View metadata, citation and simplgrpgpers at core.ac.uk brought to yﬁlCQRE

provided by Research Papers i

UNIVERSITY OF
TECHNOLOGY SYDNEY

QUANTITATIVE FINANCE
RESEARCH CENTRE

QUANTITATIVE FINANCE
RESEARCH CENTRE

THINK.CHANGE.DO

QUANTITATIVE FINANCE RESEARCH CENTRE

Research Paper 287 January 2011

A Modern View on Merton’s Jump-Diffusion Model
Gerald H. L. Cheang and Carl Chiarella

ISSN 1441-8010 www.qfrc.uts.edu.au


https://core.ac.uk/display/6293327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Modern View on Merton’s Jump-Diffusion Model

Gerald H. L. Cheang Carl Chiarella
Centre for Industrial and Applied Mathematics School of Finance and Economics
School of Mathematics and Statistics University of Technology, Sydney
University of South Australia PO Box 123, Broadway
GPO Box 2471, City West Campus, Adelaide NSW 2007, Australia
SA 5001, Australia email: carl.chiarella@uts.edu.au

email: gerald.cheang@unisa.edu.au

January 18, 2011

ABSTRACT

Merton has provided a formula for the price of a European call option on a single stock where the stock
price process contains a continuous Poisson jump component, in addition to a continuous log-normally
distributed component. In Merton’s analysis, the jump-risk is not priced. Thus the distribution of the
jump-arrivals and the jump-sizes do not change under the change of measure. We go on to introduce
a Radon-Niko§tm derivative process that induces the change of measure from the market measure to
an equivalent martingale measure. The choice of parameters in the RadoraNikedvative allows

us to price the option under different financial-economic scenarios. We introduce a hedging argument
that eliminates the jump-risk in some sort of averaged sense, and derive an integro-partial differential
equation of the option price that is related to the one obtained by Merton.

KEY WORDS
Financial derivatives, compound Poisson processes, equivalent martingale measure, hedging portfolio.

1 Introduction

Merton (1976) has provided a formula for the price of a European call option on a single stock where
the stock price process contains a continuous Poisson jump component, in addition to a continuous
log-normally distributed component. Merton’s analysis in essence does not price the jump-risk. In this
paper, we extend the results of Merton to the case where the market price of jump-risk is priced in the
hedging portfolio. In Merton’s case, financial economic arguments relating to systematic and unsystem-
atic risk allows one to argue that the distribution of the Poisson jump components does not change under
the change of measure. He considered a constant arrival intensity, log normally distributed jump sizes,
set the market price of jump risk to zero and obtained a Poisson weighted sum of a Black-Scholes type
formulae. He also considered the same hedge portfolio used by Black and Scholes (1973), namely one
consisting of a position in the stock, the option and the risk-free asset only. In this case a perfect hedge
does not exist and hedging was achieved by Merton by averaging out idiosyncratic risk. However, this
leaves the market price of jump-risk unpriced, and also the distribution of the jump components remain
unchanged. Further extensions to the Merton (1976) model include those by Anderson (1984) and Aase
(1988). However these authors also make assumptions that amount to leaving the jump risk unpriced.
Furthermore these later derivations do not appeal to the traditional hedging argument but rather appeal
directly to the risk-neutral valuation principle and change of measure arguments.
However, the market which contains stocks with jump components is inherently incomplete in the

Harrison and Pliska (1981) sense. When the market price of the jump-risk is accounted for, there are



many equivalent martingale measures, and hence different prices for the option. For a single stock mar-
ket, one could for example, apply a local risk-minimizing trading strategy in the manner of Schweizer
(1991), Colwell and Elliott (1993), or a minimum entropy martingale measure approach in the manner
of Miyahara (2001). Jeanblanc-Pijand Pontier (1990) applied a general equilibrium model to the
problem and used two assets driven by the same Wiener and Poisson noise factors. Jarrow and Madan
(1995) included additional traded assets in order to hedge away the jump-risk in interest rate term-
structure-related securities. Mercurio and Runggaldier (1993), and Runggaldier (2003), suggested that
other assets driven by the same Wiener and Poisson noise factors as the stock be included in the hedge
portfolio. In our case, we setup a hedging portfolio, in which two options of different maturities are
required so that the jump-risk is properly priced in the portfolio. We use a hedging argument that elim-
inates the jump-risk by averaging over jumps. We then obtain the standard integro-partial differential
equation for the option price and interpret economically the various parameters.

The paper develops as follows. In Section 2 we specify the asset pricing model. In Section 3 we
introduce a Radon-Nikadn derivative that induces the change of measure from the market measure
to an equivalent martingale measure for an option on the underlying asset. Section 4 then applies the
results of Section 3 in the derivation of an integro-partial differential equation for the option price via
the martingale approach. In section 5 we develop a hedging portfolio that is used in the derivation of the
same integro-partial differential equation as in Section 4. The hedging portfolio also takes into account
the market price of jump-risk. In Section 6, a general pricing formula is obtained for a European style
call option and we recover Merton’s (1976) call option formula as a special case. Section 7 concludes.

2 Merton’s Jump-Diffusion Model

Throughout this paper, as in Merton (1976), we assume&het the price of a financial asset whose
return dynamics are given by

dS;

5 = (1t — Ak)dt + odB; + [¢7 — 1]d N, (1)
t—

where is the instantaneous expected return per unit time,aiglthe instantaneous volatility per
unit time. The stochastic process is a standard Wiener process under the market me&suféde
processN; is a Poisson process, independent of the jump-sizasd the Wiener procesB;, with
arrival intensityA per unit time under the measuPeso that its increments satisfy

1 ith ilit
4N, — w! probab! | yAdt, @)
0 with probability 1 — Adt.
The expected proportional jump size is
k=Ep [e‘]—l]. 3)

Jumps arriving at different times are assumed to be independent of each other. A filtered probability
measure spadé), F, {F;},P) is assumed where the filtratiqr; } is the natural filtration generated by
the Wiener procesB; and the compound Poisson proc@ﬁil Jn. The moment generating function
of all the jump-sizes is given by
MRJ(U) = EP [e“‘]] . (4)

We also assume that the stock pays a continuous dividend yield at de simplicity, we assume that
all the parameters in our model are constants, although the model can easily be extended to one with
time-varying but non-stochastic parameters.



3 A Radon-Nikodym Derivative

The stock price model (1) is driven by both a Wiener compodgrand a compound Poisson process
ij’;l Jn. We consider what happens to both the Wiener component and the jump component when we
do a change of measure frdPto another measur@. In the context of our model, the Radon-NiKad
derivative restricted to any time< T takes the form

2 Ny

dQ 0 /
> t:exp —HBt—Qt‘F;(’YJn‘FV)_)‘“t ) ()
where
K =e"Mpj(y) — 1= e"Ep(e?)) — 1. (6)

It can easily be verified that (5) satisfies the properties of a Radon-iikaterivative and it is
a martingale with respect to the measilfte The form of the Radon-Nikagdan derivative in (5) is a
more compact representation and illustrates the Esscher transform nature of the representation. In our
application, the form (5) allows us to manipulate the parameters to produce families of equivalent
martingale measures in the stock price model. More general representations expressed in tevys of L
measures, jump measures or compensated jump measures can be found Colwell and Elliott (1993),
Cont and Tankov (2004) and in Runggaldier (2003).
Lemma 1. LetP andQ be equivalent measures. Consider a probability measure S§acg, { 7}, P)
such that{F;} is the natural filtration generated by a Wiener procd3sand a compound Poisson
processzg;’o J, and a Radon-Nikogin derivative given by (5) wherec R, v € R and«x’ is given by
(6). Then the Wiener process has drift—6 under the measur® and the compound Poisson process
ij;o J,, under the measur® has a new intensity ratd = A(1 + ') and a new distribution for the
jump-sizes the moment generating function of which is given by

Mg, (u) = ————— (7

Proof: See e.g., Cont and Tankov (2004) or Runggaldier (2003). This is a special case of Theorem 2.5
in Runggaldier (2003)

Note that if the distribution of the jumpsin the measur® comes from an exponential family, then the
distribution of J under the measur@ as given by the moment generating function in (7), also comes
from the same exponential family but with different parameters, e.g. see Gerber and Shiu (1994). It
can be observed that evenuif= 0, as long asy is non-zero, there will be a change in the jump-size
distribution under the change of measure, and this in turn leads to a change in the intensity of the jump
arrivals. On the other hand,-fis zero, butv is non-zero, then there is a change in the intensity of the
jump-arrivals only. However, it = —1In Mp ;(7y), then the Radon-Nikgdn derivative (5) takes the

form

Ny T
dQ _0B 7£t e’y n
| = e VBT . 8
aP |, nlzll M, (7) ®)

In this case, the intensity of the jump-arrivals does not change under the change of measure.

In our context, the asset price dynamics contain both Wiener components and jump components
given by (1). In the Radon-Nikgen derivative (5), the choice of the market prices of risk for the
Wiener procesd], will be determined by the choice of the other parameteasdr, which determine
the market prices of risk for the jump component. Lemma 1 indicates the new intensityaatethe
new distributions of the jump-sizes under the martingale med&3urfehe Wiener process; now has
drift —6 under the measur@.



4  An Integro-Partial Differential Equation for the Option Price

Consider a European style option, e.g. a call option with pa¥affSr) = (St — K)™ at maturity

time T. As stated in Section 2, we shall assume that the underlying asset pays a continuous dividend
at the rateg per unit time, so that the yield process of the stocl§jis?. We assume the presence

of a money market account® wherer is the risk-free rate. We require that both the discounted

Siedt

stock yield proces% e } and the discounted option price proce{s@;%t)} to be martingales under
an equivalent martingale measu@e In the presence of jumps, it is well-known that the martingale
measureQ is not unique. Instead, the martingale measgrean be determined by the choice of
the parameters andv in the Radon-Nikogm derivative (5), with the market price of Wiener rigk
determined by the martingale condition after the choicegsafidy have been made.

The dynamics of the discounted yield process is given by

Syett Si_ et
d( éet ):( terf )[(,u—i—q—r—/\/f)dt

+odB; + [’ — 1]dNt}. 9)

After choosing the parametefsandv in the Radon-Nikodsn derivative (5), the jump-arrival process
N, is Poisson with arrival intensity = A(1 + «’) and the distribution of the jump-sizes is given by the
moment generating function

Mp y(u+ )
M, u) = :
Q,J( ) M]P’,J(’Y)
from Lemma 1. It then follows that
qt qt ~ -
d (Stet > = <St—f > [adBt — \kdt + [e7 — l]dNt}, (10)
e’ e’

whereB, is standard Brownian motion under the martingale mealured the expected jump-increment
is & = Eg[e’] — 1. From Girsanov's Theorem,

dB; = 0dt + dB,
and the market price of Wiener rigksatisfies the risk-premium equation
p+q—1r =00+ Ik — i (11)

In (11), the premium for Wiener risk is6, and the premium for jump-risk i8x — A& which can be
manipulated into the form

, Mp y(v+1) — Mp 5 (7)
Mp (1) -1 ’

A |1 —e¢ (12)

in which the term

, Mp j(v+1) — Mp ()

1—e¢
Mp ;(1) -1

(13)

can be interpreted as the market price of jump-risk. If the market price of jump:iiskpecified, then
the parameters andv in the Radon-Nikogm derivative (5) can be chosen such that

yMp (v +1) — Mp s(7)

1—e¢
Mp (1) =1

= . (14)



Through the removal of the discount factor in (10), the stock price dynamics (1) can also be ex-
pressed as

dS; =S,_ (r — ¢ — A\R)dt + 0S;_dB,
+ S;_[e! — 1]dNy. (15)

The following theorem gives the integro-partial differential equation for the option price.
Theorem 1 The European call option price satisfies the integro-partial differential equation

0X,(S;-) XS
T + St— (7" q )\Iﬂ?) 785

1 02X (Si-) <y J
+ iUzsz_W + )\EQ [Xt(St, e ) — Xt(St,)]

= TXt(Stf)a (16)

with terminal conditionXr(S7) = (Sp — K)*.
Proof. We require the discounted option price proc%ééé@} to be a martingale under the martingale

measure). Since the option pric&(S;) is a function ofS;, through the application ofdts Lemma
for jump-diffusion processes, the stochastic differential equation satisfied by this quantity is

d Xi(S0)\ _ o 0Xy(Si-) TXt(St—)
ert 8t ert
S_ < 0X(Si-)
+ W(T —q— )\/f)ias
1 oSt 92X (Si-)
27 ot 952
A g J
+ E]EQ |:Xt(5t,6 ) — Xt(St,)] dt
4 O'St_ 8Xt(5t_)
E37“t 85’

dB,

~ ZEL[XuS )~ Xi(500)]
N é [X0(Si-e”) = Xu(81-)| . (17)

In (17), the coefficient oflt must be zero in order th t% be a martingale under the martingale

measuré), hence we obtain the integro-partial differential equation (16).

O
Using the fact tha{%} is a martingale unde®, the solution for the option price in the form of a

conditional expectation of the discounted final payoff can be written as

Xr(ST)
erT

Xt(St) = €rtEQ |:

]—'t] . (18)

5 The Hedging Portfolio

Now in order to obtain some economic intuition, we derive the integro-partial differential equation (16)
by use of a hedging argument in some appropriate sense to be made clear below. Following Runggaldier
(2003), where two options expiring at different maturities are needed to hedge an option where the
underlying stock price return follows jump-diffusion dynamics, here our portfolio also consists of two
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similar options with differing maturities, that is{; +(S;) and Xz ,(.S;), expiring at arbitrary maturity
datesI; and75 respectively. The value of the portfolio is

II; = Q1.X1,:(St) + Q2X24(S:) + QsSt, (19)

where@; and()- are time-varying positions in the respective options,@gds a time-varying position
in the stock. Adopting the short-form notatidfy; = X;.(S;) (¢ = 1,2) for the option price at time

t when the underlying stock price &, and X; ;— = X;.(S;—), the application of ft's Lemma for
jump-diffusion processes yields the dynamics for the option prices
dX;
M —[ux, — Mex,|dt + ox, Xi s dB;
X
+ [e?Xi — 1]dNy, (20)
where the drift of the optiotX; is denoted by
it— 0Xiy
Xy = ot i— A ) _ :
IU’XZ 7t at + (lu’ K/Xz)St 85'
S? 02X,
25t— 1,
o 7 852 + A KXiXi,t—7
the option price volatility is denoted by
0Xi

ox; Xit— =05 59
the expected jump-increment in the option price is

Xip— kix;, = Ep | Xip(Si—e”) = Xy |,
with the option price increment being given by

[e/% —1)X; 4 = Xit(Si—e’) — X, 4.

The infinitesimal change in the portfolio valdél; over a time intervalt, ¢ + dt) evolves according
to

dll; = Q1d X1t + Q2dXo s + QsdS; + QsqSi—dt. (21)
The change in the value of the portfolify is thus given by

2
di, =Y [(uxi — A, )dt + ox,dB,

=1

+ [~ 1)AV | Qi X
+ [0+ g = Aw)dt + odBy
+ e’ — l]dNt} QsS;_
= [QsSt— (4 q—AR) + Q1 X1
(ux, = AEx;) + Q2Xoy (px, — A ﬁxg)} dt
+ [QSSt—U + Q1 X1 —0x,
+ Q2X2,t—UX2} dBy
+ [stt,[e‘] — 1)+ Q1 X1 [e"¥1 —1]

+ Q2 X0 [eJX2 — 1]} dN;. (22)



As first explained by Merton (1976), in a jump-diffusion model it is not possible to hedge away
the idiosyncratic risks due to the jumps. Merton chose to leave the jump-risks unpriced, resulting
in no change in the distribution of the jump components of his model under the change of measure.
We choose an approach that considers a martingale measure under which the distribution of the jump
components may change. Thus the market price of jump-risk remains present in our model. The choice
of our equivalent martingale measure corresponds to a perfect hedge only when the juthpakize
on some particular value, say= J*, or if the jump-sizes have been averaged out with respect to some
equivalent martingale measure so that some pre-determined value for the average relative jump-size
increment is obtained.

We opt for the procedure of averaging out the jump-sizes according to some equivalent martingale
measurd) so that the portfolio (19) with the jumps averaged out uri@éecomes

ElTL = QiEL X1.4(S0) + Q2B X24(St) + QsEL S, (23)

whereIE(‘é2 denotes averaging the jumps underThe time-varying weight&):, Q2 andQs will be the

optimal weights over the interv@d, ¢ + dt) after the jumps have been averaged out. They correspond
to a particular choice for the market price of jump risk to be discussed later. It will also be shown that
these weights do not depend on the jump-sizes over the infervaldt). Then by replacing the related
guantities in (19) and (22) with their averaged out equivalent, we obtain

d(EéHt) = [QSStf (W+q—AR)
2
+ ) QiXiu(pnx, — X kx,)|dt
i=1

+ [sttfff + Q1 X1 0x,
+ Q2X2,t—aX2} dB;
+ [sttd% + Q1 X1 Fx,
+ QzXz,t—/%Xg] dNy, (24)
where
= %[eJ* —1],
Xit—hx, = %[Xz‘,t(stfe‘]) — X,
Xt_f%X = Eé[Xt(St_eJ) - Xt_].

We need to choose the weights in (24) to remove the Wiener risk and the jump-risk. Thus the
condition for removing Wiener risk is

Q1 X11-0x, + Q2Xoy_0x, = —QsS;_0, (25)
and the condition for removing jump risk is
Q1 X14—fox, + Q2Xoy fix, = —QsS;_k. (26)

Solving (25) and (26) fo€):, Q2 we obtain

(27)



and

Q2 _ QX:S'St_ < U/Aixl - UXI,? ) . (28)
2,t— 0X1KXy —O0XoRX,
Hence the portfolio with the jumps averaged out evolves according to
AELTL) =|QsSi (1 + g — Aw)
2
+ 3 QiXia—(px, — Aix,)|dt. (29)

=1
We note that the weights were chosen to md@@éﬂt) risk-less and hence the averaged portfolio

(obtained by settin); = Q1, Q2 = Q, andQ; = Qs in (19)) has to grow at the risk-free rate to avoid
arbitrage opportunities on average, so that

d(EZIL) = r[QsSt- + Qi X1 + QaXoy-dt. (30)
Hence, equating the right hand sides of (29) and (30) we obtain

QsSi—(n+q— Ak —r)
2

+ Z Qz’X@tf (ux, — Akx, —r) =0. (31)
=1

Substituting forQ; andQ- in (27) and (28) into (31) we obtain

(hx, = Akx, —1) = ZH(p+g—As—r)
okx, —o0x,k

_ (e = A m =) = (g - e ) (32)

oRkx, — Ox,k

The left hand side and right hand side of (32) must be independent of the respective option’s matu-
rity time, so we can conclude that for any opti&i based on the stock;, we must have

(hx —Akx —1) =X (p+qg—As—7)
okx — OxRk

=—¢ (33)

for some¢ independent of maturity. Thus, by rearranging, we obtain

(,uX —r—Akx + /%Xa§>
ox
:(,quqr)\/-@Jr/%af). -~

o

We have let > 0in (33) in order to ensure the correct sign for the market premium for the jump-
risk in (34). Of course mathematically there is no reason to guarantee that the RHS of (33) should
be negative. It is in fact an empirical issue as to whether the risk premium for bearing jump-risk is
positive. Whilst there are a lot of empirical results in this area supporting the positivity of the ex-ante
risk premium (e.g. Fama and French (2002)), we should also point to the studies of Bowd@ikh
(1993) and Walsh (2006) who report that the ex-ante market risk premium can on occasions be negative.

8



Now recall the form of the Radon-Nik§dh derivative (5). For (34) to make economic sense, the
LHS has to be the risk premium less the jump-risk per unit volatility for the option, and the RHS, the
risk premium less the jump-risk per unit volatility for the stock. After the jump-risk is removed from
both sides of (34), then either expression is the market price of the Wiendérinske Radon-Nikogm
derivative (5). Hence it follows that the new jump intensity un@eras to be\ = o¢.

In order to solve for the parametarand~y in the Radon-Nikogim derivative (5), we need to solve
simultaneously

o EP[€(7+1)J]
and (1)
v v
| 4o CERETT] (36)

A

The values of the parametersand4 from (35) and (36) yield the Radon-Nikgoh derivative%)T
Thus the risk premium of the option in (34) with the jumps averaged out in the market m@&asure

(ALX—T—ARX+5\IE%[§%T[6JX —1]D

ox
4 q—1— M+ AEZ 49 (el —1)
:< P[dP‘T :|>7 (37)
g
which is equivalent to
(,uX —r — AKX —i—j\E(‘é[eJX — 1])
ox
pAq—r—Xo+ NEL[ed —1
| - al D, (38)

after expressing the expectations unten (37) as expectations under the martingale meaGuie
(38).

Recall thatk is the expected jump-increment of the stock, &rdis the expected jump-increment
in the option price, both in the equivalent martingale meagur&hen the risk premium of the option
from (38) satisfies

MX—T—AHXJFX;%X:%X(ujuq—r—mjuﬁf%). (39)

From the expressiofi for the market price of Wiener risk (11), we see that (39) expresses the risk
premium of the option less the jump-risk as the market price of Wienegrssialed up by the option
price volatility o x, so that (39) can be rewritten as

ux—T—(Aﬁx—S\Rx):O'Xe. (40)
Finally we multiply both sides of (39) by;  and substitute into the left side of (39) for
_0X 00Xt
Xt pux = 5t + (. — Ak)S— 35
S? 02X,
290t — t
o psr MK
0Xy—
ox X = USt_T;’

Xt_:‘iX = E% Xt(St_(iJ) - Xt_ s



and
X, fix =} [Xt(St_eJ) - Xt_]

Thus (39) becomes

0Xi—

8Xt_+ 2 St 0°Xi
ot

o5 7 2 097
+ S\Eé |:Xt(St_€J) — Xt_} = TXt_,

+ (7' —q— X/%)St_

which is again the integro-partial differential equation (16), where the expectations are taken under the
equivalent martingale measuge Note that if the values and4 from (35) and (36) were used as the
values ofv andy in the Radon-Niko¢im derivative in Lemma 1, and applied to the martingale approach
for the derivation of the integro-partial differential equation (16) in Section 4, then the martingale
measured) is the same a®.

6 Pricing the Call Option

Let us now price the call option at time= 0. Following Merton (1976), we now assume that the
jump-sizes are normally distributed with mearand variance$? under the market measufe For a
choseny andv in the Radon-Nikogim derivative (5), we see from the application of Lemma 1 that the
jump-sizes will be normally distributed with mean= « + 62 with the same varianc#, and the new
intensity of the jump-arrivals i& = A(1 + ’), under the equivalent martingale measre

The next theorem gives the European call option price.
Theorem 2 Suppose the stock price follows the dynamics (1), and the stock pays a continuous dividend
at the rateq. The European call option pric&(.Sy) at timet = 0 is given by

[e.e]

Xo(sn) = Yoo rAIr

n!
n=0

x [Soe™ T D(dy ) — Ke ™ ®(da)]

(41)
where ,
] ln%+(rn—q+%)T
1n =
" onVT
and
d2,n = dl,n - Un\/T;
with
a = a+~6%
~ 252
A= )\exp[u+7a+2],
52
E = exp [d + } -1,
2
P— /\e”+72°‘+v2262 « Ot
<~ na nd?
= r—XM+—+—
Tn T + T + o7’
and )
no
0721 =0’ + T



Proof. Note that the option price discounted by the money market ace6uig a martingale in the
martingale measur®. Let A = {Sp > K} be the event that the option is in the money at maturity.
The eventd is equivalent to the event that

{ ~ %T: So ~ o2
oBp + Jn>1n—<r—q—)\f£—>T .
— K 2
Hence from (18), the call option price is
Xo(So) = e TEq[(Sr — K)14]
= Sge_qT
xEq [e—%a2T+aJ§T—S\RT+zf:TI Ing
~Ke ™Egl4
= Spe TQ(A) — Ke"TQ(A) (42)

where in (42), the Radon-Nikgdh derivative is

Zg _ o 5P T+oBr XTI, T (43)
T
We note that ~
— s (AT)"
Q) =) e s (A1) n,) X ®(da.) (44)
n=0 )

where

N

ln%+(r—q—5\fi—%)T+n(a+’y52)

(02+"T‘52)T

d2n:

)

Under the measur@ and the application of Lemma 1, the Wiener componﬂﬁ{r is normally dis-
tributed asN (02T, 0°T') and.J is normally distributed a&(a + 74> + 62, §%) and the Poisson process
N; has intensity\ = A\(1 + ). Hence

QA) = ;}MTW x ®(d1,0) (45)
where ) ,
e In 22 + <T—q—)\f£+ U2>T-|—n(a+752+52)'
(02 + ”%2) T
O

Remark. In the proof of Theorem 1, the decomposition of the option price in (42) is analogous to
that obtained by Gemaet al. (1995) for the pure-diffusion case. The meas@reorresponds to the
equivalent martingale measure with the stock price as theeraine.

We conclude this section by noting that when the parametersd are set to zero in the Radon-
Nikodym derivative (5), we recover Merton’s (1976) model as a special case. In this case since the
parameters andv are set to zero, the market price of jump-risk in (11) to (13) is not priced.

11



7 Conclusion

This paper has extended the analysis of Merton (1976) to the case where the distribution of the jump-
arrivals and the jump-sizes change under the change of measure. A Radogs\idledvative process

that induces the change of measure through the choice of suitable parameters has been introduced. We
have shown how the non-uniqueness of the option price manifests itself through variations in the pa-
rameters of the Radon-Nikgdh derivative that induces the change of measure. Through a hedging
portfolio that averages over the jumps, we relate the change of the distributions of the jump compo-
nents to the market price of jump-risk. We also derive the standard pricing integro-partial differential
equation.
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