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Abstract

By considering a financial market of fundamentalists and trend followers in
which the price trend of the trend followers is formed as a weighted average of
historical prices, we establish a continuous-time financial market model with time
delay and examines the impact of time delay on market price dynamics. Conditions
for the stability of the fundamental price in terms of agents’ behavior parameters
and time delay are obtained. In particular, it is found that an increase in time delay
can not only destabilize the market price but also stabilize an otherwise unstable
market price, leading to stability switching as delay increases. This interesting
phenomena shed new light in understanding of mechanism on the market stability.
When the fundamental price becomes unstable through Hopf bifurcations, suffi-
cient conditions on the stability and global existence of the periodic solution are
obtained.
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1 Introduction

Technical analysts or “chartists”, who use various technical trading rules such as

moving averages, attempt to forecast future prices by the study of patterns of past prices

and other summary statistics about security trading. Basically, they believe that shifts in

supply and demand can be detected in charts of market movements. Despite the efficient

market hypothesis of financial markets in the academic finance literature (see Fama,

1970), the use of technical trading rules, such as moving average rules, still seems to be

widespread amongst financial market practitioners (see Allen and Taylor, 1990; Taylor

and Allen, 1992). This motivates recent studies on the impact of chartists on the market

price behavior. Over the last two decades, heterogeneous agent models (HAMs) have

been developed to explain various market phenomena and, as the main tool, the stability

and bifurcation analysis has been widely used in HAMs. By incorporating heterogeneity

and behavior of chartists and examining underlying deterministic models, HAMs have

successfully explained the complicated role of chartists in market price behavior, market

booms and crashes, and deviations of the market price from the fundamental price.

Numerical simulations of the stochastic model based on the analytical analysis of the

underlying deterministic model show some potentials of HAMs in generating the stylized

facts (such as skewness, kurtosis, volatility clustering and fat tails of returns), and various

power laws (such as the long memory in return volatility) observed in financial markets.

We refer the reader to Hommes (2006), LeBaron (2006) and Chiarella, Dieci and He

(2009) for surveys of the recent developments in this literature.

Most of the HAMs in the literature are in discrete-time rather than continuous-time

setup. To examine the role of moving average rules in market stability theoretically,

Chiarella, He and Hommes (2006) recently propose a discrete-time HAM in which de-

mand for traded assets has both a fundamentalist and a chartist components. The

chartist demand is governed by the difference between the current price and a moving

average (MA). They show analytically and numerically that an increase in the lag length

used in moving average can destabilize the market, leading to cyclic behavior of the

market price around the fundamental price. The discrete-time setup facilities economic

understanding and mathematical analysis, but it also faces some limitations when expec-

tations of agents are formed in historical prices over different time periods. In particular,

when dealing with MA rules in Chiarella, He and Hommes (2006), different lag lengths

used in the MA rules lead to different dimensions of the system which need to be dealt

with separately. Very often, an analytical analysis is difficult when the dimension of the

system is higher. To overcome this difficulty, this paper extends the heterogeneous agent

model of the financial market in Chiarella, He and Hommes (2006) from the discrete-

time to a continuous-time framework. The financial market is consisting of a group of

fundamentalists and a group of trend followers who use a weighted average of historical

prices as price trend. The fundamentalists are assumed to buy (sell) the stock when

its price is below (above) the fundamental price. The trend followers are assumed to
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react to buy-sell signals generated by the difference between the current price and the

price trend. The model is described mathematically by a system of delay differential

equations, which provides a systematic analysis on various moving average rules used in

the discrete-time model in Chiarella, He and Hommes (2006).

Development of deterministic delay differential equation models to characterize fluc-

tuation of commodity prices and cyclic economic behavior has a long history, see, for

example, Haldane (1932), Kalecki (1935), Goodwin (1951), Larson (1964), Howroyd and

Russell (1984) and Mackey (1989). The development further leads to the studies on the

effect of policy lag on macroeconomic stability, see for example, Phillips (1954, 1957),

Asada and Semmler (1995), Asada and Yoshida (2001) and Yoshida and Asada (2007).

In particular, as indicated in Manfredi and Fanti (2004), an important class of delay eco-

nomic model is that of distributed delay systems governed by Erlangian kernels, which

are reducible to higher dimensional ordinary differential equation systems.

Though there is a growing study on various market behavior, in our knowledge,

using delay differential equations to model financial market behavior is relatively new.

This paper aims to extend Chiarella, He and Hommes (2006) model in discrete-time

to continuous-time with a time delay framework. This extension provides a uniform

treatment on the moving average rules with different window length in discrete-time

model. Different from the distributed delay of Erlangian kernel type used in economic

modelling literature, the delay introduced in this paper is not ‘reducible’ in general. By

focusing on the impact of the behavior of heterogeneous agents, the stabilizing role of the

time delay is examined. Sufficient conditions for the stability of the fundamental price

in terms of agents’ behavior parameters and time delay are derived. Consistent with

the results obtained in the discrete-time model in Chiarella, He and Hommes (2006),

it is found that an increase in time delay can destabilize the market price, resulting

in oscillatory market price characterized by a Hopf bifurcation. However, in contrast

to the discrete-time model, it is also found that, depending on the behavior of the

fundamentalists and trend followers, an increase in the time delay can also stabilize an

otherwise unstable market price and such stability switching can happen many times.

The stability switching is a very interesting and new phenomenon on price dynamics

of the HAMs. The stabilising role of reducible distributed delay has been observed in

economic modelling (see Manfredi and Fanti, 2004) and it is of interest to ascertain that

this stability is preserved under non-reducible delay introduced in this paper. When the

fundamental steady state becomes unstable, the market price displays cyclic behavior

around the fundamental price characterized by Hopf bifurcations. We also examine the

stability of the Hopf bifurcation and furthermore the global existence of periodic solutions

bifurcating from the Hopf bifurcations.

The paper is organized as follows. We first introduce a deterministic HAM with

two types of heterogeneous agents in a continuous time framework with time delay in

Section 2. In Section 3, we first conduct a stability and bifurcation analysis of the

delay differential equation model and then examine the stability of the periodic solution

3



characterized by the Hopf bifurcation. In addition, we obtain some results on the global

existence of periodic solutions resulting from the Hopf bifurcation. Section 4 concludes

the paper. All the proofs of technical results are given in the appendices.

2 A Financial Market Model with Delay

Following the current HAM framework, see for example, Brock and Hommes (1998),

Chiarella and He (2002, 2003) and, in particular, Chiarella, He and Hommes (2006)

in discrete-time setup, this section proposes an asset pricing model in a continuous-

time framework with two different types of heterogeneous traders, fundamentalists and

trend followers, who trade according to fundamental analysis and technical analysis,

respectively. The market price is arrived at via a market maker scenario in line with

Beja and Goldman (1980), Day and Huang (1990) and Chiarella and He (2003).

Consider a market with a risky asset (such as stock market index) and let P (t)

denote the (cum dividend) price per share of the risky asset at time t. To focus on price

dynamics, we follow Beja and Goldman (1980) and Day and Huang (1990) and motivate

the demand functions of the two different types of traders by their trading rules directly,

rather than deriving the demand functions from utility maximization of their portfolio

investments with both risky and risk-free assets (as for example in Brock and Hommes,

1998 and Chiarella and He, 2003). The market population fractions1 of fundamentalists

and chartists are respectively α and 1− α, where α ∈ [0, 1].

The fundamentalists trade based on their estimated fundamental price. They believe

that the market price P (t) is mean-reverting to the fundamental price F (t) which is

assumed to be a constant F (t) = F for simplicity. We assume that the demand of

the fundamentalists, Df (t) at time t, is proportional to the price deviation from the

fundamental price, namely,

Df (t) = βf [F − P (t)], (2.1)

where βf > 0 is a constant parameter, measuring the mean-reverting of the market price

to the fundamental price, which may be weighted by the risk aversion coefficient of the

fundamentalists.

The chartists trade based on charting signals generated from historical prices. Given

the well documented momentum trading strategy in empirical literature, see for example

Hirshleifer (2001), we assume that the chartists are trend followers. They believe that

the future market price follows a price trend u(t). When the current price is above the

trend, the trend followers believe the price will rise and they like to take a long position

1To simplify the analysis, we assume that the market fractions are constant parameters as in the
market fraction model in He and Li (2008), rather than dependent variables based on some performance
measure, as in Brock and Hommes (1998). An extension along this line, as in Hommes (1998) or Dieci
et al (2006) in general, to allow investors switching between the two strategies is of interest and we leave
this as future research.
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of the risky asset; otherwise, the trend followers will take a short position. We therefore

assume that the demand of the chartists is given by

Dc(t) = g
(
P (t)− u(t)

)
, (2.2)

where the demand function g satisfies:

g′(x) > 0, g′(0) = βc > 0, xg′′(x) < 0 for x 6= 0. (2.3)

The S-shaped demand function g capturing the trend following behavior is well docu-

mented in the HAM literature (see Chiarella, Dieci and He, 2009), where the parameter

βc represents the extrapolation rate of the trend followers on the future price trend

when the price deviation from the trend is small. In the following discussion, we let

g(x) = tanh(βcx), which satisfies the conditions in (2.3).

Among various price trends used in practice, weighted moving average rules are the

most popular ones. In this paper, we assume that the price trend u(t) of the trend

followers at time t is measured by an exponentially decayed weighted average of historical

prices over a time interval [t− τ, t] with time delay τ > 0, namely,

u(t) =
1

A

∫ t

t−τ

e−k(t−s)P (s)ds, A =
1− e−kτ

k
, (2.4)

where k > 0 measures the decaying rate of the weights on the historical prices and A is

a normalization constant. Note that the distribution delay used in (2.4) is not reducible

for 0 < τ < ∞. Equation (2.4) implies that, when forming the price trend, the trend

followers believe the more recent prices contain more information about the future price

movements so that the weights associated to the historical prices decay exponentially

with a decay rate k. In particular, when k → 0, the price trend u(t) in equation (2.4) is

simply given by the standard moving average, that is,

u(t) =
1

τ

∫ t

t−τ

P (s)ds. (2.5)

When k →∞, all the weights go to the current price so that u(t) → P (t).

In general, for 0 < k < ∞, equation (2.4) can be expressed as a differential equation

with time delay τ

du(t)

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
. (2.6)

In particular, when τ → 0, u(t) → P (t), implying that the trend followers regard the

current price as their price trend; when τ →∞, the distributed delay becomes reducible

and hence the trend followers use all the historical prices to form the price trend

u(t) =
1

k

∫ t

−∞
e−k(t−s)P (s)ds. (2.7)
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Consequently, equation (2.6) becomes an ordinary differential equation

du(t)

dt
=

1

k

[
P (t)− u(t)

]
. (2.8)

Assume a net zero supply of the risky asset. Then the aggregate market excess

demand for the risky asset, weighted by the population weights of the fundamentalists

and trend followers, is given by αDf (t) + (1 − α)Dc(t). Following Beja and Goldman

(1980), Day and Huang (1990) and Chiarella, He and Hommes (2006), we assume that

the market price P (t) at time t is set via a market maker mechanism and is adjusted

according to the aggregate excess demand, that is

dP (t)

dt
= µ

[
αDf (t) + (1− α)Dc(t)

]
, (2.9)

where µ > 0 represents the speed of the price adjustment by the market maker.

Based on (2.9) and the above analysis, the market price of the risky asset is deter-

mined according to a delay differential system





dP (t)

dt
= µ

[
αβf

(
F − P (t)

)
+ (1− α) tanh

(
βc

(
P (t)− u(t)

))]
,

du(t)

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
.

(2.10)

In the following sections, we examine the stability and bifurcation induced fluctuation

of the market price of the system (2.10).

3 Price Stability and Bifurcation

It is easy to see that (P̄ , ū) = (F, F ) is an equilibrium point of (2.10) where the

equilibrium steady state price is given by the constant fundamental price. We therefore

call (P̄ , ū) = (F, F ) the fundamental steady state. In this section, we study the dynamics

of the deterministic model (2.10), including the stability of the fundamental steady

state, bifurcation, and global existence of the periodic solutions resulted from the Hopf

bifurcation. In general, the dynamics depend on the behavior of the fundamentalists,

the trend followers, and the market maker. As we known (see, for example, Hale and

Kocak, 1991; Gopalsamy, 1992; Kuang 1993) that the stability is characterized by the

eigenvalues of the characteristic equation of the system at the steady state. Because of

the time delay, the eigenvalue analysis can be very complicated in general.

We first consider two special cases α = 1 and α = 0, that is the market consists of

either the fundamentalists or the trend followers only. For α = 1, the system (2.10) is

reduced to
dP (t)

dt
= µαβf (F − P (t)).

Because of µαβf > 0, it represents a mean-reverting process of the market price to the

fundamental price. Hence the price converges to its fundamental value eventually and
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therefore the fundamental steady state is globally asymptotically stable. This exhibits

the stabilizing role of the fundamentalists. For α = 0, the market consists of the trend

followers only and, consequently, the system (2.10) reduces to





dP (t)

dt
=µ tanh

(
βc(P (t)− u(t))

)
,

du(t)

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
.

(3.1)

It is easy to see that any point (P̄ , ū) along the line P̄ = ū is an equilibrium of the system

(3.1). This means that the system has infinite many steady states. Near the line, the

solution of (3.1) converges to a point on the line P̄ = ū and the solutions with different

initial values converge to different equilibria on the line. This implies that the line P̄ = ū

is locally attractive. This property is illustrated in Fig. 1, in which trajectories with

different initial values converge to different points along the line P = u.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

P

u

Figure 1: The local attractor line P̄ = ū when α = 0. Here µ = 1, βc = 0.8, k = 0.1 and

τ = 0.1.

3.1 Stability and Bifurcation Analysis

In the following, we consider 0 < α < 1 and denote

γf = µαβf (> 0), γc = µ(1− α)βc (> 0).

The parameters γf and γc capture the activities of the fundamentalists and the trend

followers, βf and βc, weighted by their market population fractions, α and 1−α, respec-

tively, and the speed of the price adjustment of the market maker, µ. In this case, the

system (2.10) has the unique positive equilibrium (F, F ) and the the local stability of
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the fundamental steady state depends on the eigenvalue λ of the characteristic equation

of the system at the fundamental steady state

∆(λ) := p(λ, τ) + q(λ, τ)e−λτ = 0, (3.2)

where

p(λ, τ) = λ2 + (k + γf − γc)λ + kγf − kγc +
kγc

1− e−kτ
,

q(λ, τ) = − kγce
−kτ

1− e−kτ
.

(3.3)

It is easy to see that ∆(λ) is continuous for τ and analytic for λ. In addition, for τ = 0,

∆(λ) = λ2 + (k + γf )λ + kγf = 0

has two negative roots λ1 = −k < 0 and λ2 = −γf < 0. Hence, all roots of the

characteristic equation (3.2) have negative real parts when τ is sufficient small. Based

on this observation, we have the following result on the global stability of the fundamental

steady state when the delay is sufficient small.

Theorem 3.1. The fundamental steady state (F, F ) of (2.10) is globally asymptotically

stable when τ → 0.

Proof. See Appendix A.

In order to examine the local stability and bifurcation of the fundamental steady

state, we now investigate the existence of the purely imaginary root λ = iω(ω > 0) of

Eq. (3.2), which takes the form of a second-degree exponential polynomial in λ with

p(λ, τ) and q(λ, τ) defined as in Eq. (3.3). By establishing a geometrical criterion,

Beretta and Kuang (2002) provide conditions on the existence of purely imaginary roots

of a characteristic equation with delay-dependent coefficients. It is easy to verify that,

for the characteristic equation (3.2), these conditions are satisfied when k + γf 6= γc.

Now let λ = iω(ω > 0) be a root of Eq. (3.2). Substituting it into Eq. (3.2) and

separating the real and imaginary parts yield that

ω2 − kγf − kγce
−kτ (1− cos ωτ)

1− e−kτ
= 0,

ω(k + γf − γc) +
kγce

−kτ sin ωτ

1− e−kτ
= 0,

(3.4)

which lead to

sin ωτ =
−ω(1− e−kτ )(k + γf − γc)

kγce−kτ
,

cos ωτ = 1− (1− e−kτ )(ω2 − kγf )

kγce−kτ
.

(3.5)
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Following the definitions of p(λ, τ) and q(λ, τ) in (3.3), Eq. (3.5) can be written as

sin ωτ = Im

(
p(iω, τ)

q(iω, τ)

)
, cos ωτ = −Re

(
p(iω, τ)

q(iω, τ)

)
,

which yields

|p(iω, τ)|2 = |q(iω, τ)|2.
This equation can be written as

h(ω2, τ) = 0, (3.6)

where h(W, τ) := W 2 + a1W + a2 is a second degree polynomial with

a1 = k2 + γ2
f + γ2

c − 2γfγc − 2kγc

1− e−kτ
, a2 = k2γ2

f +
2k2γcγfe

−kτ

1− e−kτ
.

When a1 ≥ 0 or a2
1 − 4a2 < 0, because of a2 > 0, equation h(W, τ) = 0 has no

positive real root. Therefore Eq. (3.2) has no purely imaginary root. When a1 < 0 and

a2
1 − 4a2 ≥ 0, for

τ ∈ (0, τ̃ ] := I, (3.7)

where

τ̃ = ln

[
1 +

2kγc

(k + γf − γc)2 + 2|k + γf − γc|
√

kγf

]1/k

, (3.8)

equation h(W, τ) = 0 has two positive real roots denoted by W+(τ) and W−(τ) satisfying

W+(τ) ≥ W−(τ). Hence h(ω2, τ) = 0 has two positive real roots denoted by ω+(τ) and

ω−(τ) with ω+(τ) ≥ ω−(τ).

The upper bound τ̃ defined in (3.8) depends on the decay rate k and, most impor-

tantly, the balance between k + γf and γc. In particular, when k + γf − γc → 0, one can

see from (3.8) that the upper bound τ̃ → ∞. For γf = 0.3 and γc = 0.7, Fig. 2 plots

the upper bound τ̃ as a function of k. The function is convex for k ∈ (0, γc − γf ) with

a positive minimum value, but convex and decreasing for k > γc − γf satisfying τ̃ →∞
as k → γc − γf and τ̃ → 0 as k →∞.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

18

20

k

τ̃

Figure 2: The upper bound τ̃ as a function of k. Here γf = 0.3 and γc = 0.7.

9



For τ ∈ I, let θ±(τ) ∈ [0, 2π) be defined by

sin θ±(τ) =
−ω±(1− e−kτ )(k + γf − γc)

kγce−kτ
,

cos θ±(τ) = 1− (1− e−kτ )(ω2
± − kγf )

kγce−kτ
.

Define two sequences of functions on I by

S+
n (τ) = τ − θ+(τ) + 2nπ

ω+(τ)
, S−n (τ) = τ − θ−(τ) + 2nπ

ω−(τ)
,

where n ∈ N0 = {0, 1, 2, · · · }. One can verify that iω∗(ω∗ = ω(τ ∗) > 0) is a purely

imaginary root of Eq. (3.2) if and only if τ ∗ is a root of the function S+
n or S−n for some

n ∈ N0. Based on the above analysis, we have the following result on the existence of

the Hopf bifurcation characterized by the existence of the purely imaginary root of the

characteristic equation.

Theorem 3.2. For the system (2.10),

(i) if either a1 ≥ 0 or a2
1 − 4a2 < 0, then Eq. (3.2) has no purely imaginary root;

(ii) if a1 < 0 and a2
1− 4a2 ≥ 0, then iω∗(ω∗ = ω(τ ∗) > 0) is a purely imaginary root of

Eq. (3.2) if and only if τ ∗ is a root of the function S+
n or S−n for some n ∈ N0.

Following Beratta and Kuang (2002), we have the following properties of the functions

S±n (τ).

Theorem 3.3. Assume that the function S+
n (τ) or S−n (τ) has a positive root τ ∗ ∈ I, for

some n ∈ N0, then a pair of simple purely imaginary roots ±iω(τ ∗) of Eq. (3.2) exists

at τ = τ ∗. In addition,

(i) if S+
n (τ ∗) = 0, then this pair of simple conjugate pure imaginary roots crosses the

imaginary axis from left to right if δ+(τ ∗) > 0 and from right to left if δ+(τ ∗) < 0,

where

δ+(τ ∗) := sign

{
dRe(λ)

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
dS+

n (τ)

dτ

∣∣∣∣
τ=τ∗

}
.

(ii) if S−n (τ ∗) = 0, then this pair of simple conjugate purely imaginary roots crosses the

imaginary axis from left to right if δ−(τ ∗) > 0 and from right to left if δ−(τ ∗) < 0,

where

δ−(τ ∗) := sign

{
dRe(λ)

dτ

∣∣∣∣
λ=iω(τ∗)

}
= −sign

{
dS−n (τ)

dτ

∣∣∣∣
τ=τ∗

}
.

(iii) S+
n (τ) > S+

n+1(τ) and S−n (τ) > S−n+1(τ) for all n ∈ N0.

(iv) if S+
0 (τ) > S−0 (τ) on I, then S+

n (τ) > S−n (τ) on I for all n ∈ N0.
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The properties of S±n (τ) as functions of τ are illustrated in Fig. 3 (a). Let Sn(τ)

be either S+
n (τ) or S−n (τ). It clearly indicates that {Sn(τ)} is a decreasing series of n.

Therefore, if S0(τ) have no zero on I, then function Sn(τ) has no zero on I for all n ≥ 1.

If for some n ∈ N0, the functions S±n (τ) become zero for some time delay lag, say at

{τ±nj
} ∈ I, then there exists at least one τ±nj

satisfying
dS±n (τ±nj

)

dτ
6= 0. Define

{τj| τj < τj+1, j = 0, 1, 2, · · · , j0} = ∪n∈N0{τ±nj
} := J+, (3.9)

where j0 = #{τ±nj
}. If j0 is finite, then τj0+1 = ∞. It is easy to see that S+

0 (τ0) = 0 and
dS+

0 (τ0)

dτ
> 0.

Applying Proposition 2.1 and the Hopf bifurcation theorem for functional differential

equations (see Hale, 1997, Chapter 11, Theorem 1.1), we obtain the following result on

the existence of a Hopf bifurcation.

Theorem 3.4. Assume k 6= γc − γf . Then for system (2.10),

(i) if functions S+
0 (τ) and S−0 (τ) have no positive zero on I defined in Eq. (3.7), then

the fundamental steady state is asymptotically stable for all τ > 0;

(ii) if function S+
n (τ) or S−n (τ) has positive zeros on I for some n ∈ N0, then the

fundamental steady state is asymptotically stable for 0 < τ < τ0, and becomes

unstable for τ staying in a right neighborhood of τ0. In addition, system (2.10)

undergoes a Hopf bifurcation when τ = τj for j = 0, 1, 2, · · · .

3.2 Stability Switching

To illustrate the stability switching, we consider two cases k+γf > γc and k+γf < γc.

In the first case, we choose k = 0.05, γf = 0.7 and γc = 0.7 and plot the function S±n (τ)

in Fig. 3(a). In Fig. 3(a), there are two Hopf bifurcation values for τ , say τ0 < τ1. The

first one occurs when S+
0 (τ) crosses 0 at τ = τ0 = 8.5612 and the second one occurs when

S−0 (τ) crosses 0 at τ = τ1 = 26.7457. We also plot the corresponding bifurcation diagram

of the market price with respect to τ indicated in Theorem 3.4 in Fig. 3(b) showing that

the fundamental steady state is stable for τ ∈ [0, τ0) ∪ (τ1,∞) and Hopf bifurcations

occur at τ = τo and τ = τ1. The stability of the fundamental steady state switches at

τ0 and τ1. In Figs. 3(c)-(e), we show the phase plots of the (P (t), u(t)) with the same

initial value for three values of τ = 5(< τ0), τ = 16(∈ (τ0, τ1)) and τ = 32(> τ1). They

show that the fundamental steady state is stable for both τ = 5 and τ = 32 and a stable

cycle appears for τ = 16, verifying the stability switching indicated by the bifurcation

plot in Fig. 3(b).

In the second case, we choose k = 0.06, γf = 1 and γc = 1.1 so that k + γf < γc. We

plot the function S±n (τ) in Fig. 4(a). In Fig. 4(a), there are three Hopf bifurcation values

for τ , say τ0 < τ1 < τ2. The first one occurs when S+
0 (τ) crosses 0 at τ = τ0 = 4.1764,

the second one occurs when S−1 (τ) crosses 0 at τ = τ1 = 27.705, and the third one occurs
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Figure 3: (a) The plots of S±n as functions of τ ; (b) the corresponding bifurcation dia-

grams of the market price with respect to τ , and phase plots for (c) τ = 5, (d) τ = 16,

and (e) τ = 32. Here k = 0.05, γf = 0.7, γc = 0.7, µ = 1, α = 0.5 and F = 1.

when S+
1 (τ) crosses 0 at τ = τ2 = 29.6524. We also plot the corresponding bifurcation

diagram of the market price with respect to τ indicated in Theorem 3.4 in Fig. 4 (b)

showing that the fundamental steady state is stable for τ ∈ [0, τ0) ∪ (τ1, τ2) and Hopf

bifurcations occur at τ = τi (i = 0, 1, 2). The stability of the fundamental steady state

switches from unstable to stable at τ1 and from stable to unstable at τ2.

In both cases, we have demonstrated that an increases in the time delay can result

in the stability switching of the fundamental price either from stable to unstable or from

unstable to stable and such switching can happen many times in general. It is commonly

believed in the discrete-time HAM literature that the more delayed prices used for the

trend followers to form the price trend, the more smoothing the price trend becomes,

the more sensible the demand function of the trend followers react to price changes, the

less stable the market price becomes. Hence the trend followers plays a destabilizing

role in general. For the continuous-time HAM in this paper, the destabilizing role of the

time delay for the trend followers is expected, however the stabilizing role and stability

switching as the time delay increases are rather surprising and less intuitive. From the

numerical example in Figs 3(c) and (e), one interesting feature we have found is that the

speed of the convergence of the market price to the fundamental price when τ = 32 is
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Figure 4: (a) The plot of S±n as functions of τ ; (b) The corresponding bifurcation dia-

grams of the market price with respect to τ with k = 0.06, γf = 1 and γc = 1.1.

much slower than that when τ = 5.

3.3 Stability of the Hopf Bifurcation

By using the normal form theory and the center manifold argument presented by

Hassard, Kazarinoff and Wan (1981), we can establish an explicit formula in determining

the direction and stability of periodic solutions bifurcating from the fundamental steady

state at a Hopf bifurcation value, say τ = τ ∗. In fact, let ω∗ = ω(τ ∗). Then the normal

form of system (2.10) has the following form (see Appendix B for the details)

dz(t)

dt
= iω∗τ ∗z(t) + g(z(t), z̄(t)), (3.10)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · ,

g20 = 0, g11 = 0, g02 = 0, g21 = − (γ2
f + ω∗2)a3

µ2(1− α2)a4

(3.11)

and

a3 = (1− e−kτ∗)2(γfω
∗2 + γcω

∗2 + k2γf + kγ2
f − kγcγf + kω∗2)

+ kγcτ
∗e−kτ∗(1− e−kτ∗)(kγf cos ω∗τ ∗ − ω∗2 cos ω∗τ ∗ − kω∗ sin ω∗τ ∗ − ω∗γf sin ω∗τ ∗)

+ i(1− e−kτ∗)2(2ω∗3 + k2ω∗ − kγcω
∗ − γcγfω

∗ + γ2
fω

∗)

+ ikγcτ
∗e−kτ∗(1− e−kτ∗)(kω∗ cos ω∗τ ∗ + ω∗γf cos ω∗τ ∗ + kγf sin ω∗τ ∗ − ω∗2 sin ω∗τ ∗),

a4 = (1− e−kτ∗)2[(k + γf − γc)
2 + 4ω∗2] + k2γ2

c τ
∗2e−2kτ∗

+ 2kγcτ
∗e−kτ∗(1− e−kτ∗)[(k + γf − γc) cos ω∗τ ∗ − 2ω∗ sin ω∗τ ∗].
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We can compute the following quantities:

c1(0) =
i

2ω∗τ ∗

(
g11g20 − 2|g11|2 − |g02|2

3

)
+

g21

2
=

g21

2
,

µ2 = − Re(c1(0))

Re(λ′(τ ∗))
,

β2 = 2Re(c1(0)),

T2 = −Im(c1(0)) + µ2Im(λ′(τ ∗))
ω∗τ ∗

,

(3.12)

which determine the properties of bifurcating periodic solutions at the critical value τ ∗.
In particular, µ2 determines the direction of the Hopf bifurcation. The coefficient β2

determines the stability of bifurcating periodic solutions. The parameter T2 determines

the period of the bifurcating periodic solution. In summary, we obtain the following

result on the direction and stability of the Hopf bifurcation.

Theorem 3.5. The Hopf bifurcation of the fundamental steady state of the system (2.10)

at τ = τ ∗ results in periodic solutions in a right (left) neighborhood of τ ∗ when µ2 > 0(<

0). In addition, the bifurcating periodic solutions are stable (unstable) if Re(c1(0)) <

0 (> 0).

Remark 3.6. From the previous discussion, we have Re(λ′(τ0)) > 0. It then follows

from Theorem 3.5 that, at τ = τ0, the bifurcating periodic solutions exist and are stable

(unstable) for τ > τ0 (τ < τ0) when Re(c1(0)) < 0(> 0).

For the two cases considered above, we can use Theorem 3.5 to verify the numerical

results in Figs 3 and 4. In the first case, Re(c1(0)) = −0.1306(−0.0689) < 0 at τ = τ0(τ1).

From Theorems 3.4 and 3.5, stable periodic solutions occur as τ crosses τ0 increasingly

and τ1 decreasingly. This is partially verified by the stable limit cycle in Fig. 3(d) for

τ = 16 ∈ (τ0, τ1). In the second case, Re(c1(0)) = −0.5436, − 0.3197 and −0.4616 at

τ = τ0, τ1 and τ2, respectively. From Theorems 3.4 and 3.5, stable periodic solutions

occur as τ crosses τ0 and τ2 increasingly and τ1 decreasingly.

3.4 Global Existence of Periodic Solutions

The analysis on the stability of the fundamental price and Hopf bifurcation in the

above provides a local analysis of the fundamental steady state of the system near the

bifurcation values. Therefore the theoretical results on the existence and stability of the

periodic solution induced from the Hopf bifurcation characterize the price dynamics of

the system near the steady state and near the bifurcation values of delay τ . Numerically,

we have shown in Figs 3 and 4 that such periodic solution bifurcated from the Hopf

bifurcation continues to exist for all τ ∈ (τ0, τ1) in Fig. 3 and τ ∈ (τ0, τ1) and τ ∈ (τ2,∞)

in Fig. 4. It would be interesting, but very challenge, to provide a theoretical support

on the global continuation of periodic solutions of the system (2.10) bifurcating from the
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bifurcating values τi. In the following, we present two results on such global continuation

of periodic solutions.

Theorem 3.7. Assume that γf > 4γc and τ0 > 1
k
ln15+

√
33

12
. Then (i) the system (2.10)

has at least one nonconstant periodic solution bifurcating from τ0 for all τ ∈ (τ0, τ1); (ii)

for any fixed j (j = 1, 2, · · · , j0), the system (2.10) has at least one nonconstant periodic

solution bifurcating from τ = τj for either all τ ∈ (τj−1, τj) or all τ ∈ (τj, τj+1).

Proof. See Appendix C.

Theorem 3.7 provides sufficient conditions, in terms of the behavior parameters and

time delay, on the global existence of the nonconstant periodic solution when the funda-

mental steady state becomes unstable. It provides a theoretical support on the observa-

tion obtained in the two numerical examples in Figs 3 and 4. Essentially, it implies that

the periodic solution bifurcated from the Hopf bifurcation value τ0 continues to exist for

(τ0, τ1). For j ≥ 1, the periodic solution bifurcated from the Hopf bifurcation value τj

continues to exist for either all τ ∈ (τj−1, τj) or all τ ∈ (τj, τj+1), as in Figs 3 and 4. Note

that the upper limit of the interval can be infinite as in Fig. 4. The periodic solution

may not be unique in general. The global existence result in Theorem 3.7 is quite strong,

which is at a price of the very restrictive sufficient conditions. The sufficient condition

in next result is rather less restrictive.

Theorem 3.8. If k > γc − γf or 4γc

(e
2γc
γf +e

− 2γc
γf )2

> k + γf , then for any fixed j (j =

1, 2, 3, · · · , j0), the system (2.10) has at least one nonconstant periodic solution bifurcat-

ing from τ = τj for either all τ ∈ (τj−1, τj) or all τ ∈ (τj, τj+1).

Proof. See Appendix C.

Comparing Theorem 3.7, the condition of Theorem 3.8 implies that the existence of

periodic solutions for all τ ∈ (τ0, τ1) is not necessarily bifurcated from τ0. Note that the

parameter region indicated by the conditions in Theorem 3.8 is rather smaller than the

region indicated by the numerical simulations.

4 Conclusion

This paper develops a continuous-time heterogeneous agent model when the price

trend of the trend followers is formed by a geometrically weighted and continuously

distributed lagged prices. The model provides a unified treatment to the discrete-time

HAMs where the price trend follows weighted moving average rules. However, the cor-

respondence between the behavior of high dimensional discrete-time models and infinite

dimensional continuous-time models with delays such as (2.10) may be severely limited.

In particular, the stabilizing effect of an increase in time delay is apparently little known

for the current discrete-time HAM literature. It is clear from the present work and the
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HAM literature (see for example, Chiarella, He and Hommes, 2006) that, when agents

use lagged information such as price to form the expectation, an increase in the time lag

is potentially a destabilizing factor. However, the analysis presented in this paper shows

that, under certain circumstance, a further increase in the time delay for an unstable

system can stabilize the system. Furthermore, we have shown analytically and demon-

strated numerically that the stability of the fundamental price can switch many times as

the time delay increases. In addition, we provide some sufficient conditions on the exis-

tence and stability of periodic solution resulted from the Hopf bifurcation. The results

obtained in this paper provide some newly interesting insight into the stabilizing role of

the trend followers and the generating mechanism on market instability. The paper also

demonstrates the advantage of continuous-time models over the discrete models and we

hope the continuous-time framework established in this paper will provide an alternative

approach to the current discrete-time financial market modeling with bounded rational

and heterogeneous agents.

In order to make the model parsimonious and to focus on the delay effect, we consider

a very simple financial market with heterogeneous agents in this paper. The demand

functions of the heterogeneous agents are assumed based on agents’ behavior rather

than on utility maximization in the standard financial economics theory. Justification

and variation of the behavior demand functions using utility maximization are of in-

terest. It is also of interest to extend the analysis to a stochastic model in which the

fundamental price is driven by a stochastic process and the behavior of noise traders is

taking into account. In addition, similar to the discrete-time models, the market frac-

tions of the fundamentalists and trend followers can endogenously change when agents

are allowed to switch among different types of beliefs or strategies based on certain fit-

ness or performance measures. This paper provides a first step on the applications of

delay differential equations to finance. We leave these issues for future research.

Appendix A. Proof of Theorem 3.1

Let P0(t) = P (t)− F, u0(t) = u(t)− F . Then system (2.10) becomes

dP0(t)
dt

=− γfP0(t) + µ(1− α) tanh(βc(P0(t)− u0(t))),

du0(t)
dt

=
k

1− e−kτ
[P0(t)− e−kτP0(t− τ)− (1− e−kτ )u0(t)].

(A.1)

When τ → 0, the second equation in the system (A.1) becomes

d(P0(t)− u0(t))
dt

= −k[P0(t)− u0(t)].

Since k > 0, we have
lim
t→∞(P0(t)− u0(t)) = 0.

Applying variation of constants to the first equation in the system (A.1), we have

P0(t) = e−γf tP (0) + µ(1− α)e−γf t

∫ t

0
eγf s tanh(βc(P0(s)− u0(s)))ds. (A.2)
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Let G(t) = tanh
(

βc(P0(t) − u0(t))
)

. Then limt→∞G(t) = 0. If
∫ t
0 eγf sG(s)ds is bounded,

then P0(t) → 0 when t →∞. If
∫ t
0 eγf sG(s)ds is unbounded, then we have

lim
t→∞

∫ t
0 eγf sG(s)ds

eγf t = lim
t→∞

G(t)
γf

= 0,

leading to lim
t→∞P0(t) = 0. Therefore, the equilibrium (F, F ) of the system (2.10) is globally

asymptotically stable when τ → 0.

Appendix B. Proof of Theorem 3.5

Let τ = τ∗ + υ, then υ = 0 is a Hopf bifurcation value of Eq.(2.10). Let P0(t) = P (t) −
F, u0(t) = u(t)− F and, for convenience, denote (P0(t), u0(t)) by (P (t), u(t)). We re-scale the
time by t 7→ (t/τ) to normalize the delay so that system (2.10) can be written as

(
Ṗ (t)
u̇(t)

)
= τB(τ)

(
P (t)
u(t)

)
+ τC(τ)

(
P (t− 1)
u(t− 1)

)
+ τf(P, u), (B.1)

where

B(τ) =

(
γc − γf −γc

k
1−e−kτ −k

)
, C(τ) =

(
0 0
−ke−kτ

1−e−kτ 0

)
,

and

f(P, u) =

(
−γcβ2

c
3 P 3(t) + γcβ

2
c P 2(t)u(t)− γcβ

2
c P (t)u2(t) + γcβ2

c
3 u3(t) + · · ·

0

)
,

The linearization of Eq. (B.1) around the origin is given by

˙̃u(t) = τB(τ)ũ(t) + τC(τ)ũ(t− 1),

where ũ(t) = (P (t), u(t))T .
For φ = (φ1, φ2)T ∈ C ([−1, 0], R2), define

Lυ(φ) = (τ∗ + υ)(B(τ∗ + υ)φ(0) + C(τ∗ + υ)φ(−1)).

By the Riesz Representation Theorem, there exists a 2× 2 matrix, η(ϑ, υ)(−1 ≤ ϑ ≤ 0), whose
elements are of bounded variation functions such that

Lυ(φ) =
∫ 0

−1
[dη(ϑ, υ)] φ(ϑ), for φ ∈ C([−1, 0], R2). (B.2)

In fact, we can choose

η(ϑ, υ) = (τ∗ + υ)(B(τ∗ + υ)δ(ϑ)− C(τ∗ + υ)δ(ϑ + 1)),

where δ(θ) is the indicated function; that is

η(ϑ, υ) =





(τ∗ + υ)B(τ∗ + υ), ϑ = 0,

0, ϑ ∈ (−1, 0),
−(τ∗ + υ)C(τ∗ + υ), ϑ = −1.
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Then Eq. (B.2) is satisfied.
For φ ∈ C1([−1, 0], R2), define an operator A(υ) as

A(υ)φ(ϑ) =





dφ(ϑ)
dϑ

, ϑ ∈ [−1, 0),
∫ 0
−1[dη(ξ, υ)]φ(ξ) , ϑ = 0.

(B.3)

For φ = (φ1, φ2)T ∈ C ([−1, 0],R2), let

h(υ, φ) = (τ∗ + υ)

(
h1

0

)
, (B.4)

where

h1 = −γcβ
2
c

3
φ3

1(0) + γcβ
2
c φ2

1(0)φ2(0)− γcβ
2
c φ1(0)φ2

2(0) +
γcβ

2
c

3
φ3

2(0) + · · · .

If we further define an operator R(v) as

R(υ)φ(ϑ) =

{
0, ϑ ∈ [−1, 0),
h(υ, φ), ϑ = 0,

(B.5)

then the system (2.10) is equivalent to the following operator equation

˙̃ut = A(υ)ũt + R(υ)ũt, (B.6)

where ũt = ũ(t + ϑ) for ϑ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R2)∗) , define

A∗ψ(s) =




−dψ(s)

ds
, s ∈ (0, 1],

∫ 0
−1 ψ(−ξ)dη(ξ, 0), s = 0,

and a bilinear form

〈ψ(s) , φ(ϑ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ ϑ

ξ=0
ψ̄(ξ − ϑ)dη(ϑ)φ(ξ)dξ,

where η(ϑ) = η(ϑ, 0). Then A(0) and A∗ are adjoint operators. From the previous discussion,
we know that ±iω∗τ∗ are eigenvalues of A(0) and therefore they are also eigenvalues of A∗.

It can be verified that the vector q(ϑ) = (q1, q2)T eiω∗τ∗ϑ (ϑ ∈ [−1, 0]) and q∗(s) =
1
d̄
(q∗1, q

∗
2)e

iω∗τ∗s (s ∈ [0, 1]) are the eigenvectors of A(0) and A∗ corresponding to the eigen-
value iω∗τ∗ and −iω∗τ∗, respectively, where

(q1, q2) =
(

1,
γc − γf − iω∗

γc

)
, (q∗1, q

∗
2) =

(
1,

γc

iω∗ − k

)
.

Let
d = (q̄∗1q1 + q̄∗2q2)−

∫ 0
−1

∫ ϑ
ξ=0 q̄∗(ξ − ϑ)dη(ϑ)q(ξ)dξ

= q̄∗1(q1 + τ∗e−iω∗τ∗
2∑

j=1
c1jqj) + q̄∗2(q2 + τ∗e−iω∗τ∗

2∑
j=1

c2jqj)

= 1 + (iω∗−k)(γc−γf−iω∗)
ω∗2+k2 + −(iω∗−k)kγcτ∗e−iω∗τ∗−kτ∗

(ω∗2+k2)(1−e−kτ∗ ) ,

where cij (i = 1, 2) represents the element of row i and column j in matrix C(τ), then
〈q∗(s), q(ϑ)〉 = 1, 〈q∗(s), q̄(ϑ)〉 = 0.

Following the algorithm in Hassard, Kazarinoff and Wan (1981) and using a computation
process similar to that in Wei and Li (2005), we can obtain the normal form (3.10) and the
coefficients.

18



Appendix C. Proofs of Theorems 3.7 and 3.8

Throughout this appendix, we follow closely the notations used in Wei and Li (2005) and
define

X = C([−τ, 0],R2),

Σ = Cl{(x, τ, l) : (x, τ, l) ∈ X × R+ × R+, x is a l-periodic solution of Eq. (2.10) },

S =

{
(x̂, τ, l) : x̂ = (P̂ , û), αβf (P̂ − F̄ ) = (1− α)

eβc(P̂−û) − e−βc(P̂−û)

eβc(P̂−û) + e−βc(P̂−û)
, P̂ = û

}
,

4(x∗, τ, l)(λ) = p(λ, τ) + q(λ, τ)e−λτ ,

and let C(x∗, τj , 2π/ω) denote the connected component of (x∗, τj , 2π/ω) in Σ, where ω and τj

are defined in Eqs (3.6) and (3.9), respectively. To obtain the main result, we first introduce
three lemmas.

Lemma C1. All periodic solutions of the system (2.10) are uniformly bounded.

Proof. Let (P (t), u(t)) be a nonconstant periodic solution of the system (2.10) and P = P (t1) =
max{P (t)}, P = P (t2) = min{P (t)} be the maximum and minimum of P (t), respectively. Then
P ′(t1) = P ′(t2) = 0. It follows from the first of Eq. (2.10) that

P = F +
1− α

αβf
tanh(βc(P − u(t1)) and P = F +

1− α

αβf
tanh(βc(P − u(t2)).

It then follows from | tanh(x)| < 1 for any x that F − 1−α
αβf

< P (t) < F + 1−α
αβf

.

Similarly, let U = u(t3) = max{u(t)} and U = u(t4) = min{u(t)} be the maximum and
minimum of u(t), respectively. Then u′(t3) = u′(t4) = 0, and by the second of Eq. (2.10) we
have

P (t3)− e−kτP (t3 − τ) = (1− ekτ )U and P (t4)− e−kτP (t4 − τ) = (1− ekτ )U.

Then the uniform boundedness of u(t) follows from the uniform boundednedd of P (t). The
proof is complete.

Lemma C2. The system (2.10) has no nontrivial τ -periodic solution when either γf + k > γc

or 4γc(
e

2γc
γf +e

− 2γc
γf

)2
> k + γf .

Proof. For a contradiction, suppose that the system (2.10) has a τ -periodic solution. Then the
following system of ODE has a τ -periodic solution.

dP

dt
=µ [αβf (F − P (t)) + (1− α) tanh(βc(P (t)− u(t)))] ,

du

dt
=k[P (t)− u(t)].

(C.1)

Let P0(t) = P (t) − F, u0(t) = u(t) − F and still denote P0(t) and u0(t) by P (t) and u(t),
respectively. Then Eq. (C.1) becomes

dP

dt
=− γfP + µ(1− α) tanh(βc(P − u)),

du

dt
=k(P − u).

(C.2)

19



Applying variation of constants, we have

P (t) = e−γf t[P (0) + µ(1− α)
∫ t

0
eγf s tanh(βcP (s)− βcu(s))ds],

Hence

| P (t) | ≤| P (0) | e−γf t + µ(1− α)e−γf t

∫ t

0
eγf s | tanh(βcP (s)− βcu(s)) | ds

<| P (0) | e−γf t +
1− α

αβf
(1− e−γf t) → 1− α

αβf
, when t → +∞.

We can also obtain that

| u(t) | ≤| u(0) | e−kt + e−kt

∫ t

0
eksk | P | ds

≤| u(0) | e−kt +
1− α

αβf
(1− e−kt) → 1− α

αβf
, when t → +∞.

Thus (P (t), u(t)) is ultimately uniformly bounded. Consider the vector field:

dP

dt
=− γfP + µ(1− α) tanh(βc(P − u)) := f (1)(P, u),

du

dt
=k(P − u) := f (2)(P, u).

We have
∂f (1)

∂P
+

∂f (2)

∂u
= −k +

4γc

[eβc(P−u) + e−βc(P−u)]2
− γf .

On the simply connected region D∗ = {(P, u) :| P |≤ 1−α
αβf

, | u |≤ 1−α
αβf

}, we have

4γc

(
e

2γc
γf + e

− 2γc
γf

)2
− k − γf ≤ ∂f (1)

∂P
+

∂f (2)

∂u
≤ γc − γf − k.

Thus, ∂f (1)

∂P + ∂f (2)

∂u < 0 when k > γc − γf , and ∂f (1)

∂P + ∂f (2)

∂u > 0 when 4γc(
e

2γc
γf +e

− 2γc
γf

)2
> k + γf .

According to the classical Bendixson’s negative criterion, Eq. (C.2) has no periodic solutions
in region D∗ when

γf + k > γc or
4γc

(
e

2γc
γf + e

− 2γc
γf

)2
> k + γf . (C.3)

Under (C.3), the unique equilibrium (0, 0) of Eq. (C.2) in region D∗ is globally asymptotically
stable, leading to that the system (C.1) has no nonconstant periodic solutions. This completes
the proof.

Lemma C3. Assume that γf > 4γc and τ > 1
k ln15+

√
33

12 , then the system (2.10) has no periodic
solution of period 2τ .

Proof. Let P0(t) = P (t) − F, u0(t) = u(t) − F and, for convenience, denote (P0(t), u0(t)) by
(P (t), u(t)). Let x(t) = (P (t), u(t)) be a 2τ -periodic solution. Set

yk(t) = x(t− (k − 1)τ), k = 1, 2.
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Then y(t) = (y1(t), y2(t)) is a periodic solution to the system of ODE




Ṗ1 = µ

[
− αβfP1 + (1− α) tanh(βc(P1 − u1))

]
,

u̇1 =
k

1− e−kτ

[
P1 − e−kτP2 − (1− e−kτ )u1

]
,

Ṗ2 = µ

[
− αβfP2 + (1− α) tanh(βc(P2 − u2))

]
,

u̇2 =
k

1− e−kτ

[
P2 − e−kτP1 − (1− e−kτ )u2

]
.

(C.4)

From Lemma C1, the periodic orbit of the system (C.4) belongs to the region:

G =
{

y ∈ R4

∣∣∣∣
(
−1−α

αβf

−1−α
αβf

)
< yk <

(
1−α
αβf

1−α
αβf

)
, k = 1, 2.

}
. (C.5)

If we want to prove there is no 2τ -periodic solution, it suffices to prove that there is no
nonconstant periodic solution of the system (C.4) in the region G. To do this, we apply the
general Bendixson’s criterion in higher dimensions developed by ?. It is easy to compute the
Jacobian matrix J(y) of the system (C.4), for y ∈ R4:

J(y) =




f3(P1, u1) f4(P1, u1) 0 0
k

1−e−kτ −k −ke−kτ

1−e−kτ 0
0 0 f3(P2, u2) f4(P2, u2)

−ke−kτ

1−e−kτ 0 k
1−e−kτ −k




,

where
f3(Pi, ui) = −γf +

4γc

[eβc(Pi−ui) + e−βc(Pi−ui)]2
,

and
f4(Pi, ui) =

−4γc

[eβc(Pi−ui) + e−βc(Pi−ui)]2
, i = 1, 2.

Then the second additive compound matrix J [2](y) of J(y) is a
(
4
2

)× (
4
2

)
matrix defined by

J [2](y) =


f3(P1, u1)− k −ke−kτ

1−e−kτ 0 0 0 0
0

∑
i f3(Pi, ui) f4(P2, u2) f4(P1, u1) 0 0

0 k
1−e−kτ f3(P1, u1)− k 0 f4(P1, u1) 0

0 k
1−e−kτ 0 f3(P2, u2)− k f4(P2, u2) 0

ke−kτ

1−e−kτ 0 k
1−e−kτ

k
1−e−kτ −2k −ke−kτ

1−e−kτ

0 ke−kτ

1−e−kτ 0 0 0 f3(P2, u2)− k




.

Choose a vector form in R6 as

|(x1, x2, x3, x4, x5, x6)| = max
{

(3 +
√

33)|x1|, 12|x2|, 4|x3|, 4|x4|, 4
3
|x5|, (3 +

√
33)|x6|

}
.
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With respect to this norm, we can obtain that the Lozinskĭl measure µ(J [2](y)) of the
matrix J [2](y) is given by (see Coppel, 1965)

µ(J [2](y)) = max

{
− γf +

4γc

[eβc(P1−u1) + e−βc(P1−u1)]2
+

k

1− e−kτ

(
− 1 +

15 +
√

33
12

e−kτ
)
,

− 2γf +
16γc

[eβc(P1−u1) + e−βc(P1−u1)]2
+

16γc

[eβc(P2−u2) + e−βc(P2−u2)]2
,

− γf +
16γc

[eβc(P1−u1) + e−βc(P1−u1)]2
+

k

1− e−kτ

(
− 2

3
+ e−kτ

)
,

k

1− e−kτ

(
− 4

3
+

15 +
√

33
9

e−kτ
)}

.

(C.6)

By Corollary 3.5 of Li and Muldowney (1994), the system (C.4) has no periodic orbits in G if
µ(J [2](y)) < 0 for all y ∈ G. By (C.6), we have µ(J [2](y)) < 0 if

γf > 4γc and τ >
1
k
ln

15 +
√

33
12

. (C.7)

Remark C4. Note that condition (C.7) implies condition (C.3).

Proof of Theorem 3.7: By Lemmas C1 and C3, there exist ε > 0, δ > 0 and a smooth
curve λ : (τj − δ, τj + δ) → C such that

4(λ(τ)) = 0, |λ(τ)− iω| < ε,

for all τ ∈ [τj − δ, τj + δ], and

λ(τj) = iω,
dRe(λ(τ))

dτ

∣∣∣
τ=τj

6= 0.

Denote lj = 2π/ω, and let

Ωε = {(y, l) : 0 < y < ε, |l − lj | < ε}.

Obviously, if |τ − τj | ≤ δ and (y, l) ∈ ∂Ωε such that 4(x∗,τ,l)(y + 2πi/l) = 0, and then τ = τj ,
y = 0, l = lj . Set

H±(x∗, τj , 2π/ω)(y, l) = 4(x∗,τj±δ,l)(y + 2πi/l).

We obtain the crossing number

γ1(x∗, τj , 2π/ωj) = degB(H−(x∗, τj , 2π/ωj),Ωε)− degB(H+(x∗, τj , 2π/ωj),Ωε)

=

{
−1, S+′

n (τj) > 0 or S−′n (τj) < 0,

1, S+′
n (τj) < 0 or S−′n (τj) > 0.

By Theorem 3.2 of Wu (1998), we conclude that the connected component C(x∗, τj , 2π/ωj)
through (x∗, τj , 2π/ωj) in Σ is nonempty. Meanwhile, we have by Theorem 3.3 of Wu (1998)
that either
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(i) C(x∗, τj , 2π/ωj) is unbounded or

(ii) C(x∗, τj , 2π/ωj) is bounded, C(x∗, τj , 2π/ωj)
⋂S is finite and∑

(ŷ,τ,l)∈C(0,τj ,2π/(τjωj))
γ1(ŷ, τ, l) = 0.

By the definition of τj , we know that,

π < τ0ω0 < 2π, 3π < τjωj < 2(j + 1)π, τj ∈ J+,

where J+ is defined by (3.9). This implies that

τ0 <
2π

ω0
< 2τ0,

τj

j + 1
<

2π

ωj
<

2τj

3
.

Therefore, we have that τ < l < 2τ if (x, τ, l) ∈ C(x∗, τ0, 2π/ω0), and τ
j+1 < l < 2τ

3 if
(x, τ, l) ∈ C(x∗, τj , 2π/ωj) for j ≥ 1. Lemma C1 implies that the projection of C(x∗, τj , 2π/ωj)
onto the x-space is bounded. Similar to Lemma C2, one can prove that the system (2.10) with
τ = 0 has no nonconstant periodic solutions. This fact and Lemmas C2 and C3 show that the
projection of C(x∗, τj , 2π/ωj) onto the l-space is bounded under the condition (C.3) and (C.7).

Consequently, if C(x∗, τj , 2π/ωj) is unbounded, then the projection of C(x∗, τj , 2π/ωj) onto
the τ -space is unbounded. If C(x∗, τj , 2π/ωj) is bounded, that is (ii) of Theorem 3.3 of Wu
(1998) is satisfied, then for any fixed j (j = 0, 1, 2, · · · ), the system (2.10) has at least one
nonconstant periodic solution for either all τ ∈ (τj−1, τj) or all τ ∈ (τj , τj+1), so is our theorem.
This completes the proof.

Proof of Theorem 3.8: From the proof of Theorem 3.7, we know that the first global Hopf
branch contains periodic solutions of period between τ and 2τ . These are the slowly-oscillating
periodic solutions. For j ≥ 1, the τj branches contain fast-oscillating periodic solutions since
the periods are less than 2τj

3 . In addition, for j ≥ 1, τj

j+1 < 2π
ω <

2τj

3 is satisfied automatically.
The bounds on the period l for (x, τ, l) ∈ C(x∗, τj , 2π/ω) hold without resulting to Lemma C3.
Thus, the global extension of the τj-branches for j ≥ 1 can be proved without the restrictions
(C.7) in Lemma C3.
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