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Abstract

This article investigates the statistical and economic implications of adaptive forecast-
ing of exchange rates with panel data and alternative predictors. The candidate exchange
rate predictors are drawn from (i) macroeconomic ‘fundamentals’, (ii) return/volatility of
asset markets and (iii) cyclical and confidence indices. Exchange rate forecasts at vari-
ous horizons are obtained from each of the potential predictors using single market, mean
group and pooled estimates by means of rolling window and recursive forecasting schemes.
The capabilities of single predictors and of adaptive techniques for combining the generated
exchange rate forecasts are subsequently examined by means of statistical and economic
performance measures. The forward premium and a predictor based on a Taylor rule yield
the most promising forecasting results out of the macro ‘fundamentals’ considered. For re-
cursive forecasting, confidence indices and volatility in-mean yield more accurate forecasts
than most of the macro ‘fundamentals’. Adaptive forecast combinations techniques improve
forecasting precision and lead to better market timing than most single predictors at higher
horizons.
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1 Introduction

Forecasting exchange rates is of particular importance for investors and policy makers. Accurate

forecasts of exchange rates allow investors, for instance, to design trading strategies and to hedge

exchange rate risk. The future evolution of exchange rates is also important for policy makers

at central banks as it can point to the appropriate interest rate policy to be set (Groen and

Matsumoto, 2004; Gali, 2008).

In this paper we contribute to the empirical exchange rate literature by analyzing the sta-

tistical and economic implications of adaptive forecasting of exchange rates with panel data

and several alternative predictors. The candidate exchange rate predictors are drawn from (i)

macroeconomic ‘fundamentals’, (ii) returns/volatility of asset markets and (iii) cyclical and con-

fidence indices. The proposed forecasting design allows us to generate alternative exchange rate

forecasts at various horizons from each of the potential predictors using single market, mean

group and pooled estimates by means of rolling window and recursive forecasting schemes. The

capabilities of single predictors and of adaptive techniques for combining the generated exchange

rate forecasts are subsequently analyzed by means of statistical and economic performance mea-

sures.

Our study is motivated by previous theoretical and empirical findings of the conventional

and behavioral exchange rate literature, the risk-return literature and the forecasting literature.

More precisely, the conventional theoretical literature on exchange determination suggests sev-

eral potential macroeconomic predictors of exchange rates. Some of the most conventional

predictors are usually based upon the Purchasing Power Parity (PPP) hypothesis, Uncovered

Interest Rate Parity (UIP) condition and the Monetary Model (MM). However, the forecasting

contribution of such macroeconomic ‘fundamentals’ of exchange rates has been questioned since

the highly influential study of Meese and Rogoff (1983). The latter study finds that these pre-

dictors may not perform better out-of-sample than a random walk model in particular at lower

forecasting horizons.

Subsequent studies suggest that under certain conditions (e.g. small sample corrections,

recursive forecasting, measurement improvement, alternative estimation approaches), macro

fundamentals may improve forecasting accuracy at longer horizons (Mark, 1995; Chen and
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Mark, 1996; Kilian, 1999; Berkowitz and Giorgianni, 2001; Faust et al., 2003; Engel et al., 2007).

Nevertheless, even if there is some predictability of a bilateral exchange rate from a particular

macro ‘fundamental’ at a certain horizon, the same variable may show no predictability at

different horizons or for other bilateral exchange rates (Cheung et al., 2005).

Recently, however, new predictors have shed more positive light on the capabilities of macro

‘fundamentals’ for forecasting exchange rates. In particular, predictors derived from Taylor

(TAY) rule specifications have been proposed to forecast exchange rates, motivated by the

fact that monetary policy can be more appropriately modeled by taking the interest rate as

the policy instrument as opposed to money supply (Molodtsova and Papell, 2009; Molodtsova

et al., 2008; Engel et al., 2009). Predictors based on alternative versions of the Taylor rule

have shown promising out-of-sample forecasting power over a random walk model at short

and long horizons (Molodtsova and Papell, 2009; Engel et al., 2009). In addition, a predictor

constructed by extracting latent factors from a panel of exchange rates (along with pooled

coefficient estimates) has shown superior out-of-sample performance than the random walk

when complemented with predictors based on PPP, MM and TAY (Engel et al., 2009). The

forward premium (which stems from the UIP condition) has also recently shown promising

results in a portfolio allocation setting (Della-Corte et al., 2009).

In response to the puzzling explanatory power of predictors derived from conventional macro

models, the behavioral finance literature suggests an alternative explanation to ex-ante exchange

rate fluctuations, namely, that future exchange rates can be modeled as a weighted average of

forecasts from ‘fundamentalists’ and ‘chartists’ (Kirman, 1993). For instance, chartists forecast

exchange rates by extrapolating recent trends whereas fundamentalists forecast on the basis of

macro ‘fundamentals’ (Frankel and Froot, 1986). Indeed, the advantages of forecast combina-

tions and of adaptive strategies for combining forecasts have been highlighted in several studies

in the forecasting literature (Granger, 1989; Newbold and Harvey, 2002; Granger and Jeon,

2004; Aiolfi and Timmermann, 2006; Kisinbay, 2007; Costantini and Pappalardo, 2009) and

recently in the exchange rate literature (Della-Corte et al., 2009). In addition, the assumptions

of behavioral exchange rate models also seem to be more in line with the behavior of traders in

reality (Taylor and Allen, 1992; Cheung and Chinn, 2001; Grauwe and Grimaldi, 2006).
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Also along the behavioral finance line, various empirical studies have shown that asset

prices have a close relationship with economic or investor sentiment and that several sentiment

indicators can predict asset returns (Neal and Wheatley, 1998; Lee et al., 2002; Brown and Cliff,

2004; Lux, 2010). Nevertheless, there seems to be a lack of empirical studies that analyze the

capabilities of alternative confidence or economic indicators to forecast exchange rates, although

the behavioral view of asset price determination (and economics as a whole) is becoming stronger

(Akerlof and Shiller, 2009). Predictors based on returns and volatility of asset markets have also

not been thoroughly investigated so far although previous empirical studies have highlighted

their importance (Campbell and Hentschel, 1992; Ludvigson and Ng, 2007; Bollerslev et al.,

2008; Akerlof and Shiller, 2009).

From a methodological perspective, another recent issue of interest in the empirical literature

of exchange rates is the evaluation of exchange rate models with panel data (Mark and Sul, 2001;

Rapach and Wohar, 2004; Groen, 2005; Engel et al., 2007, 2009). The handful of studies available

show that using panel data may increase estimation precision, improve forecasting accuracy and

give more power to statistical tests. In contrast to single-country exchange rate models based

on macro ‘fundamentals’ or other variables, panel models are often able to outperform a random

walk in out-of sample tests. However, the recent forecasting literature shows that considering

different types of estimation approaches and their complementarities in out-of-sample studies is

important as forecasting with the ‘wrong’ parameter estimate (e.g. forecasting with a parameter

estimate based on a heterogeneous panel model when the true data generating process (DGP)

is a homogeneous panel model) may lead to forecasting distortions which can be mitigated by

averaging the alternative estimates (Trapani and Urga, 2009). In addition, forecasts generated

from rolling window or recursive schemes can also lead to alternative forecasting results, but

combining such forecasts can improve their forecasting accuracy (Clark and McCracken, 2009).

Thus, our study is ‘rich’ in the sense that it brings together many proposals put forward in

asset pricing and forecasting studies to better understand exchange rate dynamics. To preview

some of our results, we find that the forward premium and a predictor based on a Taylor rule

(along with panel coefficient estimates) yield the most promising forecasting results out of the

macro ‘fundamentals’ considered. For recursive forecasting, confidence indices and volatility
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in-mean (along with panel coefficient estimates) yield more accurate forecasts than most of the

macro ‘fundamentals’. Adaptive forecast combination techniques improve forecasting precision

and yield better market timing than most single predictors at higher horizons.

The rest of the paper is organized as follows: In section 2 we explain the empirical model

and predictors considered. In sections 3 and 4 we describe our dataset and the forecasting

methodology employed, respectively. Section 5 presents the results of our analysis. Section 6

concludes with some final remarks.

2 The model

For our subsequent forecasting analysis of exchange rates we consider the so-called long-horizon

regression approach (LHR henceforth) for country i = 1, ..., N and t = 1, ..., T time periods:

∆(h)sit+h = αh,i + βh,ixit + uit+h, (1)

where ∆(h)sit+h = (1 − Lh)sit+h = (sit+h − sit) with sit = lnSit the log spot exchange rate of

country i measured as (log) of foreign currency units in terms of United States (US) dollar, αh,i

is a fixed effect, βh,i is the parameter attached to the observed predictor xit and uit is a zero-

mean disturbance term most likely heteroskedastic and serially correlated due to overlapping

observations for h > 1. The LHR approach has been used in many empirical studies in economics

and finance to analyze predictability (Fama and French, 1988; Mark, 1995; Stock and Watson,

1999; Berkowitz and Giorgianni, 2001). Model (1) assumes a heterogeneous parameter βh,i for

each i, indicating that the regressor xit has a heterogeneous effect on ∆(h)sit+h. Alternatively,

we may assume a homogeneous βh for all i, i.e.

∆(h)sit+h = αh,i + βhxit + uit+h, (2)

so that the regressor xit has a homogeneous effect on ∆(h)sit+h (Engel et al., 2007, 2009).

In this study, we use three main groups of predictors for xit, namely, predictors based on (i)
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macroeconomic ‘fundamentals’, (ii) returns and volatility of asset markets and (iii) cyclical and

confidence indicators. Moreover, as will be discussed subsequently, we consider three different

estimation approaches based on (1) and (2): single market (SM), mean group (MG) and pooled

(PO). Forecasting is done by means of recursive (RE) or rolling (RO) schemes. It is noteworthy,

however, that our analysis can be applied to any other potential predictor or group of predictors.

In what follows, we describe the alternative predictors xit considered in this study which are

summarized in Table 1.

2.1 Predictors based on macroeconomic fundamentals

A usual way to forecast exchange rates in the conventional (empirical) exchange rate literature

is to consider a predictor of the form:

xit = (zit − sit), (3)

where zit is a measure of central tendency or ‘fundamental’ of the exchange rate (Mark, 1995;

Berkowitz and Giorgianni, 2001; Engel et al., 2007, 2009; Della-Corte et al., 2009). The variable

zit can be obtained, for instance, from the PPP hypothesis, i.e.

zit = (pit − pUS
t ), (4)

where pit = ln Pit is the country i’s (log) price level and pUS
t = ln PUS

t is the (log) price level of

the US (Engel et al., 2009). According to the PPP hypothesis, a relative price level increase in

the home country leads to a depreciation of the domestic currency. The PPP hypothesis also

suggests that future exchange rates can be predicted by the real bilateral exchange rate.

We may also obtain zit based on the well-known and often tested MM:

zit = (mit −mUS
t )− (yit − yUS

t ), (5)

where mit = lnMit is the country i’s (log) money supply, mUS
t = lnMUS

t is the (log) money

supply of the US, yit = lnYit is the country i’s (log) real output and yUS
t = lnY US

t is the
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(log) real output of the US. In a nutshell, MM presumes that money and output differentials

should predict subsequent movements in the exchange rate. It is worth noting that the above

equation is a restricted version of the flexible price MM, which is also employed in other studies

(Frenkel, 1976; Mussa, 1976; Mark, 1995; Engel et al., 2009). In contrast to the original flexible

price model, the interest rate differential is assumed to be zero and the domestic and foreign

money-demand income elasticity is equal to one.

Another natural candidate for the set of possible zit is the h-maturity forward rate of the

spot exchange rate sit, i.e.

zit = gh,it. (6)

This stems from the UIP condition which proposes that the h-maturity interest rate differential

between two nations should predict future h-horizon changes of their exchange rate. That is,

xit = (bh,it−bUS
h,t ) where bh,it is the h-maturity interest rate of country i and bUS

h,t is the h-maturity

US interest rate. In the absence of riskless arbitrage opportunities the Covered Interest Rate

Parity (CIP) holds so that xit = (gh,it− sit) = (bh,it− bUS
h,t ). Thus, xit = (gh,it− sit) can be used

to test the UIP (Della-Corte et al., 2009). The UIP is usually rejected in in-sample studies at

short horizons which is sometimes attributed to the existence of risk-premia (Engel, 1996) or to

heterogeneous exchange rate expectations (Kirman, 1993). However, the rejection of UIP may

become harder for certain asset classes as the horizon increases (Chinn and Meredith, 2004).

Predictors based on PPP, MM and UIP are the most conventional macro fundamentals to

forecasting exchange rates. Alternatively, as proposed recently by Engel et al. (2009), we could

use a Factor Model (FM) and extract zit directly from the data, i.e.

zit = F̂it = γ̂1,if̂1t + γ̂2,if̂2t + γ̂3,if̂3t, (7)

where the f̂j,t, j = 1, 2, 3 are estimated latent factors obtained from the panel of exchange rates

sit, i = 1, ..., N and γ̂j,i, j = 1, 2, 3 are the corresponding factor loadings.1

Another recently proposed candidate for zit is based on an open economy Taylor rule which
1We use three latent factors as in Engel et al. (2009) to keep our analysis similar to the latter study.
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can be derived from the UIP condition (Molodtsova and Papell, 2009). In this study we use the

Taylor-rule specification for xit = (bh,it−bUS
h,t ) = (zit−sit) proposed in the panel data framework

of Engel et al. (2009):

zit = 1.5(πit − πUS
t )− 0.5(ỹit − ỹUS

t ) + sit, (8)

where πit and πUS
t are the inflation rates of country i and the US and ỹit and ỹUS

t are the output

gaps of country i and the US, respectively.

2.2 Predictors based on returns and volatility of asset markets

In this section we consider predictors inspired by the behavioral finance literature and the risk-

return literature. The first predictor we consider is the exchange rate return (ERR) at time

t:

xit = ∆(1)sit, (9)

where ∆(1)sit = sit− sit−1. This follows from studies which suggest that chartists in the foreign

exchange market rely on exchange rate changes to predict exchange rate movements (Taylor

and Allen, 1992; Cheung and Chinn, 2001; Grauwe and Grimaldi, 2006).

Asset prices should theoretically incorporate information about (stochastic) discount factors

and the economy in general (Campbell and Shiller, 1987, 1988; Akerlof and Shiller, 2009). In

addition, countries with large stock market returns in excess of the returns of (say) the US stock

market can attract foreign investors and could experience an appreciation of their currency.

Thus, we also consider stock market return differentials (SRD):

xit = (qit − qUS
t ), (10)

where qit and qUS
t are the stock market (log) returns for country i and the US, respectively.

As proposed in the equity and exchange rate literature, time-varying second order moments

in-mean or other risk-premium measures, may play an important role in describing asset price
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fluctuations (Campbell and Hentschel, 1992; Dumas and Solnik, 1995; Engel, 1996). Along

the latter lines, the principle of volatility-in-mean computed from daily returns has been ap-

plied recently in out-of-sample studies of the risk-return relationship in stock markets yielding

promising results which motivates us to use it for exchange rates (Ludvigson and Ng, 2007;

Bollerslev et al., 2008). Thus, as alternative predictor we consider the volatility of the exchange

rate return (ERV) computed from daily squared returns:

xit = υ̂it =
∑
d∈t

∆s2
d,it, (11)

where ∆s2
d,it = (lnSd − lnSd−1)2it is the day d squared (log) return of the exchange rate for

cross-section member i at time t with d ∈ t. Note that this approach is similar to the realized

volatility notion formalized in Andersen et al. (2003), which assumes that ∆s2
d,it follow (semi)-

martingale processes. This requirement should also apply to our context empirically since it is

well known in the finance literature that daily asset returns follow martingales approximately

(Bollerslev and Mikkelsen, 1996; Baillie, 1996).

Moreover, we consider stock market volatility differentials (SVD):

xit = (ν̂it − ν̂US
t ), (12)

where ν̂it and ν̂US
t are the stock market volatilities of country i and the US, respectively. The

latter variables are computed as in (11) with q2
d,it (the day d squared (log) return of the pertinent

stock market i at time t) replacing ∆s2
d,it. Intuitively, differentials of stock market volatility

could proxy various sorts of risk-premia if stock markets price investors’ expectations of future

macroeconomic and financial variables.

2.3 Predictors based on cyclical and confidence indicators

In this section we turn to other potential candidate predictors of exchange rates that draw their

inspiration from the behavioral finance literature which suggests that asset price movements

(and possibly many macro factors) can be explained by ‘animal spirits’ (Akerlof and Shiller,

2009). A usual variable used to proxy economic sentiment in the (empirical) behavioral finance
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literature are confidence indicators obtained from surveys of alternative economic agents such as

investors, consumers, businessmen, etc (Neal and Wheatley, 1998; Lee et al., 2002; Brown and

Cliff, 2004; Lux, 2010). In this study we use cyclical and confidence indicators. More precisely,

we focus on business confidence, consumer confidence and a general economic indicator to have

distinct sentiment measures.

Note, however, that in the context of exchange rates we want to predict changes in a relative

price of currency units between two particular countries, thus we use differentials of the pertinent

cyclical and confidence indicators. We consider a business sentiment differential (BSD):

xit = (BSit −BSUS
t ), (13)

where BSit is a business confidence index for country i and BSUS
t is a business confidence index

for the US. Similarly for the consumer sentiment differential (CSD):

xit = (CSit − CSUS
t ), (14)

where CSit is a consumer confidence index for country i and CSUS
t is a consumer confidence

index for the US. Lastly, we consider differentials of economic indicators (EID) to capture

‘perceived’ economic differentials between countries. However, since we employ levels in BSD

and CSD, we employ first differences for EID in order to account for ‘momentum’ in the perceived

economic differentials (Ghonghadze and Lux, 2008; Lux, 2009):

xit = (∆EIit −∆EIUS
t ), (15)

where ∆EIit = EIit − EIit−1 is the change of a main economic indicator for country i and

∆EIUS
t is the change of a main economic indicator for the US.

3 Data description

The dataset used in this study is obtained from Datastream and the bilateral exchange rates

(measured as foreign currency units/US dollar), data frequency and time periods were selected
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based upon data availability. The forecasting strategy explained in the next section requires

that we have the same predictors for each cross-section member i in order to be able to compare

models over the panel dimension and to compute forecast combinations from the same set of

potential forecasts per country. These restrictions brought about several difficulties to build a

dataset with a large number of exchange rates with large time spans.2

Moreover, in order to have a somewhat more ‘homogeneous’ dataset for the cyclical and con-

fidence indicators (since surveys, data frequency, measurement units, methodology and other

issues may differ across data providers), we use business confidence, consumer confidence and

the main economic indicator published by the OECD (also available in Datastream). However,

cyclical indicators and confidence indices published by the OECD (or other data sources) were

particularly difficult to find for several countries. When available, cyclical indicators and confi-

dent indices mostly start in 1996, and for Canada, data on business confidence were unavailable

for January 2008 onwards.3

The other difficulty faced was the inclusion of Eurozone currencies in our panel. In order to

evaluate the predictors considered for Eurozone currencies we would need to restrict our sample

period from January 1996 (the starting time for the data on cyclical indicators and confidence

indices) to January 1999 (the starting time of the Euro currency). This would result in very

few data points to perform relevant out-of-sample evaluation at higher horizons. However, since

the Euro is a major currency player, it would be unusual not to include it in our forecasting

exercises. Thus, we use aggregated data for the Eurozone which is available for all predictors.

In order to have as many currencies and observations as possible given our data restrictions,

we consider a panel of 12 countries with monthly data for the sample period January 1999

to January 2008 which gives us a total of 109 observations per country. The countries are:

Australia, Canada, Czech Republic, Denmark, Eurozone, Japan, New Zealand, South Africa,

Sweden, Switzerland, United Kingdom and United States.

We use M1 and CPI to measure money supply and price levels, respectively. In the case
2In fact, because of our different dimensions (e.g. time, countries and predictors) we often faced the following

trade-off: given the number of predictors to be tested, an increase in the time dimension would be connected to
a decrease in the cross-section dimension.

3To save on space, we refer the interested reader to detailed information on confidence and cyclical indicators
published by the OECD at http://www.oecd.org.
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of Australia and New Zealand, CPI is only published on a quarterly basis. Therefore, we use

an interpolation technique as suggested by Molodtsova and Papell (2009) in order to compute

monthly series from the quarterly data. We employ h-maturity forward rates of the exchange

rates. The interest rate variables used when economically evaluating our forecasts (as explained

in section 4.3.2) are h-maturity interbank rates which were available for all pertinent maturities,

time periods and countries.

We are aware that one of the most common approaches to proxy GDP at the monthly

frequency is (seasonally adjusted) industrial production. Unfortunately, these data were un-

available for several countries of our panel in the sample period selected. Thus, we use real

seasonally adjusted GDP at the quarterly frequency to measure output which is transformed to

the monthly frequency by means of the same interpolation technique we use for the quarterly

CPI series. In order not to include future data to forecast (as a forecaster will, most likely,

only have interpolated information from the previous quarters), we lag by three months the

interpolated value for a particular month.

We use all-share Datastream calculated stock market indices at the daily (monthly) fre-

quency to compute the monthly volatilities (returns). The factors f̂j,t and factor loadings γ̂j,i

are estimated by means of Principal Component Analysis and the factors have been standard-

ized (Engel et al., 2009). The estimated factors are computed using data available up to the

forecast origin. The output gaps are computed recursively by Hodrick-Prescott detrending using

only data from periods prior to the forecast origin (Engel et al., 2009).

4 Forecasting methodology

In the following subsections we describe the forecasting strategy designed for this study. To save

on space, we concentrate on the most relevant issues. Specific details that are not described

here can be provided upon request.
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4.1 Forecasting design

We use recursive and rolling window forecasting schemes and consider forecasting horizons

h = 1, 3, 6, 12, i.e. monthly, quarterly, semi-annual and annual. Let τ denote the forecast

origin, that is, the time instance from which a forecast iteration is implemented. The recursive

forecasting scheme consists of estimating parameters by recursively increasing the forecast origin

from τ = K = 30 to τ = T − h. In the second scheme of rolling window forecasting, we

sequentially update a fixed window of size K = 30 that ends at the forecast origin τ and begins

at time τ −K + 1.4

It is noteworthy that the literature on forecasting exchange rates usually focuses on recursive

estimation for subsequent forecasting (Mark, 1995; Berkowitz and Giorgianni, 2001; Engel et al.,

2009). A priori, however, rolling forecasting schemes could be better immunized against the

adverse effects of falsely imposing structural invariance as they build upon a fixed time window of

observations. Moreover, combining forecasts generated by recursive or rolling window schemes

can improve forecasting precision which motivates us to use both schemes here (Clark and

McCracken, 2009). The forecasting strategy is as follows:

1. At each recursion, we regress ∆(h)siτ on a constant αh,i and a predictor xiτ−h. We obtain

single market estimates α̂
(1)
h,iτ and β̂h,iτ of model (1) via Ordinary Least Squares (Mark,

1995). At the aggregate level, we compute a mean group estimate β̄h,τ by averaging single

market estimates β̂h,iτ over all i = 1, ..., N . MG estimation is consistent for an average

impact under parameter heterogeneity (Pesaran and Smith, 1995). In order to identify

the fixed effects α̂
(2)
h,iτ that best whiten the data given the MG estimate β̄h,τ , we compute

the mean of (∆(h)siτ − β̄hxiτ−h). The fixed effect α̂
(3)
h,iτ and pooled estimate β̂h,τ of model

(2) are obtained by means of a pooled Least Squares Dummy Variable regression (Engel

et al., 2007, 2009).

2. We employ the alternative estimates β̂h,iτ , β̄h,τ or β̂h,τ along with the corresponding

fixed effects α̂
(1)
h,iτ , α̂

(2)
h,iτ , α̂

(3)
h,iτ detailed previously to forecast the quantities ∆(h)siτ+h.

More precisely, let ∆(h)ŝiτ+h|τ (PMR) denote a forecast conditional on information

4Note that K = 30 is about 2.5 years of data. We have experimented with other window sizes but the results
remain qualitatively similar.
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available up to period τ for estimator P = {SM,MG,PO} = {1, 2, 3}, predictor

M = {PPP,MM,UIP,FM,TAY,ERR,SRD,ERV,SVD,BSD,CSD,EID} = {1, ..., 12}

and forecasting scheme R = {RE,RO} = {1, 2}. Table 1 summarizes all the PMR

models. For each model M and forecasting scheme R, ex-ante forecasts at horizon h with

single market estimates are obtained as

∆(h)ŝiτ+h|τ (1MR) = α̂
(1)
h,iτ + β̂h,iτxiτ , (16)

with mean group estimates as

∆(h)ŝiτ+h|τ (2MR) = α̂
(2)
h,iτ + β̄h,τxiτ , (17)

and with pooled estimates as

∆(h)ŝiτ+h|τ (3MR) = α̂
(3)
h,iτ + β̂h,τxiτ . (18)

3. The previous step yields at each τ a total of Pmax × Mmax × Rmax = 3 × 12 × 2 = 72

forecasts generated from ‘heterogeneous’ information sets for each horizon h and cross-

section member i which can be examined separately. However, forecasts may include

independent and useful information so that a linear combination of two or more forecasts

may yield more accurate predictions than using only a single prediction (Granger, 1989;

Newbold and Harvey, 2002; Aiolfi and Timmermann, 2006). Thus, we also construct

forecast combinations i.e.

∆(h)ŝiτ+h|τ (C) = ω̂′
iτ+h|τ µ̂iτ+h|τ , (19)

where µ̂iτ+h|τ is a vector containing exchange rate forecasts ∆(h)ŝiτ+h|τ (PMR) and the

weights in the vector ω̂iτ+h|τ are computed with alternative procedures which are discussed

in the following section.
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4.2 Forecast combination schemes

Most of the forecast combination schemes considered are adaptive, meaning that the forecasts

included in µ̂iτ+h|τ and/or corresponding weights ω̂iτ+h|τ are based on alternative selection

criteria within a sub-sample of realized observations. Adaptive strategies for combining fore-

casts might mitigate structural breaks and model misspecification and thus improve forecasting

precision over single forecasts (Newbold and Harvey, 2002; Granger and Jeon, 2004).

Note that since a forecaster would only have information available up to the forecast origin

τ , the sub-sample for forecast selection and computation of weights must contain data on or

before that period. Thus, we start by setting equal weights to all forecasts until the selection

of forecasts and weighting schemes could be based on the evaluation of realized forecast errors.

This procedure guarantees that we use only information available up to a particular period τ

to set weights of forecasts for period τ + h. The following 6 alternative combination strategies

C = {1, 2, ..., 6} are considered:

1. Simple average (AFC): Various studies have demonstrated that simple averaging of a

multitude of forecasts works well in relation to more sophisticated weighting schemes

(Newbold and Harvey, 2002; Clark and McCracken, 2009). Therefore, the first scheme

considered consists of averaging all the Pmax × Mmax × Rmax = 72 forecasts obtained

from the forecasting design at each τ , horizon h and cross-section member i.

2. Rank-weighted combinations (RFC): The RFC scheme, suggested by Aiolfi and Timmer-

mann (2006), consists of first computing the root mean square error (RMSE) of all

models in the sub-sample period for evaluation at horizon h. Defining RANKh,iτ (j)

as the rank of the j-th model based on its historical RMSE performance up to time

τ for horizon h, the weight for the j-th forecast is then calculated as: ω̂j,iτ+h|τ =

RANKh,iτ (j)−1/
∑

j RANKh,iτ (j)−1.

3. Hierarchical forecast combinations (HFC): Recent studies have proposed hierarchical

strategies for the combination of forecasts which work relatively well in other applica-

tions (Kisinbay, 2007; Costantini and Pappalardo, 2009). The HFC procedure works as

follows:
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a. Take the sub-sample period for evaluation and calculate the RMSE of each model.

Rank the models according to their past performance based on RMSE.

b. Select the best forecasting model (in terms of RMSE) and test sequentially whether

the best model forecast encompasses other models using the forecast encompassing

test of Harvey et al. (1998). If the best model encompasses the alternative model at

the significance level ς = 0.05, delete the alternative model from the list.5

c. Repeat step 2 with the second best model. The list of models includes those which

are not encompassed by the best model. Continue with the third best model, and so

on, until no encompassed model remains in the list.

d. Obtain the HFC with all the previously selected models by simple averaging.6

4. Thick-modeling approach with OLS weights (OFC): A study by Granger and Jeon (2004)

proposes the so-called thick modeling approach (TMA) which consists of selecting the

z-percent of the best forecasting models according to the RMSE criterion in the sub-

sample period for model evaluation. We use the selection process of Granger and Jeon

and subsequently compute weights by means of OLS regressions along with the constraint

that the weights are all positive and sum up to one. The z-percent of top forecasts selected

is set to 25% (i.e. the upper quartile).

5. Thick-modeling approach with RMSE-weights (MFC): The MFC scheme consists of select-

ing models by means of TMA, then computing the RMSE of all selected models j and

setting the weight of the j-th model as ω̂j,iτ+h|τ = RMSEh,iτ (j)−1/
∑

j RMSEh,iτ (j)−1.

6. Thick-modeling approach with MSE-Frequency weights (FFC): The FFC scheme consists

of selecting models by means of TMA and assigning to each j-th forecast, a weight equal

to a model’s empirical frequency of minimizing the squared forecast error over realized

forecasts.
5Other significance levels yielded qualitatively similar results and can be provided upon request.
6We have also experimented with alternative weighting schemes to simple average of the hierarchical forecasts

but found that the latter yield better forecast than other approaches (Kisinbay, 2007).
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4.3 Forecast evaluation

In this section we describe the different forecast evaluation methods used in this study. We

consider statistical as well as economic performance measures of the forecasts generated by our

forecasting design.

4.3.1 Statistical performance measures

In order to evaluate forecasts, we employ mean squared forecast errors (MSE) and mean absolute

forecast errors (MAE). MSE and MAE of a particular model are given in percentage of the

MSE and MAE of a random walk model with rolling drift of size K. Our choice for the latter

benchmark follows from evidence that traders in foreign exchange markets rely on moving

averages to ‘forecast’ the evolution of the exchange rate (Taylor and Allen, 1992; Grauwe and

Grimaldi, 2006). More precisely, let τ̃ = 1, ..., T denote an out-of-sample forecast observation

with T = T −K − h. Moreover, let ‘•’ and ‘0’ indicate a particular competing model and the

benchmark, respectively. Forecast errors of model ‘•’ are computed as

êiτ̃ (•) = ∆(h)siτ̃ −∆(h)ŝiτ̃ (•). (20)

The MSE and MAE of model ‘•’ are:

d̄i(•) = T −1
∑

τ̃

diτ̃ (•), (21)

with diτ̃ (•) = êiτ̃ (•)2 for MSE or diτ̃ (•) = |êiτ̃ (•)| for MAE. The average performance of a

competing model specification is given in relation to d̄i(0), obtaining relative MSEs or MAEs:

dri(•) =
d̄i(•)
d̄i(0)

, (22)

where d̄i(0) is defined as in (21). Thus, dri(•) values below one indicate a superior performance

of a particular model ‘•’ against the benchmark ‘0’ in terms of MSE or MAE. At the aggregate

level we compute mean and standard errors of dri(•).7 Moreover, we employ the modified
7Note that (22) computed with diτ̃ (•) = êiτ̃ (•)2 and diτ̃ (0) = êiτ̃ (0)2 in (21) is related to the so-called

out-of-sample R2 as R2
OS,i = 1− dri(•).
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Diebold Mariano (DM) test of Harvey et al. (1997) in order to analyze for each i (with respect

to MSE or MAE), whether model ‘0’ has the same predictive ability as model ‘•’, against the

alternative that model ‘•’ has a better predictive ability. At the aggregate level we provide the

number of rejections of the null hypothesis of equal forecasting accuracy via the DM test at the

10% significance level.

4.3.2 Economic performance measures

Recent studies by Han (2006), Della-Corte et al. (2009) and Chiquoine and Hjalmarsson (2009)

suggest to evaluate the economic value of forecasts obtained from asset pricing models by

‘simulating’ a portfolio allocation choice of a representative investor (RI). In our analysis, we

follow a similar univariate approach to the latter studies. Therefore we keep the following

discussion short to save on space.

For simplicity of exposition, we consider for now a representative investor (RI) in country

i with an investment horizon h = 1 and mean-variance preferences. Let λτ+1|τ ≡ E[rτ+1|Iτ ]

and ητ+1|τ ≡ E[(rτ+1 − λτ+1|τ )2|Iτ ] denote, respectively, the conditional mean and variance

given the current information set Iτ of the return of a US asset at τ + 1 denoted rτ+1. Similar

to Della-Corte et al. (2009), we assume that the RI invests in a US bond where the only risk

involved is exchange rate risk, i.e. we set rτ+1 = rf + ∆(1)siτ+1 with rf the risk-free rate and

thus λτ+1|τ = rf +E[∆(1)siτ+1|Iτ ], ητ+1|τ = Var[∆(1)siτ+1|Iτ ]. Moreover, let λp,iτ+1 and ηp,iτ+1

be the conditional mean and variance of the portfolio returns rp,iτ+1 of investor i at τ + 1,

respectively. Then, assuming that the RI in country i invests 1 unit of the domestic currency

at time τ , she solves the following maximization problem:

maxδiτ

{
E[U(Wiτ+1)] = λp,iτ+1 −

γi

2
ηp,iτ+1

}
, (23)

with

λp,iτ+1 = δiτλτ+1|τ + (1− δiτ )rf,i and ηp,iτ+1 = δ2
iτητ+1|τ , (24)

where U(Wiτ ) is the utility of wealth, δiτ is the portfolio weight, γi the coefficient of absolute
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risk aversion, and rf,i the return on the domestic riskless asset. The optimal portfolio weights

are given by

δ∗iτ =
λτ+1|τ − rf,i

γiητ+1|τ
. (25)

Thus, the key issue in the above set up is to have estimates λ̂τ+1|τ and η̂τ+1|τ to obtain δ̂∗iτ . For

this purpose, we set λ̂τ+1|τ = rf + ∆(1)ŝiτ+1|τ (•) with alternative models ‘•’. Since modeling

the conditional variance of exchange rates is out of the scope of this paper, we follow a similar

approach to Chiquoine and Hjalmarsson (2009) and approximate η̂τ+1|τ by using an estimate of

the variance up to the forecast origin τ obtained from the residuals of the regression correspond-

ing to a particular predictor, estimation approach (single market, mean group or pooled) and

forecasting scheme (recursive or rolling). The variances of the forecast combinations are com-

puted by weighting the estimated variances of the alternative models in the forecast combination

with the computed weights.

To evaluate the performance of the portfolio allocation strategy the so-called ex-post Sharpe

Ratio can be used which is defined as SRi = (rp,i − rf,i)/σp,i, where rp,i is the sample mean

and σp,i the sample standard deviation from the realized portfolio returns. However, SRi

cannot quantify the economic gains over an alternative strategy. For this purpose, we use the

M2i measure developed by Modigliani and Modigliani (1997) and applied, for instance, in the

portfolio allocation framework by Han (2006). The M2i measure can be interpreted as the

abnormal return that a particular strategy ‘•’ would have earned if it had the same risk as a

benchmark strategy ‘0’. M2i is given by

M2i =
σp,i(0)
σp,i(•)

(rp,i(•)− rf,i)− (rp,i(0)− rf,i), (26)

which suggests that the portfolio of strategy ‘•’ is levered upwards or downwards so that it has

the same volatility as the portfolio of strategy ‘0’. M2i is directly related to the Sharpe Ratio

as M2i = σp,i(0)(SRi(•)− SRi(0)). To be consistent with Han (2006), we take as benchmark

‘0’ a buy-and-hold strategy. At the aggregate level we compute mean and standard errors of
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M2i.8

One of our main issues of interest is the forecasting performance of the predictors considered

and the adaptive forecasting strategies for horizons h > 1. For this purpose we assume that the

RI rebalances her portfolio not only at h = 1 but also at h = 3, 6, 12. To account for higher

horizons, we set λ̂τ+h|τ = rhf + ∆(h)ŝiτ+h|τ (•) and approximate η̂τ+h|τ by using an estimate of

the residual h-period variance up to time τ to obtain δ̂∗h,iτ .

Note that we need to calibrate the free parameter space Γh,i = {rhf,i, rhf , γi} for each i and

the different horizons h. To have a somewhat realistic calibration, we use the sample mean of

interbank rates with maturity h up to period τ = K to calibrate rhf,i and rhf .9 We use γi = 3, 6

for the coefficient of absolute risk aversion as in previous studies (Han, 2006; Chiquoine and

Hjalmarsson, 2009; Della-Corte et al., 2009).

5 Results

In what follows we discuss the main results of our analysis. We first consider the forecasting

results of single predictors and subsequently those of combined forecasts.

5.1 Single predictors

Tables 2 and 3 provide information on the cross-sectional average of the relative MSE and MAE

obtained from a particular predictor xit (see Table 1 for acronyms) for horizons h = 1, 3, 6, 12

and the three different estimation approaches (SM, MG, PO). To illustrate the potential benefits

of combining forecasts resulting from alternative estimates, we also report relative MSE and

MAE of forecasts obtained by using an average of the SM, MG, PO estimates at each forecast

iteration, denoted AV. This is in line with Trapani and Urga (2009) who find that averaging

estimates obtained from heterogeneous and homogeneous panel models can improve forecasting
8Similar to the portfolio allocation set up by Chiquoine and Hjalmarsson (2009), we restrict ourselves to the

case of no transaction costs as we want to keep the computations and the comparison of market timing across all
our dimensions (country, model, horizon, etc) as tractable as possible.

9Government bond indices or yields for maturities h = 1, 3, 6, 12 were unavailable for many countries. In
order to have a ‘homogeneous’ dataset for the calibration across markets we use interbank rates since these were
available for all markets and horizons.
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accuracy.

In the case of recursive forecasting (Table 2) we find that the macro ‘fundamentals’ PPP,

MM and FM yield relative MSEs and MAEs that are greater than one on average. On the

other hand, the relative MSEs and MAEs of UIP and TAY are lower than one on average at

h = 3, 6, 12 for the alternative estimation approaches.

Recursive forecasts of predictors based on asset returns and volatility (ERR, SRD, ERV,

SVD) or cyclical and confidence indices (BSD, CSD, EID) yield relative MSEs and MAEs that

are mostly below one on average and lower than the fundamental predictors PPP, MM, and FM.

Recursive forecasts of the predictors ERR, SRD, ERV, SVD, BSD, CSD, EID are qualitatively

similar to each other in terms of (average) relative MSEs and MAEs.

Turning to rolling window forecasts (Table 3) we find that the macro ‘fundamentals’ PPP,

MM and FM yield relative MSEs and MAEs that are (still) generally greater than one on

average. The predictors UIP and TAY continue to yield relative MSEs and MAEs mostly lower

than one at higher horizons and evidently lower than those of the other macro ‘fundamentals’.

Interestingly, the forecasting power of asset returns and volatility (ERV, SRD, ERR, SVD)

or cyclical and confidence indices (BSD, CSD, EID) with rolling window forecasting is less

promising in terms of (average) relative MSEs and MAEs than with recursive forecasting.

Tables 4 and 5 show the frequency of rejections of the null hypothesis of equal forecasting

accuracy to a rolling drift model via the DM test. The frequency of rejections is usually highest

for TAY, ERV, SVD and CSD in terms of MSEs and MAEs and qualitatively similar for rolling

versus recursive schemes. The highest number of rejections (5) is obtained from TAY with MG

estimates and rolling forecasting at horizon h = 12.

Relative MSEs and MAEs obtained from the panel estimates (MG, PO) are usually lower

on average than those obtained from single market estimates (SM) in both recursive and rolling

forecasting and across predictors. This result corroborates findings of previous studies on the

benefits of forecasting exchange rates with panel estimates (Engel et al., 2007, 2009). Forecasts

obtained by averaging the SM, MG, PO estimates usually seem to improve upon the ‘worst’

performer and many times upon the ‘best’ performer. The latter result hints at the possible

benefits of combining forecasts of the alternative estimation approaches.
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Turning to the results of the Sharpe Ratio differentials M2 in Tables 6 and 7, we find

that a dynamic strategy based on forecasts of the alternative predictors considered usually

generates positive abnormal returns over a buy-and-hold strategy at various horizons. Overall,

we find that UIP, FM, TAY, ERV, SVD and CSD generate on average the highest M2 out of

the predictors considered. This result is generally true for either recursive or rolling window

forecasting. However, in contrast to relative MSEs and MAEs, M2 measures are generally

higher on average for rolling than for recursive forecasting which might be due to the different

estimates for ητ+h|τ . We obtain higher M2 on average at lower levels of absolute risk aversion

γ and higher horizons h.

Summing up, we find that the forecasts generated by rolling window forecasting differ in

terms of relative MSEs and MAEs to those generated by recursive forecasting. The alternative

results for recursive and rolling forecasting corroborate recent findings of the econometrics liter-

ature (McCracken, 2007; Clark and McCracken, 2009). For both forecasting schemes, however,

UIP and TAY provide reasonably good forecasts which is in line with findings of recent studies

(Chinn and Meredith, 2004; Molodtsova and Papell, 2009; Engel et al., 2009). Indeed, UIP

proves to be quite successful for ‘market timing’ in relation to other predictors which corrobo-

rates results by Della-Corte et al. (2009). The recursive forecasting performance of predictors

based on cyclical and confidence indicators as well as asset returns and volatility yield promis-

ing results: relative MSEs and MAEs are usually less than one for most horizons and most

estimation approaches. Thus, it seems that forecasting asset returns with sentiment indicators

based on survey data (along the lines of CSD) results in promising statistical and economic per-

formance measures (cf. Lux (2010)). To visualize some of our findings, Figure 1 and 2 display

(by means of boxplots) the cross-sectional distribution of relative MSEs and M2 of the ‘best’

single models for each group of predictors.

In general, we find that the forecasting capabilities of the alternative predictors for exchange

rates considered in terms of relative MSEs and MAEs as well as M2 vary depending on the

predictor, horizon, forecasting scheme, bilateral exchange rate and estimation approach. This

can be appreciated in Figure 3 which displays the frequency in which a particular model consid-

ered falls within the top 25% performers according to a root MSE criteria. However, the latter
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figure also shows that models conditioned upon UIP, TAY, ERV, SRD and CSD with panel

estimates (MG or PO) usually maintain their top rank over time, horizon and cross-section. In

what follows, we explore the potential benefits from combining alternative forecasts.

5.2 Combined forecasts

Table 8 displays the results of the forecast combination strategies considered. The results are

promising in terms of relative MSEs and MAEs which are usually lower than those obtained from

most single predictors, forecasting schemes and estimation approaches. In fact, the different

forecast combination schemes yield relative MSEs and MAEs that are usually lower than one

on average at most forecasting horizons.

In line with previous studies, we find that simple averaging of forecasts AFC works rela-

tively well in relation to the other schemes considered (Newbold and Harvey, 2002; Clark and

McCracken, 2009). The rank based strategy RFC yields qualitatively similar results to AFC in

terms of (average) relative MSEs and MAEs. However, in terms of relative MSEs and MAEs,

other forecast combination schemes that select forecasts of top performing models by means of

the thick modeling approach (OFC, MFC, FFC) do not usually outperform those that consider

all forecasts (AFC an RFC). Surprisingly, the hierarchical forecast combination scheme HFC

yields the least promising forecasting results in terms of relative MSEs and MAEs on average.

The variability of the relative MSEs and MAEs over the cross-section are generally lower than

those of single predictors which suggests that combining forecasts may reduce forecast uncer-

tainty (Newbold and Harvey, 2002). This result can be partially visualized in Figure 1 which

displays a lower cross-sectional variation for AFC and RFC than other single ‘best’ models in

terms of relative MSEs. In general, forecast combination schemes increase the number of rejec-

tions of the null hypothesis of equal forecasting accuracy to a rolling drift model in relation to

most single models according to the DM test (Table 8).

With respect to Sharpe Ratio differentials (M2), we find that combining forecasts usually

yields higher M2 values than single predictors, forecasting schemes and estimation approaches

at higher horizons (Table 9). Interestingly, while the hierarchical strategy HFC yields the least

promising results in terms of relative MSEs and MAEs, it yields the best results in terms of
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M2 on average. Similarly, thick modeling strategies (OFC, MFC, FFC) yield better results in

terms of M2 on average than AFC and RFC. Thus, it seems that it could be beneficial to make

investment decisions based on adaptive combination schemes. Although UIP together with

panel estimates MG or PO seems to be the most successful model in terms of M2, hierarchical

and frequency based combinations HFC and FFC generate qualitatively similar results to other

‘best’ single models as displayed in Figure 2.

Summing up, we find that various forecast combination strategies of the forecasts generated

by our panel forecasting design are generally more accurate than single forecasts and also yield

higher Sharpe Ratios in relation to a buy-and-hold strategy than most single models. Given

the variation in ‘best’ performing models over time and cross-section as shown in Figure 3,

it seems from our results that combining forecast should mitigate model misspecification and

‘smooth’ the forecasting accuracy and market timing ability of single models. Our results are

in line with previous studies which have found that combining forecasts yields more accurate

predictions and profitable investment opportunities than using only a single prediction (Granger,

1989; Newbold and Harvey, 2002; Aiolfi and Timmermann, 2006; Pesaran and Timmermann,

2007; Della-Corte et al., 2009). Our findings also corroborate theoretical evidence of behavioral

exchange rate models that a combination of alternative ‘expectations’ of exchange rates that

build upon different information sets can provide a more accurate depiction of ex-ante exchange

rate movements (Kirman, 1993).

6 Conclusion

This article examined the statistical and economic implications of adaptive forecasting of ex-

change rates with panel data where candidate predictors are drawn from macro ‘fundamentals’,

asset returns/volatility as well as cyclical and confidence indicators. Out of the macro ‘funda-

mentals’ considered, the forward premium (UIP) and a predictor based on a Taylor rule (TAY)

yield good results in terms of relative MAEs and MSEs on average. The cyclical and confidence

variables yield promising results in terms of relative MAEs and MSEs when recursive forecasting

is employed. The same applies qualitatively for the predictors based on returns and volatility
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of asset markets. The PPP, MM and FM models usually yield the least promising forecast-

ing results out of all predictors considered in the full sample. In terms of relative MSEs and

MAEs as well as M2, the predictors UIP, TAY, ERV, SVD and CSD yield the most promising

forecasting results on average.

The adaptive forecasting design shows that combining forecasts generated from our various

predictors, estimators and estimation schemes generally improves forecasting accuracy in rela-

tion to most single models. This is not only evident in the magnitudes of the relative MAEs and

MSEs but also in the number of rejections of the null hypothesis of equal forecasting accuracy to

a rolling drift model according to the DM test. Sharpe Ratio differentials M2 are also improved

on average when compared against those obtained from most single models. The latter result is

important as it points out that our forecasting strategy could be potentially tested in practice.

Moreover, our results suggest that combining forecasts based upon ‘heterogeneous’ information

sets can improve forecasting accuracy and reduce ex-ante uncertainty which corroborates not

only the forecasting literature but also the behavioral exchange rate literature. It would be

interesting to investigate whether the proposed forecasting design performs well for other types

of forecasting exercises such as volatility, GDP, inflation, etc. We leave these issues for future

research.
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Predictor Acronym xit

Purchasing Power Parity PPP pit − pUS
t − sit

Monetary Model MM (mit −mUS
t )− (yit − yUS

t )− sit

Uncovered Interest Rate Parity UIP gh,it − sit

Factor Model FM F̂it − sit

Taylor Rule TAY 1.5(πit − πUS
t )− 0.5(ỹit − ỹUS

t )

Exchange Rate Return ERR sit − sit−1

Stock Market Return Differential SRD qit − qUS
t

Exchange Rate Volatility ERV υ̂it

Stock Market Volatility Differential SVD ν̂it − ν̂US
t

Business Sentiment Differential BSD BSit −BSUS
t

Consumer Sentiment Differential CSD CSit − CSUS
t

Economic Indicator Differential EID ∆EIit −∆EIUS
t

Model no. Features PMR

1 SM, PPP, RE (1, 1, 1)

2 SM, MM, RE (1, 2, 1)

3 SM, UIP, RE (1, 3, 1)

4 SM, FM, RE (1, 4, 1)

5 SM, TAY, RE (1, 5, 1)

6 SM, ERR, RE (1, 6, 1)

7 SM, SRD, RE (1, 7, 1)

8 SM, ERV, RE (1, 8, 1)

9 SM, SVD, RE (1, 9, 1)

10 SM, BSD, RE (1, 10, 1)

11 SM, CSD, RE (1, 11, 1)

12 SM, EID, RE (1, 12, 1)

13 MG, PPP, RE (2, 1, 1)

14 MG, MM, RE (2, 2, 1)

15 MG, UIP, RE (2, 3, 1)

16 MG, FM, RE (2, 4, 1)

17 MG, TAY, RE (2, 5, 1)

18 MG, ERR, RE (2, 6, 1)

19 MG, SRD, RE (2, 7, 1)

20 MG, ERV, RE (2, 8, 1)

21 MG, SVD, RE (2, 9, 1)

22 MG, BSD, RE (2, 10, 1)

23 MG, CSD, RE (2, 11, 1)

24 MG, EID, RE (2, 12, 1)

25 PO, PPP, RE (3, 1, 1)

26 PO, MM, RE (3, 2, 1)

27 PO, UIP, RE (3, 3, 1)

28 PO, FM, RE (3, 4, 1)

29 PO, TAY, RE (3, 5, 1)

30 PO, ERR, RE (3, 6, 1)

31 PO, SRD, RE (3, 7, 1)

32 PO, ERV, RE (3, 8, 1)

33 PO, SVD, RE (3, 9, 1)

34 PO, BSD, RE (3, 10, 1)

35 PO, CSD, RE (3, 11, 1)

36 PO, EID, RE (3, 12, 1)

37 SM, PPP, RO (1, 1, 2)

38 SM, MM, RO (1, 2, 2)

39 SM, UIP, RO (1, 3, 2)

40 SM, FM, RO (1, 4, 2)

41 SM, TAY, RO (1, 5, 2)
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42 SM, ERR, RO (1, 6, 2)

43 SM, SRD, RO (1, 7, 2)

44 SM, ERV, RO (1, 8, 2)

45 SM, SVD, RO (1, 9, 2)

46 SM, BSD, RO (1, 10, 2)

47 SM, CSD, RO (1, 11, 2)

48 SM, EID, RO (1, 12, 2)

49 MG, PPP, RO (2, 1, 2)

50 MG, MM, RO (2, 2, 2)

51 MG, UIP, RO (2, 3, 2)

52 MG, FM, RO (2, 4, 2)

53 MG, TAY, RO (2, 5, 2)

54 MG, ERR, RO (2, 6, 2)

55 MG, SRD, RO (2, 7, 2)

56 MG, ERV, RO (2, 8, 2)

57 MG, SVD, RO (2, 9, 2)

58 MG, BSD, RO (2, 10, 2)

59 MG, CSD, RO (2, 11, 2)

60 MG, EID, RO (2, 12, 2)

61 PO, PPP, RO (3, 1, 2)

62 PO, MM, RO (3, 2, 2)

63 PO, UIP, RO (3, 3, 2)

64 PO, FM, RO (3, 4, 2)

65 PO, TAY, RO (3, 5, 2)

66 PO, ERR, RO (3, 6, 2)

67 PO, SRD, RO (3, 7, 2)

68 PO, ERV, RO (3, 8, 2)

69 PO, SVD, RO (3, 9, 2)

70 PO, BSD, RO (3, 10, 2)

71 PO, CSD, RO (3, 11, 2)

72 PO, EID, RO (3, 12, 2)

Table 1: Alternative predictors and forecasting models for exchange rates.

The table summarizes all the predictors used for forecasting exchange rates

as well as all the possible models that arise from our forecasting design.

SM = single market estimates; MG = mean group estimates; PO = pooled

estimates; RE = recursive forecasting; RO = rolling forecasting. PMR

refers to estimation approach P = {SM, MG, PO} = {1, 2, 3}, predictor

M = {PPP, MM, UIP, FM, TAY, ERR, SRD, ERV, SVD, BSD, CSD, EID} =

{1, ..., 12} and forecasting scheme R = {RE, RO} = {1, 2}. Models in bold

are those that most frequently fall within the top 25% of models with lowest

root MSE according to the Thick Modeling Approach at the various horizons

h = 1, 3, 6, 12. See Figure 3 for further details.
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d̄r, MSE d̄r, MAE

xit h SM MG PO AV SM MG PO AV

PPP

1 1.034 1.010 1.010 1.014 1.015 1.009 1.008 1.009
(0.041) (0.052) (0.047) (0.047) (0.026) (0.031) (0.029) (0.028)

3 1.093 1.033 1.035 1.042 1.043 1.020 1.019 1.024
(0.093) (0.130) (0.118) (0.105) (0.058) (0.084) (0.076) (0.070)

6 1.139 1.046 1.046 1.056 1.080 1.046 1.046 1.052
(0.102) (0.223) (0.221) (0.157) (0.056) (0.128) (0.127) (0.092)

12 1.497 1.324 1.325 1.330 1.239 1.192 1.194 1.194
(0.426) (0.708) (0.709) (0.553) (0.219) (0.424) (0.427) (0.338)

MM

1 1.083 1.116 1.026 1.052 1.041 1.054 1.015 1.028
(0.060) (0.169) (0.061) (0.050) (0.034) (0.066) (0.028) (0.028)

3 1.282 1.284 1.091 1.161 1.113 1.121 1.038 1.073
(0.196) (0.440) (0.196) (0.151) (0.074) (0.181) (0.103) (0.080)

6 1.451 1.357 1.200 1.229 1.188 1.161 1.090 1.111
(0.277) (0.617) (0.450) (0.235) (0.079) (0.230) (0.174) (0.091)

12 2.392 2.009 1.761 1.628 1.464 1.358 1.268 1.243
(0.985) (1.578) (1.294) (0.528) (0.257) (0.537) (0.463) (0.214)

UIP

1 1.009 1.004 0.994 0.999 1.015 1.005 1.000 1.005
(0.019) (0.027) (0.024) (0.023) (0.015) (0.017) (0.016) (0.015)

3 0.960 0.928 0.925 0.931 0.990 0.974 0.974 0.976
(0.081) (0.083) (0.085) (0.080) (0.063) (0.062) (0.064) (0.062)

6 0.907 0.827 0.837 0.840 0.963 0.933 0.939 0.938
(0.161) (0.158) (0.166) (0.153) (0.092) (0.100) (0.105) (0.098)

12 0.980 0.784 0.862 0.820 0.962 0.892 0.940 0.914
(0.406) (0.303) (0.317) (0.310) (0.199) (0.195) (0.196) (0.196)

FM

1 1.043 1.020 1.016 1.016 1.025 1.013 1.010 1.012
(0.065) (0.055) (0.059) (0.057) (0.034) (0.029) (0.033) (0.029)

3 1.157 1.054 1.052 1.063 1.057 1.020 1.016 1.021
(0.186) (0.135) (0.147) (0.140) (0.101) (0.084) (0.097) (0.085)

6 1.223 1.079 1.120 1.105 1.094 1.036 1.054 1.041
(0.336) (0.280) (0.312) (0.274) (0.161) (0.145) (0.174) (0.136)

12 1.787 1.414 1.350 1.429 1.295 1.171 1.156 1.176
(0.794) (0.730) (0.697) (0.614) (0.345) (0.413) (0.426) (0.333)

TAY

1 1.005 0.990 0.988 0.991 1.004 0.992 0.992 0.994
(0.034) (0.038) (0.036) (0.033) (0.030) (0.024) (0.023) (0.024)

3 0.981 0.968 0.970 0.969 0.987 0.977 0.977 0.978
(0.068) (0.078) (0.078) (0.073) (0.046) (0.045) (0.045) (0.043)

6 0.958 0.926 0.929 0.934 0.970 0.953 0.955 0.958
(0.104) (0.122) (0.123) (0.111) (0.066) (0.066) (0.067) (0.064)

12 0.979 0.940 0.945 0.949 0.961 0.944 0.947 0.947
(0.196) (0.191) (0.194) (0.185) (0.136) (0.152) (0.155) (0.147)

ERR

1 1.019 1.003 1.000 1.005 1.013 1.003 1.001 1.005
(0.025) (0.030) (0.027) (0.025) (0.022) (0.019) (0.018) (0.018)

3 0.993 0.975 0.974 0.978 0.987 0.978 0.978 0.980
(0.054) (0.062) (0.062) (0.060) (0.030) (0.036) (0.036) (0.034)

6 0.954 0.941 0.944 0.945 0.979 0.973 0.974 0.975
(0.107) (0.097) (0.098) (0.100) (0.061) (0.053) (0.053) (0.056)

12 0.965 0.952 0.960 0.958 0.942 0.935 0.939 0.938
(0.155) (0.159) (0.160) (0.158) (0.106) (0.111) (0.111) (0.109)

SRD

1 0.993 0.985 0.984 0.986 1.003 1.000 0.999 1.000
(0.030) (0.027) (0.025) (0.026) (0.024) (0.021) (0.020) (0.022)

3 0.975 0.964 0.963 0.966 0.981 0.974 0.974 0.976
(0.061) (0.059) (0.058) (0.061) (0.034) (0.032) (0.032) (0.033)
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6 0.933 0.920 0.921 0.923 0.967 0.963 0.963 0.964
(0.068) (0.084) (0.084) (0.082) (0.042) (0.048) (0.048) (0.046)

12 0.924 0.914 0.912 0.915 0.927 0.920 0.919 0.921
(0.123) (0.141) (0.142) (0.137) (0.092) (0.101) (0.102) (0.098)

ERV

1 1.045 1.005 1.011 1.004 0.998 0.999 1.005 0.997
(0.146) (0.040) (0.044) (0.046) (0.044) (0.029) (0.024) (0.030)

3 0.966 0.977 0.967 0.954 0.977 0.974 0.974 0.966
(0.047) (0.064) (0.063) (0.047) (0.038) (0.038) (0.037) (0.030)

6 0.929 0.935 0.925 0.918 0.963 0.970 0.965 0.960
(0.094) (0.090) (0.106) (0.091) (0.056) (0.053) (0.062) (0.051)

12 0.952 0.960 0.924 0.934 0.929 0.937 0.914 0.921
(0.155) (0.144) (0.160) (0.154) (0.097) (0.102) (0.104) (0.093)

SVD

1 1.007 1.001 1.001 1.000 1.011 1.003 1.003 1.004
(0.029) (0.027) (0.027) (0.029) (0.021) (0.016) (0.016) (0.018)

3 0.983 0.967 0.967 0.969 0.984 0.975 0.975 0.975
(0.054) (0.055) (0.056) (0.056) (0.035) (0.031) (0.031) (0.033)

6 0.954 0.933 0.932 0.937 0.978 0.969 0.969 0.971
(0.112) (0.091) (0.090) (0.095) (0.051) (0.048) (0.048) (0.047)

12 0.942 0.922 0.926 0.926 0.933 0.921 0.923 0.924
(0.159) (0.151) (0.153) (0.151) (0.121) (0.108) (0.109) (0.112)

BSD

1 1.003 0.996 0.996 0.996 1.006 1.001 1.001 1.001
(0.024) (0.027) (0.027) (0.028) (0.022) (0.021) (0.020) (0.023)

3 0.990 0.969 0.968 0.964 0.989 0.980 0.979 0.978
(0.077) (0.061) (0.060) (0.070) (0.047) (0.035) (0.034) (0.042)

6 0.971 0.928 0.930 0.925 0.995 0.975 0.974 0.972
(0.149) (0.095) (0.093) (0.117) (0.080) (0.057) (0.055) (0.070)

12 1.043 0.967 0.960 0.968 0.985 0.950 0.948 0.949
(0.178) (0.177) (0.176) (0.178) (0.111) (0.120) (0.126) (0.118)

CSD

1 0.999 0.996 0.989 0.987 0.999 0.999 0.992 0.993
(0.032) (0.026) (0.036) (0.026) (0.018) (0.014) (0.016) (0.013)

3 0.970 0.975 0.948 0.941 0.977 0.978 0.964 0.961
(0.107) (0.062) (0.089) (0.075) (0.061) (0.035) (0.042) (0.037)

6 0.945 0.951 0.919 0.891 0.959 0.961 0.943 0.931
(0.162) (0.099) (0.149) (0.109) (0.100) (0.054) (0.086) (0.059)

12 1.008 0.935 0.972 0.886 0.979 0.938 0.961 0.924
(0.248) (0.201) (0.290) (0.164) (0.110) (0.124) (0.174) (0.096)

EID

1 1.014 0.996 0.996 0.996 1.010 1.002 1.002 1.000
(0.043) (0.030) (0.029) (0.037) (0.022) (0.020) (0.019) (0.021)

3 1.025 0.972 0.972 0.978 1.008 0.980 0.978 0.982
(0.090) (0.071) (0.068) (0.079) (0.040) (0.040) (0.039) (0.038)

6 1.034 0.936 0.943 0.944 1.001 0.974 0.978 0.975
(0.125) (0.105) (0.099) (0.101) (0.063) (0.054) (0.052) (0.059)

12 1.093 0.934 0.926 0.948 0.973 0.908 0.914 0.921
(0.348) (0.182) (0.169) (0.155) (0.137) (0.127) (0.117) (0.119)

Table 2: Recursive forecasting results (relative MSE and MAE). The table

shows the cross-sectional average and standard errors obtained from the MSE

or MAE of a particular predictor xit standardized to the MSE or MAE of a

random walk with rolling drift for horizons h = 1, 3, 6, 12. Entries in bold

denote average relative MSE or MAE lower than one. SM = single market

estimates; MG = mean group estimates; PO = pooled estimates; AV = average

of the SM, MG, PO estimates.
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d̄r, MSE d̄r, MAE

xit h SM MG PO AV SM MG PO AV

PPP

1 1.095 1.047 1.026 1.043 1.051 1.029 1.019 1.027
(0.036) (0.060) (0.042) (0.045) (0.027) (0.038) (0.026) (0.028)

3 1.251 1.092 1.074 1.096 1.118 1.060 1.053 1.061
(0.127) (0.151) (0.114) (0.104) (0.087) (0.097) (0.074) (0.076)

6 1.250 0.982 1.045 1.016 1.123 1.002 1.039 1.018
(0.298) (0.225) (0.205) (0.163) (0.139) (0.136) (0.119) (0.098)

12 1.383 0.980 1.144 1.049 1.126 0.972 1.039 1.007
(0.401) (0.291) (0.376) (0.185) (0.181) (0.180) (0.229) (0.140)

MM

1 1.115 1.217 1.068 1.097 1.057 1.108 1.037 1.050
(0.048) (0.208) (0.081) (0.084) (0.041) (0.101) (0.050) (0.053)

3 1.399 1.553 1.197 1.284 1.162 1.274 1.116 1.156
(0.246) (0.543) (0.224) (0.207) (0.109) (0.253) (0.139) (0.137)

6 1.588 1.597 1.353 1.374 1.232 1.284 1.185 1.188
(0.309) (0.648) (0.463) (0.303) (0.138) (0.296) (0.228) (0.165)

12 1.985 1.648 1.736 1.531 1.322 1.238 1.263 1.192
(0.769) (0.898) (1.008) (0.478) (0.361) (0.385) (0.420) (0.250)

UIP

1 1.049 1.015 1.003 1.011 1.030 1.009 1.000 1.010
(0.033) (0.019) (0.015) (0.018) (0.012) (0.011) (0.011) (0.010)

3 1.077 0.965 0.927 0.971 1.045 0.987 0.971 0.993
(0.140) (0.039) (0.040) (0.055) (0.072) (0.045) (0.043) (0.047)

6 1.225 0.952 0.891 0.983 1.085 0.976 0.949 0.992
(0.295) (0.152) (0.133) (0.167) (0.099) (0.068) (0.065) (0.072)

12 1.559 0.905 0.910 0.998 1.150 0.921 0.940 0.962
(0.657) (0.298) (0.264) (0.345) (0.232) (0.146) (0.146) (0.165)

FM

1 1.101 1.053 1.044 1.049 1.053 1.029 1.031 1.032
(0.050) (0.047) (0.044) (0.039) (0.026) (0.032) (0.032) (0.023)

3 1.438 1.225 1.186 1.230 1.209 1.139 1.121 1.142
(0.337) (0.155) (0.132) (0.165) (0.157) (0.102) (0.089) (0.111)

6 1.451 1.310 1.269 1.301 1.213 1.147 1.137 1.152
(0.293) (0.355) (0.269) (0.265) (0.127) (0.160) (0.136) (0.128)

12 1.349 1.245 1.179 1.195 1.119 1.093 1.070 1.071
(0.308) (0.435) (0.367) (0.324) (0.145) (0.244) (0.219) (0.185)

TAY

1 1.042 1.000 0.999 1.007 1.025 0.997 0.997 1.003
(0.050) (0.022) (0.023) (0.025) (0.039) (0.020) (0.018) (0.023)

3 1.063 1.008 1.008 1.011 1.032 1.004 1.006 1.009
(0.085) (0.033) (0.040) (0.029) (0.043) (0.018) (0.023) (0.021)

6 1.064 0.996 1.002 1.006 1.023 0.995 0.999 1.002
(0.123) (0.046) (0.054) (0.034) (0.072) (0.029) (0.032) (0.029)

12 1.031 0.955 0.959 0.966 1.011 0.971 0.973 0.981
(0.165) (0.032) (0.038) (0.048) (0.077) (0.019) (0.027) (0.036)

ERR

1 1.053 1.015 1.017 1.023 1.027 1.006 1.006 1.011
(0.031) (0.009) (0.012) (0.010) (0.022) (0.006) (0.009) (0.009)

3 1.061 1.039 1.040 1.042 1.029 1.017 1.019 1.019
(0.019) (0.012) (0.015) (0.013) (0.009) (0.009) (0.010) (0.009)

6 1.067 1.059 1.061 1.060 1.035 1.032 1.035 1.033
(0.034) (0.023) (0.025) (0.023) (0.019) (0.013) (0.015) (0.013)

12 1.069 1.041 1.049 1.051 1.025 1.017 1.022 1.021
(0.057) (0.014) (0.016) (0.021) (0.022) (0.007) (0.009) (0.009)

SRD

1 1.030 1.001 1.005 1.005 1.011 1.005 1.005 1.005
(0.033) (0.024) (0.021) (0.024) (0.017) (0.014) (0.011) (0.013)

3 1.029 1.008 1.013 1.013 1.021 1.006 1.008 1.009
(0.024) (0.005) (0.007) (0.008) (0.016) (0.002) (0.003) (0.006)
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6 1.016 0.999 1.002 1.003 1.003 0.998 1.000 0.999
(0.017) (0.008) (0.006) (0.010) (0.012) (0.005) (0.004) (0.006)

12 1.015 1.007 1.005 1.007 1.009 1.004 1.003 1.004
(0.019) (0.011) (0.008) (0.009) (0.017) (0.007) (0.005) (0.007)

ERV

1 1.318 1.034 1.039 1.060 1.024 1.002 1.012 1.005
(0.962) (0.080) (0.073) (0.182) (0.083) (0.023) (0.020) (0.036)

3 1.082 1.044 1.022 1.017 1.022 1.011 1.005 0.999
(0.201) (0.114) (0.029) (0.074) (0.060) (0.053) (0.014) (0.040)

6 1.043 1.029 1.029 1.014 1.014 1.014 1.020 1.008
(0.065) (0.040) (0.041) (0.028) (0.036) (0.019) (0.023) (0.018)

12 1.137 1.037 1.030 1.036 1.046 1.012 1.019 1.016
(0.220) (0.051) (0.025) (0.021) (0.066) (0.024) (0.022) (0.018)

SVD

1 1.039 1.021 1.012 1.012 1.028 1.018 1.010 1.013
(0.052) (0.027) (0.013) (0.021) (0.030) (0.021) (0.014) (0.012)

3 1.052 1.007 1.002 1.007 1.030 1.004 0.999 1.005
(0.059) (0.023) (0.019) (0.023) (0.039) (0.012) (0.010) (0.019)

6 1.092 1.035 1.013 1.029 1.038 1.014 1.004 1.011
(0.110) (0.064) (0.042) (0.063) (0.054) (0.043) (0.027) (0.038)

12 1.029 1.036 1.020 1.020 1.015 1.011 1.001 1.003
(0.053) (0.074) (0.058) (0.046) (0.048) (0.031) (0.026) (0.027)

BSD

1 1.054 1.032 1.026 1.031 1.037 1.021 1.016 1.022
(0.043) (0.021) (0.021) (0.029) (0.036) (0.025) (0.024) (0.028)

3 1.135 1.082 1.067 1.076 1.068 1.038 1.028 1.036
(0.118) (0.075) (0.054) (0.060) (0.063) (0.035) (0.032) (0.040)

6 1.372 1.238 1.229 1.241 1.163 1.125 1.111 1.119
(0.193) (0.134) (0.127) (0.126) (0.081) (0.075) (0.064) (0.058)

12 1.465 1.344 1.325 1.334 1.231 1.204 1.180 1.191
(0.238) (0.226) (0.227) (0.188) (0.100) (0.132) (0.129) (0.109)

CSD

1 1.070 1.040 1.020 1.033 1.037 1.018 1.010 1.019
(0.044) (0.023) (0.021) (0.021) (0.026) (0.016) (0.016) (0.015)

3 1.121 1.109 1.043 1.056 1.064 1.051 1.023 1.033
(0.110) (0.082) (0.050) (0.055) (0.067) (0.045) (0.028) (0.038)

6 1.131 1.149 1.048 1.065 1.061 1.071 1.019 1.026
(0.168) (0.129) (0.110) (0.094) (0.081) (0.066) (0.053) (0.050)

12 1.333 1.213 1.146 1.143 1.142 1.122 1.086 1.086
(0.437) (0.256) (0.315) (0.274) (0.202) (0.155) (0.184) (0.174)

EID

1 1.049 1.014 1.012 1.014 1.019 1.008 1.008 1.006
(0.049) (0.018) (0.013) (0.026) (0.034) (0.013) (0.010) (0.016)

3 1.109 1.037 1.034 1.036 1.063 1.025 1.024 1.024
(0.151) (0.048) (0.037) (0.063) (0.089) (0.033) (0.023) (0.046)

6 1.141 1.071 1.066 1.050 1.058 1.035 1.036 1.026
(0.202) (0.124) (0.089) (0.102) (0.113) (0.078) (0.056) (0.070)

12 1.389 1.132 1.089 1.145 1.138 1.057 1.043 1.057
(0.648) (0.162) (0.117) (0.219) (0.196) (0.083) (0.060) (0.099)

Table 3: Rolling forecasting results (relative MSE and MAE). The table shows

the cross-sectional average and standard errors obtained from the MSE or MAE

of a particular predictor xit standardized to the MSE or MAE of a random

walk with rolling drift for horizons h = 1, 3, 6, 12. Entries in bold denote

average relative MSE or MAE lower than one. SM = single market estimates;

MG = mean group estimates; PO = pooled estimates; AV = average of the

SM, MG, PO estimates.
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DM-MSE DM-MAE

xit h SM MG PO AV SM MG PO AV

PPP

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

MM

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

UIP

1 0 0 1 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

FM

1 1 1 1 1 0 0 0 0

3 1 0 1 1 1 0 1 1

6 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 1

TAY

1 0 0 1 0 0 3 3 2

3 0 0 0 0 0 0 0 0

6 1 2 2 0 2 2 2 2

12 0 0 0 0 1 1 1 1

ERR

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

SRD

1 0 2 2 2 0 0 1 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0

12 0 1 0 0 0 0 0 0

ERV

1 1 1 0 2 1 1 0 3

3 1 0 1 1 0 1 0 2

6 1 0 1 1 1 0 1 0

12 1 0 2 2 1 0 2 2

SVD

1 0 0 0 0 0 0 0 0

3 0 1 1 0 0 1 1 0

6 2 2 2 2 2 1 1 2

12 1 0 0 0 2 0 0 2

BSD

1 0 0 0 0 0 1 1 0

3 0 0 0 1 0 0 0 0

6 0 0 0 1 0 0 0 1

12 0 0 0 0 0 0 0 0

CSD

1 0 0 1 0 1 1 2 2

3 0 1 1 0 0 1 1 0

6 0 1 0 0 0 2 2 0

12 0 0 0 0 0 0 0 0

36



EID

1 0 0 0 0 0 1 1 1

3 0 0 0 0 0 0 0 0

6 0 1 1 0 0 1 1 0

12 0 1 1 1 0 1 2 0

Table 4: Recursive forecasting results (DM). The table shows the number

of rejections of the Diebold Mariano test (DM) with respect to MSE or

MAE for a particular predictor xit for horizons h = 1, 3, 6, 12 at the 10%

significance level (critical value = 1.28). SM = single market estimates;

MG = mean group estimates; PO = pooled estimates; AV = average of

the SM, MG, PO estimates.
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DM-MSE DM-MAE

xit h SM MG PO AV SM MG PO AV

PPP

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 1 0 0 0 1 0 0

12 0 0 0 0 0 0 0 0

MM

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

UIP

1 0 0 0 0 0 0 1 0

3 0 1 1 0 0 2 3 2

6 0 0 0 0 0 1 1 0

12 0 0 0 1 0 1 1 1

FM

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

TAY

1 0 2 2 2 0 3 2 2

3 0 0 1 0 0 0 0 0

6 1 2 1 0 1 3 2 2

12 1 5 3 4 0 4 3 4

ERR

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

SRD

1 0 1 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 1 0 0 0 1 0 0

12 0 1 0 0 0 1 1 0

ERV

1 0 0 0 1 1 0 0 1

3 1 1 0 1 1 1 0 2

6 0 0 0 1 0 0 0 1

12 0 0 0 0 0 0 0 0

SVD

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0

6 1 1 1 1 1 2 2 1

12 2 0 1 2 2 0 0 1

BSD

1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

CSD

1 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

6 0 0 0 0 0 0 0 0

12 1 0 0 0 1 0 1 1
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EID

1 0 1 0 1 0 0 0 0

3 0 0 0 1 0 0 0 1

6 1 1 0 1 1 1 0 0

12 0 0 0 0 0 0 0 0

Table 5: Rolling forecasting results (DM). The table shows the number

of rejections of the Diebold Mariano (DM) test with respect to MSE or

MAE for a particular predictor xit for horizons h = 1, 3, 6, 12 at the 10%

significance level (critical value = 1.28). SM = single market estimates;

MG = mean group estimates; PO = pooled estimates; AV = average of

the SM, MG, PO estimates.
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M2, γ = 3 M2, γ = 6

xit h SM MG PO AV SM MG PO AV

PPP

1 0.996 0.830 -0.300 0.808 0.498 0.415 -0.150 0.404
(4.719) (2.233) (2.227) (3.928) (2.359) (1.116) (1.113) (1.964)

3 0.745 -0.164 -1.169 -0.686 0.373 -0.082 -0.584 -0.343
(6.382) (4.690) (3.671) (5.216) (3.191) (2.345) (1.835) (2.608)

6 0.865 0.498 1.701 0.475 0.432 0.249 0.851 0.237
(8.544) (7.821) (10.536) (8.148) (4.272) (3.910) (5.268) (4.074)

12 6.858 5.622 5.725 5.081 3.429 2.811 2.863 2.540
(11.301) (14.324) (13.747) (10.680) (5.651) (7.162) (6.873) (5.340)

MM

1 2.255 -0.185 -0.392 -0.739 1.127 -0.093 -0.196 -0.369
(5.110) (2.362) (4.363) (4.489) (2.555) (1.181) (2.181) (2.244)

3 0.882 0.494 0.897 0.293 0.441 0.247 0.448 0.147
(8.410) (4.805) (4.722) (5.011) (4.205) (2.403) (2.361) (2.505)

6 1.593 0.862 2.953 0.958 0.796 0.431 1.477 0.479
(13.707) (10.213) (10.230) (7.257) (6.853) (5.107) (5.115) (3.629)

12 10.594 5.905 5.990 6.530 5.297 2.953 2.995 3.265
(14.147) (7.332) (8.038) (9.941) (7.074) (3.666) (4.019) (4.971)

UIP

1 2.683 2.915 2.412 2.681 1.342 1.457 1.206 1.340
(5.352) (4.617) (5.214) (4.952) (2.676) (2.309) (2.607) (2.476)

3 35.895 34.947 37.170 36.126 17.948 17.474 18.585 18.063
(28.008) (25.270) (25.854) (26.643) (14.004) (12.635) (12.927) (13.321)

6 53.758 53.968 55.111 55.038 26.879 26.984 27.555 27.519
(38.228) (32.313) (33.292) (34.569) (19.114) (16.157) (16.646) (17.285)

12 79.203 84.038 77.807 82.215 39.602 42.019 38.904 41.107
(58.432) (70.493) (60.895) (64.682) (29.216) (35.247) (30.447) (32.341)

FM

1 4.001 0.990 0.489 2.250 2.001 0.495 0.245 1.125
(3.767) (2.103) (1.239) (3.099) (1.884) (1.051) (0.619) (1.550)

3 4.654 3.244 3.214 3.420 2.327 1.622 1.607 1.710
(4.165) (3.173) (2.129) (3.012) (2.082) (1.586) (1.064) (1.506)

6 7.560 7.456 7.618 8.305 3.780 3.728 3.809 4.153
(16.043) (20.997) (18.263) (22.034) (8.022) (10.498) (9.131) (11.017)

12 7.604 11.947 11.393 7.306 3.802 5.973 5.697 3.653
(11.012) (25.396) (26.895) (9.969) (5.506) (12.698) (13.447) (4.985)

TAY

1 3.423 4.749 4.792 4.207 1.712 2.374 2.396 2.103
(5.387) (5.237) (5.154) (5.236) (2.694) (2.618) (2.577) (2.618)

3 6.364 5.907 5.825 6.053 3.182 2.953 2.913 3.027
(6.914) (5.669) (5.606) (5.706) (3.457) (2.834) (2.803) (2.853)

6 4.848 4.535 4.419 4.344 2.424 2.268 2.210 2.172
(9.937) (10.647) (10.573) (10.293) (4.969) (5.324) (5.287) (5.146)

12 10.541 11.993 12.048 11.448 5.271 5.996 6.024 5.724
(8.667) (9.985) (10.072) (9.430) (4.334) (4.992) (5.036) (4.715)

ERR

1 2.010 1.314 1.675 1.511 1.005 0.657 0.838 0.756
(4.810) (5.356) (5.348) (5.177) (2.405) (2.678) (2.674) (2.589)

3 5.066 5.521 6.336 5.580 2.533 2.761 3.168 2.790
(5.513) (5.367) (5.689) (5.388) (2.756) (2.684) (2.845) (2.694)

6 5.469 5.280 5.286 5.304 2.734 2.640 2.643 2.652
(12.498) (12.829) (12.968) (12.734) (6.249) (6.415) (6.484) (6.367)

12 11.039 11.835 11.676 11.502 5.519 5.918 5.838 5.751
(11.193) (11.692) (11.617) (11.470) (5.597) (5.846) (5.809) (5.735)

SRD

1 5.273 5.330 4.835 5.293 2.637 2.665 2.418 2.647
(5.680) (5.106) (5.161) (5.200) (2.840) (2.553) (2.580) (2.600)

3 3.935 4.256 4.238 4.130 1.968 2.128 2.119 2.065
(7.342) (7.308) (7.221) (7.320) (3.671) (3.654) (3.611) (3.660)
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6 5.057 5.333 5.408 5.258 2.528 2.667 2.704 2.629
(10.909) (10.687) (10.679) (10.773) (5.454) (5.344) (5.339) (5.387)

12 11.835 11.759 11.842 11.818 5.918 5.879 5.921 5.909
(9.471) (9.018) (9.296) (9.302) (4.735) (4.509) (4.648) (4.651)

ERV

1 5.261 4.208 1.141 3.563 2.630 2.104 0.570 1.782
(5.809) (4.291) (5.044) (4.501) (2.905) (2.146) (2.522) (2.251)

3 9.195 7.466 5.081 7.091 4.598 3.733 2.540 3.546
(8.844) (8.829) (8.600) (8.985) (4.422) (4.415) (4.300) (4.492)

6 9.497 7.078 7.333 7.610 4.749 3.539 3.667 3.805
(17.000) (15.703) (18.945) (17.159) (8.500) (7.851) (9.473) (8.580)

12 13.040 15.372 15.544 14.742 6.520 7.686 7.772 7.371
(13.376) (20.208) (18.234) (17.532) (6.688) (10.104) (9.117) (8.766)

SVD

1 2.209 2.184 2.021 2.002 1.105 1.092 1.011 1.001
(5.368) (5.582) (5.655) (5.526) (2.684) (2.791) (2.827) (2.763)

3 4.649 4.345 4.378 4.427 2.325 2.172 2.189 2.213
(7.849) (6.466) (6.557) (6.860) (3.925) (3.233) (3.279) (3.430)

6 5.935 5.919 5.599 5.803 2.968 2.960 2.800 2.902
(9.732) (11.000) (10.937) (10.496) (4.866) (5.500) (5.469) (5.248)

12 11.469 12.276 12.213 12.025 5.735 6.138 6.106 6.012
(10.050) (10.436) (10.322) (10.210) (5.025) (5.218) (5.161) (5.105)

BSD

1 2.734 1.693 1.643 1.952 1.367 0.847 0.821 0.976
(5.540) (5.861) (5.776) (5.965) (2.770) (2.930) (2.888) (2.983)

3 5.352 3.628 3.776 4.057 2.676 1.814 1.888 2.029
(6.740) (6.881) (6.809) (7.349) (3.370) (3.440) (3.405) (3.674)

6 7.848 4.938 4.951 5.724 3.924 2.469 2.475 2.862
(10.976) (11.213) (10.900) (11.332) (5.488) (5.607) (5.450) (5.666)

12 12.707 12.654 11.893 12.184 6.353 6.327 5.946 6.092
(12.994) (12.816) (11.107) (12.276) (6.497) (6.408) (5.554) (6.138)

CSD

1 4.778 3.459 4.434 4.071 2.389 1.730 2.217 2.036
(6.830) (5.559) (6.092) (6.242) (3.415) (2.779) (3.046) (3.121)

3 8.302 6.052 7.598 7.402 4.151 3.026 3.799 3.701
(8.061) (6.883) (8.442) (7.527) (4.030) (3.442) (4.221) (3.764)

6 12.212 9.552 12.333 11.769 6.106 4.776 6.167 5.884
(15.670) (11.847) (13.546) (13.248) (7.835) (5.924) (6.773) (6.624)

12 21.266 16.051 17.653 19.456 10.633 8.025 8.826 9.728
(16.154) (16.848) (19.180) (18.361) (8.077) (8.424) (9.590) (9.180)

EID

1 2.520 2.852 2.605 2.583 1.260 1.426 1.302 1.291
(6.927) (6.059) (5.807) (7.034) (3.463) (3.030) (2.904) (3.517)

3 5.728 5.659 4.968 5.326 2.864 2.830 2.484 2.663
(10.800) (7.286) (6.787) (8.463) (5.400) (3.643) (3.393) (4.232)

6 4.512 5.453 4.419 4.520 2.256 2.727 2.209 2.260
(9.738) (11.566) (11.379) (10.878) (4.869) (5.783) (5.689) (5.439)

12 17.945 13.575 12.876 15.044 8.973 6.788 6.438 7.522
(16.600) (12.003) (11.019) (13.044) (8.300) (6.002) (5.509) (6.522)

Table 6: Recursive forecasting results (M2). The table shows the cross-

sectional average and standard errors of the Sharpe Ratio differentials (M2)

in annualized basis points obtained from a portfolio constructed by using fore-

casts and residual variance of a particular predictor xit versus a buy-and-hold

portfolio for horizons h = 1, 3, 6, 12. SM = single market estimates; MG =

mean group estimates; PO = pooled estimates; AV = average of the SM, MG,

PO estimates.
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M2, γ = 3 M2, γ = 6

xit h SM MG PO AV SM MG PO AV

PPP

1 3.442 3.176 3.999 3.641 1.721 1.588 2.000 1.821
(4.718) (3.809) (4.323) (5.072) (2.359) (1.904) (2.162) (2.536)

3 8.679 8.753 8.087 8.711 4.340 4.376 4.044 4.355
(6.553) (9.292) (8.855) (8.468) (3.277) (4.646) (4.427) (4.234)

6 14.750 16.563 13.591 14.567 7.375 8.281 6.795 7.284
(9.772) (14.662) (14.182) (10.457) (4.886) (7.331) (7.091) (5.229)

12 11.005 7.687 5.792 8.012 5.503 3.844 2.896 4.006
(13.044) (12.386) (10.879) (12.284) (6.522) (6.193) (5.439) (6.142)

MM

1 4.145 1.567 2.784 1.693 2.073 0.784 1.392 0.847
(3.961) (2.567) (3.644) (3.305) (1.981) (1.283) (1.822) (1.652)

3 5.418 3.590 4.984 4.230 2.709 1.795 2.492 2.115
(6.695) (2.905) (3.553) (3.812) (3.347) (1.452) (1.776) (1.906)

6 7.653 5.659 8.001 4.868 3.826 2.830 4.001 2.434
(10.097) (4.874) (6.173) (7.037) (5.048) (2.437) (3.086) (3.518)

12 10.630 8.040 5.541 7.430 5.315 4.020 2.770 3.715
(13.018) (9.946) (9.866) (10.968) (6.509) (4.973) (4.933) (5.484)

UIP

1 5.506 5.926 6.196 5.786 2.753 2.963 3.098 2.893
(4.756) (4.957) (5.197) (4.980) (2.378) (2.478) (2.599) (2.490)

3 28.064 28.842 32.965 29.814 14.032 14.421 16.483 14.907
(22.660) (23.143) (24.500) (23.330) (11.330) (11.571) (12.250) (11.665)

6 37.986 40.105 45.618 41.297 18.993 20.052 22.809 20.648
(35.937) (27.225) (28.222) (30.295) (17.968) (13.612) (14.111) (15.147)

12 65.904 78.596 78.531 70.403 32.952 39.298 39.266 35.202
(53.779) (48.066) (46.791) (45.183) (26.889) (24.033) (23.395) (22.591)

FM

1 5.265 4.330 3.980 4.896 2.633 2.165 1.990 2.448
(4.162) (2.850) (2.668) (3.400) (2.081) (1.425) (1.334) (1.700)

3 9.063 7.797 6.557 7.802 4.532 3.898 3.278 3.901
(6.992) (5.440) (4.696) (5.720) (3.496) (2.720) (2.348) (2.860)

6 15.160 14.979 12.937 14.635 7.580 7.489 6.468 7.317
(14.195) (14.098) (12.092) (13.461) (7.097) (7.049) (6.046) (6.730)

12 13.295 16.145 15.581 14.116 6.647 8.072 7.790 7.058
(16.935) (17.622) (17.565) (15.885) (8.467) (8.811) (8.783) (7.943)

TAY

1 5.594 6.661 6.641 6.330 2.797 3.331 3.321 3.165
(5.323) (4.989) (4.938) (4.937) (2.662) (2.495) (2.469) (2.469)

3 8.499 8.794 8.412 8.658 4.250 4.397 4.206 4.329
(7.330) (6.949) (6.826) (6.851) (3.665) (3.475) (3.413) (3.426)

6 10.911 10.647 10.179 10.443 5.455 5.323 5.089 5.221
(7.376) (8.787) (8.710) (7.967) (3.688) (4.394) (4.355) (3.984)

12 14.163 15.315 15.418 14.802 7.081 7.658 7.709 7.401
(12.076) (12.214) (12.288) (11.870) (6.038) (6.107) (6.144) (5.935)

ERR

1 4.545 5.177 5.317 4.962 2.273 2.588 2.659 2.481
(5.097) (4.922) (5.049) (5.075) (2.549) (2.461) (2.524) (2.538)

3 5.038 5.502 6.092 5.492 2.519 2.751 3.046 2.746
(6.120) (5.899) (6.054) (6.012) (3.060) (2.949) (3.027) (3.006)

6 12.667 11.978 11.835 12.113 6.333 5.989 5.918 6.056
(10.871) (9.992) (10.221) (10.260) (5.435) (4.996) (5.111) (5.130)

12 15.470 16.109 15.989 15.841 7.735 8.055 7.995 7.920
(14.333) (14.134) (13.970) (14.116) (7.167) (7.067) (6.985) (7.058)

SRD

1 7.449 7.378 7.002 7.373 3.724 3.689 3.501 3.686
(5.550) (5.112) (5.163) (5.302) (2.775) (2.556) (2.581) (2.651)

3 7.217 7.239 7.191 7.208 3.608 3.620 3.596 3.604
(7.315) (7.247) (7.454) (7.402) (3.657) (3.624) (3.727) (3.701)
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6 11.727 11.758 11.812 11.805 5.864 5.879 5.906 5.903
(8.277) (8.618) (8.613) (8.505) (4.139) (4.309) (4.306) (4.253)

12 15.707 15.317 15.474 15.530 7.853 7.658 7.737 7.765
(12.717) (12.043) (12.198) (12.364) (6.359) (6.022) (6.099) (6.182)

ERV

1 6.731 6.992 4.907 6.034 3.366 3.496 2.454 3.017
(6.277) (5.270) (4.471) (5.174) (3.139) (2.635) (2.236) (2.587)

3 10.603 10.245 9.126 10.008 5.302 5.123 4.563 5.004
(8.918) (9.128) (8.187) (8.743) (4.459) (4.564) (4.094) (4.372)

6 14.855 14.194 13.627 14.302 7.428 7.097 6.813 7.151
(13.895) (14.117) (15.069) (14.093) (6.948) (7.059) (7.535) (7.046)

12 14.687 16.233 16.052 15.388 7.344 8.116 8.026 7.694
(9.790) (13.459) (12.096) (10.953) (4.895) (6.730) (6.048) (5.476)

SVD

1 6.103 6.083 5.971 6.093 3.052 3.042 2.986 3.047
(5.013) (5.108) (5.089) (5.058) (2.507) (2.554) (2.545) (2.529)

3 7.739 8.051 8.231 8.021 3.870 4.025 4.115 4.010
(8.145) (7.252) (7.182) (7.547) (4.072) (3.626) (3.591) (3.773)

6 13.747 13.015 12.926 13.295 6.873 6.508 6.463 6.647
(9.707) (9.517) (9.224) (9.392) (4.853) (4.759) (4.612) (4.696)

12 18.339 16.062 16.416 16.896 9.169 8.031 8.208 8.448
(13.886) (13.049) (12.926) (13.074) (6.943) (6.525) (6.463) (6.537)

BSD

1 6.217 6.199 6.263 6.253 3.109 3.100 3.131 3.126
(5.291) (5.421) (5.353) (5.378) (2.645) (2.711) (2.677) (2.689)

3 8.781 8.657 8.930 8.730 4.390 4.329 4.465 4.365
(7.449) (7.393) (7.296) (7.389) (3.724) (3.697) (3.648) (3.694)

6 11.668 11.494 11.807 11.684 5.834 5.747 5.903 5.842
(10.229) (9.763) (9.498) (9.842) (5.115) (4.881) (4.749) (4.921)

12 19.291 16.525 15.297 16.823 9.646 8.263 7.649 8.412
(15.215) (13.742) (12.475) (14.000) (7.608) (6.871) (6.237) (7.000)

CSD

1 5.003 4.569 5.239 4.902 2.502 2.285 2.620 2.451
(5.141) (4.551) (4.728) (4.885) (2.571) (2.276) (2.364) (2.442)

3 8.855 6.582 7.482 7.637 4.427 3.291 3.741 3.819
(6.559) (6.354) (6.364) (6.362) (3.279) (3.177) (3.182) (3.181)

6 14.771 9.453 11.527 12.062 7.386 4.727 5.763 6.031
(9.663) (11.469) (11.297) (10.772) (4.831) (5.734) (5.648) (5.386)

12 23.111 15.318 16.999 18.935 11.556 7.659 8.499 9.468
(14.332) (13.043) (13.795) (14.537) (7.166) (6.522) (6.897) (7.268)

EID

1 4.992 5.609 5.522 5.336 2.496 2.805 2.761 2.668
(6.755) (5.299) (5.268) (6.124) (3.377) (2.649) (2.634) (3.062)

3 7.715 8.406 7.691 7.865 3.858 4.203 3.846 3.933
(10.166) (7.505) (7.377) (8.351) (5.083) (3.753) (3.689) (4.176)

6 11.941 13.117 12.123 12.566 5.971 6.558 6.061 6.283
(9.399) (10.642) (10.172) (9.612) (4.700) (5.321) (5.086) (4.806)

12 18.254 17.939 17.834 18.077 9.127 8.970 8.917 9.039
(17.885) (14.862) (14.825) (15.864) (8.943) (7.431) (7.413) (7.932)

Table 7: Rolling forecasting results (M2). The table shows the cross-sectional

average and standard errors of the Sharpe Ratio differentials (M2) in annual-

ized basis points obtained from a portfolio constructed by using forecasts and

residual variance of a particular predictor xit versus a buy-and-hold portfo-

lio for horizons h = 1, 3, 6, 12. SM = single market estimates; MG = mean

group estimates; PO = pooled estimates; AV = average of the SM, MG, PO

estimates.
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M2, γ = 2 M2, γ = 6
Method h 1 3 6 12 1 3 6 12

AFC
3.327 5.888 9.774 14.502 1.664 2.944 4.887 7.541
(5.251) (6.744) (12.244) (11.202) (2.625) (3.372) (6.122) (5.526)

RFC
3.870 6.026 10.503 14.346 1.935 3.013 5.252 7.469
(4.835) (5.717) (11.619) (11.614) (2.418) (2.859) (5.810) (5.700)

HFC
5.405 10.408 15.355 14.134 2.703 5.204 7.677 7.281
(5.651) (9.104) (10.786) (17.497) (2.826) (4.552) (5.393) (8.361)

OFC
4.394 10.199 10.086 13.072 2.197 5.099 5.043 6.793
(5.361) (7.281) (13.557) (11.590) (2.680) (3.640) (6.778) (5.664)

MFC
4.217 7.707 12.194 13.475 2.109 3.854 6.097 7.006
(5.265) (7.277) (12.501) (12.624) (2.633) (3.638) (6.251) (6.150)

FFC
3.735 6.845 13.017 14.536 1.868 3.422 6.508 7.477
(5.408) (7.184) (14.767) (13.615) (2.704) (3.592) (7.383) (6.650)

Table 9: Forecast combination results (M2). The table shows the cross-sectional average and
standard errors of the Sharpe Ratio differentials (M2) in annualized basis points obtained
from a portfolio constructed by using forecasts and residual variance of a particular forecast
combination method versus a buy-and-hold portfolio for horizons h = 1, 3, 6, 12. AFC = Simple
average; RFC = Rank-weighted combinations; HFC = Hierarchical forecast combinations; OFC
= TMA with OLS weights; MFC = TMA with RMSE weights; FFC = TMA with MSE-
Frequency weights.
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