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ABSTRACT
Merton has provided a formula for the price of a European call option on a single stock where the stock
price process contains a continuous Poisson jump component, in addition to a continuous log-normally
distributed component. In Merton’s analysis, the jump-risk is not priced. Thus the distribution of the
jump-arrivals and the jump-sizes do not change under the change of measure. We go on to introduce
a Radon-Nikod́ym derivative process that induces the change of measure from the market measure to
an equivalent martingale measure. The choice of parameters in the Radon-Nikodým derivative allows
us to price the option under different financial-economic scenarios. We introduce a hedging argument
that eliminates the jump-risk in some sort of averaged sense, and derive an integro-partial differential
equation of the option price that is related to the one obtained by Merton.

KEY WORDS
Financial derivatives, compound Poisson processes, equivalent martingale measure, hedging portfolio.

1 Introduction

Merton (1976) has provided a formula for the price of a European call option on a single stock where
the stock price process contains a continuous Poisson jump component, in addition to a continuous
log-normally distributed component. Merton’s analysis in essence does not price the jump-risk. In this
paper, we extend the results of Merton to the case where the market price of jump-risk is priced in the
hedging portfolio. In Merton’s case, financial economic arguments relating to systematic and unsystem-
atic risk allows one to argue that the distribution of the Poisson jump components does not change under
the change of measure. He considered a constant arrival intensity, log normally distributed jump sizes,
set the market price of jump risk to zero and obtained a Poisson weighted sum of a Black-Scholes type
formulae. He also considered the same hedge portfolio used by Black and Scholes (1973), namely one
consisting of a position in the stock, the option and the risk-free asset only. In this case a perfect hedge
does not exist and hedging was achieved by Merton by averaging out idiosyncratic risk. However, this
leaves the market price of jump-risk unpriced, and also the distribution of the jump components remain
unchanged. Further extensions to the Merton (1976) model include those by Anderson (1984) and Aase
(1988). However these authors also make assumptions that amount to leaving the jump risk unpriced.
Furthermore these later derivations do not appeal to the traditional hedging argument but rather appeal
directly to the risk-neutral valuation principle and change of measure arguments.

However, the market which contains stocks with jump components is inherently incomplete in the
Harrison and Pliska (1981) sense. When the market price of the jump-risk is accounted for, there are
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many equivalent martingale measures, and hence different prices for the option. For a single stock mar-
ket, one could for example, apply a local risk-minimizing trading strategy in the manner of Schweizer
(1991), Colwell and Elliott (1993), or a minimum entropy martingale measure approach in the manner
of Miyahara (2001). Jeanblanc-Piqué and Pontier (1990) applied a general equilibrium model to the
problem and used two assets driven by the same Wiener and Poisson noise factors. Jarrow and Madan
(1995) included additional traded assets in order to hedge away the jump-risk in interest rate term-
structure-related securities. Mercurio and Runggaldier (1993), and Runggaldier (2003), suggested that
other assets driven by the same Wiener and Poisson noise factors as the stock be included in the hedge
portfolio. In our case, we setup a hedging portfolio, in which two options of different maturities are
required so that the jump-risk is properly priced in the portfolio. We use a hedging argument that elim-
inates the jump-risk by averaging over jumps. We then obtain the standard integro-partial differential
equation for the option price and interpret economically the various parameters.

The paper develops as follows. In Section 2 we specify the asset pricing model. In Section 3 we
introduce a Radon-Nikod́ym derivative that induces the change of measure from the market measure
to an equivalent martingale measure for an option on the underlying asset. Section 4 then applies the
results of Section 3 in the derivation of an integro-partial differential equation for the option price via
the martingale approach. In section 5 we develop a hedging portfolio that is used in the derivation of the
same integro-partial differential equation as in Section 4. The hedging portfolio also takes into account
the market price of jump-risk. In Section 6, a general pricing formula is obtained for a European style
call option and we recover Merton’s (1976) call option formula as a special case. Section 7 concludes.

2 Merton’s Jump-Diffusion Model

Throughout this paper, as in Merton (1976), we assume thatSt is the price of a financial asset whose
return dynamics are given by

dSt

St−
= (µ− λκ)dt+ σdBt + [eJ − 1]dNt, (1)

whereµ is the instantaneous expected return per unit time, andσ is the instantaneous volatility per
unit time. The stochastic processBt is a standard Wiener process under the market measureP. The
processNt is a Poisson process, independent of the jump-sizesJ and the Wiener processBt, with
arrival intensityλ per unit time under the measureP, so that its increments satisfy

dNt =

{
1 with probabilityλdt,

0 with probability1− λdt.
(2)

The expected proportional jump size is

κ ≡ EP
[
eJ − 1

]
. (3)

Jumps arriving at different times are assumed to be independent of each other. A filtered probability
measure space(Ω,F , {Ft},P) is assumed where the filtration{Ft} is the natural filtration generated by
the Wiener processBt and the compound Poisson process

∑Nt
n=1 Jn. The moment generating function

of all the jump-sizes is given by
MP,J(u) = EP

[
euJ

]
. (4)

We also assume that the stock pays a continuous dividend yield at rateq. For simplicity, we assume that
all the parameters in our model are constants, although the model can easily be extended to one with
time-varying but non-stochastic parameters.
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3 A Radon-Nikodým Derivative

The stock price model (1) is driven by both a Wiener componentBt and a compound Poisson process∑Nt
n=1 Jn. We consider what happens to both the Wiener component and the jump component when we

do a change of measure fromP to another measureQ. In the context of our model, the Radon-Nikodým
derivative restricted to any timet ≤ T takes the form

dQ
dP

∣∣∣∣
t

= exp

[
−θBt −

θ2

2
t+

Nt∑
n=1

(γJn + ν)− λκ′t

]
, (5)

where
κ′ ≡ eνMP,J(γ)− 1 = eνEP(eγJ)− 1. (6)

It can easily be verified that (5) satisfies the properties of a Radon-Nikodým derivative and it is
a martingale with respect to the measureP. The form of the Radon-Nikod́ym derivative in (5) is a
more compact representation and illustrates the Esscher transform nature of the representation. In our
application, the form (5) allows us to manipulate the parameters to produce families of equivalent
martingale measures in the stock price model. More general representations expressed in terms of Lévy
measures, jump measures or compensated jump measures can be found Colwell and Elliott (1993),
Cont and Tankov (2004) and in Runggaldier (2003).
Lemma 1. LetP andQ be equivalent measures. Consider a probability measure space(Ω,F , {Ft},P)
such that{Ft} is the natural filtration generated by a Wiener processBt and a compound Poisson
process

∑Nt
n=0 Jn and a Radon-Nikod́ym derivative given by (5) whereγ ∈ R, ν ∈ R andκ′ is given by

(6). Then the Wiener processBt has drift−θ under the measureQ and the compound Poisson process∑Nt
n=0 Jn under the measureQ has a new intensity ratẽλ = λ(1 + κ′) and a new distribution for the

jump-sizes the moment generating function of which is given by

MQ,J(u) =
MP,J(γ + u)
MP,J(γ)

. (7)

Proof: See e.g., Cont and Tankov (2004) or Runggaldier (2003). This is a special case of Theorem 2.5
in Runggaldier (2003).2
Note that if the distribution of the jumpsJ in the measureP comes from an exponential family, then the
distribution ofJ under the measureQ as given by the moment generating function in (7), also comes
from the same exponential family but with different parameters, e.g. see Gerber and Shiu (1994). It
can be observed that even ifν = 0, as long asγ is non-zero, there will be a change in the jump-size
distribution under the change of measure, and this in turn leads to a change in the intensity of the jump
arrivals. On the other hand, ifγ is zero, butν is non-zero, then there is a change in the intensity of the
jump-arrivals only. However, ifν = − lnMP,J(γ), then the Radon-Nikod́ym derivative (5) takes the
form

dQ
dP

∣∣∣∣
t

= e−θBt− θ2

2
t ×

Nt∏
n=1

eγJn

MP,J(γ)
. (8)

In this case, the intensity of the jump-arrivals does not change under the change of measure.
In our context, the asset price dynamics contain both Wiener components and jump components

given by (1). In the Radon-Nikod́ym derivative (5), the choice of the market prices of risk for the
Wiener process,θ, will be determined by the choice of the other parametersγ andν, which determine
the market prices of risk for the jump component. Lemma 1 indicates the new intensity rateλ̃ and the
new distributions of the jump-sizes under the martingale measureQ. The Wiener processBt now has
drift −θ under the measureQ.
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4 An Integro-Partial Differential Equation for the Option Price

Consider a European style option, e.g. a call option with payoffXT (ST ) = (ST − K)+ at maturity
time T . As stated in Section 2, we shall assume that the underlying asset pays a continuous dividend
at the rateq per unit time, so that the yield process of the stock isSte

qt. We assume the presence
of a money market accountert wherer is the risk-free rate. We require that both the discounted

stock yield process
{

Steqt

ert

}
and the discounted option price process

{
Xt(St)

ert

}
to be martingales under

an equivalent martingale measureQ. In the presence of jumps, it is well-known that the martingale
measureQ is not unique. Instead, the martingale measureQ can be determined by the choice of
the parametersγ andν in the Radon-Nikod́ym derivative (5), with the market price of Wiener riskθ
determined by the martingale condition after the choices ofγ andν have been made.

The dynamics of the discounted yield process is given by

d

(
Ste

qt

ert

)
=

(
St− e

qt

ert

) [
(µ+ q − r − λκ)dt

+ σdBt + [eJ − 1]dNt

]
. (9)

After choosing the parametersγ andν in the Radon-Nikodým derivative (5), the jump-arrival process
Nt is Poisson with arrival intensitỹλ = λ(1 + κ′) and the distribution of the jump-sizes is given by the
moment generating function

MQ,J(u) =
MP,J(u+ γ)
MP,J(γ)

from Lemma 1. It then follows that

d

(
Ste

qt

ert

)
=

(
St− e

qt

ert

) [
σdB̃t − λ̃κ̃dt+ [eJ − 1]dNt

]
, (10)

whereB̃t is standard Brownian motion under the martingale measureQ and the expected jump-increment
is κ̃ = EQ[eJ ]− 1. From Girsanov’s Theorem,

dB̃t = θdt+ dBt,

and the market price of Wiener riskθ satisfies the risk-premium equation

µ+ q − r = σθ + λκ− λ̃κ̃. (11)

In (11), the premium for Wiener risk isσθ, and the premium for jump-risk isλκ − λ̃κ̃ which can be
manipulated into the form

λκ

[
1− eν

MP,J(γ + 1)−MP,J(γ)
MP,J(1)− 1

]
, (12)

in which the term

1− eν
MP,J(γ + 1)−MP,J(γ)

MP,J(1)− 1
(13)

can be interpreted as the market price of jump-risk. If the market price of jump-riskψ is specified, then
the parametersγ andν in the Radon-Nikod́ym derivative (5) can be chosen such that

1− eν
MP,J(γ + 1)−MP,J(γ)

MP,J(1)− 1
= ψ. (14)
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Through the removal of the discount factor in (10), the stock price dynamics (1) can also be ex-
pressed as

dSt =St− (r − q − λ̃κ̃)dt+ σSt−dB̃t

+ St−[eJ − 1]dNt. (15)

The following theorem gives the integro-partial differential equation for the option price.
Theorem 1. The European call option price satisfies the integro-partial differential equation

∂Xt(St−)
∂t

+ St−(r − q − λ̃κ̃)
∂Xt(St−)

∂S

+
1
2
σ2S2

t−
∂2Xt(St−)

∂S2
+ λ̃EJ

Q

[
Xt(St− e

J)−Xt(St−)
]

= rXt(St−), (16)

with terminal conditionXT (ST ) = (ST −K)+.

Proof. We require the discounted option price process
{

Xt(St)
ert

}
to be a martingale under the martingale

measureQ. Since the option priceXt(St) is a function ofSt, through the application of Itô’s Lemma
for jump-diffusion processes, the stochastic differential equation satisfied by this quantity is

d

(
Xt(St)
ert

)
=

[
e−rt∂Xt(St−)

∂t
− r

Xt(St−)
ert

+
St−
ert

(r − q − λ̃κ̃)
∂Xt(St−)

∂S

+
1
2
σ2S

2
t−
ert

∂2Xt(St−)
∂S2

+
λ̃

ert
EJ

Q

[
Xt(St−e

J)−Xt(St−)
]]
dt

+
σSt−
ert

∂Xt(St−)
∂S

dB̃t

− λ̃

ert
EJ

Q

[
Xt(St−e

J)−Xt(St−)
]
dt

+
1
ert

[
Xt(St−e

J)−Xt(St−)
]
dNt. (17)

In (17), the coefficient ofdt must be zero in order that
{

Xt(St)
ert

}
be a martingale under the martingale

measureQ, hence we obtain the integro-partial differential equation (16).
2

Using the fact that
{

Xt(St)
ert

}
is a martingale underQ, the solution for the option price in the form of a

conditional expectation of the discounted final payoff can be written as

Xt(St) = ertEQ

[
XT (ST )
erT

∣∣∣∣Ft

]
. (18)

5 The Hedging Portfolio

Now in order to obtain some economic intuition, we derive the integro-partial differential equation (16)
by use of a hedging argument in some appropriate sense to be made clear below. Following Runggaldier
(2003), where two options expiring at different maturities are needed to hedge an option where the
underlying stock price return follows jump-diffusion dynamics, here our portfolio also consists of two
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similar options with differing maturities, that is,X1,t(St) andX2,t(St), expiring at arbitrary maturity
datesT1 andT2 respectively. The value of the portfolio is

Πt = Q1X1,t(St) +Q2X2,t(St) +QSSt, (19)

whereQ1 andQ2 are time-varying positions in the respective options, andQS is a time-varying position
in the stock. Adopting the short-form notationXi,t = Xi,t(St) (i = 1, 2) for the option price at time
t when the underlying stock price isSt, andXi,t− = Xi,t(St−), the application of It̂o’s Lemma for
jump-diffusion processes yields the dynamics for the option prices

dXi,t

Xi,t−
=[µXi − λκXi ]dt+ σXiXi,t−dBt

+ [eJXi − 1]dNt, (20)

where the drift of the optionXi is denoted by

µXiXi,t =
∂Xi,t−
∂t

+ (µi − λκXi)St−
∂Xi,t

∂S

+ σ2S
2
t−
2

∂2Xi,t−
∂S2

+ λ κXiXi,t−,

the option price volatility is denoted by

σXiXi,t− = σSt−
∂Xi,t−
∂S

,

the expected jump-increment in the option price is

Xi,t− κXi = EJ
P

[
Xi,t(St−e

J)−Xi,t−

]
,

with the option price increment being given by

[eJXi − 1]Xi,t− = Xi,t(St−e
J)−Xi,t−.

The infinitesimal change in the portfolio valuedΠt over a time interval[t, t+dt) evolves according
to

dΠt = Q1dX1,t +Q2dX2,t +QSdSt +QSqSt−dt. (21)

The change in the value of the portfolioΠt is thus given by

dΠt =
2∑

i=1

[
(µXi − λκXi)dt+ σXidBt

+ [eJXi − 1]dNt

]
QiXi,t−

+
[
(µ+ q − λκ)dt+ σdBt

+ [eJ − 1]dNt

]
QSSt−

=
[
QSSt−(µ+ q − λκ) +Q1X1,t−

(µX1 − λ κX1) +Q2X2,t−(µX2 − λ κX2)
]
dt

+
[
QSSt−σ +Q1X1,t−σX1

+Q2X2,t−σX2

]
dBt

+
[
QSSt−[eJ − 1] +Q1X1,t−[eJX1 − 1]

+Q2X2,t−[eJX2 − 1]
]
dNt. (22)
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As first explained by Merton (1976), in a jump-diffusion model it is not possible to hedge away
the idiosyncratic risks due to the jumps. Merton chose to leave the jump-risks unpriced, resulting
in no change in the distribution of the jump components of his model under the change of measure.
We choose an approach that considers a martingale measure under which the distribution of the jump
components may change. Thus the market price of jump-risk remains present in our model. The choice
of our equivalent martingale measure corresponds to a perfect hedge only when the jump-sizeJ takes
on some particular value, sayJ = J∗, or if the jump-sizes have been averaged out with respect to some
equivalent martingale measure so that some pre-determined value for the average relative jump-size
increment is obtained.

We opt for the procedure of averaging out the jump-sizes according to some equivalent martingale
measurêQ so that the portfolio (19) with the jumps averaged out underQ̂ becomes

EJ
Q̂Πt = Q̂1EJ

Q̂X1,t(St) + Q̂2EJ
Q̂X2,t(St) + Q̂SEJ

Q̂St, (23)

whereEJ
Q̂ denotes averaging the jumps underQ̂. The time-varying weightŝQ1, Q̂2 andQ̂3 will be the

optimal weights over the interval[t, t + dt) after the jumps have been averaged out. They correspond
to a particular choice for the market price of jump risk to be discussed later. It will also be shown that
these weights do not depend on the jump-sizes over the interval[t, t+dt). Then by replacing the related
quantities in (19) and (22) with their averaged out equivalent, we obtain

d(EJ
Q̂Πt) =

[
Q̂SSt−(µ+ q − λκ)

+
2∑

i=1

Q̂iXi,t−(µXi − λ κXi)
]
dt

+
[
Q̂SSt−σ + Q̂1X1,t−σX1

+ Q̂2X2,t−σX2

]
dBt

+
[
Q̂SSt−κ̂+ Q̂1X1,t−κ̂X1

+ Q̂2X2,t−κ̂X2

]
dNt, (24)

where

κ̂ = EJ
Q̂[eJ

∗ − 1],

Xi,t−κ̂Xi = EJ
Q̂[Xi,t(St−e

J)−Xi,t−],

Xt−κ̂X = EJ
Q̂[Xt(St−e

J)−Xt−].

We need to choose the weights in (24) to remove the Wiener risk and the jump-risk. Thus the
condition for removing Wiener risk is

Q̂1X1,t−σX1 + Q̂2X2,t−σX2 = −Q̂SSt−σ, (25)

and the condition for removing jump risk is

Q̂1X1,t−κ̂X1 + Q̂2X2,t−κ̂X2 = −Q̂SSt−κ̂. (26)

Solving (25) and (26) forQ1, Q2 we obtain

Q̂1 = −Q̂SSt−
X1,t−

(
σκ̂X2 − σX2 κ̂

σX1 κ̂X2 − σX2 κ̂X1

)
, (27)
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and

Q̂2 =
Q̂SSt−
X2,t−

(
σκ̂X1 − σX1 κ̂

σX1 κ̂X2 − σX2 κ̂X1

)
. (28)

Hence the portfolio with the jumps averaged out evolves according to

d(EJ
Q̂Πt) =

[
Q̂SSt−(µ+ q − λκ)

+
2∑

i=1

Q̂iXi,t−(µXi − λκXi)
]
dt. (29)

We note that the weights were chosen to maked(EJ
Q̂Πt) risk-less and hence the averaged portfolio

(obtained by settingQ1 = Q̂1,Q2 = Q̂2 andQ3 = Q̂3 in (19)) has to grow at the risk-free rate to avoid
arbitrage opportunities on average, so that

d(EJ
Q̂Πt) = r[Q̂SSt− + Q̂1X1,t− + Q̂2X2,t−]dt. (30)

Hence, equating the right hand sides of (29) and (30) we obtain

Q̂SSt−(µ+ q − λκ− r)

+
2∑

i=1

Q̂iXi,t−(µXi − λκXi − r) = 0. (31)

Substituting forQ̂1 andQ̂2 in (27) and (28) into (31) we obtain

(µX1 − λ κX1 − r)− σX1
σ (µ+ q − λκ− r)

σκ̂X1 − σX1 κ̂

=
(µX2 − λ κX2 − r)− σX2

σ (µ+ q − λκ− r)
σκ̂X2 − σX2 κ̂

. (32)

The left hand side and right hand side of (32) must be independent of the respective option’s matu-
rity time, so we can conclude that for any optionXt based on the stockSt, we must have

(µX − λκX − r)− σX
σ (µ+ q − λκ− r)

σκ̂X − σX κ̂

= −ξ (33)

for someξ independent of maturity. Thus, by rearranging, we obtain(
µX − r − λκX + κ̂Xσξ

)
σX

=

(
µ+ q − r − λκ+ κ̂σξ

)
σ

. (34)

We have letξ > 0 in (33) in order to ensure the correct sign for the market premium for the jump-
risk in (34). Of course mathematically there is no reason to guarantee that the RHS of (33) should
be negative. It is in fact an empirical issue as to whether the risk premium for bearing jump-risk is
positive. Whilst there are a lot of empirical results in this area supporting the positivity of the ex-ante
risk premium (e.g. Fama and French (2002)), we should also point to the studies of Boudoukhet al.
(1993) and Walsh (2006) who report that the ex-ante market risk premium can on occasions be negative.
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Now recall the form of the Radon-Nikodým derivative (5). For (34) to make economic sense, the
LHS has to be the risk premium less the jump-risk per unit volatility for the option, and the RHS, the
risk premium less the jump-risk per unit volatility for the stock. After the jump-risk is removed from
both sides of (34), then either expression is the market price of the Wiener riskθ in the Radon-Nikod́ym
derivative (5). Hence it follows that the new jump intensity underQ̂ has to bêλ = σξ.

In order to solve for the parametersν andγ in the Radon-Nikod́ym derivative (5), we need to solve
simultaneously

1 + κ̂ =
EP[e(γ+1)J ]

EPeγJ
(35)

and

1 + κ̂ =
eνEP[e(γ+1)J ]

λ̂
. (36)

The values of the parametersν̂ and γ̂ from (35) and (36) yield the Radon-Nikodým derivative dQ̂
dP

∣∣∣
T

.

Thus the risk premium of the option in (34) with the jumps averaged out in the market measureP is(
µX − r − λκX + λ̂EJ

P

[
dQ̂
dP

∣∣∣
T

[eJX − 1]
])

σX

=

(
µ+ q − r − λκ+ λ̂EJ

P

[
dQ̂
dP

∣∣∣
T

(eJ − 1)
])

σ
, (37)

which is equivalent to (
µX − r − λκX + λ̂EJ

Q̂

[
eJX − 1

])
σX

=

(
µ+ q − r − λκ+ λ̂EJ

Q̂

[
eJ − 1

])
σ

, (38)

after expressing the expectations underP in (37) as expectations under the martingale measureQ̂ in
(38).

Recall that̂κ is the expected jump-increment of the stock, andκ̂X is the expected jump-increment
in the option price, both in the equivalent martingale measureQ̂. Then the risk premium of the option
from (38) satisfies

µX − r − λκX + λ̂κ̂X =
σX

σ
(µ+ q − r − λκ+ λ̂κ̂). (39)

From the expressionθ for the market price of Wiener risk (11), we see that (39) expresses the risk
premium of the option less the jump-risk as the market price of Wiener riskθ scaled up by the option
price volatilityσX , so that (39) can be rewritten as

µX − r − (λκX − λ̂κ̂X) = σXθ. (40)

Finally we multiply both sides of (39) byXt− and substitute into the left side of (39) for

Xt−µX =
∂Xt−
∂t

+ (µ− λκ)St−
∂Xt−
∂S

+ σ2S
2
t−
2

∂2Xt−
∂S2

+ λκXXt−,

σXXt− = σSt−
∂Xt−
∂S

,

Xt−κX = EJ
P

[
Xt(St−e

J)−Xt−

]
,
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and
Xt−κ̂X = EJ

Q̂

[
Xt(St−e

J)−Xt−

]
.

Thus (39) becomes

∂Xt−
∂t

+ (r − q − λ̂κ̂)St−
∂Xt−
∂S

+ σ2S
2
t−
2

∂2Xt−
∂S2

+ λ̂EJ
Q̂

[
Xt(St−e

J)−Xt−

]
= rXt−,

which is again the integro-partial differential equation (16), where the expectations are taken under the
equivalent martingale measurêQ. Note that if the valueŝν andγ̂ from (35) and (36) were used as the
values ofν andγ in the Radon-Nikod́ym derivative in Lemma 1, and applied to the martingale approach
for the derivation of the integro-partial differential equation (16) in Section 4, then the martingale
measurêQ is the same asQ.

6 Pricing the Call Option

Let us now price the call option at timet = 0. Following Merton (1976), we now assume that the
jump-sizes are normally distributed with meanα and varianceδ2 under the market measureP. For a
chosenγ andν in the Radon-Nikod́ym derivative (5), we see from the application of Lemma 1 that the
jump-sizes will be normally distributed with meañα = α+γδ2 with the same varianceδ2, and the new
intensity of the jump-arrivals is̃λ = λ(1 + κ′), under the equivalent martingale measureQ.

The next theorem gives the European call option price.
Theorem 2. Suppose the stock price follows the dynamics (1), and the stock pays a continuous dividend
at the rateq. The European call option priceX0(S0) at timet = 0 is given by

X0(S0) =
∞∑

n=0

e−λ̂T (λ̂T )n

n!

×
[
S0e

−qT Φ(d1,n)−Ke−rnT Φ(d2,n)
]
,

(41)

where

d1,n =
ln S0

K +
(
rn − q + σ2

n
2

)
T

σn

√
T

and
d2,n = d1,n − σn

√
T ;

with

α̃ ≡ α+ γδ2,

λ̃ ≡ λ exp
[
ν + γα+

γ2δ2

2

]
,

κ̃ ≡ exp
[
α̃+

δ2

2

]
− 1,

λ̂ ≡ λeν+γ2α+ γ2δ2

2 × eα̃+ δ2

2 ,

rn ≡ r − λ̃k̃ +
nα̃

T
+
nδ2

2T
,

and

σ2
n ≡ σ2 +

nδ2

T
.
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Proof. Note that the option price discounted by the money market accountert is a martingale in the
martingale measureQ. LetA = {ST > K} be the event that the option is in the money at maturity.
The eventA is equivalent to the event that{

σB̃T +
NT∑
n=1

Jn > ln
S0

K
−

(
r − q − λ̃κ̃− σ2

2

)
T

}
.

Hence from (18), the call option price is

X0(S0) = e−rT EQ [(ST −K)1A]
= S0e

−qT

×EQ

[
e−

1
2
σ2T+σB̃T−λ̃κ̃T+

∑NT
n=1 Jn1A

]
−Ke−rT EQ1A

= S0e
−qT Q̃(A)−Ke−rT Q(A) (42)

where in (42), the Radon-Nikodým derivative is

dQ̃
dQ

∣∣∣∣∣
T

= e−
1
2
σ2T+σB̃T−λ̃κ̃T+

∑NT
n=1 Jn . (43)

We note that

Q(A) =
∞∑

n=0

e−λ̃T (λ̃T )n

n!
× Φ(d2,n) (44)

where

d2,n =
ln S0

K +
(
r − q − λ̃κ̃− σ2

2

)
T + n(α+ γδ2)√(

σ2 + nδ2

T

)
T

.

Under the measurẽQ and the application of Lemma 1, the Wiener componentσB̃T is normally dis-
tributed asN(σ2T, σ2T ) andJ is normally distributed asN(α+γδ2 + δ2, δ2) and the Poisson process
Nt has intensitŷλ = λ̃(1 + κ̃). Hence

Q̃(A) =
∞∑

n=0

e−λ̂T (λ̂T )n

n!
× Φ(d1,n) (45)

where

d1,n =
ln S0

K +
(
r − q − λ̃κ̃+ σ2

2

)
T + n(α+ γδ2 + δ2)√(

σ2 + nδ2

T

)
T

.

2

Remark. In the proof of Theorem 1, the decomposition of the option price in (42) is analogous to
that obtained by Gemanet al. (1995) for the pure-diffusion case. The measureQ̃ corresponds to the
equivalent martingale measure with the stock price as the numéraire.

We conclude this section by noting that when the parametersγ andν are set to zero in the Radon-
Nikodým derivative (5), we recover Merton’s (1976) model as a special case. In this case since the
parametersγ andν are set to zero, the market price of jump-risk in (11) to (13) is not priced.
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7 Conclusion

This paper has extended the analysis of Merton (1976) to the case where the distribution of the jump-
arrivals and the jump-sizes change under the change of measure. A Radon-Nikodým derivative process
that induces the change of measure through the choice of suitable parameters has been introduced. We
have shown how the non-uniqueness of the option price manifests itself through variations in the pa-
rameters of the Radon-Nikodým derivative that induces the change of measure. Through a hedging
portfolio that averages over the jumps, we relate the change of the distributions of the jump compo-
nents to the market price of jump-risk. We also derive the standard pricing integro-partial differential
equation.

Acknowledgement

The authors acknowledge the helpful discussions with Wolfgang Runggaldier over an earlier draft of a
multi-asset version of this paper. The usual caveat applies.

References

[1] K.K. Aase, Contingent claim valuation when the security price is a combination of an Itô process
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