ai

�
��

r
�K; (19)

where:

� =M�3

�
�N � �A

�
+

��
�N
�2
�
�
�A
�2�

:

The smooth-pasting condition (17) yields:

Ai1 =
1

�1
�
�Xi
��1�1

�
2�

�1�2�3

�
; (20)

Plugging (20) into (19), we get the expressions reproduced in Section 3:

�Xi =

 �
	N �	Ai

�
��

r
+K

!�
�1�2�3�1
2� (�1 � 1)

�
: (21)

Finally, substituting (21) into (20), we get:

Ai1 =

 
r (�1 � 1)�

	N �	Ai
�
�� + rK

!�1�1�
2�

�1�1�2�3

��1
;

Proof of Proposition 3.

Let us �nd a solution for the optimal stopping problem (10) subject to Eq.
(11) for the evolution of Mt and Eq. (12) for the evolution of Xt. In this
framework, the value function for the no-adopt region, WN

i (X;M) must satisfy
the Hamilton-Jacobi-Bellman equation:

rWN
i = BN (X;M)+

�
�N � �M

� @WN
i

@M
+(�+m�2)X

@WN
i

@X
+
1

2
(s�2)

2
X2 @

2WN
i

@X2
+
1

2
�21
@2WN

i

@M2
;

(22)

and the value function for the adopt region, WA
i (X;M) ; must satisfy the

Hamilton-Jacobi-Bellman equation:
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rWA
i = B

A
i (X;M)+

�
�A � �M

� @WA
i

@M
+(�+m�2)X

@WA
i

@X
+
1

2
(s�2)

2
X2 @

2WA
i

@X2
+
1

2
�21
@2WN

i

@M2
:

The solutions for WN
i (X;M) and W

A
i (X;M) must satisfy the following set of

boundary conditions:

WN
i (0;M) = 0; (23)

WA
i (0;M) = 0; (24)

WN
i (X

�
i (M) ;M) =W

A
i (X

�
i (M) ;M)�K; (25)

@WN
i (X

�
i (M) ;M)

@X
=
@WA

i (X
�
i (M) ;M)

@X
; (26)

and:
@WN

i (X
�
i (M) ;M)

@M
=
@WA

i (X
�
i (M) ;M)

@M
; (27)

where X�
i (M) is the critical value of X at or above which the optimal environ-

mental policies should be adopted. From now on, let us suppose for simplicity
that the pollutant stock has a zero natural decay rate (i.e. � = 0).
We �rst calculate the expected discounted value ofBN (Xt;Mt) andBAi (Xt;Mt):

E
�Z 1

0

e�rtBN (Xt;Mt) dt

�
=

=

Z 1

0

e�rt	N��dt�
Z 1
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and:

E
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e�rtBAi (Xt;Mt) dt
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:

where$ = (r � (�+m�2)) : Therefore, the solutionsWN
i (X;M) andW

A
i (X;M)

are given by:
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i (X;M) = Gi(M)X
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and

WA
i (X;M) =

	Ai �
�

r
� XM

2

$
� 2XM�
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$2
�
2X
�
�A
�2

$3
� X�

2
1

$2
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where Gi(M) = A�i e
�M , wAi = A�i e

�MX� is the homogeneous solution to the
partial di¤erential equation (22) and Gi(M)X� is the value of the option to
adopt policy i and reduce emissions to �A.
Here, � and � are the solutions to the following characteristic equation:

1

2
(s�2)

2
� (�� 1) + 1

2
�21�

2 + �N� + (�+m�2)�� r = 0; (28)

which need to be found, together with A�i and X
�
i (M) using the boundary

conditions (23)-(27).
Boundary condition (25) implies:

A�i e
�M (X�
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�
=
2�X�
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r
�K; (29)

where:

� =M$
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�N � �A

�
+

��
�N
�2
�
�
�A
�2�

:

The smooth-pasting condition (26) yields:

�A�i e
�M (X�

i )
��1

=
2�

$3
; (30)

and �nally the smooth-pasting condition (27) yields:

A�i e
�M (X�
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�
=
2X�

i

�
�N � �A

�
$2�

: (31)

Plugging (31) into (30) and after some algebra, we �nd:

� =
�$�

�N + �A
�
+M$

:

Then we plug (31) into (29) and obtain:

X�
i =

"�
	N �	Ai

�
��

r
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2� (�� 1)

�
: (32)
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By substituting (32) into (30), we obtain:

A�i =

 
r (�� 1)�

	N �	Ai
�
�� + rK

!��1�
2�

�$3

��
e��M :

To �nd � we plug � into (28) and solve the equation for �. By the standard

real options argument � must be larger than 1. Setting � =
�
�N + �A

�
+M$;

straightforward calculation yields:

� =
�N$�� 1

2 (s�2)
2�2+(�+m�2)�

2

(s�2)
2�2+�21$

2

�
�1 +

r
1 +

2r((s�2)2�2+�21$2)
(�N$� 1

2 (s�2)
2�+(�+m�2)�)

2

�
:
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