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Abstract 
In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of 
functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex 
coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual 
problem, which can be solved by efficient gradient methods. We show that it is possible to reconstruct an 
approximate primal solution. In order to accelerate our schemes, we apply double-smoothing technique. As a 
result, our method has complexity O(1/ε ln 1/ε) gradient iterations, where ε is the desired accuracy of the 
solution of the primal-dual problem. Our approach covers, in particular, the optimal control problems with 
trajectory governed by a system of ordinary differential equations. The additional requirement could be that the 
trajectory crosses in certain moments of time some convex sets. 
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1 Introduction

In this paper, we are interested in a specific class of convex infinite-dimensional problems
with decision variables being functions of time. These problems are characterized by the
joint presence of convex bounds on some finite-dimensional characteristics of the decision
variables, and of the point-wise time constraints. The key assumption on the problem
structure is that, when the coupling constraints are dropped, we can easily optimize the
remaining part of the problem separately, for each moment of time. Hence, the first
step in our approach is dualization of the difficult convex constraints. Since the number
of coupling constraints is finite, the Lagrangian dual problem is a non-smooth convex
problem in finite-dimension. We assume that the dual objective function value can be
computed for each value of the Lagrangian multipliers. Thus, our primary goal is to find
efficiently an approximate solution to the dual problem. At the same time, we are able
to reconstruct a nearly feasible optimal primal solution.

In order to satisfy these two goals, we develop a new double-smoothing approach,
which is a variant of the smoothing techniques [10, 11, 12]. Using the problem structure,
we transform the dual objective function into a smooth strongly convex function with
Lipschitz continuous gradient. These modifications allow us to minimize the dual function
by an optimal gradient scheme with complexity bound O

(
1
ε ln

(
1
ε

))
iterations, where ε is

the desired accuracy. We present some applications of our technique to some optimal
control problems and to large-scale problems in finite dimension.

The structure of this paper is as follows. In Section 2, we describe the infinite-
dimensional primal problem setting and derive the corresponding dual problem. By
Danskin theorem, we show that in general the dual objective function is non-smooth.
In Section 3, we apply to this function two regularizations which make it smooth and
strongly convex (we explain the importance of both properties). In Section 4, we recall
the optimal method [9] for smooth and strongly convex functions and describe its rate of
convergence. In Section 5, this optimal scheme is applied to our modified dual objective
function. From the dual minimization sequence, it is possible to reconstruct a nearly
feasible and optimal primal solution. The accuracy of the primal and dual solutions can
be adjusted by special parameters. In Section 6, we show that the approximate primal
solutions obtained by the double smoothing algorithm converge in a weak sense to the
optimal solution of the primal infinite-dimensional problem. This result can be used for a
constructive proof of the strong duality for the primal-dual problem. In the last two sec-
tions we consider the applications of double-smoothing technique to the optimal control
problems and to the large-scale convex optimization problems in finite dimension.

2 Problem formulation and dual approach

Consider the following infinite-dimensional convex optimization problem:

inf
u
{
T∫
0

F (t, u(t))dt :
T∫
0

Ai(t)u(t)dt ∈ Qi, i = 1, . . . , N, (∗)

u(t) ∈ Q(t) a.e in [0, T ]},
(1)

where T <∞, and the following assumptions are satisfied.
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Assumption 1

1. For matrices Ai(t) ∈ Rni×m, t ∈ [0, T ], we have
T∫
0

‖Ai(t)‖22 dt <∞, i = 1, . . . , N .

2. Sets Qi ⊂ Rni, i = 1, . . . , N , are convex, closed and bounded.

3. All sets Q(t) ⊂ Rm, t ∈ [0, T ], are convex, closed and the graph Q := ∪t∈[0,T ]Q(t) is
bounded.

4. Function F (t, u) : [0, T ]×Q→ R is convex in u for any t ∈ [0, T ], and continuously
differentiable in (t, u).

We measure the size of the control function u(t) ∈ Rm, t ∈ [0, T ], belonging to

L2([0, T ],Rm), by the standard L2-norm ‖u‖22 =
T∫
0

‖u(t)‖22 dt.

Without convex coupling constraints (1)∗, we can solve problem (1) in a pointwise way,
minimizing the objective separately for every t ∈ [0, T ]. Hence, it is natural to dualize
these constraints and pass to a finite-dimensional Lagrangian dual problem. For each
value of dual variables, the dual function can be computed by a point-wise minimization in
u(t) ∈ Q(t). Assuming that this operation is feasible, our primary goal is to show that the
dual problem can be solved efficiently. After that, we will see that the dual optimization
scheme can be used for constructing an approximate optimal primal solution.

Denote by Ai, the linear operators defining the convex coupling constraints:

Ai : L2([0, T ],Rm)→ Rni , u→
T∫
0

Ai(t)u(t)dt, i = 1, . . . , N.

For any zi ∈ Rni we have 〈Aiu, zi〉 = 〈
T∫
0

Ai(t)u(t)dt, zi〉 =
T∫
0

〈u(t), ATi (t)zi〉dt. Thus,

A∗zi = ATi (t)zi, t ∈ [0, T ]. (2)

In view of Assumption 1.1, the operators Ai are bounded and therefore continuous:

‖Aiu‖22 = ‖
T∫
0

Ai(t)u(t)dt‖22 ≤

(
T∫
0

‖Ai(t)u(t)‖2 dt

)2

≤

(
T∫
0

‖Ai(t)‖2 · ‖u(t)‖2 dt

)2

≤
T∫
0

‖Ai(t)‖22 dt ·
T∫
0

‖u(t)‖22 dt < +∞.

Since Qi is a convex set, inclusion Aiu ∈ Qi is valid if and only if

〈Aiu, zi〉 ≤ σQi(zi) ∀zi ∈ Rni

where σQi(z) = supx∈Qi〈x, z〉 is the support function of Qi. Therefore, problem (1) can
be rewritten in the following form:

inf
u∈L2([0,T ],Rm)

{
T∫
0

F (t, u(t))dt : 〈Aiu, zi〉 ≤ σQi(zi) ∀zi ∈ Rni , i = 1, .., N,

u(t) ∈ Q(t) a.e. in [0, T ]}.
(3)
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Denote U = {u ∈ L2([0, T ],Rm) : u(t) ∈ Q(t) a.e. in [0, T ]}, n̄ =
N∑
i=1

ni, and z =

(z1, . . . , zN )T ∈ Rn̄. Dualizing the constraints Aiu ∈ Qi, we obtain a dual form of the
primal problem:

P ∗ = inf
u∈U

[
T∫
0

F (t, u(t))dt+ sup
z∈Rn̄

∑N
i=1(〈Aiu, zi〉 − σQi(zi))

]
≥

D∗
def
= sup

z∈Rn̄

[
−
∑N

i=1 σQi(z
i) + inf

u∈U

(∑N
i=1〈Aiu, zi〉+

T∫
0

F (t, u(t))dt

)]
.

Thus, the Lagrangian dual problem (in minimization form) is given by

−D∗ = θ∗
def
= inf

z∈Rn̄
∑N

i=1 σQi(z
i) + φ(z) = infz∈Rn̄ θ(z) (4)

where φ : Rn̄ → R is defined by:

φ(z) = sup
u∈U

[
T∫
0

−F (t, u(t))dt−
∑N

i=1〈Aiu, zi〉]

= sup
u∈U

[
T∫
0

−F (t, u(t))dt−
∑N

i=1〈u,A∗i zi〉]

(2)
= sup

u∈U

T∫
0

[−F (t, u(t))−
∑N

i=1〈u(t), Ai(t)
T zi〉]dt.

(5)

The dual convex optimization problem (4) is an unconstrained problem in finite dimen-
sion. For each z ∈ Rn̄ we can compute its objective function defining φ(z) in a pointwise
way:

u(t) = arg max
v∈Q(t)

[
−F (t, v)−

∑N
i=1〈v,Ai(t)T zi〉

]
, t ∈ [0, T ]. (6)

(We assume that functions F (t, v) and convex sets Q(t) are simple enough.) In general,
this function θ(z) is nondifferentiable. Indeed, by standard reasoning, we can guarantee
that

∂φ(z) ⊇ {(−A1u, ...,−ANu)T :
T∫
0

−F (t, u(t))dt−
∑N

i=1〈Aiu, zi〉 = φ(z), u ∈ U}.

(A rigorous application of Danskin Theorem [5, 3] justifies the equality in the above
relation.) As the optimization problem (5) can have multiple optimal solutions, the set
∂φ(z) can contain more than one element and therefore at this point φ is not differentiable.

Thus, the dualization of problem (1) results in a finite-dimensional nonsmooth convex
problem (4). The classical algorithms for solving such problems are the subgradient-type
schemes. Provided that θ(z) is computable, we can apply them directly to problem (4).
However, their convergence is rather slow. In order to get an accuracy ε for the objective
value, they need O

(
1
ε2

)
iterations (e.g. [9, 13]).

In our paper we propose another approach based on the smoothing techniques [10, 11,
12]. In the smoothing approach, using the specific structure of the problem, we apply
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some regularization to the objective function and obtain much faster methods (which are
not anymore the pure black-box schemes). In this work, we develop an algorithm which is
able to solve the dual problem and to reconstruct from the nearly optimal dual solution,
a nearly optimal and feasible primal solution in O

(
1
ε ln

(
1
ε

))
iterations.

3 Double Smoothing Technique

In convex optimization there are two important class of objective function:

• F 1,1
L (Rn̄) is the class of convex functions f : Rn̄ → R which gradient is Lipschitz-

continuous with constant L > 0.

• S1,1
κ,L(Rn̄), is the class of functions f ∈ F 1,1

L (Rn̄) which are strongly convex with
parameter κ > 0.

We will try to solve the dual problem (4) using a new primal-dual smoothing technique.
Note that in general its objective function is not differentiable and not strongly convex.
However, we can ensure these properties by double primal-dual regularization of θ. The
goal of the first regularization is to obtain an objective function with Lipschitz-continuous
gradient. In this case, we will be able to apply much more efficient algorithms of smooth
convex optimization.

The goal of the second regularization is to obtain a strongly convex dual objective.
As we will see later, for reconstructing primal solution, we need to get a dual solution
with small value of the gradient of the objective function. Unfortunately, this feature
is not guaranteed by the small residual in the objective function. Indeed, consider the
unconstrained minimization problem

min
z∈Rn̄

g(z),

with g ∈ F 1,1
L (Rn̄) and with optimal solution z∗. If we apply to this problem the optimal

scheme [10], we can obtain the following rate of convergence:

g(zk)− g∗ ≤ O
(

1
k2

)
.

Since (e.g. Theorem 2.1.5 in [9]) 1
2L ‖∇g(zk)‖22 ≤ g(zk)− g∗, we have ‖∇g(zk)‖2 ≤ O

(
1
k

)
.

On the other hand, we can consider the modified function g̃(z) = g(z) + 1
2δ‖z‖

2
2. Note

that g̃ ∈ S1,1
δ,δ+L(Rn̄). Therefore (e.g. Theorem 2.2.3 in [9])

1
2(δ+L)‖∇g̃(zk)‖22 ≤ g̃(zk)− g̃∗ ≤ exp

(
−k
√

δ
δ+L

)
· δ+L2 ‖z∗‖

2
2 .

Thus, we can get ‖∇g(zk)‖2 ≤ δ in O
(

1
δ1/2 ln 1

δ

)
iterations.

These results justify why we want to modify the dual objective function in a strongly
convex function with Lipschitz-continuous gradient. Let us start from ensuring the
smoothness of the dual function.

The dual objective θ(z) is a sum of two functions. Both of them can be nonsmooth.
Consider its first term. For ρ > 0, we can approximate σQi(z

i) = supx∈Qi〈x, z
i〉 by a

smooth function
σρ,Qi(z

i) = sup
x∈Qi
{〈x, zi〉 − ρ

2 ‖x‖
2
2}. (7)
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This optimization problem has only one optimal solution since its objective is strongly
concave. Therefore the function σρ,Qi is differentiable with gradient given by:

∇ziσρ,Qi(zi) = xρ,zi

where xρ,zi ∈ Qi is this unique optimal solution to (7). Moreover, ∇σQi(zi) is Lipschitz-
continuous with constant 1

ρ (e.g. [10]). Applying this smoothing to all i = 1, ..., N , we

obtain function
∑N

i=1 σρ,Qi(z
i), which gradient

∇z
(∑N

i=1 σρ,Qi(z
i)
)

= (xρ,z1 , ..., xρ,zN )T .

is Lipschitz-continuous with constant 1
ρ .

Let us smooth now the second term of the dual objective. For µ > 0, we modify the
function φ(z) as follows:

φµ(z) = sup
u∈U

(
T∫
0

−F (t, u(t))dt−
∑N

i=1〈Aiu, zi〉 −
µ
2

T∫
0

‖u(t)‖22 dt

)
.

Since the objective function of this problem is strongly concave in u, it has a unique
optimal solution uµ,z(t), that can be computed independently for each t ∈ [0, T ]:

uµ,z(t) = arg max
v∈Q(t)

[
−F (t, v)−

∑N
i=1〈v,Ai(t)T zi〉 −

µ
2 ‖v‖

2
2

]
. (8)

By Danskin Theorem, function φµ(z) is differentiable and

∇φµ(z) = (−A1uµ,z, ...,−ANuµ,z)T .

Let us estimate the Lipschitz constant of its gradient.

Theorem 1 With the assumption 1, the gradient of function φµ is Lipschitz-continuous

with constant 1
µ

∑N
i=1 ‖Ai‖

2.

Proof:
For (u, z) ∈ U × Rn̄, define the function

Ψµ(u, z) = −
T∫
0

F (t, u(t))dt−
∑N

i=1〈Aiu, zi〉 −
µ
2

T∫
0

‖u(t)‖22 dt.

This function is Frechet differentiable in u and its Frechet derivative is given by:

〈∇uΨµ(u, z), h〉 =
T∫
0

[−〈∇uF (t, u(t)), h(t)〉 − µ〈u(t), h(t)〉] dt−
∑N

i=1〈A∗i zi, h〉

(we used the fact that F is continuously differentiable). Therefore, by the first-order
optimality conditions for problem

φµ(z) = sup
u∈U

Ψµ(u, z),
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for all z′ and z′′ ∈ Rn̄ we have (see [8]):

〈∇uΨµ(uµ,z′ , z
′), uµ,z′′ − uµ,z′〉 ≤ 0, 〈∇uΨµ(uµ,z′′ , z

′′), uµ,z′ − uµ,z′′〉 ≤ 0.

Summing up these two inequalities, we obtain:

0 ≤ 〈∇uΨµ(uµ,z′ , z
′)−∇uΨµ(uµ,z′′ , z

′′), uµ,z′ − uµ,z′′〉

=
T∫
0

〈−∇uF (t, uµ,z′(t)) +∇uF (t, uµ,z′′(t)), uµ,z′(t)− uµ,z′′(t)〉dt

−µ
T∫
0

〈uµ,z′(t)− uµ,z′′(t), uµ,z′(t)− uµ,z′′(t)〉dt−
∑N

i=1〈A∗i (z′i − z′′i ), uµ,z′ − uµ,z′′〉.

Since F (t, .) is convex, 〈∇uF (t, uµ,z′(t))−∇uF (t, uµ,z′′(t)), uµ,z′(t)− uµ,z′′(t)〉 ≥ 0 for all

t ∈ [0, T ]. Hence, we conclude that −
∑N

i=1〈z′i−z′′i ,Ai(uµ,z′−uµ,z′′)〉 ≥ µ
∥∥uµ,z′ − uµ,z′′∥∥2

2
.

Therefore:

‖∇φµ(z′)−∇φµ(z′′)‖22 =
N∑
i=1

∥∥Ai(uµ,z′)−Ai(uµ,z′′)∥∥2

2
≤

N∑
i=1
‖Ai‖22 · ‖uµ,z′ − uµ,z′′‖22

≤ − 1
µ

N∑
i=1
‖Ai‖22 ·

N∑
i=1
〈z′i − z′′i ,Ai(uµ,z′ − uµ,z′′)〉

≤ 1
µ

N∑
i=1
‖Ai‖22 ·

N∑
i=1
‖z′i − z′′i ‖2 · ‖Ai(uµ,z′ − uµ,z′′)‖2

≤ 1
µ

N∑
i=1
‖Ai‖22 · ‖z′ − z′′‖2 ·

[
N∑
i=1
‖Ai(uµ,z′)−Ai(uµ,z′′)‖22

]1/2

.

and we conclude that ‖∇φµ(z′)−∇φµ(z′′)‖2 ≤ 1
µ

N∑
i=1
‖Ai‖22 · ‖z′ − z′′‖2. 2

Denote Di = max{1
2‖x‖

2
2 : x ∈ Qi} and D = max{1

2‖u‖
2
2 : u ∈ U}. Concerning the

value of the modified dual objective function, we have:

σρ,Qi(z
i) ≤ σQi(z

i) ≤ σρ,Qi(z
i) + ρDi, ∀zi ∈ Rni ,

φµ(z) ≤ φ(z) ≤ φµ(z) + µD, ∀z ∈ Rn̄.

Therefore, if we define the function θρ,µ(z) =
N∑
i=1

σρ,Qi(z
i) + φµ(z), then

θρ,µ(z) ≤ θ(z) ≤ θρ,µ(z) + µD + ρD̂, ∀z ∈ Rn̄, D̂
def
=
∑N

i=1Di. (9)

Finally, in order to obtain a strongly convex dual objective function, we just add the
strongly convex function 1

2‖z‖
2
2 with coefficient κ > 0 to function θρ,µ. This gives us a

new dual objective function:

θρ,µ,κ(z) =
N∑
i=1

σρ,Qi(z
i) + φµ(z) + κ

2‖z‖
2
2,

which is strongly convex with parameter κ, and which gradient

∇θρ,µ,κ(z) = (xρ,z1 , ..., xρ,zN )T − (A1uµ,z, ...,ANuµ,z)T + κz.

is Lipschitz-continuous with constant L(ρ, µ, κ) = 1
ρ + 1

µ

∑N
i=1 ‖Ai‖22 + κ. This function

can be minimized by the optimal method for the class S1,1
κ,L(ρ,µ,κ)(R

n̄).
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4 Optimal scheme for S1,1
κ,L(Rn̄).

For the reader convenience, in this section we present the simplest optimal method for
minimizing smooth strongly convex functions.

Let function g : Rn̄ → R be strongly convex with parameter κ > 0 and its gradient be
Lipschitz-continuous with constant L > κ. Consider the following problem:

min
y∈Rn̄

g(y). (10)

We assume that this problem is solvable. Denote by g∗ its optimal value and by y∗ the
optimal solution.

Algorithm ([9]): Choose w0 = y0 ∈ Rn̄.

Iteration (k ≥ 0): Set yk+1 = wk − 1
L∇g(wk), and

wk+1 = yk+1 +
√
L−
√
κ√

L+
√
κ

(yk+1 − yk).

(11)

By Theorem 2.2.3 in [9] we have:

g(yk)− g∗ ≤
(
g(y0)− g∗ + κ

2‖y0 − y∗‖22
)
e−k
√

κ
L

≤ 2(g(y0)− g∗)e−k
√

κ
L .

(12)

Since ∇g is Lipschitz-continuous, in view of Theorem 2.1.5 in [9] we have

1
2L‖∇g(yk)‖22 ≤ g(yk)− g∗

(12)

≤ 2(g(y0)− g∗)e−k
√

κ
L .

Therefore,

‖∇g(yk)‖22 ≤ 4L(g(y0)− g∗)e−k
√

κ
L . (13)

Finally, since g is strongly convex, by Theorem 2.1.8 in [9] we have:

κ
2‖yk − y

∗‖22 ≤ g(yk)− g∗
(12)

≤ 2(g(y0)− g∗)e−k
√

κ
L .

Using this inequality and additional arguments, we conclude that

‖yk − y∗‖22 ≤ min
{
‖y0 − y∗‖22, 4

κ(g(y0)− g∗)e−k
√

κ
L

}
. (14)

5 Solving primal-dual problem by optimal method

Denote by z∗ the unique optimal solution of the problem

min
z∈Rn̄

θρ,µ,κ(z), (15)
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and by z∗∗ one of the optimal solutions of the dual problem (4). We assume that the
upper bound

‖z∗∗‖22 ≤ R (16)

is available.
Applying to this problem the method (11) with starting point z0 = 0, we obtain a

sequence {zk} such that:

θρ,µ,κ(zk)− θρ,µ,κ(z∗) ≤ 2(θρ,µ,κ(0)− θρ,µ,κ(z∗))e
−k

√
κ

L(ρ,µ,κ) ,

‖∇θρ,µ,κ(zk)‖22 ≤ 4L(ρ, µ, κ)(θρ,µ,κ(0)− θρ,µ,κ(z∗))e
−k

√
κ

L(ρ,µ,κ) ,

‖zk − z∗‖22 ≤ min

{
‖z∗‖22, 4

κ(θρ,µ,κ(0)− θρ,µ,κ(z∗))e
−k

√
κ

L(ρ,µ,κ)

}
.

(17)

5.1 Convergence of θ(zk) to θ∗

Since θρ,µ,κ(0) = θρ,µ(0) and θρ,µ,κ(z∗) = θρ,µ(z∗) + κ
2 ‖z

∗‖22, we have

κ
2 ‖z

∗‖22 ≤ θρ,µ,κ(0)− θρ,µ,κ(z∗) = θρ,µ(0)− θρ,µ(z∗)− κ
2 ‖z

∗‖22 ,

‖zk − z∗‖22
(12)

≤ 2
κ(θρ,µ(0)− θρ,µ(z∗))e

−k
√

κ
L(ρ,µ,κ) .

(18)

Note that

θρ,µ(zk)− θρ,µ(z∗)
(12)

≤ (θρ,µ(0)− θρ,µ(z∗))e
−k

√
κ

L(ρ,µ,κ) + κ
2 (‖z∗‖22 − ‖zk‖

2
2).

On the other hand,

‖z∗‖22 − ‖zk‖22 ≤ ‖z∗ − zk‖2(‖z∗‖2 + ‖zk‖2)
≤ ‖z∗ − zk‖2(2‖z∗‖2 + ‖zk − z∗‖2)

(14)

≤ 3‖z∗ − zk‖2 · ‖z∗‖2
(18)

≤ 3 · ‖z∗‖2
√

2
κ(θρ,µ(0)− θρ,µ(z∗))e

− k
2

√
κ

L(ρ,µ,κ)

(18)

≤ 3
√

2
κ (θρ,µ(0)− θρ,µ(z∗))e

− k
2

√
κ

L(ρ,µ,κ) ,

and therefore (since 1 +
√

3
2 <

25
8 )

θρ,µ(zk)− θρ,µ(z∗) ≤ 25
8 (θρ,µ(0)− θρ,µ(z∗))e

− k
2

√
κ

L(ρ,µ,κ) .

We also have θρ,µ(0) ≤ θ(0) and

θρ,µ(z∗) ≥ θ(z∗)− ρD̂ − µD ≥ θ(z∗∗)− ρD̂ − µD.

Therefore:

θρ,µ(0)− θρ,µ(z∗) ≤ θ(0)− θ(z∗∗) + ρD̂ + µD. (19)

Finally, since θρ,µ(z∗) + κ
2‖z
∗‖22 ≤ θρ,µ(z∗∗) + κ

2‖z
∗∗‖22, we have:

θρ,µ(z∗) ≤ θρ,µ(z∗∗) + κ
2‖z
∗∗‖22

(9)

≤ θ(z∗∗) + κ
2‖z
∗∗‖22,
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and therefore

θρ,µ(zk)− θρ,µ(z∗)
(9)

≥ θ(zk)− µD − ρD̂ − θ(z∗∗)− κ
2‖z
∗∗‖22.

In conclusion, we have:

θ(zk)− θ(z∗∗) ≤ µD + ρD̂ + κ
2R

2

+25
8

(
θ(0)− θ(z∗∗) + ρD̂ + µD

)
e
− k

2

√
κ

L(ρ,µ,κ) .

(20)

Now it is clear how to choose the smoothing parameters. Let us fix some ε > 0. In
the upper bound for the residual θ(zk) − θ(z∗∗), we have four terms. In order to ensure
accuracy θ(zk) − θ(z∗∗) ≤ ε, we force all of these terms to be less or equal than ε

4 . This
leads to the following values:

µ = µ(ε) = ε
4D , ρ = ρ(ε) = ε

4D̂
, κ = κ(ε) = ε

2R2 . (21)

With this choice we get

θ(zk)− θ(z∗∗) ≤ 3ε
4 + 25

8

(
θ(0)− θ(z∗∗) + ε

2

)
e
− k

2

√
κ

L(ρ,µ,κ) . (22)

The last term in the estimate (22) defines the number of iterations needed for getting
the accuracy ε. Clearly, we ensure

25
8

(
θ(0)− θ(z∗∗) + ε

2

)
e
− k

2

√
κ

L(ρ,µ,κ) ≤ ε
4

by taking

k ≥
√

L(ρ,µ,κ)
κ ln

25(θ(0)−θ(z∗∗)+ ε
2)

2ε . (23)

It remains to note that

L(ρ,µ,κ)
κ = 1 + 1

ρκ + 1
µκ

N∑
i=1
‖Ai‖22

(21)
= 1 + 8

ε2

[
D̂ +D

N∑
i=1
‖Ai‖22

]
R2.

(24)

Thus, we need at most k = O(1
ε ln 1

ε ) iterations.

5.2 Convergence of ‖∇θρ,µ(zk)‖2

In our approach, we are able to reconstruct a nearly optimal and feasible primal solution.
In Section 5.3, we will see that the accuracy of this solution depends not only on the
convergence rate of objective, but also on the rate of convergence of the norm of the
gradient. Let us give an upper bound for the number of iterations needed to drop this
norm below a certain level.
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We have:

‖∇θρ,µ(zk)‖2 ≤ ‖∇θρ,µ,κ(zk)− κzk‖2 ≤ ‖∇θρ,µ,κ(zk)‖2 + κ‖zk‖2
(17)

≤ ‖∇θρ,µ,κ(zk)‖2 + 2κ ‖z∗‖2 .

Note that

1
4L(ρ,µ,κ) ‖∇θρ,µ,κ(zk)‖22

(17),(18)

≤ (θρ,µ(0)− θρ,µ(z∗))e
−k

√
κ

L(ρ,µ,κ)

(19)

≤ (θ(0)− θ(z∗∗) + µD + ρD̂)e
−k

√
κ

L(ρ,µ,κ)

(21)
= (θ(0)− θ(z∗∗) + ε

2)e
−k

√
κ

L(ρ,µ,κ) .

At the same time,

θ(z∗∗) + κ
2 ‖z

∗∗‖22
(9)

≥ θρ,µ(z∗∗) + κ
2 ‖z

∗∗‖22 ≥ θρ,µ(z∗) + κ
2 ‖z

∗‖22
(9)

≥ θ(z∗)− µD − ρD̂ + κ
2 ‖z

∗‖22

≥ θ(z∗∗)− µD − ρD̂ + κ
2 ‖z

∗‖22 .

Hence,

‖z∗‖2 ≤
√
‖z∗∗‖22 + 2µ

κ D + 2ρ
κ D̂

(21)

≤ κ−1/2
√

3ε
2

(21)
=
√

3R, (25)

and we obtain:

‖∇θρ,µ(zk)‖2 ≤
√

4L(ρ, µ, κ)(θ(0)− θ(z∗∗) + ε
2)e
− k

2

√
κ

L(ρ,µ,κ) + 2
√

3κR.

Taking into account (21), we can see that in k(ε) = O(1
ε ln 1

ε ) iterations, we can ensure

θ(zk)− θ(z∗∗) ≤ ε, ‖∇θρ,µ(zk)‖2 ≤ 2ε
R . (26)

5.3 Constructing an approximate primal solution

In this section, given an accuracy ε > 0, we will see how to obtain from the dual iterate
zk(ε), an approximate primal solution ûk(ε) ∈ U such that:∣∣∣∣∣ T∫0 F (t, ûk(ε)(t))dt−D∗

∣∣∣∣∣ ≤ 2
(
1 + 2

√
3
)
· ε, (27)

[
N∑
i=1

∥∥Aiûk(ε) − xi
∥∥2

2

]1/2

≤ 2ε
R , (28)

where xi ∈ Qi for all i = 1, ..., N .

Since D∗ ≤ P ∗, inequality (27) implies
tn∫
0

F (t, ûk(ε)(t))dt ≤ P ∗+C1ε. Thus, the control

function ûk(ε)(t) satisfying (27), (28) can be seen as a nearly optimal and feasible primal
solution with accuracy proportional to ε.
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Consider ûk(ε) = uµ(ε),zk(ε)
, the unique optimal solution of the corresponding problem

(8). This solution can be obtained in a pointwise way since ûk(ε)(t) is defined almost
everywhere as a unique optimal solution of the finite-dimensional strongly convex problem.
We assume that, for all t ∈ [0, T ], the convex functions u → F (t, u) and the convex sets
Q(t) are simple enough for solving these point-wise problems analytically or very quickly
using, for example, real-time embedded convex optimization.

We have:

θρ(ε),µ(ε)(zk(ε)) =
N∑
i=1

σρ(ε),Qi(z
i
k(ε)) + φµ(zk(ε))

=
N∑
i=1

(
〈xρ(ε),zi

k(ε)
, zik(ε)〉 −

ρ(ε)
2

∥∥∥xρ(ε),zi
k(ε)

∥∥∥2

2

)
−

T∫
0

F (t, ûk(ε)(t))dt

−
N∑
i=1
〈Aiûk(ε), z

i
k(ε)〉 −

µ(ε)
2

∥∥ûk(ε)

∥∥2

2
.

Therefore,

T∫
0

F (t, ûk(ε)(t))dt−D∗ =
∑N

i=1〈xρ(ε),zi
k(ε)
−Aiûk(ε), z

i
k(ε)〉 −

ρ(ε)
2

∑N
i=1

∥∥∥xρ(ε),zi
k(ε)

∥∥∥2

2

−µ(ε)
2

∥∥ûk(ε)

∥∥2

2
− θρ(ε),µ(ε)(zk(ε)) + θ(z∗∗).

Since θρ(ε),µ(ε)(zk(ε))− θ(z∗∗) ≤ θ(zk(ε))− θ(z∗∗) ≤ ε, and

θρ(ε),µ(ε)(zk(ε))− θ(z∗∗)
(9)

≥ θ(zk(ε))− µ(ε)D − ρ(ε)D̂ − θ(z∗∗)
(21)
= θ(zk(ε))− θ(z∗∗)− 1

2ε ≥ −
1
2ε,

we have |θρ(ε),µ(ε)(zk(ε))− θ(z∗∗)| ≤ ε. Therefore:∣∣∣∣∣ T∫0 F (t, ûk(ε)(t))dt−D∗
∣∣∣∣∣ ≤

N∑
i=1

∥∥∥xρ(ε),zi
k(ε)
−Aiûk(ε)

∥∥∥
2

∥∥∥zik(ε)

∥∥∥
2

+ ρ(ε)D̂ + µ(ε)D + ε

(21)

≤
∥∥∇θρ(ε),µ(ε)(zk(ε))

∥∥
2

∥∥zk(ε)

∥∥
2

+ 2ε
(26)

≤ 2ε
R

∥∥zk(ε)

∥∥
2

+ 2ε.

On the other hand:∥∥zk(ε)

∥∥ ≤
∥∥zk(ε) − z∗

∥∥
2

+ ‖z∗‖2
(17)

≤ 2 ‖z∗‖2
(25)

≤ 2
√

3R.

and we obtain: ∣∣∣∣∣ T∫0 F (t, ûk(ε)(t))dt−D∗
∣∣∣∣∣ ≤ 2

(
1 + 2

√
3
)
· ε.

Finally, we have:

• ûk(ε) ∈ U by construction i.e. ûk(ε)(t) ∈ Q(t) ∀t ∈ [0, T ]

•
√

N∑
i=1

∥∥∥Aiûk(ε) − xρ(ε),zi
k(ε)

∥∥∥2

2
= ‖∇θρ(ε),µ(ε)(zk(ε))‖2

(26)

≤ 2ε
R ,

where xρ(ε),zi
k(ε)
∈ Qi ∀i = 1, ..., N .

Therefore, function ûk can be seen as an approximately feasible and optimal solution for
the primal infinite-dimensional problem (1).
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6 Condition for strong duality

As a simple consequence of the results of the previous sections, we can prove the strong
duality between the primal and the dual problem, i.e. that D∗ = P ∗. We can justify this
by the double smoothing algorithm, which can construct a sequence {un} ⊂ U , such that
un converges in a certain sense to the optimal solution of the primal problem (which is
therefore solvable).

Let {εn} be a decreasing sequence of positive scalars such that limn→∞ εn = 0. For
each n ≥ 0, we can apply k(εn) iterations of the double smoothing algorithm with the
parameters µ(εn), ρ(εn), κ(εn) defined by (21). Denote by un = ûk(εn) ∈ U the output of
the corresponding minimization process.

Theorem 2 Let the dual problem (4) be solvable. Then there is no duality gap: P ∗ =
D∗ = −θ(z∗∗), and the sequence un = ûk(εn) weakly converges to an optimal solution of
the primal problem. Hence the problem (1) is solvable.

Proof:

Note that un ∈ U for all n ≥ 0, and J(un) :=
T∫
0

F (t, un(t))dt→ D∗ as n→∞. Moreover,

dist (Aiun, Qi)
(28)→ 0 as n → ∞. Since the set U is bounded, the whole sequence {un}

is also bounded. Since L2([0, T ],Rm) is a reflexive Banach space, by Banach Theorem,
we can extract a subsequence {unj} ⊂ {un} which converges weakly in L2([0, tn],Rm).
Denote by u∗ its weak limit (unj ⇀ u∗).

Let us prove first that J is continuous. Consider a sequence uk → u in L2([0, T ],Rm).
By Corollary 2.17 in [1], we can find a subsequence {ukj} ⊂ {uk}, which converges to u
pointwise almost everywhere. As F is continuous and bounded on [0, T ]×Q, we obtain,
using the pointwise convergence and the Lebesgue dominated convergence theorem, that

lim
j→∞

J(ukj ) = lim
j→∞

T∫
0

F (t, ukj (t))dt =
T∫
0

lim
j→∞

F (t, ukj (t))dt

=
T∫
0

F (, t, u(t))dt = J(u).

Suppose that there exists another subsequence {vl} ⊂ {uk} such that liml→∞ J(vl) = α
and α 6= J(u). Then, using the same arguments as above, we can extract a subsubsequence
{vlj} ⊂ {vl} such that limj→∞ J(vlj ) = J(u) and we obtain a contradiction. We conclude
that all convergent subsequence of {J(uk)} converges necessarily to J(u). Hence the total
sequence is converging i.e limk→∞ J(uk) = J(u) and we have proved that J is continuous.

Further, since U is closed and convex, and since J is convex, its continuity implies
the weak lower semi-continuity of this functional (see Corollary III.8 in [4]). We conclude
that J(u∗) ≤ lim infj→∞ J(unj ) = D∗.

Finally, since unj ⇀ u∗, and the operatots Ai are linear and continuous, we have
Aiunj → Aiu∗ for all i = 1, ..., N . Taking into account that the sets Qi are compact in
Rn, the continuity of the distance function implies

dist(Aiu∗, Qi) = lim
j→∞

dist(Aiunj , Qi) = 0.

Hence, Aiu∗ ∈ Qi for all i = 1, . . . , N .
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It remains to note that U is closed and convex, and therefore (e.g. Theorem III.7 in
[4]), it is weakly closed. Since {unj} ⊂ U and unj ⇀ u∗, we conclude that u∗ ∈ U .

Thus, we have proved that u∗ is a feasible solution for (1) and J(u∗) ≤ D∗. Since
J(u) ≥ P ∗ ≥ D∗ for all feasible u, we conclude that P ∗ = D∗, and u∗ is the optimal
primal solution. 2

7 Applications in optimal control

7.1 Class of optimal control problems and reformulation

In this section, we will look at the optimal control problems that can be written in the
form (1). In particular, we consider the optimal control problems governed by a system
of linear differential equations with convex objective functional, convex constraints on
the state variables at finite number of inspection moments, and the point-wise convex
constraints on the control variables.

Consider the following optimal control problem:

inf
u
{
T∫
0

F (t, u(t))dt : ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0,

x(ti) ∈ Qi i = 1..., N,

u(t) ∈ Q(t) a.e in [0, T ]},

(29)

where T <∞, and Q(t) ⊂ Rm, t ∈ [0, T ], are closed convex sets with bounded graph Q
def
=

∪t∈[0,T ]Q(t). We assume that function F : [0, T ] × Q → R is bounded, and continuously
differentiable and convex in the second argument, x(t) ∈ Rn and u(t) ∈ Rm, t ∈ [0, T ].

For measuring the control variables, we use the norm ‖u‖22 =
T∫
0

‖u(t)‖22dt. We assume

that
A(t) ∈ C([0, T ],Rn×n), B(t) ∈ C([0, T ],Rn×m).

In problem (29), we have a finite number of inspection moments ti ∈ (0, T ], and we
assume that Qi ⊂ Rn, i = 1, . . . , N , are bounded closed convex sets.

Let us rewrite the problem (29) in terms of control u. Denote by Φ(t, τ) the transition
matrix of the system. It is the unique solution of the following matricial Cauchy problem:

d
dtΦ(t, τ) = A(t)Φ(t, τ), t ≥ τ, Φ(τ, τ) = I.

Remark 1 When the system is time-invariant, i.e. A(t) = A, and B(t) = B, t ∈ [0, T ],
then the transition matrix is the usual matrix exponent:

Φ(t, τ) = e(t−τ)A = I +
∞∑
k=1

Ak(t−τ)k

k! .
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From the Optimal Control Theory (e.g [6]), we know that the state trajectory x(t),
generated by the system for a control u(t), is given by the following expression:

x(t) = Φ(t, 0)x0 +
t∫

0

Φ(t, τ)B(τ)u(τ)dτ, t ∈ [0, T ].

Therefore, the constraint x(ti) ∈ Qi can be expressed as follows:

Ai(u)
def
=

ti∫
0

Φ(ti, τ)B(τ)u(τ)dτ ∈ Qi
def
= Qi − Φ(ti, 0)x0, (30)

where Φ(ti, 0)x0 is the value at time ti of the unique solution of Cauchy problem

ẋ(t) = A(t)x(t), x(0) = x0.

Remark 2 At the first glance, it seems that we are restricted to the objective functionals
depending only on the control u(t) and not on the state variable x(t). In fact, using the
state transition matrix, we can also consider any convex functions depending on some
linear functionals of the state. Such a functional can be defined as

l(x) =
T∫
0

〈x(t), a(t)〉dt =
T∫
0

〈
t∫

0

Φ(t, τ)B(τ)u(τ)dτ, a(t)〉dt

=
T∫
0

t∫
0

〈Φ(t, τ)B(τ)u(τ), a(t)〉dτdt =
T∫
0

t∫
0

〈u(τ), B(τ)TΦ(t, τ)Ta(t)〉dτdt

=
T∫
0

T∫
τ
〈u(τ), B(τ)TΦ(t, τ)Ta(t)〉dtdτ def

=
T∫
0

〈u(τ), h(τ)〉dτ,

with h(τ) =
T∫
τ
B(τ)TΦ(t, τ)Ta(t)dt. Another possibility is as follows:

l(x) = 〈x(ti), a〉 = 〈
ti∫
0

Φ(ti, τ)B(τ)u(τ)dτ, a〉

=
ti∫
0

〈Φ(ti, τ)B(τ)u(τ), a〉dτ def
=

ti∫
0

〈u(τ), h(τ)〉dτ,

with h(τ) = B(τ)TΦ(ti, τ)Ta.

Thus, for the linear operator Ai : L2([0, T ],Rm) → Rn, defined by (30), the ith state
constraint becomes:

Aiu =
T∫
0

Ai(τ)u(τ)dτ ∈ Q̄i, (31)

where Ai(τ)
def
=

{
Φ(ti, τ)B(τ), when τ ∈ [0, ti],

0, when τ ∈]ti, T ].
Thus, the optimal control problem (29) can be rewritten in the form (1). Hence, we

can solve it by the double smoothing technique. This approach assumes that we are able
to solve the pointwise problems

maxu∈Q(t)

{
−F (t, u)−

∑N
i=1〈u,ATi (t)zi〉 − µ

2 ‖u‖
2
2

}
,
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where Ai(t) depends directly on the state transition matrix. However, in practice the
state transition matrix Φ(ti, t) is often not known. Instead, we can compute the function
ATi (t)zi as a solution of some ODE.

Indeed, we have (e.g. Theorem 1.2 in [7])

d
dtΦ

T (ti, t) = −A(t)TΦT (ti, t).

Therefore Φ(ti, t)
T is the state transition matrix of the system v̇(t) = −A(t)T v(t). Hence,

ATi (t)T zi = B(t)T v(t), where v(t) is the unique solution of Cauchy problem

v̇(t) = −A(t)T v(t), v(ti) = zi, t ∈ [0, ti], (32)

extended by zero for t ∈ [ti, T ].

7.2 Evaluation of ‖Ai‖2

In order to solve the primal-dual problem (1), (4) by double smoothing technique, we need
to evaluate the norms ‖Ai‖2. Moreover, from the estimates (23), (24), it is clear that these
norms are very essential elements of the global complexity bound of our problem. In this
section, using the reachability Gramian of the dynamical system, we derive a closed-form
representation for the norm ‖Ai‖2. However, this quantity is not easily computable (it
needs the knowledge of the transition matrix). Moreover, its dependence in the length
of time interval is not very transparent. Therefore, in the next section, we obtain some
simple upper bounds for the norms ‖Ai‖2, which can be easily computed by solving Linear
Matrix Inequalities (LMI).

Let us derive first the exact expression for ‖Ai‖2. By definition,

‖Ai‖2 = sup
u∈L2([0,T ],Rm)

{
‖Aiu‖2 : ‖u‖L2([0,T ],Rm) = 1

}
.

Since the vector Aiu does not depend on values of u(t) for t ∈ (ti, T ], we can consider the
restriction of Ai on L2([0, ti],Rm):

u →
ti∫
0

Φ(ti, τ)B(τ)u(τ)dτ.

Then
‖Ai‖2 = sup

u∈L2([0,ti],Rm)

{
‖Aiu‖2 : ‖u‖L2([0,ti],Rm) = 1

}
,

and the operator A∗i transforms y ∈ Rn into the function B(t)TΦ(ti, t)
T y ∈ L2([0, ti].

For all ti > 0, i = 1, . . . , N , define the reachability Gramians

Wr(0, ti) =
ti∫
0

Φ(ti, τ)B(τ)B(τ)TΦ(ti, τ)Tdτ = AiA∗i ,

which are symmetric positive semidefinite matrices (∈ Sn+). Recall the following definition.

Definition 1 The system

ẋ(t) = A(t)x(t) +B(t)u(t) x(0) = 0, (33)

is called reachable on [0, t̂] if for any x̂ ∈ Rn there exist a control u(t) such that x(t̂) = x̂.
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The reachability is closely related with reachability Gramian (e.g. Corollary 2.3 in [2]):

Theorem 3 The system (33) is reachable on [0, ti] if and only if the Gramian Wr(0, ti)
is positive definite.

Let us come back now to the definition of the norm ‖Ai‖2. We have:

‖Ai‖2 = sup
u∈L2([0,ti],Rm)

{
‖Aiu‖2 : ‖u‖L2([0,ti],Rm) = 1

}
=

[
inf

u∈L2([0,ti],Rm)

{
‖u‖L2([0,ti],Rm) : ‖Aiu‖2 = 1

}]−1

.

If the system is reachable on [0, ti], then ImAi(L2([0, ti],Rm)) = Rn, and we have:

inf
u∈L2([0,ti],Rm)

{
‖u‖L2([0,ti],Rm) : ‖Aiu‖2 = 1

}
= inf

xi∈Rn,‖xi‖=1

u∈L2([0,ti],Rm)

{
‖u‖L2([0,ti],Rm) : Aiu = xi

}
.

Consider now the minimization problem min
u∈L2([0,ti],Rm),

Aiu=xi

‖u‖2. We will use the following

simple result

Lemma 1 Let H be a Hilbert space and the linear operator A : H → RL be nondegenerate:
AA∗ � 0. Then for any b ∈ RL and f ∈ H, the Euclidean projection πb(f) of f onto the
subspace Lb = {g ∈ H : Ag = b} is defined as follows:

πb(f) = f +A∗(AA∗)−1(b−Af).

Thus,

inf
u∈L2([0,ti],Rm),

Aiu=xi

‖u‖2 = ‖A∗i (AiA∗i )−1xi‖2 = 〈A∗i (AiA∗i )−1xi,A∗i (AiA∗i )−1xi〉1/2

= 〈(AiA∗i )−1xi, xi〉1/2.

Therefore

inf
u∈L2([0,ti],Rm)

{
‖u‖L2([0,ti],Rm) : ‖Aiu‖2 = 1

}
= inf

‖xi‖2=1
〈(AiA∗i )−1xi, xi〉1/2

= λ
1/2
min((AiA∗i )−1),

and we conclude that

‖Ai‖2 = λ
−1/2
min ((AiA∗i )−1) = λ

1/2
max(AiA∗i ),

where AiA∗i = Wr(0, ti) is the reachability Gramian.
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7.3 Bounding the growth of norms ‖Ai‖2 with time

In the previous section, we have shown that the norm ‖Ai‖2 is equal to the square root of
the maximal eigenvalue of the reachability Gramian on the interval [0, ti]. Simple examples
show that this norm can grow exponentially with ti. However, for the stable systems the
situation is much better.

In this section, we derive the bounds for the growth of the norms ‖Ai‖2 from the
stability characteristics of the linear time-varying system:

ẋ(t) = A(t)x(t), t ≥ 0, (34)

where the matrix A(t) is continuous in time.
Recall that the state x = 0 is always an equilibrium of the system (34). It is the unique

equilibrium if A(t) is nonsingular for all t ≥ 0. The following facts are standard (e.g. [2]).

Theorem 4 The equilibrium x = 0 is stable if and only if the solutions of the linear
systems are bounded. That is

sup
t≥τ
‖Φ(t, τ)‖2

def
= k(τ) <∞, ∀τ ≥ 0.

It is uniformly stable if and only if

sup
τ≥0

k(τ) = supτ≥0 supt≥τ ‖Φ(t, τ)‖2
def
= k0 <∞.

Finally, it is is exponentially stable if
t∫

0

‖Φ(t, τ)‖22 dτ ≤ C for all t ≥ 0 where the constant

C is independent on t.

Using these stability results, we can obtain some estimates for the growth of ‖Ai‖2.

Theorem 5 If the equilibrium x = 0 is stable and k1
def
= sup

t≥0
‖B(t)‖2 <∞, then

‖Ai‖2 ≤ k1

[
ti∫
0

k2
0(τ)dτ

]1/2

. (35)

Proof:
For all u ∈ L2([0, ti]Rm), we have

‖Aiu‖ =

∥∥∥∥ ti∫
0

Φ(ti, τ)B(τ)u(τ)dτ

∥∥∥∥ ≤ ti∫
0

‖Φ(ti, τ)B(τ)‖2 ‖u(τ)‖2 dτ

≤
[
ti∫
0

‖Φ(ti, τ)‖22‖B(τ)‖22dτ ·
ti∫
0

‖u(τ)‖22dτ
]1/2

≤ k1

[
ti∫
0

k0(τ)2dτ

]1/2

‖u‖2 .

Therefore ‖Ai‖2 ≤ k1

[
ti∫
0

k0(τ)2dτ

]1/2

. 2
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This upper bound depends on the growth of the integral
ti∫
0

k0(τ)2dτ with respect to ti,

which can be very fast. Moreover, it can happen that function k0 is not in L2([0, ti]) and
then the bound (35) gives no information. However, if we assume the uniform stability of
the equilibrium x = 0, then we can get much better bounds.

Theorem 6 If equilibrium x = 0 is uniformly stable and k1
def
= supt≥0 ‖B(t)‖2 <∞, then

‖Ai‖2 ≤ k0k1
√
ti.

The proof of this theorem is the same as that of Theorem 5. However, now we can
ensure a sublinear bound for the growth ‖Ai‖2 with respect to ti. If we strengthen again
the stability assumption, we can obtain an upper bound independent on ti.

Theorem 7 Let equilibrium x = 0 be exponentially stable and k1 = sup
t≥0
‖B(t)‖2 < ∞.

Then ‖Ai‖2 ≤ k1

√
C.

Again, this fact can be easily derived from the arguments of the proof of Theorem 5.
In some case, we can obtain a computable upper bound for the norm ‖Ai‖2. Recall

the following well-known sufficient condition of global exponential stability.

Theorem 8 [2] Let the linear system (34) be time-invariant, and there exists a matrix
P = P T � 0 such that ATP + PA ≺ 0. Then equilibrium x = 0 is globally exponentially
stable.

Under conditions of this theorem, there exists η1 > 0 such that the following LMI

ATP + PA � −η1P, P = P T � 0,

admits a solution. Matrix P and constant η1 can help us to obtain an explicit upper-
bound for the norm ‖Ai‖2. Indeed, by definition, Aiu is the position at time ti of the
point of unique trajectory defined by the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0.

Therefore,

‖x(ti)‖22 = 〈x(ti), x(ti)〉 ≤ 〈Px(ti),x(ti)〉
λmin(P )

def
= = R(ti)

λmin(P ) ,

where R(t)
def
= 〈Px(t), x(t)〉. The derivative of function R can be bounded as follows:

Ṙ(t) = 〈P, x(t)ẋ(t)T + ẋ(t)x(t)T 〉
= 〈P, x(t)(Ax(t) +Bu(t))T + (Ax(t) +Bu(t))x(t)T 〉
= 〈P (Ax(t) +Bu(t)), x(t)〉+ 〈Px(t), Ax(t) +Bu(t)〉
= 〈(PA+ATP )x(t), x(t)〉+ 2〈Px(t), Bu(t)〉
≤ −η1〈Px(t), x(t)〉+ 2〈Px(t), Bu(t)〉 ≤ 1

η1
〈PBu(t), Bu(t)〉.
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Since x(0) = 0, we get

R(ti) =
ti∫
0

Ṙ(t)dt ≤ 1
η1

ti∫
0

〈PBu(t), Bu(t)〉dt

≤ 1
η1
λmax(P )

ti∫
0

‖Bu(t)‖22 dt ≤
1
η1
λmax(P ) ‖B‖22 ‖u‖

2
2 .

Hence, ‖Aiu‖22 ≤
λmax(P )
η1λmin(P ) ‖B‖

2
2 ‖u‖

2
2, and therefore ‖Ai‖22 ≤

λmax(P )
η1λmin(P ) ‖B‖

2
2.

If we want to obtain the best upper bound for ‖Ai‖2, we need to solve the following
optimization problem in the variables η1, η2, η3, and P :

min
{

η3

η1η2
: ATP + PA � −η1P, η2I � P � η3I, η1, η2, η3 ≥ 0

}
. (36)

This problem is non-convex, but we can find an upper bound for its optimal solution from
quasiconvex LMI. Note that

‖Ai‖22 ≤ min
{

η3

η1η2
: ATP + PA � −η1η3I, η2I � P � η3I, η1, η2, η3 ≥ 0

}
since the feasible set of the right-hand side is smaller than that of (36). Introducing a
new variable τ1 = η1η3, we get the following problem:

min

{
η2

3

τ1η2
: ATP + PA � −τ1I, η2I � P � η3I, τ1, η2, η3 ≥ 0

}
.

Since the objective of this problem is quasiconvex, it can be solved in polynomial time.

8 Discretization and application to large-scale

finite-dimensional problems

The double smoothing technique developed in this paper allows us to solve the primal-
dual infinite-dimensional problem (1), (4) up to accuracy ε in O

(
1
ε ln

(
1
ε

))
iterations. The

complexity analysis of this approach is done in the infinite-dimensional framework. How-
ever, the exact computation of the gradient ∇θρ,µ,κ(wk) at each iteration needs in general
an infinite number of pointwise operations. For some simple problems this computation
can be implemented in a finite time. However, in practice this situation is very rear.

For the moment, there are two ways for avoiding this difficulty. The first one is to
adapt the optimal scheme for S1,1

µ,L to the case when the gradient is computed with certain
accuracy. Under this assumption, we will be able to keep all the analysis in the infinite-
dimensional framework, and to obtain the accuracy of ε in O

(
1
ε ln

(
1
ε

))
iterations for the

infinite-dimensional problem itself. The discretization will be used only inside the first
order orcale, which computes the gradient of the modified dual objective function with
given accuracy. The rigorous justification of corresponding variant of the optimal method
for S1,1

µ,L is the topic of our forthcoming paper.
The second possibility is to discretize the infinite-dimensional problem (1) from the

very beginning. Even in this classical framework, our double smoothing approach keeps
all of its strong points. Indeed, the discretized problem will be typically a very large scale

19



finite-dimensional problem with coupling constraints. Since it is often easier to solve a
large number of small problems than one large problem with coupling constraints, it is
interesting to tackle these problems by dualizing the coupling constraints and to apply
the double smoothing scheme to the Lagrangian dual problem. The analysis presented in
this paper for infinite-dimensional framework remains valid also in finite dimension. If we
assume that the pointwise problems are solvable in a closed-form, the double smoothing
technique gives us a possibility to solve the discretized problem with an accuracy of ε
in O

(
1
ε ln

(
1
ε

))
iterations using an appropriate first-order method. More generally, our

approach can be applied to any kind of large-scale convex problems in finite dimension in
the presence of linear coupling constraints and separable point-wise constraints.

References

[1] R.A. Adams and J.F. Fournier. Sobolev Spaces (Second edition). Elsevier Science
(2003).

[2] P.J. Antsaklis and A.N. Michel. Linear Systems. Birkhauser Book (2006).

[3] P. Bernhards and A. Rapaport. On a theorem of Danskin with an application to a
theorem of Von Neumann-Sion. Nonlinear analysis, 24, 1163-1181 (1995).

[4] H. Brezis. Analyse fonctionnelle: Theorie et Applications. Masson (1987).

[5] J.M. Danskin. The theory of Max-Min and its application to weapons allocation
problems. Springer-Verlag (1967).

[6] D.E. Kirk. Optimal Control: An Introduction. Dover publication, Inc. (2004).

[7] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley Interscience
(1972).

[8] D.G. Luenberger. Optimization by vector space methods. Wiley (1969).

[9] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers (2004)

[10] Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical pro-
gramming, Serie A, 103, 127-152 (2005).

[11] Yu. Nesterov. Excessive gap technique in nonsmooth convex minimization. Siam
Journal of Optimization, 16, 235-249 (2005).

[12] Yu. Nesterov. Smoothing technique and its applications in semidefinite optimization.
Mathematical Programming A, 110, 245-259 (2007).

[13] Yu. Nesterov. Primal-Dual subgradient methods for convex problems. Mathematical
programming, Serie B, 120, 221-259 (2009).

20



Recent titles 
CORE Discussion Papers 

 
2009/78. Julio DÁVILA. The taxation of savings in overlapping generations economies with unbacked 

risky assets. 
2009/79. Elena DEL REY and Miguel Angel LOPEZ-GARCIA. Optimal education and pensions in an 

endogenous growth model. 
2009/80. Hiroshi UNO. Strategic complementarities and nested potential games. 
2009/81. Xavier WAUTHY. Market coverage and the nature of product differentiation: a note. 
2009/82. Filippo L.  CALCIANO. Nash equilibria of games with increasing best replies. 
2009/83. Jacques H. DRÈZE, Oussama LACHIRI and Enrico MINELLI. Stock prices, anticipations and 

investment in general equilibrium. 
2009/84. Claire DUJARDIN and Florence GOFFETTE-NAGOT. Neighborhood effect on 

unemployment? A test à la Altonji. 
2009/85. Erwin OOGHE and Erik SCHOKKAERT. School accountability: (how) can we reward schools 

and avoid cream-skimming. 
2009/86. Ilke VAN BEVEREN and Hylke VANDENBUSSCHE. Product and process innovation and the 

decision to export: firm-level evidence for Belgium. 
2010/1. Giorgia OGGIONI and Yves SMEERS. Degree of coordination in market-coupling and 

counter-trading. 
2010/2. Yu. NESTEROV. Efficiency of coordinate descent methods on huge-scale optimization 

problems. 
2010/3. Geert DHAENE an Koen JOCHMANS. Split-panel jackknife estimation of fixed-effect models. 
2010/4. Parkash CHANDER. Cores of games with positive externalities. 
2010/5. Gauthier DE MAERE D'AERTRYCKE and Yves SMEERS. Liquidity risks on power 

exchanges. 
2010/6. Marc FLEURBAEY, Stéphane LUCHINI, Christophe MULLER and Erik SCHOKKAERT. 

Equivalent income and the economic evaluation of health care. 
2010/7. Elena IÑARRA, Conchi LARREA and Elena MOLIS. The stability of the roommate problem 

revisited. 
2010/8. Philippe CHEVALIER, Isabelle THOMAS and David GERAETS, Els GOETGHEBEUR, 

Olivier JANSSENS, Dominique PEETERS and Frank PLASTRIA. Locating fire-stations: an 
integrated approach for Belgium. 

2010/9. Jean-Charles LANGE and Pierre SEMAL. Design of a network of reusable logistic containers. 
2010/10. Hiroshi UNO. Nested potentials and robust equilibria. 
2010/11. Elena MOLIS and Róbert F. VESZTEG. Experimental results on the roommate problem. 
2010/12. Koen DECANCQ. Copula-based orderings of multivariate dependence. 
2010/13. Tom TRUYTS. Signaling and indirect taxation. 
2010/14. Asel ISAKOVA. Currency substitution in the economies of Central Asia: How much does it 

cost? 
2010/15. Emanuele FORLANI. Irish firms' productivity and imported inputs. 
2010/16. Thierry BRECHET, Carmen CAMACHO and Vladimir M. VELIOV. Model predictive control, 

the economy, and the issue of global warming. 
2010/17. Thierry BRECHET, Tsvetomir TSACHEV and Vladimir M. VELIOV. Markets for emission 

permits with free endowment: a vintage capital analysis. 
2010/18. Pierre M. PICARD and Patrice PIERETTI. Bank secrecy, illicit money and offshore financial 

centers. 
2010/19. Tanguy ISAAC. When frictions favour information revelation. 
2010/20. Jeroen V.K. ROMBOUTS and Lars STENTOFT. Multivariate option pricing with time varying 

volatility and correlations. 
2010/21. Yassine LEFOUILI and Catherine ROUX. Leniency programs for multimarket firms: The 

effect of Amnesty Plus on cartel formation. 
2010/22. P. Jean-Jacques HERINGS, Ana MAULEON and Vincent VANNETELBOSCH. Coalition 

formation among farsighted agents. 



Recent titles 
CORE Discussion Papers - continued 

 
2010/23. Pierre PESTIEAU and Grégory PONTHIERE. Long term care insurance puzzle. 
2010/24. Elena DEL REY and Miguel Angel LOPEZ-GARCIA. On welfare criteria and optimality in an 

endogenous growth model. 
2010/25. Sébastien LAURENT, Jeroen V.K. ROMBOUTS and Francesco VIOLANTE. On the 

forecasting accuracy of multivariate GARCH models. 
2010/26. Pierre DEHEZ. Cooperative provision of indivisible public goods. 
2010/27. Olivier DURAND-LASSERVE, Axel PIERRU and Yves SMEERS. Uncertain long-run 

emissions targets, CO2 price and global energy transition: a general equilibrium approach. 
2010/28. Andreas EHRENMANN and Yves SMEERS. Stochastic equilibrium models for generation 

capacity expansion. 
2010/29. Olivier DEVOLDER, François GLINEUR and Yu. NESTEROV. Solving infinite-dimensional 

optimization problems by polynomial approximation. 
2010/30. Helmuth CREMER and Pierre PESTIEAU. The economics of wealth transfer tax. 
2010/31. Thierry BRECHET and Sylvette LY. Technological greening, eco-efficiency, and no-regret 

strategy. 
2010/32. Axel GAUTIER and Dimitri PAOLINI. Universal service financing in competitive postal 

markets: one size does not fit all. 
2010/33. Daria ONORI. Competition and growth: reinterpreting their relationship. 
2010/34. Olivier DEVOLDER, François GLINEUR and Yu. NESTEROV. Double smoothing technique 

for infinite-dimensional optimization problems with applications to optimal control. 
 

Books 
 
J. GABSZEWICZ (ed.) (2006), La différenciation des produits. Paris, La découverte. 
L. BAUWENS, W. POHLMEIER and D. VEREDAS (eds.) (2008), High frequency financial econometrics: 

recent developments. Heidelberg, Physica-Verlag. 
P. VAN HENTENRYCKE and L. WOLSEY (eds.) (2007), Integration of AI and OR techniques in constraint 

programming for combinatorial optimization problems. Berlin, Springer. 
P-P. COMBES, Th. MAYER and J-F. THISSE (eds.) (2008), Economic geography: the integration of 

regions and nations. Princeton, Princeton University Press. 
J. HINDRIKS (ed.) (2008), Au-delà de Copernic: de la confusion au consensus ? Brussels, Academic and 

Scientific Publishers. 
J-M. HURIOT and J-F. THISSE (eds) (2009), Economics of cities. Cambridge, Cambridge University Press. 
P. BELLEFLAMME and M. PEITZ (eds) (2010), Industrial organization: markets and strategies. Cambridge 

University Press. 
M. JUNGER, Th. LIEBLING, D. NADDEF, G. NEMHAUSER, W. PULLEYBLANK, G. REINELT, G. 

RINALDI and L. WOLSEY (eds) (2010), 50 years of integer programming, 1958-2008: from 
the early years to the state-of-the-art. Berlin Springer. 

 
CORE Lecture Series 

 
C. GOURIÉROUX and A. MONFORT (1995), Simulation Based Econometric Methods. 
A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality. 
J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization. 
B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through 

Vertical Agreements. 
D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming 

problems: theory and practice. 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 




