2010/33

Competition and growth: reinterpreting their relationship

Daria Onori

DISCUSSION PAPER

Center for Operations Research and Econometrics

Voie du Roman Pays, 34 B-1348 Louvain-la-Neuve Belgium http://www.uclouvain.be/core

CORE DISCUSSION PAPER 2010/33

Competition and growth: reinterpreting their relationship

Daria ONORI1

July 2010

Abstract

In this paper we modify a standard quality ladder model by assuming that R&D is driven by outsider firms and the winners of the race sell licenses over their patents, instead of entering directly the intermediate good sector. As a reward they get the aggregate profit of the industry. Moreover, in the intermediate good sector firms compete à la Cournot and it is assumed that there are spillovers represented by strategic complementarities on costs. Our goal is to prove that there exists an interval of values of the spillover parameter such that the relationship between competition and growth is an inverted-U-shape.

Keywords: quality ladder, Cournot oligopoly, strategic complementarities, competition and growth.

JEL Classification: L13, L16, O31, O52

¹ Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium; University of Rome "La Sapienza", Faculty of Economics, I-00161 Rome, Italy. E-mail: daria.onori@uclouvain.be.

I wish to thank R. Boucekkine and E. Marchetti. They provided me with many helpful suggestions, important advice and constant encouragement during the course of this work. I am very grateful to O. Licandro, P. Pintus, H. Latzer, F. Mayneris for the numerous comments and suggestions. I also would like to thank all the other people who helped me for the development of this paper. The usual disclaimer applies.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the author.

1 Introduction

Empirical analysis has recently provided evidence in favor of an inverted Ushaped relationship between competition and growth¹; nonetheless, only few theoretical models of growth and innovation are capable of explaining such empirical evidence. This paper proposes a novel rationale for the U-shaped relationship, stemming from a modified quality ladder model in which we assume that firms compete à la Cournot in the intermediate good sector, where positive externalities or spillovers on costs are present. It is just the presence of a spillover effect which justify the fact that a higher product market competition may enhance growth, because it can influence positively the profits that reward innovators.

Standard Industrial Organization theory (Salop 1977, Dixit and Stiglitz 1977) and the first generation of Schumpeterian growth models (Grossman and Helpman 1991, Aghion and Howitt 1992, Barro and Sala-i-Martin 2004) predict that innovation and hence growth should decline with competition, because more competition reduces the rents that reward successful innovators. This discourages firms from investing in R&D, thus reducing the innovation rate and as a consequence the long run growth rate of the economy. However, the empirical literature, as Gerosky (1995) and Blundell, Griffith and Van Reenen (1999), suggests a positive correlation between competition and growth. The theoretical literature tried to solve this dilemma by modifying radically the assumptions of the basic Neoschumpeterian model.

For example Aghion, Dewatripont and Rey (1999) introduce agency considerations in the decision-making problem of innovating firms. In particular they embed the agency model of Hart (1983) in an endogenous growth framework and show that competition has a positive effect on growth because, combined with the threat of bankruptcy, it can act as a discipline device (since it reduces the "slack", that is the amount of free cash available to managers), capable of fostering technology adoption and growth. However empirical evidence of these effects is mixed, as shown, for instance, by Grosfeld and Tressel (2001) and Nickell, Nicolitsas and Dryden (1997).

Another approach (see Aghion, Harris, Vickers 1997 and Aghion, Harris, Howitt, Vickers 2001) extends the basic Schumpeterian model by allowing incumbent firms to innovate. This is obtained by assuming a technological progress which is more "gradualist" ("step-by-step") than the standard models, where the leap-frogging of the previous incumbent is possible: innovation allows a firm to move one step ahead, with the lagging firm remaining active

¹See: Aghion, Bloom, Blundell, Griffith and Howitt (2005)

and eventually capable to chatch up. In this models it is assumed that each intermediate good sector is characterized by a duopoly in which firms compete both in production and in R&D. Hence, since in this framework R&D is undertaken by the incumbents, the incentive to innovate depends not so much upon post-innovation rents per se, but more upon the difference between post-innovation and pre-innovation rents (the latter are equal to zero in the basic Schumpeterian model). In this case product market competition may act by reducing firms' pre-innovation rents more than it reduces their post-innovation rents. In other words, competition may increase the incremental profits from innovating and thereby encourage R&D investments aimed at escaping competition. This happens in those industries where both firms are technological par (leveled or neck-and-neck sectors), while in unleveled sectors the Schumpeterian effect of business stealing always prevails. The effect of an increase in product market competition on growth is ambiguous and depends on the size innovation. If the latter is sufficiently large, the Shumpeterian effect always dominates; if it is sufficiently close to its lower bound, the escape competition effect prevails; finally for intermediate values the predicted relationship between competition and growth is an inverted-U-shape: the escape competition effect tends to dominate for low initial levels of competition, whereas the Schumpeterian effect tends to dominate at higher levels of competition. This prediction is in line with earlier findings of Scherer (1967), Levin, Vohen and Mowery (1985) and others² and has also been tested by Aghion, Bloom, Blundell, Griffith and Howitt (2005) using data from a panel of U. K. firms (the data run from 1973 to 1994). The same result is obtained by d'Aspremont, Dos Santos Ferreira and Gerard-Varet (2002) in a model in which there is the possibility of multiple winners³ of the patent race, asymmetric firms in the product market and imperfect patent protection.

Another attempt to show the existence of a nonmonotonic relationship between competition and growth can be found in Denicolò and Zanchettin⁴ (2004). They build a Neoschumpeterian model in which they allow for several firms to be simultaneously active in each industry (because the innovation is non drastic) and identify circumstances (a large size of innovation or a high intensity of competition, or both) in which the productive efficiency effect (the reduction of total industry costs due to the fact that low-cost firms have

 $^{^{2}}$ See Cohen and Levin (1989) for a brief survey of the empirical literature.

 $^{^{3}}$ The number of firms is endogenously determined and the set of successful ones is drawn by a Bernoullian random process.

⁴They measure competition as a switch from Cournot to Bertrand competition, so as a switch of the equilibrium price under the different regimes of competition.

a large portion of the market) dominates the business stealing effect. This and the presence of a front loading effect (in more competitive markets, a larger fraction of innovation rents accrues in the early stages of the innovative firm's life cycle) imply that the equilibrium rate of growth tends to increase with the intensity of competition.

Recently also Acemoglu, Gancia and Zilibotti (2010) provided a new explanation of the inverted-U shaped relationship between competition and growth based on the standardization process of the new technologies. Standardization is a costly process which is undertaken by newcomers: the lower is this cost, the higher is the intensity of competition. When standardization is very costly, growth is low because the new product does not enter the standardization process and so it is produced by employing skilled workers and this reduces the scale of production and the profitability. On the other hand, when standardization is cheap, the growth rate is still low because innovators enjoy ex post profits only for a short while.

In our paper we modify a standard quality ladder model and differently from Aghion et al. (2001) we assume that R&D is driven by outsider firms and the winners of the race sell licenses over their patents, instead of entering directly the intermediate good sector. As a reward they get the aggregate profit of the industry. Moreover, we depart from Aghion et al. (2001) models because, instead of assuming a duopoly in which firms compete à la Bertrand, we suppose that in the intermediate good sector an unspecified number of firms compete à la Cournot and we assume that there are spillovers on costs in the form of strategic complementarities. The latter constitutes our key assumption. In fact our goal is to prove that there exists an interval of values of the spillover parameter such that the relationship between competition and growth is an inverted-U-shape, giving thus another theoretical foundation to the empirical evidence. In such case, when competition is low the spillover effect dominates the Schumpeterian business stealing effect and an increase in product market competition fosters growth. This is justified by the fact that incumbents firms may benefit from more competition as it increases the positive externality by a reduction of costs. When, instead, competition is high, the business stealing effect prevails over the spillover effect. We use the number of firms in each sector as a measure of competition, thus an increase in competition is expressed by an increase in the number of competitors. We think that this is the most natural measure of competition in a Cournotian framework⁵. It is customary in macroeconomic literature to study the effect of competition by comparing economies with the same market structure,

⁵See for example Motta (2004).

but different degrees of substitutability between differentiated goods (see Grossman and Helpman 1991, Aghion and Howitt 1992, Aghion et al. 2001, Barro and Sala-i-Martin 2004). In these type of models the inverse of the degree of substitutability coincides with the mark up. In our setup the mark up depends on both the degree of substitutability and the number of firms in each industry. Hence if the number of competitors increases then the mark up decreases, so that firms' market power reduces⁶.

We think that this novel theoretical mechanism can actually provide an alternative, innovative and realistic explanation of the inverted-U-shaped relationship between competition and growth⁷. Furthermore, we show that there exists a maximum number of firms that can survive in the market: this can be done by imposing a long run restriction on the positivity of the balanced growth rate.

Our explanation hinges upon the presence of spillover effects in the intermediate sector, and there is a wide empirical literature which offers a substantial support to the idea that economies of scale are an important phenomenon both at aggregate and at sectorial level. For example, Basu and Fernald (1997), Sbordone (1997), Jimenez and Marchetti (2002) show that, for the U. S. economy, the overall level of returns to scale (in a Cobb-Douglas production function) should be placed in the interval [1; 1.2], so that external increasing returns to scale should affect the economy's dynamics in the long run as well as in the short run. Increasing returns and economies of scale can give rise to (favorable) spillover effects in the firms cost functions. Moreover also the literature on knowledge spillover is abundant. For example there are many works about knowledge spillovers both at regional and international level⁸. Keller (2002) analyzes whether the scope of technological knowledge spillovers is global or local (the dataset encompasses the world's innovative activity between 1970 and 1995). He finds that the diffusion of technology is geographically localized, in accordance with the conclusions of Adams et al. (1993), Jaffe and Trajtenberg (1999) and Eaton and Kortum (1996; 1999). However this literature does not distinguish between inter and

⁶The use of the degree of substitutability may also have undesirable effect: as stressed by Koeniger and Licandro (2006), a change in the elasticity of substitution modifies a fundamental parameter, which in turn may lead to different equilibrium allocations that cannot be straightforwardly compared across economies. In particular an increase in the degree of substitutability has only a reallocation effect which moves resources to the most efficient sector, without modifying relative prices. Hence this may lead to an overestimation of the impact of competition on the economy's growth rate.

⁷The presence of spillovers in manufacturing industries is well known and it is also proved empirically (see, e.g., the literature we report below).

⁸See, among the others, Coe and Helpman (1995), Van Stel and Nieuwenhuijsen (2004).

intra-sectoral spillovers. Our model supposes the existence of intra-sectoral spillovers and this assumption is also supported by empirical findings offered by the literature. Rouvinen (2002) analyzes Finland manufacturing firms over the period 1985-1997 and finds evidence about the existence of intra and inter-sectoral spillovers by estimating the variable cost function. On the other hand, Malerba, Mancusi and Montobbio (2004), by means of a panel data analysis of six OECD countries in the 1981-1995 time interval, show that the effect of intra-sectoral knowledge spillovers is 70% higher than the effect of national inter-sectoral spillovers. Brandt (2007) estimates the cost function using data on manufacturing industries of six OECD countries over the period 1980-1998. His main findings are that knowledge spillovers explain some of the productivity growth observed and are identified as an external source of economies of scale. Moreover, international intra-industry spillovers are the most important source of externalities in the investigated industries: they turn out to be more significant than R&D spillovers. Finally, Badinger and Egger (2008), by considering 13 OECD countries and 15 manufacturing industries in the year 1995, find that knowledge spillovers occur both horizontally and vertically, whereas other types of productivity spillovers are primarily of the intra-industry type.

Also the empirical urban economic literature supports the presence of spillovers: it shows the importance for productivity and growth of localization economies⁹ (economies of scale arising from spatial concentration economies) and urbanization economies¹⁰ (economies of scale arising from city size itself). Rosenthal and Strange (2001), for example, test the micro-foundation of agglomerations economies for U.S. four-digit SIC codes manufacturing industries in the fourth quarter of 2000 at different levels of geographic aggregation and find that there is evidence of the importance of all sources of localization economies (the Marshall's three theories of industry agglomeration); in particular knowledge spillovers are relevant at the zipcode level, input sharing at state level and labor market pooling is important at all levels¹¹.

The paper is structured as follows. Section 2 describes the overall framework of the model and contains an interpretation of the consequences of the

 $^{^9\}mathrm{See,}$ e.g., Moomaw 1981, Sveikauskas 1975, Nakamura 1985, Henderson 1986 and Ciccone and Hall 1996.

¹⁰See, e.g., Glaeser, Kallal, Scheinkman and Shleifer 1992 and Henderson, Kuncoro and Turner 1995.

¹¹Also Ellison, Glaeser and Kerr (2007) assess the importance of all the Marshallian theories of industry agglomeration in U.S. three-digit SIC codes manufacturing industries from 1972 to 1997.

introduction of Cournot oligopoly (with spillover effects) in the intermediate sector. In Section 3 the steady-state expressions for the growth rate, the interest rate and the probability of innovation are derived. Section 4 discusses our main result: there exists an interval of values of the spillover parameter such that the relationship between competition and growth is an inverted-Ushape. Section 5 presents a numerical analysis for the UK economy, which is based on the calibration of the degree of substitutability between intermediate goods, the spillover intensity and the size of the leading-edge innovation. Finally, Section 6 concludes.

2 The model

2.1 The agents

Our starting point is the standard version of the Schumpeterian growth scheme as exposed in Barro, Sala-i-Martin (2004), Ch. 7 (a quality ladder model). In this scheme there are four types of agents in the economy. Producers of final good that use labor and intermediate goods input to produce output which is sold at a unit price and it is used for consumption, for the production of the intermediate goods and, finally, it is invested in R&D. The final good sector is perfectly competitive. R&D firms devote resources to discover a new quality of the existing intermediate good: once this one has been invented, the winner of the race obtains a perpetual patent. We modify this framework by considering the case in which R&D is undertaken by outsider firms. Moreover, the winning one can sell a given number of licenses for each sector to allow other firms to produce the quality-improved good. Thus the last one is an oligopolistic market and we assume that firms compete in quantity (Cournot competition). In particular we suppose that there exist m intermediate sectors (with m large) and in each sector there are n firms producing the same good; finally there are households who consume the final good and their saving finances R&D. The behavior of these agents will be detailed in the following sections.

2.2 Final good sector

The production function of the representative final good firm i is given by

$$Y_i = L_i^{1-\alpha} \sum_{h=1}^m \tilde{x}_{ih}^{\alpha}$$

where $0 < \alpha < 1$, Y_i is output, L_i is labor input, $\tilde{x}_{ih} = \sum_{j=1}^n \tilde{x}_{ihj} = \sum_{k=0}^{k_h} q^k x_{ihk}, q > 1$ represents the quality-adjusted amount employed of the *h*th type of intermediate good, *h* refers to the generic intermediate sector h = 1, ..., m. The potential grades of each intermediate good are arrayed along a quality ladder with rungs spaced proportionately at interval q > 1. Fixing at q = 1 the beginning quality, the subsequent rungs are at the levels q, q^2 and so on. Thus, if k_h improvements in quality have occurred in sector h, the available grades in the sector are $1, q, q^2, ..., q^{k_h}$. Increases in k_h are possible thanks to the successful application of the research effort.

Hence the production function becomes:

$$Y_i = L_i^{1-\alpha} \sum_{h=1}^m \left(\sum_{k=0}^{k_h} q^k x_{ihk} \right)^c$$

Assuming that $\forall h$ only the best quality is produced¹², the production function becomes:

$$Y_i = L_i^{1-\alpha} \sum_{h=1}^m q^{\alpha k_h} x_{ihk_h}^{\alpha}$$

Each firm seeks to maximize $profit^{13}$:

$$\underset{\{L_{i}, x_{ihk_{h}}\}}{Max} \pi_{i} = Y_{i} - wL_{i} - \sum_{h=1}^{m} p_{hk_{h}} x_{ihk_{h}} = L_{i}^{1-\alpha} \sum_{h=1}^{m} q^{\alpha k_{h}} x_{ihk_{h}}^{\alpha} - wL_{i} - \sum_{h=1}^{m} p_{hk_{h}} x_{ihk_{h}}$$

The first order conditions are:

$$L_{i} = \left(\frac{1-\alpha}{w}\right)^{\frac{1}{\alpha}} \left(\sum_{h=1}^{m} q^{\alpha k_{h}} x_{ihk_{h}}^{\alpha}\right)^{\frac{1}{\alpha}}$$
$$p_{hk_{h}} = \alpha q^{\alpha k_{h}} x_{ihk_{h}}^{\alpha-1} L_{i}^{1-\alpha}$$

From the latter we get the demand function from firm i to sector h:

$$x_{ihk_h} = L_i q^{\frac{\alpha k_h}{1-\alpha}} \left(\frac{\alpha}{p_{hk_h}}\right)^{\frac{1}{1-\alpha}}$$

To find the total demand in sector h we have to aggregate for all i:

$$x_{hk_h} = \sum_{i} x_{ihk_h} = Lq^{\frac{\alpha k_h}{1-\alpha}} \left(\frac{\alpha}{p_{hk_h}}\right)^{\frac{1}{1-\alpha}}$$
(2.1)

¹²This will be proved in the following.

¹³We set the price of the final good equal to one.

where $L = \sum_{i} L_{i}$ represents the aggregate labor force, assumed to be constant. The demand function for good produced in sector h is a decreasing function of the price.

To solve the Cournot problem in the intermediate goods sector, we need the aggregate inverse demand function:

$$p_{hk_h} = \alpha q^{\alpha k_h} x_{hk_h}^{\alpha - 1} L^{1 - \alpha}$$
(2.2)

2.3 Intermediate good sector

We assume that the winner of the R&D race does not produce directly the invention but sells the right to produce the new good to a given number of firms in each sector.

We suppose that there are m sectors and n firms in each one competing à la Cournot. We assume that in each sector h there are positive externalities or spillovers which are modelled as strategic complementarities: $\frac{\partial^2 \pi_{hj}}{\partial x_{hj} \partial x_{hl}} > 0, \forall i, l$. This means that the marginal profit of firm j increases as another competitor, say l, rises its produced quantity. This implies that firm j will find rising its quantity convenient.

A profit function satisfying this property is:

 $\pi_{hj} = p_{hk_h} x_{hjk_h} - c \left(\frac{x_{hjk_h}}{(\sum_{l \neq j} x_{hlk_h})^{\gamma}} \right), \gamma > 0 \text{ where } \gamma \text{ represents the spillover coefficient and } c(.) is a cost function. This assumption means that when a firm <math>l \neq j$ increases its production of the intermediate good, the production cost of firm j reduces. This implies that the marginal revenue of j increases, so that the firm find it convenient to increase production.

We now specify the cost function. In the benchmark model the marginal cost of intermediate firms is one unit of final good. In the present case, strategic complementarity implies that the marginal cost equals $\frac{1}{(\sum_{l\neq j} x_{hlk_h})^{\gamma}}$. Defining $\sum_{l\neq j} x_{hlk_h} = x_{-j}$, the profit function of j is:

$$\pi_{hj} = p_{hk_h} x_{hjk_h} - \frac{x_{hjk_h}}{(x_{-j})^{\gamma}}$$
(2.3)

In a Cournot oligopoly, each firm chooses the quantity to be produced in order to maximize (2.3), where p_{hk_h} characterizes the inverse demand by the final good sector.

The resulting optimal price and quantity (we provide the derivations in

the Appendix) are given by 14

$$p_{hk_h}^* = \left\{ \left(n + \alpha - 1\right) \frac{1}{n} \left[\left(\frac{n-1}{n}\right) Lq^{\frac{\alpha k_h}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} \right]^{\gamma} \right\}^{\frac{1-\alpha}{\alpha+\gamma-1}}$$
(2.4)

and

$$x^{*}(h) = x^{*}_{hjk_{h}} = \frac{1}{n} L^{\frac{\alpha-1}{\alpha+\gamma-1}} q^{-\frac{\alpha}{(\alpha+\gamma-1)}k_{h}} \alpha^{-\frac{1}{(\alpha+\gamma-1)}} \left\{ \left(n+\alpha-1\right) \frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right\}^{-\frac{1}{\alpha+\gamma-1}}$$
(2.5)

2.3.1 Comparative statics

Now we pass to examine the influence of the spillover parameter over the optimal quantity and price. The results are contained in the following Proposition.

Proposition 1. If $(L^{1-\alpha}q^{\alpha k_h}\alpha \frac{n+\alpha-1}{n}) > 1$, then the equilibrium quantity (2.5) is an increasing function of the spillover coefficient γ and the optimal price, which is given by (2.4), is a decreasing function of γ .

Proof. Consider the expression of the optimal quantity (2.5) and derive it with respect to γ so to obtain:

$$\frac{\partial x^*(h)}{\partial \gamma} = \frac{\frac{1}{n} \left[L^{1-\alpha} q^{\alpha k_h} \frac{n+\alpha-1}{n} \right]^{\frac{1}{1-\alpha-\gamma}} \left(\frac{n-1}{n} \right)^{\frac{\gamma}{1-\alpha-\gamma}}}{\left[\frac{1}{(1-\alpha-\gamma)^2} Log \left(L^{1-\alpha} q^{\alpha k_h} \alpha \frac{n+\alpha-1}{n} \right) + \frac{1-\alpha}{(1-\alpha-\gamma)^2} Log \left(\frac{n-1}{n} \right) \right]}$$

The second term in the square bracket is negative. If $(L^{1-\alpha}q^{\alpha k_h}\alpha \frac{n+\alpha-1}{n}) > 1$, then the first term is positive.

Moreover, since $\frac{1}{(1-\alpha-\gamma)^2} > \frac{1-\alpha}{(1-\alpha-\gamma)^2}$, it follows that the first term is greater than the second one, hence the sign of the derivative is positive.

We also know that the price is decreasing in x_{hk_h} . If each oligopolist is rising its own output, then also the total quantity produced in sector h will increase, determining a fall in the price.

The economic intuition is the following: if the spillover coefficient rises, this causes a reduction of costs for each firm, so that the output that equals marginal revenue to marginal cost must increase.

$$SOC = \alpha (\alpha - 1) q^{\alpha k_h} x_{hjk_h}^{*(\alpha - 2)} L^{1-\alpha} [(\alpha - 2) + 2n] < 0$$

¹⁴The second order conditions for a maximum are satisfied. In fact

2.3.2 The MARK UP

Given that the optimal quantity and price are influenced by the spillover coefficient, we may expect that the mark up is also affected by γ . In this section we show that this does not happen.

We adopt the following definition of the mark up:

$$MU = \frac{P - MC}{MC} = \frac{P}{MC} - 1$$

where

$$MC = \frac{1}{(n-1)^{\gamma} x (h)^{*^{\gamma}}}$$

is the marginal cost.

By using the expressions of the optimal quantity and price, we can rewrite MU in this way:

$$MU = \frac{1 - \alpha}{n + \alpha - 1}$$

Hence the mark up does not depend on the spillover parameter. In particular, it is equal to the mark up that we would obtain if strategic complementarities were $absent^{15}$.

Hence, the effects of γ on price and marginal cost must have the same magnitude, and this is due to the symmetry among the oligopolists. At a first glance, it may seem that the introduction of the spillover parameter in our model is irrelevant, but this is not the case: γ has nonetheless a sizable effect on both equilibrium price and quantity, as shown in the previous section. The fact is simply that, on one hand, γ has a negative impact on the equilibrium price and this implies a reduction of the mark up. But on the other hand, an increase in the spillover parameter reduces marginal costs MC, and this would imply an increase of the mark-up. The two effects are exactly balanced.

Taking the limit for n which tends to infinity, we find the usual property of the mark up:

$$\lim_{n \to +\infty} \frac{1 - \alpha}{n + \alpha - 1} = 0$$

Finally, the mark up depends negatively on α , that is the degree of substitutability between the differentiated products, as in the standard qualityladder model it is: $\frac{\partial MU}{\partial \alpha} = -\frac{n}{(n+\alpha-1)^2} < 0.$

 $^{^{15}\}text{This}$ can be proved by redoing the previous calculations with $\gamma=0.$

2.3.3 The optimal profit

Given the optimal quantity and price, we are able to compute the maximum profit for firm j in industry h:

$$\pi_{hj}^{*OLIG} = \bar{\pi}q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}k_h} \tag{2.6}$$

where

 $\bar{\pi} = \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\left(n+\alpha-1\right)\frac{1}{n}\left(\frac{n-1}{n}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} \left[\frac{1-\alpha}{n^2}\right].$ The optimal profit is positive for all $0 < \alpha < 1, n \ge 2, \gamma > 0$. Moreover, we can note that $\lim_{n\to\infty} \pi_{hj}^{*OLIG} = 0.$

2.3.4 The engine of growth

If we substitute (2.5) into the aggregate production function we obtain:

$$Y = L^{\frac{(1-\alpha)(\gamma-1)}{\gamma+\alpha-1}} \alpha^{-\frac{\alpha}{\alpha+\gamma-1}} \left(\frac{1}{n}\right)^{\alpha} \left[(n+\alpha-1)\frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \sum_{h=1}^{m} q^{\frac{\alpha(\gamma-1)}{\alpha+\gamma-1}k_h} q^{\frac{\alpha(\gamma-1)}{\alpha+\gamma-1}k$$

We define $Q(\gamma) \equiv \sum_{h=1}^{m} q^{\frac{\alpha(\gamma-1)}{\alpha+\gamma-1}k_h}$ as the *Adjusted* aggregate quality index¹⁶, so that the last equation can be rewritten in this way:

$$Y = L^{\frac{(1-\alpha)(\gamma-1)}{\gamma+\alpha-1}} \alpha^{-\frac{\alpha}{\alpha+\gamma-1}} \left(\frac{1}{n}\right)^{\alpha} \left[\left(n+\alpha-1\right) \frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} Q\left(\gamma\right)$$

The key element in fostering the growth of aggregate output turns out to be the dynamics of the quality-ladder positions, k_h , in the various sectors. The impact of $Q(\gamma)$ is amplified by the spillover effect represented by γ , as the exponent of q in $Q(\gamma)$ is an increasing function of γ . We should expect this effect because of the influence of the externality on the optimal quantities of intermediate goods.

2.4 The R&D sector

2.4.1 Modelling destruction

In the previous sections we assumed that only the best quality k_h of the intermediate good h would be produced and used in each intermediate industry: this implies that the innovation process is drastic.

¹⁶The term "adjusted" is justified by the fact that with respect to the basic model in this case the spillover parameter appears.

We now pass to investigate under which condition a drastic innovation occurs.

The different intermediate goods are perfect substitutes but are weighted by their respective grades, and each unit of the leading-edge good is equivalent to q units of the good of the previous quality. Thus, if the state of the art is sold at a price given by(2.4), the next best quality will be sold, at most, at the price $\frac{p_{hk_h}}{q}$. As a consequence, the following relationship holds: $p_{hk_h-1} \leq \frac{p_{hk_h}}{q} = MC = \frac{1}{x_{-j}^{\gamma}}$, and when a drastic innovation occurs, it must be: $\frac{p_{hk_h}}{q} < \frac{1}{x_{-j}^{\gamma}}$.

By substituting (2.4) and (2.5), we obtain:

$$\frac{n}{n+\alpha-1} < q$$

Note that it is: $q^{-1} < 1$, while it is $\frac{n}{n+\alpha-1} > 1$; furthermore, the term $\frac{n}{n+\alpha-1}$ is decreasing in n. Thus for a high enough n, the inequality $\frac{n}{n+\alpha-1} < q$ is satisfied and the right-hand-side is also decreasing in α .

We finally note that the fact of having drastic innovation or not does not depend on the degree of spillover¹⁷.

2.4.2 Modelling creation

We consider an endogenous Poisson process. This means that the time which should be waited for innovation to occur is a random variable which is distributed as an exponential. The parameter of this distribution constitutes the arrival rate of the Poisson process. We assume that it depends positively on the R&D aggregate expenditure in sector h, z_{hk_h} , and negatively on k_h for a given z_{hk_h} : the negative impact of z_{hk_h} is due to the increasing difficulty in innovation after the initial and easier stages. The flow probability to move from k_h to k_{h+1} is equal to:

$$p\left(k_{h}\right) = z_{hk_{h}}\varphi\left(k_{h}\right)$$

Hence probability p is an endogenous variable, because the level of R&D effort is chosen by the R&D firms.

 $^{^{17}\}mathrm{The}$ same justification we gave for the mark up independence from the spillover parameter applies.

2.4.3 Determination of R&D effort (steady-state analysis)

We assume that R&D is undertaken by outsiders, and in order to obtain the research arbitrage condition (and to determine p), the cost of R&D activity must be equated to respective benefits. A successful innovation grants an infinitely lived patent, hence the benefits of innovation are given by the flow of profits starting from the moment of innovation and discounted by the cumulative interest factor and the probability to be replaced by another innovation. By equating costs and benefits we obtain:

$$z_{hk_h} = p\left(k_h\right) n E\left(\pi_{hjk_h+1}\right)$$

Actually, once an outsider R&D firm succeeds in innovating, it obtains a perpetual patent, whose expected value is equal to: $E(\pi_{hjk_{h+1}})$, which is subsequently sold as license to the *n* firms in the intermediate sector *h*. Thus, as a reward, the innovator obtains the entire aggregate profit of the industry *h*:

$$z_{hk_{h}} = z_{hk_{h}}\varphi(k_{h}) \int_{t}^{+\infty} n\pi_{hjk_{h}+1}^{*OLIG} e^{-r(\tau-t)} e^{-p(k_{h}+1)(\tau-t)} d\tau$$

If we assume that the economy grows along a steady state path, then the interest rate is constant and the former equation can be recast in this way:

$$1 = \varphi(k_h) n \frac{\bar{\pi}q^{\frac{\alpha(1-\gamma)(k_h+1)}{1-\alpha-\gamma}}}{r+p(k_h+1)}$$
$$r+p(k_h+1) = \varphi(k_h) n\bar{\pi}q^{\frac{\alpha(1-\gamma)(k_h+1)}{1-\alpha-\gamma}}$$

We need now to specify the functional form of $\varphi(k_h)$. We assume constant returns to scale in the relationship between the rate of return of R&D $(r + p(k_h + 1))$ and the demand-driven effect (coming from final good producers) which is represented by the term $q^{\frac{\alpha(1-\gamma)(k_h+1)}{1-\alpha-\gamma}}$ (recall that aggregate output is proportional to the latter factor). Thus we adopt the following specification: $\varphi(k_h) = \frac{q^{-\frac{\alpha(1-\gamma)(k_h+1)}{1-\alpha-\gamma}}}{\eta}$, where η is a parameter representing the cost of doing research. In other words, a successful innovation becomes more difficult the greater the output that would be produced at the newly attained ladder position $k_h + 1$.

Given this assumption, the research arbitrage condition turns out to be equal to:

$$r + p\left(k_h + 1\right) = n\frac{\bar{\pi}}{\eta}$$

or also

$$p = n\frac{\bar{\pi}}{\eta} - r \tag{2.7}$$

So that if r is constant over time, then p also is constant.

3 The growth process

We assume Ramsey consumers, so that the growth rate of consumption is equal to

$$g = \frac{\dot{c}}{c} = \frac{1}{\sigma} \left(r - \rho \right) \tag{3.1}$$

where $\frac{1}{\sigma}$ is the intertemporal elasticity of substitution and $\rho > 0$ is the discount rate¹⁸.

Given that this is a lab-equipment model, the market clearing condition, Y = C + X + Z, implies that all the terms are proportional to $Q(\gamma)$ and so $g_C = g_Y = g_X = g_Z = g_Q = g$.

To compute the growth rate of $Q(\gamma)$, we first consider what happens in each sector h, then, by applying the law of large number, we describe the economy in the aggregate.

The proportional increase in quality in each sector is: $\frac{q\frac{\alpha(1-\gamma)(k_h+1)}{1-\alpha-\gamma} - q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}} = \frac{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}{q^{\frac{\alpha(1-\gamma)k_h}{1-\alpha-\gamma}}}$

 $q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}}-1.$ In aggregate terms, the expected proportional increase of quality is:

$$g = \frac{\dot{Q}(\gamma)}{Q(\gamma)} = p\left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)$$
(3.2)

We assume that $q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1 > 0$, so it must be that $\frac{1-\gamma}{1-\alpha-\gamma} > 0$. We thus obtain a system of three equations, (2.7), (3.1) and (3.2) in three unknowns, r, g and p.

¹⁸We assume that the population growth rate is equal to zero.

Solving the system. By solving the system composed by (2.7), (3.1) and (3.2), we obtain the steady-state expressions for g, r and p as a function of the model's parameters:

$$g = \frac{n\frac{\bar{\pi}}{\eta} - \rho}{1 + \sigma \left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)} \left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)$$
(3.3)

where $\bar{\pi} = (\alpha L^{1-\alpha})^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[(n+\alpha-1) \frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \left[\frac{1-\alpha}{n^2}\right],$ $r = \frac{n\frac{\bar{\pi}}{\eta}\sigma\left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right) + \rho}{1+\sigma\left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)}$ $p = \frac{n\frac{\bar{\pi}}{\eta} - \rho}{1+\sigma\left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)}$

The growth rate, as given by (3.3), depends negatively on the households' preference parameters, ρ and σ , and on the R&D cost. On the other hand, it is an increasing function of $\bar{\pi}$ and q.

Before discussing the conditions required for having a positive growth rate g, recall that it must be: $q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1 > 0$ and, as consequence, $\frac{1-\gamma}{1-\alpha-\gamma} > 0$; this inequality provides a first constraint on the parameters' values and determines also the presence of the usual scale effect.

4 Analysis of the BGP growth rate: the relationship between competition and growth and the feasibility of the BGP

In order to analyze the relationship between competition and growth, we must however check that the balanced growth path is feasible: this in turns implies that some sufficient conditions on the model's parameters have to be satisfied for having a positive g.

We first derive the steady-state growth rate with respect to the number of firms n in the intermediate good sector, which is the chosen measure of competition. Our results are summarized in the following proposition:

Proposition 2. Suppose that the number of firms is a continuous variable. If $\gamma > 1, n \geq 2$, the balanced growth rate q in equation (3.3) is a decreasing function of the level of competition in each intermediate sector, as measured by n. If $\gamma < 1 - \alpha$, the steady state growth rate is an inverted-U-shape function of n for $\gamma \in \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right)$, while for $\gamma \in \left(0, \frac{1-\alpha}{(1+\alpha)^2}\right)$, the balanced growth rate is still a decreasing function of n.

Proof. In order to analyze the sign of the derivative of the growth rate with respect to the degree of competition, it is sufficient to compute the derivative of $n\bar{\pi}(n)$ with respect to n, since this is the unique term of g which depends on n. Hence:

$$sign\left(\frac{\partial g}{\partial n}\right) = sign\left(\frac{\partial\left(n\bar{\pi}\left(n\right)\right)}{\partial n}\right)$$

Differentiating $n\bar{\pi}(n) = (\alpha L^{1-\alpha})^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[(n+\alpha-1)\frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \left[\frac{1-\alpha}{n} \right]^{\gamma}$ with respect to n yields

$$\frac{\partial (n\bar{\pi})}{\partial n} = \frac{1-\alpha}{n^2} \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{n+\alpha-1}{n} \left(\frac{n-1}{n}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} \cdot \left\{-\frac{\alpha}{\alpha+\gamma-1} \left[\frac{1-\alpha}{n+\alpha-1} + \gamma\frac{1}{n-1}\right] - 1\right\}$$
(4.1)

The sign of this derivative depends on the sign of the curly bracket, which

in turn depends on the term $-\frac{\alpha}{\alpha+\gamma-1}$. We must distinguish two cases: - If $\gamma > 1 - \alpha$, i.e.: the spillovers are sufficiently high, then $\left\{-\frac{\alpha}{\alpha+\gamma-1}\left[\frac{1-\alpha}{n+\alpha-1} + \gamma\frac{1}{n-1}\right] - 1\right\} < 0$, thus $\frac{\partial g}{\partial n} < 0$. However, we should exclude the values of the spillover parameter in the interval: $\gamma \in (1 - \alpha, 1)$, otherwise the BGP will not be feasible.

- If $\gamma < 1 - \alpha$, that is the degree of spillover is relatively low, then the sign of $\left\{-\frac{\alpha}{\alpha+\gamma-1}\left[\frac{1-\alpha}{n+\alpha-1}+\gamma\frac{1}{n-1}\right]-1\right\}$ is ambiguous. In order to make it clearer, we analyze the sign of this derivative in correspondence of the lower bound of the number of firms: n = 2. In particular

$$\frac{\partial (n\bar{\pi})}{\partial n}|_{n=2} = \frac{1-\alpha}{4} \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{1+\alpha}{2} \left(\frac{1}{2}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} \cdot \left\{-\frac{\alpha}{\alpha+\gamma-1} \left[\frac{1-\alpha}{1+\alpha}+\gamma\right] - 1\right\} > 0$$

if and only if $\left\{-\frac{\alpha}{\alpha+\gamma-1}\left[\frac{1-\alpha}{1+\alpha}+\gamma\right]-1\right\}>0$. This occurs when $\gamma>\frac{1-\alpha}{(1+\alpha)^2}\equiv \tilde{\gamma}$. Note that $\tilde{\gamma}\in(0,1-\alpha)$. Moreover $\lim_{n\to\infty}(n\bar{\pi})=0$. Thus if $\gamma\in$

 $(\tilde{\gamma}, 1 - \alpha)$ the relationship between competition and growth is nonmonotonic: it is increasing for small values of n and decreasing for large values of n. When instead it is $\gamma \in (0, \tilde{\gamma})$, the function $n\bar{\pi}(n)$ is decreasing in a neighborhood of n = 2 and for $n \to \infty$.

It remains to understand the behavior of this function in the interval $n \in (2, +\infty)$. To this aim we propose the following argument. The derivative (4.1) is equal to zero if and only if $-\frac{\alpha}{\alpha+\gamma-1}\left[\frac{1-\alpha}{n+\alpha-1}+\gamma\frac{1}{n-1}\right]-1=0$ which is a second order equation in n:

$$(1 - \alpha - \gamma) n^2 - 2 (\alpha \gamma - \alpha - \gamma + 1) n + (1 - \alpha) (1 - \gamma - \alpha \gamma) = 0$$

This equation admits two real roots. In fact, by computing the discriminant we found that it is equal to $\alpha^2 (1 - \alpha) \gamma > 0, \forall 0 < \alpha < 1, \gamma > 0$. We should now check whether these roots are greater or smaller than 2.

In order to do this, we study the product and the sum of the solutions, which are given by $n_1n_2 = \frac{(1-\alpha)(1-\gamma+\alpha\gamma)}{1-\alpha-\gamma}$ and $n_1 + n_2 = \frac{2(\alpha\gamma-\alpha-\gamma+1)}{1-\alpha-\gamma}$. They are both positive as we are in the region where $\gamma < 1 - \alpha$, so that the roots are greater than zero. Moreover, it can be shown that in our case

 $n_1 + n_2 > 2$ and $1 < n_1 n_2 < 2$ (4.2)

We now have to distinguish between two cases:

1- If $\gamma \in (\tilde{\gamma}, 1-\alpha)$, we know that the function $n\bar{\pi}(n)$ is increasing in a neighborhood of n = 2 and $\lim_{n \to +\infty} n\bar{\pi}(n) = 0$. Thus we can find a unique global maximum in the interval $(2, +\infty)$, while the other stationary point must smaller than 2, in order to satisfy (4.2). We can conclude that the shape of the balanced growth rate as a function of competition is an inverted U in the relevant interval.

2- If $\gamma \in (0, \tilde{\gamma})$, we can immediately note that the function can not attain a minimum and then a maximum in the interval $(2, +\infty)$, otherwise conditions (4.2) would not be satisfied; in particular it would be that $n_1n_2 > 2$ and if conditions (4.2)must be satisfied, the case in which it is $n_1 > 2$ and $n_2 > 2$ must be excluded. Hence, we are left with only two possibilities: i) one of the two stationary points is greater than 2 and in this case it must be a flex with an horizontal tangent; ii) both n_1 and n_2 are smaller than 2.

In both cases the function turns out to be monotonically decreasing in the interval $(2, +\infty)$, and under ii) it is strictly decreasing.

These considerations conclude the proof.

The economic intuition of this result is the following. There are two ways of fostering spillovers: an increase in γ , which represents the intensity of the

external economies of scale and an increase of the number of firms in each industries, which determines an increase in the aggregate quantity produced by the whole industry and so a reduction of each firm's marginal cost. Here, for a fixed γ , we study the effect of a change in the number of firms. Suppose that the spillovers are high. Then existing firms in the intermediate good sector would not be favored by an increase in strategic compelentarities due to the entrance of new firms, as the incumbents are already big: the unique consequence would be a reduction of profits.

On the other hand, if spillovers are relatively low, then it can be possible that for a low number of firms the spillover effect dominates the business stealing effect because the few existing firms would benefit from more competition as it increases the strategic complementarities. But when n rises beyond a certain threshold, the business stealing effect prevails again, inducing a decline of the steady state growth rate. In this case, the relationship between competition and growth is an inverted-U-shape. Hence for low values of the spillovers parameters, when the number of firms is small enough, the spillover effect is greater than the business stealing effect. This interpretation can be supported by the following considerations. Consider the model without strategic complementarities, i. e. $\gamma = 0$. In this case $\bar{\pi}$ becomes

$$\bar{\pi}_{\gamma=0} = \left(\alpha L^{1-\alpha}\right)^{\frac{1}{1-\alpha}} \left[\left(n+\alpha-1\right)\frac{1}{n} \right]^{-\frac{\alpha}{\alpha-1}} \left[\frac{1-\alpha}{n^2}\right]$$

As a consequence

$$\frac{\partial \bar{\pi}_{\gamma=0}}{\partial n} = \left(\alpha L^{1-\alpha}\right)^{\frac{1}{1-\alpha}} \left[\left(n+\alpha-1\right)\frac{1}{n}\right]^{-\frac{\alpha}{\alpha-1}} \left[\frac{1-\alpha}{n^4}\right] \left[\frac{\alpha n}{n+\alpha-1}-1\right] < 0$$
$$\forall 0 < \alpha < 1, n \ge 2$$

and

$$\frac{\partial (n\bar{\pi})_{\gamma=0}}{\partial n} = \left(\alpha L^{1-\alpha}\right)^{\frac{1}{1-\alpha}} \left[\left(n+\alpha-1\right)\frac{1}{n}\right]^{-\frac{\alpha}{\alpha-1}} \left[\frac{1-\alpha}{n^2}\right] \left[\frac{\alpha}{n+\alpha-1}-1\right] < 0$$
$$\forall 0 < \alpha < 1, n \ge 2$$

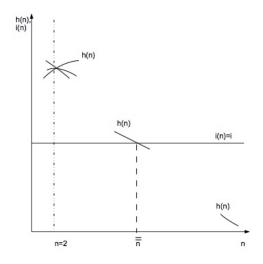
Thus if there were no spillovers in the intermediate good sector, then the relationship between competition and growth would be negative.

We now introduce the remaining conditions which guarantee the positivity of the balanced growth rate.

Proposition 3. The balanced growth rate g, which is given by expression (3.3), is positive if $\frac{1-\alpha}{2} (\alpha L^{1-\alpha})^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{1+\alpha}{2} \left(\frac{1}{2}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} > \eta\rho$. If this condition is satisfied, then it is possible to identify a closed, compact set of admissible values for the firms' number in the intermediate good sector, which are also sustainable in the long run.

Proof. We previously assumed that $q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1 > 0$. So, in order to have a positive long run growth rate, it must be: $\bar{\pi} > \frac{\eta\rho}{n}$, i.e.: $n\bar{\pi} > \eta\rho$. Define $n\bar{\pi} = h(n)$ and $\eta\rho \equiv i(n) = i$, which is a constant function with respect to n. Function h(n) is continuous in n for $n > 1^{19}$ and it is monotonically decreasing if $\gamma > 1$. When instead it is $\gamma < 1 - \alpha$, h(n) is increasing (w.r.t. n) and then decreasing if γ is in the interval $\gamma \in \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right)$; finally, for $\gamma \in \left(0, \frac{1-\alpha}{(1+\alpha)^2}\right)$, h(n) is decreasing , as shown in the previous proposition. We now provide a sufficient condition on the parameters ensuring that i

We now provide a sufficient condition on the parameters ensuring that i lies below h(n) for n = 2: h(2) > i. This imply that, by continuity, the two functions must cross at least once, let us say in \overline{n} . Graphically:



The sufficient condition for having a positive BGP growth rate and a compact, closed set of firms that can survive in the long run $([2, \overline{n}])$ is:

$$h(2) = \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{1+\alpha}{2} \left(\frac{1}{2}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} \left[1 - \frac{1+\alpha}{2}\right]$$
$$= \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{1+\alpha}{2} \left(\frac{1}{2}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} \frac{1-\alpha}{2} > \eta\rho \equiv i$$

that is

$$\frac{1-\alpha}{2} \left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[\frac{1+\alpha}{2} \left(\frac{1}{2}\right)^{\gamma}\right]^{-\frac{\alpha}{\alpha+\gamma-1}} > \eta\rho$$

This concludes the proof.

¹⁹We remark that we are interested in $n \ge 2$.

This proposition identifies an upper bound for the sustainable number of firms in the long run, which includes the scale effect of endogenous growth models: the larger is L, the greater is the growth rate and the upper bound of the sustainable interval of n. Furthermore, the lower are η or ρ , the larger is the admissible number of firms, and these two parameter also have a negative impact on the growth rate.

4.1 The discrete case

In the previous analysis we considered the number of firms as a continuous variable. Actually $n \in \mathbb{N}$, thus both the domain and the codomain of g(n) are numerable. In the following proposition we show that our main result is preserved in this case.

Proposition 4. If the number of firms in each intermediate sector is such that $n \in \mathbb{N}, n \geq 2$, then when $\gamma > 1$, the steady state growth rate g in equation (3.3) is a decreasing function of n, while when $\gamma < 1 - \alpha$, the relationship between competition and growth is an inverted-U-shape function

$$\begin{split} & if \ \gamma \in \left(\frac{1-\alpha \frac{\left[\log(2+\alpha)-\log(1+\alpha)\right]}{\log 3-\log 2}}{1+\alpha \left(\frac{\log \frac{4}{3}}{\log \frac{3}{2}}\right)}, 1-\alpha\right), \ while \ it \ is \ monotonically \ decreasing \ if \\ & \gamma \in \left(0, \frac{1-\alpha \frac{\left[\log(2+\alpha)-\log(1+\alpha)\right]}{\log 3-\log 2}}{1+\alpha \left(\frac{\log \frac{4}{3}}{\log \frac{3}{2}}\right)}\right). \end{split}$$

Moreover, there exists the following link between the sufficient conditions in the continuous and discrete case that guarantee the non monotonicity of the above relationship:

$$\left(\frac{\frac{1-\alpha\frac{\left[\log(2+\alpha)-\log(1+\alpha)\right]}{\log 3-\log 2}}{1+\alpha\left(\frac{\log\frac{4}{3}}{\log\frac{3}{2}}\right)}, 1-\alpha\right) \subset \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right).$$

Proof. We have proved before that, if n is a continuous variable, when $\gamma > 1$, the growth rate is monotonically decreasing in the number of firms. For this values of γ , the monotonicity is thus preserved when $n \in \mathbb{N}$.

We now focus on the case in which is $\gamma < 1 - \alpha$. Consider again the function $n\bar{\pi}(n) = (\alpha L^{1-\alpha})^{\frac{1-\gamma}{1-\alpha-\gamma}} \left[(n+\alpha-1)\frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \left[\frac{1-\alpha}{n} \right]$ and compute the first difference

$$(n+1)\,\bar{\pi}\,(n+1) - n\bar{\pi}\,(n) =$$

$$(1-\alpha)\left(\alpha L^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha-\gamma}} \left\{ \left[(n+\alpha)\,\frac{1}{n+1}\left(\frac{(n+1)-1}{n+1}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \frac{1}{n+1} - \left[(n+\alpha-1)\,\frac{1}{n}\left(\frac{n-1}{n}\right)^{\gamma} \right]^{-\frac{\alpha}{\alpha+\gamma-1}} \frac{1}{n} \right\}$$

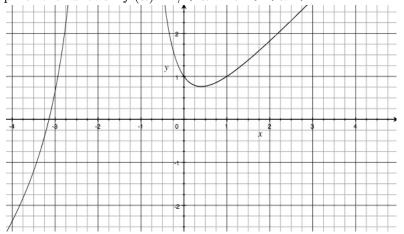
We now compute it for n = 2 and determine the (sufficient) condition on γ as a function of α for which it is: $3\pi (3) - 2\overline{\pi} (2) > 0$:

$$\frac{2}{3} > \left[\frac{2+\alpha}{3}\left(\frac{2}{1+\alpha}\right)\left(\frac{4}{3}\right)^{\gamma}\right]^{\frac{\alpha}{\alpha+\gamma-1}}$$

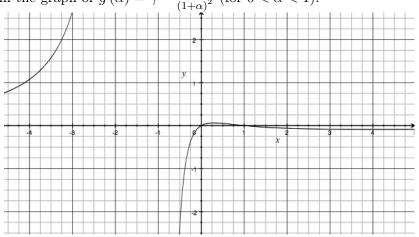
By solving for γ we obtain:

$$\gamma > \frac{1 - \alpha \frac{\left[\log(2+\alpha) - \log(1+\alpha)\right]}{\log 3 - \log 2}}{1 + \alpha \left(\frac{\log \frac{4}{3}}{\log \frac{3}{2}}\right)} \equiv \gamma$$

The value $\hat{\gamma}$ is lower than $1 - \alpha$, as it can be shown by inspecting the graph of the function $f(\alpha) = \hat{\gamma} + \alpha$ when $0 < \alpha < 1$:



On the other hand, the lower bound of $\hat{\gamma}$ is $\frac{1-\alpha}{(1+\alpha)^2}$, as it can be checked from the graph of $g(\alpha) = \hat{\gamma} - \frac{1-\alpha}{(1+\alpha)^2}$ (for $0 < \alpha < 1$):



Thu

is we showed that
$$\left(\frac{1-\alpha \frac{\left[\log(2+\alpha)-\log(1+\alpha)\right]}{\log 3-\log 2}}{1+\alpha \left(\frac{\log \frac{4}{3}}{\log \frac{2}{2}}\right)}, 1-\alpha\right) \subset \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right).$$

١

Furthermore, we know that $n\bar{\pi}(n)$ in the continuous case becomes decreasing after a certain n. This behavior is preserved in the discrete case, confirming the inverted-U-shape feature of the relationship between the growth rate and the number of firms.

On the other hand, if $\gamma \in (0, \hat{\gamma})$, the quantity $3\pi(3) - 2\bar{\pi}(2)$ is negative. In the continuous case we showed that for very small values for γ the function $n\bar{\pi}(n)$ is decreasing for $n \in (2, +\infty)$. This implies that when γ lies in this interval, our function is decreasing in the discrete case too.

This concludes the proof.

We should remark that in the proof of Proposition 3 we made use of the fact that the growth rate is a continuous function of n. Actually both the functions $n\bar{\pi} \equiv h(n)$ and $\eta \rho \equiv i(n) \equiv i$ are discrete in n. However, for the growth rate to be positive, an inequality is needed, so that we can disregard the intersection between the two functions.

$\mathbf{5}$ Calibration

We now adopt our framework for calibrating the values of the spillover parameter and the parameter representing the size of the leading-edge innovation for the UK economy. We use UK data, so to be consistent with Aghion et al. (2005) seminal paper²⁰. We also need to calibrate the income share of intermediate goods α , because estimations of a production function with only labor and intermediates are not present in the literature. To this aim, we use the equation of the mark up, $MU = \frac{1-\alpha}{n+\alpha-1}$, along the lines of Aghion et al (2005); they use the price-cost margin²¹ as a measure of product market competition, which is an approximation of the Lerner index. As the quantification of marginal costs is notoriously difficult, Aghion et al. (2005) approximate the price-cost margin with the ratio between operating profits (net of the financial costs) and sales. To compute this quantity, they use a panel of 311 firms of seventeen two-digit SIC codes industries over the period 1973-1994. The average Lerner index is 4%, which yields a mark up of 4.2%.

²⁰Most of the empirical works on the relationship between competition and growth are based on UK data because the United Kingdom experienced a large number of policy changes that led to exogenous variation in the nature and magnitude of competition.

 $^{^{21}}$ Price-cost margin is defined as the difference between price and marginal cost divided by price.

Finally, by using the average number of firms of these sectors, we obtain $\alpha = 0.263$.

We calibrate the steady state interest rate r through equation (3.1). To this end we set g = 2.18% (source: World Bank, 1973-1994), $\rho = -\log \beta = -\log 0.99 = 0.01$ (source: DSGE literature; see for example King and Rebelo 2000), $\sigma = 1^{22}$, so to obtain r = 3.18%.

Finally, we use the remaining steady state equations:

$$\begin{cases} g = p\left(q^{\frac{\alpha(1-\gamma)}{1-\alpha-\gamma}} - 1\right)\\ p = n\frac{\bar{\pi}}{\eta} - r \end{cases}$$

calibrate γ and q.

In order to measure η we choose the average Industry R&D expenditures (by performer) over GDP, which is equal to 0.0143 (source: National Science Foundation, 1975-1992). We then set L = 1 and p = 0.04, consistently with the estimation performed by Caballero and Jaffe (2002).

Hence the resulting calibrated parameters are equal to:

1.
$$\gamma = 0.5782 \in (0.462, 0.737) \equiv \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right);$$

2.
$$q = 1.8652$$
.

These results support our theoretical model: since $\gamma \in \left(\frac{1-\alpha}{(1+\alpha)^2}, 1-\alpha\right)$, the relationship between competition and growth has and inverted-U shape for the UK economy.

6 Conclusions

Empirical evidence suggests the presence of an inverted U-shaped relationship between competition and growth. But early models of endogenous growth show that stronger competition erodes the innovator's prospective monopoly rent and reduces the incentive to innovate. Only recently theory was able to explain the nonmonotonicity of the above relationship. Our model can be viewed as another attempt to justify it from a theoretical point of view. We found a set of circumstances under which the behavior of the growth rate as a function of the number of firms in each industry switches

 $^{^{22}}$ If we consider a greater value for the inverse of the intertemporal elasticity of substitution, this does not change the conclusion on the spillover parameter. The same applies if we consider a different discount rate, for example $\rho = 0.03$. Thus our analysis is robust to changes in parameter values.

form increasing to decreasing. The growth rate increases with the number of firms for small degrees of competition, as the spillover effect dominates the business-stealing effect; when competition becomes tougher, and the Schumpeterian effect of a reduction of profits prevails, the growth rate decreases with the number of firms.

By applying our model to the UK data, for the 1973-1994 period, we found that the calibrated value of the spillover parameter lies in the region where the the relationship between competition and growth is non-monotonic.

These considerations may provide a rationale for antitrust policies aimed at fostering competition in innovative sectors: in industries where the strategic complementarities are not too strong and not too weak, policy makers should enhance competition in order to reach a higher growth rate.

Appendix. Derivations of the optimal price and the optimal quantity

Each representative firm in sector h solves the following problem

$$\max_{x_{hjk_h}} \pi_{hj} = p_{hk_h} x_{hjk_h} - \frac{x_{hjk_h}}{(x_{-j})^{\gamma}}$$

The first order condition is:

$$\frac{\partial \pi_{hj}}{\partial x_{hjk_h}} = 0 \Rightarrow$$

$$p'_{hk_h} x_{hjk_h} + p_{hk_h} = \frac{1}{(x_{-j})^{\gamma}}$$

Summing all first order conditions for all firms in an industry (the sum over j allows us to use the aggregate demand function $x_{hk_h} = \sum_i x_{ihk_h}$), we obtain:

$$p'_{hk_{h}} \sum_{j=1}^{n} x_{hjk_{h}} + np_{hk_{h}} = \frac{n}{(x_{-j})^{\gamma}}$$

$$p'_{hk_{h}} x_{hk_{h}} + np_{hk_{h}} = \frac{n}{(x_{-j})^{\gamma}}$$

$$p_{hk_{h}} = \frac{1}{(x_{-j})^{\gamma}} - \frac{1}{n} p'_{hk_{h}} x_{hk_{h}}$$

Equation (2.2) can now be derived with respect to x_{hk_h} :

$$p'_{hk_h} = \alpha (\alpha - 1) q^{\alpha k_h} x_{hk_h}^{\alpha - 2} L^{1 - \alpha}$$
$$p'_{hk_h} x_{hk_h} = \alpha (\alpha - 1) q^{\alpha k_h} x_{hk_h}^{\alpha - 1} L^{1 - \alpha}$$

By using (2.1), the last equation turns out to be equal to:

$$p_{hk_h}' x_{hk_h} = \alpha \left(\alpha - 1\right) q^{\alpha k_h} \left(L q^{\frac{\alpha k_h}{1 - \alpha}} \left(\frac{\alpha}{p_{hk_h}}\right)^{\frac{1}{1 - \alpha}} \right)^{\alpha - 1} L^{1 - \alpha} = \left(\alpha - 1\right) p_{hk_h}$$
(.1)

(.1) Now consider the term $\frac{1}{(x_{-j})^{\gamma}}$. By definition it is: $x_{hk_h} = \sum_{j=1}^n x_{hjk_h}$, while, by the assumption of symmetry, it is $x_{hk_h} = \sum_{j=1}^n x_{hjk_h} = nx_{hjk_h} \Rightarrow x_{hjk_h} = \frac{1}{n}x_{hk_h}$. So $x_{-j} = \sum_{l \neq j} x_{hlk_h} = \frac{n-1}{n}x_{hk_h}$. These facts, together with expression (2.1). allow us to write:

$$\frac{1}{(x_{-j})^{\gamma}} = \left(\frac{n}{n-1}\right)^{\gamma} \frac{1}{(x_{hk_h})^{\gamma}} = \left(\frac{n}{n-1}\right)^{\gamma} \left(Lq^{\frac{\alpha k_h}{1-\alpha}} \left(\frac{\alpha}{p_{hk_h}}\right)^{\frac{1}{1-\alpha}}\right)^{-\gamma} (.2)$$
$$= \left(\frac{n}{n-1}\right)^{\gamma} L^{-\gamma} q^{-\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{-\frac{\gamma}{1-\alpha}} p_{hk_h}^{\frac{\gamma}{1-\alpha}}$$

By plugging (.1) and (.2) into the sum of the first order conditions of industry h, we obtain:

$$p_{hk_h} = \left(\frac{n}{n-1}\right)^{\gamma} L^{-\gamma} q^{-\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{-\frac{\gamma}{1-\alpha}} p_{hk_h}^{\frac{\gamma}{1-\alpha}} - \frac{1}{n} (\alpha - 1) p_{hk_h}$$

which can be divided by p_{hk_h}

$$1 = \left(\frac{n}{n-1}\right)^{\gamma} L^{-\gamma} q^{-\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{-\frac{\gamma}{1-\alpha}} p_{hk_h}^{\frac{\gamma+\alpha-1}{1-\alpha}} - \frac{1}{n} (\alpha - 1)$$

$$n = n \left(\frac{n}{n-1}\right)^{\gamma} L^{-\gamma} q^{-\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{-\frac{\gamma}{1-\alpha}} p_{hk_h}^{\frac{\gamma+\alpha-1}{1-\alpha}} - (\alpha - 1)$$

$$n + \alpha - 1 = n \left(\frac{n}{n-1}\right)^{\gamma} L^{-\gamma} q^{-\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{-\frac{\gamma}{1-\alpha}} p_{hk_h}^{\frac{\gamma+\alpha-1}{1-\alpha}}$$

$$p_{hk_h}^{\frac{\gamma+\alpha-1}{1-\alpha}} = (n + \alpha - 1) \frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} L^{\gamma} q^{\frac{\gamma \alpha k_h}{1-\alpha}} \alpha^{\frac{\gamma}{1-\alpha}}$$

Thus the optimal price is

$$p_{hk_h}^* = \left\{ \left(n + \alpha - 1\right) \frac{1}{n} \left[\left(\frac{n-1}{n}\right) Lq^{\frac{\alpha k_h}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} \right]^{\gamma} \right\}^{\frac{1-\alpha}{\alpha+\gamma-1}}$$

This expression allows us to compute the optimal quantity produced by each firm in h. By the assumption of symmetry, it is

$$x_{hjk_h} = \frac{1}{n} x_{hk_h}$$

$$\begin{aligned} x_{hjk_h} &= \frac{1}{n} L q^{\frac{\alpha k_h}{1-\alpha}} \left(\frac{\alpha}{p_{hk_h}}\right)^{\frac{1}{1-\alpha}} \\ &= \frac{1}{n} L q^{\frac{\alpha k_h}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} \left\{ \left(n+\alpha-1\right) \frac{1}{n} \left[\left(\frac{n-1}{n}\right) L q^{\frac{\alpha k_h}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} \right]^{\gamma} \right\}^{\frac{1-\alpha}{\alpha+\gamma-1}\left(-\frac{1}{1-\alpha}\right)} \end{aligned}$$

Thus the equilibrium quantity produced by the sector \boldsymbol{h} oligopolists is equal to:

$$x^{*}(h) = x^{*}_{hjk_{h}} = \frac{1}{n} L^{\frac{\alpha-1}{\alpha+\gamma-1}} q^{-\frac{\alpha}{(\alpha+\gamma-1)}k_{h}} \alpha^{-\frac{1}{(\alpha+\gamma-1)}} \left\{ (n+\alpha-1) \frac{1}{n} \left(\frac{n-1}{n}\right)^{\gamma} \right\}^{-\frac{1}{\alpha+\gamma-1}}$$

References

- Acemoglu, D., Gancia, G., Zilibotti, F. (2010), "Competing engines of growth: innovation and standardization," NBER Working Papers 15958.
- [2] Adams, J. D., Jaffe, A. B. (1996), "Bounding the effect of R&D: an investigation using matched establishment-firm data", RAND Journal of economics, 27(4), 700-21.
- [3] Aghion, P., Dewatripont, M., and Rey, P. (1999), "Competition, financial discipline, and growth", Review of Economic Studies, 66, 825-852.
- [4] Aghion, P., Bloom, N., Blundell, R., Griffith, R., Howitt, P. (2005), "Competition and innovation: an inverted-U relationship", The Quarterly Journal of Economics, MIT Press, 120(2), pages 701-728, May.
- [5] Aghion, P., Griffith, R. (2005), "Competition and growth: reconciling theory and evidence", Cambridge, MA: MIT Press.
- [6] Aghion, P, Harris, C, Howitt, P and J. Vickers (2001), "Competition, imitation and growth with step-by-step innovation", Review of Economic Studies, 68, 467-492.
- [7] Aghion, P, Harris, C, and J. Vickers (1997) "Competition and growth with step- by-step innovation: an example", European Economic Review, Papers and Proceedings, 771-782.
- [8] Aghion, P., Howitt, P. (1992) "A model of growth through creative destruction." Econometrica, 60, 323-351.
- [9] Aghion, P., Howitt, P. (1998) "Endogenous growth theory", Cambridge, MA: MIT Press.
- [10] d'Aspremont, C., Dos Santos Ferreira, R., Gerard-Varet, L. A. (2002), "Strategic R&D investment, competition toughness and Growth", CORE Discussion Papers.
- [11] Badinger, H., Egger, P. (2008), "Intra- and inter-industry productivity spillovers in OECD manufacturing: a spatial econometric perspective", CESIFO Working Paper No. 2181.
- [12] Barro, R., Sala-i-Martin, X. (2004), "Economic growth", New York, McGraw-Hill.

- [13] Basu, S., Fernald, J. G. (1997), "Returns to scale in U.S. production: estimates and implications," Journal of Political Economy, University of Chicago Press, vol. 105(2), 249-283.
- [14] Blundell, R., Griffith, R. and Van Reenen, J. (1999), "Market share, market value and innovation in a panel of british manufacturing firms", Review of Economic Studies, 66, 529-554.
- [15] Brandt, N. (2007), "Mark-ups, economies of scale and the role of knowledge spillovers in OECD industries", European Economic Review, 51, 1708-32.
- [16] Caballero, R. J., & Jaffe, A. B. (2002), "How high are the giants' shoulders: An empirical assessment of knowledge spillovers and creative destruction in a model of economic growth", in A. Jaffe & M. Trajtenberg (Eds.), Patents, citations and innovations: A window on the knowledge economy, 89–152. Cambridge, MA: The MIT Press.
- [17] Ciccone, A., Hall, R. E. (1996), "Productivity and the density of economic activity", American Economic Review, 86, 54-70.
- [18] Coe, D. and Helpman, E. (1995), "International R&D spillovers", European Economic Review, 39, 859-887.
- [19] Cohen, W., and Levin, R. (1989), "Empirical studies of innovation and market structure", Chapter 18 of R. Schmalensee and R. Willig, Handbook of Industrial Organization, Elsevier.
- [20] Chu, A. C. (2009), "Effects of patent length on R&D: a quantitative DGE analysis", Journal of Economic Growth, 14, 55–78.
- [21] Dixit, A., Stiglitz, J. (1977), "Monopolistic competition and optimum product diversity", The American Economic Review, 67(3), 297-308.
- [22] Eaton, J., Kortum, S. (1996), "Trade on ideas: patenting and productivity in the OECD", Journal of International Economics, 40(3-4), 251-78.
- [23] Eaton, J., Kortum, S. (1999), "International technology diffusion: theory and measurement", Journal of International Economics, 40(3), 537-70.
- [24] Ellison, G., Glaeser, E. L., Kerr, W. (2007), "What causes industry agglomeration? Evidence from coagglomeration patterns", NBER Working Paper n.13068.

- [25] Geroski, P. (1995), "Market structure, corporate performance and innovative activity", Oxford: Oxford University Press.
- [26] Glaeser, E., Kallal, H., Scheinkman, J., Shleifer, A. (1992), "Growth in cities", Journal of Political Economy, 100, 1126-1152.
- [27] Grosfeld, I., Tressel, T (2001), "Competition and corporate governance: substitutes or complements? Evidence from the Warsaw Stock Exchange", Working Paper DELTA.
- [28] Grossman, G. M., Helpman, E. (1991), "Innovation and growth in the global economy", Cambridge, MA: MIT Press.
- [29] Hart, O. (1983), "The market mechanism as an incentive scheme", Bell Journal of Economics, 14, 366-382.
- [30] Henderson, J. V. (1986), "Efficiency of resource usage and city size", Journal of Urban Economics, 19, 47-70.
- [31] Henderson, J. V., Kuncoro, A., Turner, M. (1995), "Industrial development in cities", Journal of Political Economy, 103, 1067-1085.
- [32] Jaffe, A. B., Trajtemberg, M. (1999), "International knowledge flows: evidence from patent citations", Economics of Innovation and New Technology, 81(1-2), 105-36.
- [33] Jimenez, M., Marchetti, D. (2002), "Interpreting the procyclical productivity of manufacturing sectors: can we really rule out external effects?", Applied Economics, 34, 805-817.
- [34] Keller, W. (2002), "Geographic localization of international technology diffusion", American Economic Review, 92(1), 120–142.
- [35] King R., Rebelo S. (2000), "Resuscitating Real Business Cycles", NBER Working Paper n.7534.
- [36] Koeninger, W. and Licandro, O. (2006), "On the use of substitutability as a measure of competition", Topics on Macroeconomics, 6(6).
- [37] Levin, R., Cohen, W., Mowery, D. (1985), "R&D appropriability, opportunity, and market structure: new evidence on some Schumpeterian hypotheses", American Economic Review Proceedings, 75, 20-24.

- [38] Malerba, F., Mancusi, M., Montobbio, F. (2004), "Innovation and knowledge: evidence from European data", paper presented at the American Economic Association annual meetings, San Diego 2004.
- [39] Moomaw, R. L. (1981), "Productivity and city size: A critique of the evidence", Quarterly Journal of Economics, 96, 675-688.
- [40] Motta, M. (2004), "Competition policy: theory and practice", Cambridge UP.
- [41] Nakamura, R. (1985), "Agglomeration economies in urban manufacturing industries: a case of Japanese cities", Journal of Urban Economics, 17.
- [42] Nickell, S. (1996) "Competition and corporate performance", Journal of Political Economy, 104, 724-746.
- [43] Nickell, S., Nicolitas, D., Dryden, N. (1997), "What makes firms perform well?", European Economic Review 43, 783-796.
- [44] Rouvinen, P. (2002), "The existence of R&D spillovers: a cost function estimation with random coefficient", Economics of Innovation and New Technology, 11(6), 525-41.
- [45] Salop, S. (1997), "The noisy monopolist: imperfect information, price dispersion, and price discrimination", Review of Economic Studies, 44, 393-406.
- [46] Sbordone, A. M. (1997), "Interpreting the procyclical productivity of manufacturing sectors: external effects or labor hoarding?," Journal of Money, Credit and Banking, Blackwell Publishing, 29(1), 26-45, February.
- [47] Scherer, F. (1967), "Market structure and the employment of scientists and engineers", American Economic Review, 57(3), 524-531.
- [48] Schumpeter, J. (1943), "Capitalism, socialism and democracy", London: Allen Unwin.
- [49] Sveikauskas, L. (1975), "The productivity of cities", Quarterly Journal of Economics, 89, 393-413.
- [50] Van Stel, A., Nieuwenhuijsen, H. (2004), "Knowledge spillovers and economic growth: an analysis using data of Dutch Regions in the period 87-95", Regional Studies, 38, 393-407.

[51] Zanchettin, P., Denicolò, V., (2004), "Competition and growth in Neo-Schumpeterian models," Discussion Papers in Economics 04/28, Department of Economics, University of Leicester.

Recent titles

CORE Discussion Papers

2009/77. Nicola ACOCELLA, Giovanni DI BARTOLOMEO, Andrew HUGUES HALLETT and Paolo G. PIACQUADIO. Announcement wars as an equilibrium selection device. 2009/78. Julio DÁVILA. The taxation of savings in overlapping generations economies with unbacked risky assets. 2009/79 Elena DEL REY and Miguel Angel LOPEZ-GARCIA. Optimal education and pensions in an endogenous growth model. 2009/80. Hiroshi UNO. Strategic complementarities and nested potential games. Xavier WAUTHY. Market coverage and the nature of product differentiation: a note. 2009/81. 2009/82. Filippo L. CALCIANO. Nash equilibria of games with increasing best replies. 2009/83. Jacques H. DRÈZE, Oussama LACHIRI and Enrico MINELLI. Stock prices, anticipations and investment in general equilibrium. 2009/84. Claire DUJARDIN and Florence GOFFETTE-NAGOT. Neighborhood effect on unemployment? A test à la Altonji. Erwin OOGHE and Erik SCHOKKAERT. School accountability: (how) can we reward schools 2009/85. and avoid cream-skimming. 2009/86. Ilke VAN BEVEREN and Hylke VANDENBUSSCHE. Product and process innovation and the decision to export: firm-level evidence for Belgium. 2010/1. Giorgia OGGIONI and Yves SMEERS. Degree of coordination in market-coupling and counter-trading. Yu. NESTEROV. Efficiency of coordinate descent methods on huge-scale optimization 2010/2. problems. Geert DHAENE an Koen JOCHMANS. Split-panel jackknife estimation of fixed-effect models. 2010/3. 2010/4. Parkash CHANDER. Cores of games with positive externalities. 2010/5. Gauthier DE MAERE D'AERTRYCKE and Yves SMEERS. Liquidity risks on power exchanges. 2010/6. Marc FLEURBAEY, Stéphane LUCHINI, Christophe MULLER and Erik SCHOKKAERT. Equivalent income and the economic evaluation of health care. Elena IÑARRA, Conchi LARREA and Elena MOLIS. The stability of the roommate problem 2010/7. revisited. Philippe CHEVALIER, Isabelle THOMAS and David GERAETS, Els GOETGHEBEUR, 2010/8. Olivier JANSSENS, Dominique PEETERS and Frank PLASTRIA. Locating fire-stations: an integrated approach for Belgium. 2010/9. Jean-Charles LANGE and Pierre SEMAL. Design of a network of reusable logistic containers. 2010/10. Hiroshi UNO. Nested potentials and robust equilibria. 2010/11. Elena MOLIS and Róbert F. VESZTEG. Experimental results on the roommate problem. Koen DECANCQ. Copula-based orderings of multivariate dependence. 2010/12. 2010/13. Tom TRUYTS. Signaling and indirect taxation. 2010/14. Asel ISAKOVA. Currency substitution in the economies of Central Asia: How much does it cost? 2010/15. Emanuele FORLANI. Irish firms' productivity and imported inputs. 2010/16. Thierry BRECHET, Carmen CAMACHO and Vladimir M. VELIOV. Model predictive control, the economy, and the issue of global warming. Thierry BRECHET, Tsvetomir TSACHEV and Vladimir M. VELIOV. Markets for emission 2010/17. permits with free endowment: a vintage capital analysis. 2010/18. Pierre M. PICARD and Patrice PIERETTI. Bank secrecy, illicit money and offshore financial centers. 2010/19. Tanguy ISAAC. When frictions favour information revelation. 2010/20. Jeroen V.K. ROMBOUTS and Lars STENTOFT. Multivariate option pricing with time varying volatility and correlations. 2010/21. Yassine LEFOUILI and Catherine ROUX. Leniency programs for multimarket firms: The effect of Amnesty Plus on cartel formation.

Recent titles

CORE Discussion Papers - continued

- 2010/22. P. Jean-Jacques HERINGS, Ana MAULEON and Vincent VANNETELBOSCH. Coalition formation among farsighted agents.
- 2010/23. Pierre PESTIEAU and Grégory PONTHIERE. Long term care insurance puzzle.
- 2010/24. Elena DEL REY and Miguel Angel LOPEZ-GARCIA. On welfare criteria and optimality in an endogenous growth model.
- 2010/25. Sébastien LAURENT, Jeroen V.K. ROMBOUTS and Francesco VIOLANTE. On the forecasting accuracy of multivariate GARCH models.
- 2010/26. Pierre DEHEZ. Cooperative provision of indivisible public goods.
- 2010/27. Olivier DURAND-LASSERVE, Axel PIERRU and Yves SMEERS. Uncertain long-run emissions targets, CO₂ price and global energy transition: a general equilibrium approach.
- 2010/28. Andreas EHRENMANN and Yves SMEERS. Stochastic equilibrium models for generation capacity expansion.
- 2010/29. Olivier DEVOLDER, François GLINEUR and Yu. NESTEROV. Solving infinite-dimensional optimization problems by polynomial approximation.
- 2010/30. Helmuth CREMER and Pierre PESTIEAU. The economics of wealth transfer tax.
- 2010/31. Thierry BRECHET and Sylvette LY. Technological greening, eco-efficiency, and no-regret strategy.
- 2010/32. Axel GAUTIER and Dimitri PAOLINI. Universal service financing in competitive postal markets: one size does not fit all.
- 2010/33. Daria ONORI. Competition and growth: reinterpreting their relationship.

Books

- J. GABSZEWICZ (ed.) (2006), La différenciation des produits. Paris, La découverte.
- L. BAUWENS, W. POHLMEIER and D. VEREDAS (eds.) (2008), *High frequency financial econometrics:* recent developments. Heidelberg, Physica-Verlag.
- P. VAN HENTENRYCKE and L. WOLSEY (eds.) (2007), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Berlin, Springer.
- P-P. COMBES, Th. MAYER and J-F. THISSE (eds.) (2008), *Economic geography: the integration of regions and nations.* Princeton, Princeton University Press.
- J. HINDRIKS (ed.) (2008), Au-delà de Copernic: de la confusion au consensus ? Brussels, Academic and Scientific Publishers.
- J-M. HURIOT and J-F. THISSE (eds) (2009), Economics of cities. Cambridge, Cambridge University Press.
- P. BELLEFLAMME and M. PEITZ (eds) (2010), *Industrial organization: markets and strategies*. Cambridge University Press.
- M. JUNGER, Th. LIEBLING, D. NADDEF, G. NEMHAUSER, W. PULLEYBLANK, G. REINELT, G. RINALDI and L. WOLSEY (eds) (2010), 50 years of integer programming, 1958-2008: from the early years to the state-of-the-art. Berlin Springer.

CORE Lecture Series

- C. GOURIÉROUX and A. MONFORT (1995), Simulation Based Econometric Methods.
- A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality.
- J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization.
- B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through Vertical Agreements.
- D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming problems: theory and practice.
- R. AMIR (2002), Supermodularity and complementarity in economics.
- R. WEISMANTEL (2006), Lectures on mixed nonlinear programming.