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Abstract

This paper develops univariate seasonal unit root tests based on spectral regression estimators.

An advantage of the frequency domain approach is that it enables serial correlation to be treated

non-parametrically. We demonstrate that our proposed statistics have pivotal limiting distributions

under both the null and near seasonally integrated alternatives when we allow for weak dependence

in the driving shocks. This is in contrast to the popular seasonal unit root tests of, among others,

Hylleberg et al. (1990) which treat serial correlation parametrically via lag augmentation of the test

regression. Moreover, our analysis allows for (possibly in�nite order) moving average behaviour in

the shocks, while extant large sample results pertaining to the Hylleberg et al. (1990) type tests are

based on the assumption of a �nite autoregression. The size and power properties of our proposed

frequency domain regression-based tests are explored and compared for the case of quarterly data

with those of the tests of Hylleberg et al. (1990) in simulation experiments.

Keywords: Seasonal unit root tests; moving average; frequency domain regression; spectral density

estimator; Brownian motion.

JEL Classi�cation: C22.

1 Introduction

This paper considers testing for seasonal unit roots in a univariate time-series process. In the seminal

paper in the literature, Hylleberg et al. (1990) [HEGY] develop separate regression-based t- and F -

tests for unit roots at the zero, Nyquist and annual (harmonic) frequencies in the context of quarterly
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(M. Chambers), j.s.ercolani@bham.ac.uk (J. Ercolani), robert.taylor@nottingham.ac.uk (R. Taylor)
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data. Recently, Smith, Taylor and del Bario Castro (2009) have generalised this approach to allow

for an arbitrary seasonal aspect, while Rodrigues and Taylor (2007) develop near-e�cient versions

of the HEGY tests. Other important extensions of the basic HEGY approach appear in, inter alia,

Ghysels, Lee and Noh (1994), who allow for joint testing across di�erent frequencies, Smith and Taylor

(1998), who extend the range of deterministic speci�cations allowed in HEGY and provide limiting

null distributions for the original HEGY statistics, and Rodrigues and Taylor (2004) who develop

expressions for the asymptotic local power of the HEGY tests.

These HEGY-type tests are all characterised by the use of parametric lag augmentation, along the

lines of the augmented Dickey-Fuller [ADF] test, to allow for weak dependence in the driving shocks.

Focusing on the standard assumption made in this literature that the shocks follow a �nite-order

autoregressive process of order p [AR(p)], Burridge and Taylor (2001) and Smith et al. (2009) show

that such lag augmentation can provide only a partial solution with the limiting null distributions of

certain of the harmonic frequency unit root tests still depending, in general, on the parameters of the

AR(p) polynomial with the consequence that not all of the HEGY-type tests can be reliably used in

practice.

It has been known since the seminal work of Box and Jenkins (1976) that seasonally observed

time series tend to display signi�cant moving average behaviour. Indeed, Box and Jenkins (1976)

developed the well-known seasonal ARIMA factorisations, the best known example of which being the

so-called airline model. Allowing for moving average behaviour is, therefore, very important in the

context of seasonal unit root testing. While it has been widely conjectured that the results reported

above for the case of �nite AR(p) shocks would continue to hold in the case where the shocks have

an AR(1) representation, as would be needed to allow for stationary and invertible autoregressive

moving average [ARMA] shocks, provided an approach along the lines of that developed in regard of

the ADF test by Said and Dickey (1984) was implemented, this has never formally been proved in the

literature. Indeed, current practice takes matters a stage further, using data-dependent methods to

select the lag augmentation polynomial.

Motivated by these shortcomings of the HEGY-type tests, the purpose of this paper is to develop

a new class of regression-based seasonal unit root tests, which are asymptotically valid in the presence

of general weak dependence. The key feature that distinguishes our model from this earlier literature

is that we explicitly allow for the presence of ARMA shocks. We do so by the use of frequency domain

regression [FDR] based test statistics. We consider a variety of possible forms for the deterministic
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component, proposing tests based on both ordinary least squares [OLS] and quasi-di�erence [QD]

de-trending. We demonstrate that the limiting distributions of all of the resulting HEGY-type t-

and F -statistics are pivotal under both the null hypothesis and under near-integrated alternatives,

attaining the limiting distributions achieved by their standard HEGY counterparts when the shocks

are independent and identically distributed [IID].

Frequency domain analysis has a long history in econometrics, with Granger and Hatanaka (1964)

providing an early demonstration of its relevance in the analysis of economic data. Furthermore

Granger (1966) observed that many economic time series have considerable power at low frequencies,

giving rise to a spectral density that is peaked at the origin and which declines as frequency increases;

he described this as the typical spectral shape of an economic variable, and the peak at the origin

would nowadays be associated with the variable being integrated of order one. In a seasonal setting

these peaks occur at the seasonal frequencies, and our approach is based on a seasonal extension of

the unit root tests of Choi and Phillips (1993) which utilise the e�cient FDR estimator of Hannan

(1963). The main advantage of the FDR approach from our perspective is that, unlike the HEGY

approach, it delivers estimators of the parameters corresponding to the seasonal roots whose limiting

distributions are free from nuisance parameters, even in the presence of moving average disturbances.

The FDR e�ectively transforms serial correlation in the disturbances into a form of heteroskedas-

ticity across frequencies that is captured by the spectral density function; the resulting estimators

handle this heteroskedasticity by weighting the periodogram ordinates by the inverse of the estimated

spectral density. In our implementation of the frequency domain estimator we consider two types of

spectral density estimator. The �rst is a simple weighted periodogram estimator [WPE] that averages

a set of periodogram values at frequencies either side of the frequency of interest while the second

uses the Berk (1974) autoregressive spectral density estimator [ASDE] derived from an autoregressive

approximation to the series of interest. Our use of the ASDE is novel in the sense that we use the

autoregressive approximation to obtain an estimator of the spectral density across all frequencies.

This contrasts with its usual use in unit root testing where it is computed at the �xed frequency of

the root being tested; see, e.g., Ng and Perron (1995) for the zero frequency root and Rodrigues and

Taylor (2007) for the seasonal frequencies.

The paper is organised as follows. Section 2 outlines the seasonal framework, de�nes the hypotheses

of interest, and briey reviews the HEGY tests. In Section 3 we introduce our FDR implementations

of the HEGY statistics and provide representations for their limiting distributions under both the
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null and local alternatives, showing these to be pivotal in the presence of weak dependence. An

investigation into the relative �nite sample performances of the FDR tests and the augmented HEGY

tests is provided in Section 5. Section 6 concludes. Proofs are contained in Appendices A and B.

2 The Seasonal Unit Root Framework

2.1 The Seasonal Model

The model we consider for the scalar random variable Xt is given by

Xt = Yt + �t; t = 1� S; : : : ; T; (2.1a)

aS(L)Yt = Ut; t = 1; : : : ; T (2.1b)

where aS(z) := 1�PS
j=1 ajz

j , S denotes the number of seasons, L denotes the lag operator, and the

deterministic component �t satis�es

�t :=
SX

j=1

�jDjt + �t; t = 1� S; : : : ; T; (2.2)

where Djt is a seasonal dummy variable such that for j = 1; : : : ; S, Djt = 1 (t = j mod S) and

Djt = 0 otherwise. The initial conditions, Y1�S ; :::; Y0, are taken to be of Op(T
�), � < 0:5; cf.

Rodrigues and Taylor (2007). We assume that the random disturbance Ut in (2.1b) is a mean-zero

covariance stationary (linear) process satisfying the following conditions:

Assumption 1 The random disturbance Ut in (2.1b) admits the moving average representation Ut =

 (L)Vt where Vt is IID(0; �2) with �nite fourth moments and where the lag polynomial  (z) :=

1+
P1

i=1  iz
i satis�es: (i)  (expf�i2�k=Sg) 6= 0, k = 0; :::; bS=2c, where b�c denotes the integer part

of its argument and where i :=
p�1, and (ii)

P1
j=1 jj j j <1.

Remark 1: Assumption 1 ensures that the spectral density function of Ut is bounded and is strictly

positive at both the zero and seasonal spectral frequencies, !k := 2�k=S, k = 0; :::; bS=2c.

The model depicted in (2.1)-(2.2) is su�ciently general to enable Xt to be de�ned in terms of

an arbitrary seasonal frequency S and to capture a variety of seasonal intercept and trend e�ects in

the deterministic component �t := 0dt. We shall consider the following �ve speci�cations for the

deterministic component in which the stated restrictions on �j and � hold for j = 1; : : : ; S:
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Scheme 1. No intercept, no trend: �j = � = 0.

Scheme 2. Intercept, no trend: �j = �, � = 0;  := �, dt := 1.

Scheme 3. Seasonal intercepts, no trend: �j unrestricted, � = 0;  := (�1; :::; �S)
0, dt := (D1t; :::; DSt)

0.

Scheme 4. Intercept, trend: �j = �, � unrestricted  := (�; �)0, dt := (1; t)0.

Scheme 5. Seasonal intercepts, trend: �j , � unrestricted;  := (�1; :::; �S ; �)
0, dt := (D1t; :::; DSt; t)

0.

Smith et al. (2009) also consider the further scheme of seasonal intercepts and seasonal trends,

�t :=
SX

j=1

�jDjt +
SX

j=1

�jDjtt; t = 1� S; : : : ; T; (2.3)

with �j and �j unrestricted. Here  := (�1; :::; �S ; �1; :::; �S)
0, dt := (D1t; :::; DSt; D1tt; :::;DStt)

0. We

will not explicitly cover this case in what follows (as its empirical relevance is limited) but we will

mention how our results carry over to this scheme at appropriate points.

2.2 The Seasonal Unit Root Hypotheses

Our focus is on tests for seasonal unit roots in aS(L) of (2.1b); that is, the overall null hypothesis of

interest is

H0 : aS(L) = (1� LS) =: �S : (2.4)

Under H0, Xt is a seasonal unit root process, admitting the unit roots exp(�i2�k=S), k = 0; :::; bS=2c.
Following HEGY and Smith et al. (2009), the polynomial aS(L) may be factorised as aS(L) =Q bS=2c

k=0 !k(L), where !0(L) := (1��0L) associates the parameter �0 with the zero frequency !0 := 0,

!k(L) := [1�2(�k cos!k��k sin!k)L +(�2k+�
2
k)L

2] corresponds to the conjugate (harmonic) seasonal

frequencies (!k; 2� � !k), !k := 2�k=S, with associated parameters �k and �k, k = 1; :::; S�, where

S� := b(S � 1)=2c, and, for S even, !S=2(L) := (1 + �S=2L), associates the parameter �S=2 with the

Nyquist frequency !S=2 := �. As a point of notation, throughout the paper where reference is made

to the Nyquist frequency this is understood only to apply where S is even.

As discussed in, for example, Smith et al. (2009) this factorisation of aS(L) allows H0 to be

commensurately decomposed into the (bS=2c+ 1) frequency-speci�c unit root null hypotheses

H0;0 : �0 = 1; H0;S=2 : �S=2 = 1 (2.5)

H0;k : �k = 1; �k = 0; k = 1; :::; S�: (2.6)
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The hypothesis H0;0 corresponds to a unit root at the zero-frequency while H0;S=2 yields a unit root

at the Nyquist frequency. A pair of complex conjugate unit roots at the harmonic seasonal frequency

pair (!k; 2� � !k) is obtained under H0;k, k = 1; :::; S�. Notice that H0 = \bS=2ck=0 H0;k.

Following Rodrigues and Taylor (2007), the alternative hypotheses of near-integration at the zero

and Nyquist frequencies may be stated as,

H1;�0 : �0 =
�
1 +

�0
T

�
; H1;�S=2 : �S=2 =

�
1 +

�S=2

T

�
(2.7)

and at the harmonic seasonal frequencies as

H1;�k : �k =
�
1 +

�k
T

�
; �k = 0; k = 1; :::; S�: (2.8)

Under H1;�k , the process Xt admits either a single root [k = 0; S=2] or a pair of complex conjugate

roots [k = 1; :::; S�] with modulus in the neighbourhood of unity at frequency !k. These roots are

stable where �k < 0. Notice that H1;�k reduces to H0;k if �k = 0, k = 0; :::; bS=2c.
In what follows, let � := (�0; �1; :::; �bS=2c)

0 be the (bS=2c+ 1)-vector of non-centrality parameters

and denote the lag polynomial aS(L) under H1;� := \bS=2ck=0 H1;�k as �� := 1�PS
j=1 �

�
jL

j .

2.3 HEGY Tests

The regression-based approach to testing for seasonal unit roots in aS(L) of (2.1b) consists of two

steps. In the �rst step one de-trends the data in order to yield tests which will be exact invariant to

the seasonal intercept and trend parameters �j and �j , j = 1; :::; S, which characterise the deterministic

component �t of (2.2). This can either be done using OLS de-trending, as in, for example, HEGY and

Smith et al. (2009), or by QD de-trending as in Rodrigues and Taylor (2007). We de�ne the resulting

de-trended data series as xt. In order to economise on notation we do not at this stage introduce

any speci�c superscripts to distinguish the di�erent de-trending Schemes considered in section 2.1

although we do so later in the characterisation of the limiting distributions of the test statistics.

For OLS de-trending, xt := Xt � ̂0dt, where ̂ is the OLS estimator of  from regressing Xt onto

dt along t = 1� S; :::; T . Under QD de-trending, as in Rodrigues and Taylor (2007), xt := Xt � ~0dt,
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where ~ is the QD estimator of  obtained from the OLS regression of x� on d� , where

x� := (x1�S ; x2�S � ��1x1�S ; x3�S � ��1x2�S � ��2x1�S ; :::; x0 � ��1x�1 � � � � � ��Sx1�S ;��x1; :::��xT )
0

d� := (d1�S ; d2�S � ��1d1�S ; d3�S � ��1d2�S � ��2d1�S ; :::; d0 � ��1d1 � � � � � ��Sd1�S ;��d1; :::;��dT )
0

for � = �� := (��0; ��1; :::; ��bS=2c)
0. The QD de-trending parameters, ��k, k = 0; :::; bS=2c, are determined

by the signi�cance level that the seasonal unit root tests are to be run at and the de-trending scheme

employed; see Rodrigues and Taylor (2007,p.556). For example, under Scheme 3 and for tests run at

the 5% level, ��0 = ��S=2 = �7 and ��k = �3:75, k = 1; :::; S�. The resulting de-trended series1 satis�es

aS(L)xt = ut; ut =  (L)vt; t = 1� S; : : : ; T; (2.9)

where ut is the correspondingly de-trended version of Ut. For example, under Scheme 2, in the case of

OLS de-trending, ut := Ut�(T +S)�1
PT

j=1�S Uj . In what follows we assume that �t is not estimated

under an overly restrictive scheme.

Under the assumption that  (z) is invertible2 with (unique) inverse �(z), such that an autoregres-

sive approximation of order say p� is valid, the second step is to then expand the composite AR(p�+S)

polynomial ��(z) := aS(z)�(z) around the zero and seasonal frequency unit roots exp(�i2�k=S),
k = 0; :::; bS=2c, to obtain the augmented HEGY regression3

�Sxt = �0x0;t�1 + �S=2xS=2;t�1 +
S�X
k=1

�
�ckx

c
k;t�1 + �skx

s
k;t�1

�
+

p�X
j=1

�j�Sxt�j + ut;p� (2.10)

omitting the term �S=2xS=2;t�1 where S is odd, and where

x0;t =
S�1X
j=0

xt�j ; xS=2;t =
S�1X
j=0

cos[(j + 1)�]xt�j ; (2.11a)

xck;t =
S�1X
j=0

cos[(j + 1)!k]xt�j ; xsk;t = �
S�1X
j=0

sin[(j + 1)!k]xt�j ; k = 1; : : : ; S�: (2.11b)

Cf. Proposition 1 of Smith et al. (2009,p.533).

1Under Scheme 1, xt := Xt, by de�nition, since no de-trending (be it OLS or QD) is performed.
2Notice that this is more restrictive than condition (i) of Assumption 1 which only requires invertibility at the zero

and seasonal frequencies.
3In the case of OLS de-trending, an asymptotically equivalent procedure is to omit the �rst step and to include the

relevant deterministic regressors in the auxiliary regression (2.10).
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Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that �0 = 0, �S=2 = 0 (S

even) and �ck = �sk = 0, k = 1; :::; S�, in (2.10) respectively; see Smith et al. (2009). Consequently,

tests for the presence or otherwise of a unit root at the zero and Nyquist frequencies are conventional

lower tailed regression t-tests, denoted t�0 and t�S=2, for the exclusion of x0;t and xS=2;t, respectively,

from (2.10). Similarly, the hypothesis of a pair of complex unit roots at the kth harmonic seasonal

frequency may be tested by the lower-tailed tc�k and two-tailed ts�k regression t-tests from (2.10) for

the exclusion of xck;t and xsk;t, respectively, or by the (upper-tailed) regression F -test, denoted F �
k ,

for the exclusion of both xck;t and xsk;t from (2.10). Ghysels et al. (1994) also consider the joint

frequency (upper-tail) regression F -tests from (2.10), F �
1:::bS=2c for the exclusion of xS=2;t (S even) and

fxck;t; xsk;tgS
�

k=1, and F
�
0:::bS=2c for the exclusion of x0;t, xS=2;t (S even) and fxck;t; xsk;tgS

�

k=1. The former

tests the null hypothesis of unit roots at all of the seasonal frequencies, whereas the latter tests the

overall null, H0 of (2.4). Implementation of these tests, including relevant critical values, using OLS

de-trending has been considered in, inter alia, HEGY, Smith et al. (2009) and Ghysels et al. (1994).

Corresponding results for the case of QD de-trending are given in Rodrigues and Taylor (2007).

The limiting null distributions of the OLS de-trended (for each of Schemes 1-5) HEGY statistics

are given for the case where  (z) = 1 in (2.9) and accordingly p� = 0 in (2.10) by Smith and Taylor

(1998). In the case where �(z) is pth order, 0 � p < 1, Burridge and Taylor (2001) and Smith et

al. (2009) show that the limiting null distributions of the OLS de-trended t�0, t
�
S=2 (S even) and F �

k ,

k = 1; :::; S�, statistics from (2.10), are as for p = 0, provided p� � p in (2.10). They show that

this is not true, however, for the ts�k and tc�k , k = 1; :::; S�, statistics whose limit distributions depend

on functions of the parameters characterising the serial dependence in ut of (2.9). Representations

for the corresponding limiting distributions under near seasonally integrated alternatives are given in

Rodrigues and Taylor (2004) and again shown to be free of nuisance parameters with the exception

of the ts�k and tc�k , k = 1; :::; S�, statistics. Corresponding results for the QD de-trended HEGY-type

statistic are given in Rodrigues and Taylor (2007) and here it is also the case that the harmonic

frequency t-statistics depend on nuisance parameters arising from the serial correlation in ut. Where

the assumption that �(z) is �nite is dropped it has been widely conjectured that under suitable

assumptions, in particular, if the lag length p� in (2.10) is such that 1=p� + (p�)3=T ! 0, as T !1,

that the limiting distributions of the OLS and QD de-trended HEGY statistics will be as derived for

those statistics under �nite p. However, this conjecture has not been formally proved.

In this paper we construct regression-based seasonal unit root tests which are both asymptotically
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valid and have pivotal limiting distributions, under both the null and near-integrated alternatives,

in the presence of MA behaviour in the shocks. We do this by carrying out the regression in the

frequency domain. Here the dynamics of ut are handled non-parametrically, via the estimation of

its spectral density function. These estimates are used to provide an optimal weighting scheme in a

generalised least squares type of spectral regression. We outline our approach in the next section.

3 Frequency Domain Regression HEGY Tests

While the approach outlined in section 2.3 adopts a parametric approach to modelling serial correlation

present in ut of (2.9) in this section we focus on a non-parametric approach. Accordingly, therefore,

we use an un-augmented HEGY regression; that is, while the �rst step, in which we de-trend the data,

of the two-step HEGY-type procedure remains the same as was outlined in section 3, in the second

step we now expand only the polynomial aS(z) around the zero and seasonal frequency unit roots.

Doing so yields the auxiliary regression equation4

�Sxt = �0x0;t�1 + �S=2xS=2;t�1 +
S�X
k=1

�
�ckx

c
k;t�1 + �skx

s
k;t�1

�
+ ut (3.1)

again omitting the term �S=2xS=2;t�1 where S is odd.5

In what follows it will prove convenient to de�ne yt := �Sxt together with the S � 1 vectors

zt :=
�
x0;t�1; x

c
1;t�1; x

s
1;t�1; : : : ; x

c
S�;t�1; x

s
S�;t�1; xS=2;t�1

�0
(3.2)

� := [�0; �
c
1; �

s
1; : : : ; �

c
S� ; �

s
S� ; �S=2]

0 (3.3)

omitting xS=2;t�1 and �S=2 from (3.2) and (3.3), respectively, if S is odd. The regression model in (3.1)

may then be written as

yt = z0t� + ut; t = 1; : : : ; T: (3.4)

Given observations on zt and yt, de�ne the discrete Fourier transforms wz(�) :=
1

(2�T )1=2

PT
t=1 zt exp(it�)

and wy(�) :=
1

(2�T )1=2

PT
t=1 yt exp(it�), together with the periodogram matrix and vector, Izz(�) :=

4Again, for the case of OLS de-trending, an asymptotically equivalent procedure is to omit the �rst step and to include
the relevant deterministic regressors in (3.1).

5Although we have continued to use the same nomenclature for the focal unit root parameters in (3.1) as in (2.10)
they are technically not the same functions of the parameters from (2.9) as they are in (2.10). However, in so far as
testing the hypotheses in (2.5)-(2.6) is concerned they have the same interpretation, and so with a small abuse of notation
we use the same nomenclature for these parameters in both equations.
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wz(�)wz(�)
� and Izy(�) := wz(�)wy(�)

�, respectively, where a � denotes transposition combined with

complex conjugation. The FDR estimator we consider is then de�ned by

�̂ :=

2
4X
j2JT

Izz(�j)f̂u(�j)
�1

3
5
�1 2
4X
j2JT

Izy(�j)f̂u(�j)
�1

3
5 ; (3.5)

where JT := fj : �bT=2c < j � bT=2cg and �j := 2�j=T . In the above de�nition of �̂, f̂u(�) denotes

an estimator of the spectral density function of ut. The estimated covariance matrix of �̂ is

Q̂ :=

2
4X
j2JT

Izz(�j)f̂u(�j)
�1

3
5
�1

(3.6)

the j'th diagonal element of which will be denoted q̂j .

Taken together, (3.5) and (3.6) can be used to construct FDR t- and F -tests for seasonal unit

roots in aS(L) of (2.1b). Speci�cally, analogous to the t�0, t
�
S=2, t

c�
k and ts�k , k = 1; :::; S�, tests from

section 2.3, we may de�ne the corresponding FDR-based t-statistics as follows:

t0 :=
�̂0p
q̂1
; tS=2 :=

�̂S=2p
q̂S
; tck :=

�̂ckp
q̂2k

; tsk :=
�̂skp
q̂2k+1

; k = 1; : : : ; S�;

omitting the de�nition of tS=2 where S is odd. As with the decision rules outlined for the standard

HEGY tests in section 2.3, lower-tailed tests for the null hypothesis of a unit root at the zero (H0;0)

and Nyquist (H0;S=2) frequencies can be based on t0 and tS=2, respectively, while lower-tailed tests

based on tck, and two-tailed tests based on t
s
k, can be used to test H0;k, k = 1; :::; S�, the null hypothesis

of a complex unit root pair at frequency !k.

Hypotheses concerning the joint signi�cance of subsets of the elements of � can again be formed.

Analogous to F �
k , k = 1; :::; S�, F �

1:::bS=2c and F
�
0:::bS=2c from section 2.3, we can de�ne

Fk :=
1

2

�
�̂0R0

k

h
RkQ̂R

0
k

i�1
Rk�̂

�
; k = 1; : : : ; S�

F1:::bS=2c :=
1

S � 1

�
�̂0R0

1:::bS=2c

h
R1:::bS=2cQ̂R

0
1:::bS=2c

i�1
R1:::bS=2c�̂

�

F0:::bS=2c :=
1

S

n
�̂0Q̂�1�̂

o

where Rk is a 2�S matrix of zeros except for ones in column 2k of row 1 and column (2k+1) of row

2, these elements picking out �̂ck and �̂
s
k from �̂ respectively, and R1:::bS=2c is an (S � 1)� S matrix of
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ones with the exception of the elements of its �rst row which are all zero. As with the corresponding

tests from section 2.3, right-tailed tests based on these statistics can be used to test H0;k, k = 1; :::; S�,

\bS=2ck=1 H0;k and H0, respectively.

As noted above, construction of our proposed FDR tests requires an estimator of the spectral

density function of ut. A number of possibilities exist for the construction of this spectral density

estimator and are described in time series textbooks such as Priestley (1981). Here we shall consider

two possible estimators. The �rst is a weighted periodogram estimator [WPE], and the second is the

autoregressive spectral density estimator [ASDE] of Berk (1974).

The WPE is based on the residuals, ût := yt � z0t�̂OLS , obtained from a time domain regression of

yt on zt, t = 1; :::; T , �̂OLS denoting the OLS estimator of �. The WPE is then de�ned as

f̂u(�) :=
1

2m+ 1

mX
k=�m

Iûû(�+ �k); (3.7)

where Iûû(�) denotes the periodogram constructed from the residuals ût. The parameter m is a

positive bandwidth whose rate of increase with T is as prescribed in the following assumption.

Assumption 2 As T !1, m�1 +mT�1 ! 0.

Remark 2: Assumption 2 imposes that m increases at a slower rate than T , i.e. m = o(T ), and

ensures, in particular, that f̂u(�) in (3.7) is a uniformly consistent estimator of fu(�) as T !1.

The ASDE is constructed from the estimated augmented HEGY regression, (2.10). Let the OLS

residual variance estimator and the �tted augmentation polynomial from (2.10) be denoted by �̂2

and �̂(z) := (1 � �̂1;p�z � � � � � �̂p�;p�z
p�), respectively, where �̂j;p� denotes the OLS estimator of �j ,

j = 1; :::; p�, from (2.10). Then, following Berk (1974), the ASDE is given by

f̂u(�) :=
�̂2

2�

�
ĉp�(�)

2 + ŝp�(�)
2
��1

(3.8)

where ĉp�(�) := 1 � Pp�

j=1 �̂j;p� cos(j�) and ŝp�(�) := �Pp�

j=1 �̂j;p� sin(j�). Where the ASDE is

concerned, we replace Assumption 2 with the following assumption; cf. Berk (1974).

Assumption 3 (i) As T !1, (1=p�)+ (p�)3=T ! 0. (ii) The lag polynomial  (z) is invertible with

(unique) inverse �(z).

Remark 3: Part (i) of Assumption 3 controls the lag truncation parameter p� in (2.10) to increase

11



at a slower rate than T 1=3, i.e. p� = o(T 1=3), while part (ii) imposes the condition that the spectral

density of ut is positive for all �. The latter condition, not required for the WPE in (3.7), ensures

that the autoregressive approximation to  (L) embodied in (2.10) is valid. Taken together, these

conditions ensure that f̂u(�) of (3.8) is a uniformly consistent estimator of fu(�).

We now derive representations for the limiting distributions of the FDR estimator from (3.5) and

the associated test statistics for the cases of both OLS and QD de-trending. These representations are

indexed by the parameter � whose value is determined by which of Schemes 1-5 of �t of (2.2) holds

and the frequency under test. For the zero frequency !0 tests: Scheme 1: � = 0; Schemes 2 and 3:

� = 1; Schemes 4 and 5: � = 2. For the seasonal frequency !k, k = 1; :::; bS=2c, tests: Schemes 1, 2,
and 4: � = 0; Schemes 3 and 5: � = 1.6 All of the large sample results which follow hold regardless

of whether the WPE or ASDE of fu(�) is used.

In Theorem 1 we �rst present results for the limiting distributions of the elements of T �̂. Through-

out this paper the notation \)" is used to denote weak convergence as T !1.

Theorem 1 Let Xt be generated by (2.1)-(2.2) under Assumption 1. If the estimator �̂ in (3.5) is

constructed using the WPE estimator from (3.7) let Assumption 2 hold. Alternatively, if �̂ is con-

structed using the ASDE estimator from (3.8) let Assumption 3 hold. Then, the normalised elements

of �̂ under H1;� : � = (�0; �1; :::; �bS=2c)
0 are such that:

T �̂j ) �j +

R 1
0 J

�
j;�j

(r)dWj(r)R 1
0 J

�
j;�j

(r)2dr
; j = 0; S=2 (3.9a)

T �̂ck ) �k +
2
R 1
0

�
J�k;�k;c(r)dWk;c(r) + J�k;�k;s(r)dWk;s(r)

�
R 1
0

�
J�k;�k;c(r)

2 + J�k;�k;s(r)
2
�
dr

; k = 1; : : : ; S�; (3.9b)

T �̂sk )
2
R 1
0

�
J�k;�k;s(r)dWk;c(r)� J�k;�k;c(r)dWk;s(r)

�
R 1
0

�
J�k;�k;c(r)

2 + J�k;�k;s(r)
2
�
dr

; k = 1; : : : ; S�; (3.9c)

where W0, WS=2, Wk;c and Wk;s, k = 1; :::; S�, are mutually independent standard Brownian motions,

while J�0;�0, J
�
S=2;�S=2

, J�k;�k;c and J�k;�k;s, k = 1; :::; S�, are mutually independent functionals of these

Brownian motions whose precise form depends on the de-trending index � and on whether xt is formed

using OLS de-trending or QD de-trending. In the case of OLS de-trending: for � = 0 these are standard

6So, for example, substituting � = 0 into the expression given in (3.9a) of Theorem 1 for t0 gives the limiting
representation for the t0 statistic under Scheme 1, whereas � = 1 gives the limiting representation which obtains under
Schemes 2 and 3. Similarly, substituting � = 1 into (3.9b) and (3.9c) gives the limiting representations for the tck and t

s
k

statistics, respectively, under Schemes 3, 4 and 5.
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Ornstein-Uhlenbeck [OU] processes, viz.,

J0j;�j (r) :=

Z r

0
exp(�j(r � �))dWj(�); j = 0; S=2 (3.10a)

J0k;�k;c(r) :=

Z r

0
exp(�k(r � �))dWk;c(�); k = 1; :::; S� (3.10b)

J0k;�k;s(r) :=

Z r

0
exp(�k(r � �))dWk;s(�); k = 1; :::; S�; (3.10c)

for � = 1 these are de-meaned standard OU processes, so that for example J10;�0(r) := J00;�0(r) �R 1
0 J

0
0;�0

(�)d�, and for � = 2, J20;�0 is the de-meaned and de-trended standard OU process, J20;�0(r) :=

J10;�0(r) � 12
�
r � 1

2

� R 1
0

�
�� 1

2

�
J10;�0(�)d�. For QD de-trending they are standard OU processes for

both � = 0 and � = 1, as given above, while for � = 2,

J20;�0(r) := J00;�0(r)� r

(
(1� ��0)J

0
0;�0

(1) + ��20
R 1
0 �J0;�0(�)d�

1� ��0 + ��20=3

)
: (3.11)

Remark 4: As Theorem 1 shows, the normalised FDR estimators possess pivotal limiting null dis-

tributions and asymptotic local power functions which, for a given value of � (the de-trending index),

depend only on the non-centrality parameter(s) being tested. For the case of OLS de-trending the rep-

resentation in (3.9a) for j = 0; S=2, is equivalent to that given in Phillips (1987) for the non-seasonal

(S = 1) case. For � = 0; 1; 2, asymptotic null critical values from these distributions are provided in

Fuller (1996), while the associated power functions are graphed in Figures 1, 2 and 3, respectively, of

Elliott et al. (1996).

Remark 5: Under the seasonal intercepts plus seasonal trends scheme of (2.3), the representation

for the limiting distribution of T �̂0 is of the same form as given in (3.9a) for � = 2. The same is

true of the limiting representation for T �̂S=2 where J2S=2;�S=2
is now de�ned analogously to (3.11) in

the case of QD de-trending, while it is the de-meaned and de-trended counterpart of J0S=2;�S=2
under

OLS de-trending. Under OLS de-trending the normalised harmonic frequency coe�cient estimates,

T �̂ck and T �̂
s
k converge to the form given in (3.9b) and (3.9c), with J2k;�k;s and J

2
k;�k;s

, respectively, the

de-meaned and de-trended counterparts of J0k;�k;s and J
0
k;�k;s

, k = 1; :::; S�.

Remark 6: It is seen from the results in Theorem 1 that the FDR method eradicates the dependence

of the limiting distributions of the normalised coe�cient estimates from the unaugmented HEGY

regression in 3.1 on nuisance parameters characterising the dynamics of ut. That the frequency domain

estimator results in asymptotically pivotal distributions is a signi�cant advantage over regression
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methods based on purely autoregressive representations, such as the HEGY procedure, which can be

shown to admit limiting representations which depend on these serial correlation nuisance parameters;

cf. Equation [17.7.35] of Hamilton (1994,p.523) for the case of the zero frequency OLS de-trended

Dickey-Fuller normalised coe�cient under the non-seasonal unit root null hypothesis.

An immediate consequence of Remark 6 is that the normalised vector T �̂ could be used directly

to test the hypotheses of interest. However, we choose to focus instead on the t- and F -type statistics

that are more commonly employed. We now give the limiting distributions of these in Theorem 2.

Theorem 2 Let the conditions of Theorem 1 hold. Then, under H1;� : � = (�0; �1; :::; �bS=2c)
0:

t0 ) �j

�Z 1

0
J�j;�j (r)

2dr

�1=2

+

R 1
0 J

�
j;�j

(r)dWj(r)�R 1
0 J

�
j;�j

(r)2dr
�1=2 =: �j;�j ; j = 0; S=2 (3.12a)

tck )
�k
2
D1=2
k +

R 1
0

�
J�k;�k;c(r)dWk;c(r) + J�k;�k;s(r)dWk;s(r)

�
D1=2
k

=: �k;�k ; k = 1; : : : ; S� (3.12b)

tsk )
R 1
0

�
J�k;�k;s(r)dWk;c(r) + J�k;�k;c(r)dWk;s(r)

�
D1=2
k

=: �k;�k;s; k = 1; : : : ; S� (3.12c)

where Dk :=
R 1
0

�
J�k;�k;c(r)

2 + J�k;�k;s(r)
2
�
dr, and where W0, WS=2, J

�
0;�0

, J�S=2;�S=2
and (Wk;c;Wk;s;

J�k;�k;c; J
�
k;�k;s

), k = 1; :::; S�, are as de�ned in Theorem 1. Moreover,

Fk ) 1

2

�
�2
k;�k

+ �2
k;�k;s

	
; k = 1; : : : ; S� (3.13a)

F1:::bS=2c )
1

S � 1

8<
:

bS=2cX
j=1

�2
j;�j +

S�X
k=1

�2
k;�k;s

9=
; (3.13b)

F0:::bS=2c )
1

S

8<
:

bS=2cX
j=0

�2
j;�j +

S�X
k=1

�2
k;�k;s

9=
; (3.13c)

Remark 7: The results in Theorem 2 show that, as with the results in Theorem 1, all of the FDR

statistics from section 3 possess pivotal limiting null distributions and asymptotic local power functions

which, for a given value of � (the de-trending index), depend only on the non-centrality parameter(s)

being tested. This holds for both OLS de-trended data and QD de-trended data. These tests therefore

provide a suitable basis for (asymptotic) inference. Unlike the corresponding lag-augmented standard

HEGY tests from (2.10) which are derived under the assumption that the shocks follow an AR(p)

process with p �nite, this holds under general weak dependence of the form given in Assumption 1
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(the additional requirement of invertibility needed when using the ASDE).

Remark 8: In the case of OLS de-trended data, the limiting representations for the t0, tS=2, Fk,

k = 1; :::; S�, F1:::bS=2c and F1:::bS=2c statistics given in Theorem 2 coincide with the representations

given for the corresponding lag-augmented HEGY statistics from (2.10) given in Rodrigues and Taylor

(2004), albeit noting that Rodrigues and Taylor (2004) constrain the near-integration parameter to

be common across the zero and seasonal frequencies while we do not, and that those representations

are derived under the assumption that the shocks follow a �nite AR(p). Consequently, the discussion

concerning those representations given in Remarks 3.1, 3.2, 3.5, 3.6 and 3.7 apply equally well to the

FDR test statistics from section 3, including the reference to relevant asymptotic critical values given

there. However, the representations for the limiting distributions of the lag-augmented tc�k and ts�k ,

k = 1; :::; S�, HEGY statistics from (2.10) depend in general on the lag coe�cients characterising the

aforementioned AR(p) polynomial; see equations (3.2) and (3.3) of Rodrigues and Taylor (2007,p.653).

The use of asymptotic critical values relevant to the case where the shocks are IID cannot therefore

deliver (asymptotically) valid inference for tests based on these statistics, while it can for the analogous

frequency domain tests based on tck and tsk, k = 1; :::; S�.

Remark 9: Similar comments to those made in Remark 8 also apply to the frequency domain tests

when based on QD de-trended data and, in particular, the asymptotic critical values given in Table 1

and footnote 5 of Rodrigues and Taylor (2007,pp.557 and 561) for the corresponding tests from (2.10)

may be used. Remarks 5.2 and 5.3 from Rodrigues and Taylor (2007,pp.560-61) are also germane to

the frequency domain approach of section 3. Tabulations of the asymptotic local power functions for

tck, Fk, F1:::bS=2c and F1:::bS=2c under QD de-trending are also, therefore, as given for the corresponding

tests from (2.10) given in Table 5 of Rodrigues and Taylor (2007,p.565).

Remark 10: The results in Theorem 2 can again be generalised to the seasonal intercepts plus

seasonal trends deterministic scheme of (2.3). Here one simply re-de�nes the limiting processes given

in the representations in Theorem 2 in the same way as outlined for Theorem 1 in Remark 5. Moreover,

under QD de-trending the harmonic frequency t-statistics, tck and t
s
k in this case converge to the rather

involved limiting functionals A�;k;�k;��k and B�;k;�k;��k , respectively, given in Theorem 5.1 of Rodrigues

and Taylor (2007,p.560), for k = 1; :::; S�.
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4 Numerical Results

In this Section we use Monte Carlo simulation methods to investigate the small sample properties (size

under autocorrelated errors and power under stationary alternatives) of the FDR HEGY-type tests

from section 3 for the case of quarterly data, S = 4, comparing these with the conventional HEGY

tests from section 2.3.

In assessing the �nite-sample size and power properties of these tests we report results for N = 50

and N = 100 for Scheme 3, where � = 1 for all reported tests. All tests were run at the nominal 0:05

level using �nite sample critical values generated under the quarterly seasonal random walk null. The

remaining deterministic cases and other nominal levels were also considered, as were the corresponding

tests for other values of S, but in each case yielded qualitatively similar results to those reported. The

reported simulations were programmed using the rndnKMn function of Gauss 9 with 50; 000 replications

for each experiment. These programs are available on request.

For the FDR HEGY tests which employ the WPE, an appropriate bandwidth m must be chosen.

One method is to keep m �xed at [T �], and in this case we let � = 0:5. Alternatively, automatic

bandwidth selection methods can be used and here the methods of Lee (1997) and Ombao, Raz,

Strawderman and von Sachs (2001) are considered. Both involve selecting m based on minimising

a risk criterion. Lee (1997) is based on unbiased risk estimation and Ombao et al. (2001) uses a

generalised cross-validation method. In each case we set the maximum possible bandwidth to be 40.

For the conventional HEGY tests and the corresponding FDR HEGY tests based on the ASDE, the

lag augmentation polynomial in (2.10) was chosen via a data-dependent rule. As is commonly done in

practice, we followed the general-to-speci�c approach outlined in Beaulieu and Miron (1993,pp.318-19),

starting with a maximum lag order of p� = bpmax(T=100)
1=4c in (2.10) and progressively deleting those

lags which are insigni�cant at the 0:10 level, with the �nal �tted lag polynomial denoted �̂(z). Results

are reported for pmax = 4 and pmax = 12. The resulting estimates were then used in constructing

the ASDE in (3.8), as detailed in section 3. Both the WPE and ASDE were constructed using QD

de-trended data. All tests based on OLS de-trended data were run using indirect de-trending, as in

footnotes 3 and 4.
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4.1 Size Properties

Table 1 reports empirical rejection frequencies for the standard HEGY tests, and Tables 2 and 3 the

corresponding results for the WPE- and ASDE-based FDR tests, respectively, under the DGP,

Xt = Xt�S + Ut; t = 1; :::; T (4.1a)

(1� �L)Ut = (1 + �L2)Vt � IN(0; 1); t = �100; : : : ; T; (4.1b)

with Xj = 0, j = 1�S; : : : ; 0. We consider the e�ects of � = 0:9, holding � = 0, and � = �0:6, holding
� = 0.7 The �rst case allows for a large peak in the spectrum of fv4n+sg at the zero frequency, while
the second induces a near cancellation of roots at both the zero and Nyquist frequencies for � = �0:6,
and at the harmonic seasonal frequency for � = 0:6.

A comparison of the results in Table 1 with those in Tables 2 and 3 shows that in most (but not

all) cases the conventional HEGY tests display superior �nite sample size control than their FDR

analogues in both the OLS and QD de-trending environments. Moreover, while the ASDE-based

FDR tests display size patterns which are mostly not too dissimilar to the standard HEGY tests, the

WPE-based FDR tests display very poor size control throughout, pretty much regardless of which of

the three bandwidth selection methods is used. Indeed for this reason we will not consider the WPE-

based FDR tests any further. In contrast, the maximum lag order, pmax, used in connection with the

standard HEGY and ASDE-based FDR HEGY tests, can have a marked impact on the size properties

of both of these tests. In the case of MA errors the size properties of these tests are considerably

improved for pmax = 12 vis-�a-vis pmax = 4, as might be expected. For these tests, the observed size

distortions are also smaller, other things equal, for N = 100 than for N = 50. Distortions also appear

to be generally smaller, other things being equal, for the QD de-trended tests than for their OLS

de-trended counterparts.

4.2 Empirical Power

We now compare the �nite sample power properties of the conventional HEGY tests and their ASDE-

based FDR analogues against the near-seasonally integrated DGP:

h
1�

�
1 +

�0
T

�
L
i h
1 +

�
1 +

�2
T

�
L
i �

1 +
�
1 +

�1
T

�2
L2
�
Xt = Ut � IN(0; 1); (4.2)

7Other parameter values were considered but qualitatively did not add to or contradict what is reported.
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t = 1; :::; T with Xj = Uj = 0, j � 0. We investigate the e�ects of varying the non-centrality

parameters �k among �k 2 f�3;�5;�7;�11;�15;�19g, k = 0; 1; 2, in our experiments. Results for

the conventional HEGY tests are reported in Table 4 and the corresponding results for the ASDE-

based FDR tests are reported in Table 5. These results pertain to the case where, when moving

a particular non-centrality parameter vk, k = 0; 1; 2, away from unity, the remaining non-centrality

parameters are all held at zero.8 The shocks, Ut, are set to be serially uncorrelated so that one can

compare the powers of the two approaches from a common base of exact 5% sized tests. This also

implies that the ts1 tests should not reject with probability in excess of the nominal level in the limit,

regardless of the values of the �k, k = 0; 1; 2; see, for example, Rodrigues and Taylor (2004,2007).

A comparison of the results in Tables 4 and 5 shows a clear picture. Under OLS de-trending,

in almost all cases the ASDE-based FDR HEGY tests display signi�cantly higher power than their

conventional HEGY test analogues. In the case of QD de-trending there is little to choose between

the tests, mirroring the smaller di�erences seen between the sizes of the two approaches noted in

section 4.1. In most cases power is lower for pmax = 12 vis-�a-vis pmax = 4, although the losses tend

to be rather moderate. Power is higher, often substantially so, for the QD de-trended variants of

the tests than the OLS de-trended variants, as might be expected from the results in Rodrigues and

Taylor (2007). The relative power performance of the standard HEGY tests and their ASDE-based

FDR counterparts, taken together with their relative size performance reported in section 4.1 suggests

that a very useful �nite sample size-power trade-o� exists between these classes of tests. While the

former tend to display better size control for a given value of pmax, the latter tend to display better

power properties, again for a given value of pmax. This trade-o� is most pronounced for the case of

tests based on OLS de-trended data but also exists, albeit it to a far lesser extent, in the case of QD

de-trended data.

5 Conclusions

In this paper we have proposed new regression-based tests for seasonal unit roots based on spectral

(frequency domain) regression estimation methods. A key aspect of this approach is that any serial

correlation present in the shocks is treated non-parametrically, rather than parametrically as in the

corresponding lag-augmented tests of Hylleberg et al. (1990), inter alia. We have shown that all of

our proposed statistics retain pivotal limiting distributions under both the null and near seasonally

8Allowing the other non-centrality parameters to simultaneously deviate from zero had little e�ect.
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integrated alternatives in the presence of weakly dependent (linear process) shocks. This contrasts

with the lag-augmented HEGY tests not all of which retain pivotal limit distributions under weak

dependence and, moreover, are only asymptotically valid in the case where the data are generated

according to a �nite-order autoregression. We have used Monte Carlo methods to compare the size

and power properties of our proposed frequency domain regression-based tests, using either a weighted

periodogram or an autorgressive spectral density estimator of the spectrum of the shocks, with those

of the lag-augmented tests of Hylleberg et al. (1990). These simulations suggested that the weighted

periodogram-based tests display very poor size control, but highlighted an interesting size-power trade-

o� between the autoregressive spectral density variant of the frequency domain regression HEGY

tests and their conventional analogues, with the former tending to display slightly worse size control

in general, but not always, than the latter but signi�cantly better power properties overall. This

trade-o� was most pronounced in the case of OLS de-trending.

A Appendix A

It is convenient to de�ne some additional notation and some representations that form the basis of

the proofs. Under the hypotheses H1;�k (k = 0; 1; : : : ; S�; S=2) the coe�cients �k = (1+ �k=T ) will be

replaced by �k = e�k=T as in Phillips (1987) for the k = 0 case; the asymptotics remain the same by

noting that e�k=T = 1+ �k=T +O(T�2). The following partial sum processes play a prominent role in

the development of the asymptotics:

P0;t :=
tX

j=1

e�0(t�j)=Tuj ; PS=2;t :=
tX

j=1

e�S=2(t�j)=T (�1)juj ; (A.1a)

Pk;t := P c
k;t + iP s

k;t =
tX

j=1

e�k(t�j)=T eij!kuj ; k = 1; : : : ; S�: (A.1b)

In particular the variables in the HEGY and FDRs can be represented as:

x0;t = P0;t + e�0t=Tx0;0; xS=2;t = PS=2;t + e�S=2t=T (�1)txS=2;0; (A.2a)

xk;t = xck;t + ixsk;t = e�i(t+1)!k
h
Pk;t + e�kt=Txk;0

i
; k = 1; : : : ; S�: (A.2b)

In order to save on notation the superscript � relating to Schemes 1{5 and the frequency under test

in the limiting O-U and Wiener processes will be omitted.
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Lemma 1. Under Assumption 1,

1p
T
Pk;bTrc )

8>>>><
>>>>:

�c(1)J0;�0(r); k = 0;

�p
2
c(ei!k)Jk;�k(r); k = 1; : : : ; S�;

�c(�1)JS=2;�S=2(r); k = S=2;

where r 2 [0; 1], Jk;�k(r) := Jk;�k;c(r) + iJk;�k;s(r), and J0;�0(r), JS=2;�S=2(r), Jk;�k;c(r) and Jk;�k;s(r)

are as de�ned in Theorem 1.

Proof of Lemma 1. The k = 0 case follows immediately from Lemma 1 of Phillips (1987).

For k = 1; : : : ; S� de�ne the (complex-valued) random variables �k;t := eit!kut so that Pk;t =Pt
j=1 e

�k(t�j)=T �k;j . Note that �k;t has the representation �k;t = ck(L)�k;t where ck(z) =
P1

j=0 ck;j ,

ck;j = cje
ij!k and �k;t = eit!k�t. The random variable �k;t satis�es E(�k;t) = 0, E(�k;t�k;t) = �2

and E(�k;t�k;s) = 0 for t 6= s; the long-run variance of �k;t is equal to �
2jck(1)j2 = �2jc(ei!k)j2. It

follows that Pk;bTrc satis�es the stated invariance principle, where Jk;�k(r) :=
R r
0 e

�k(r�q)dWk(q) and

Wk(q) :=Wk;c(q)+ iWk;s(q) is a complex-valued Wiener process with E(Wk(q)Wk(q)) = 2. The result

for k = S=2 follows immediately by taking the real part with !k = � and noting that ei� = �1. 2

Lemma 2. De�ne zt :=
h
x0;t�1; x

c
1;t�1; x

s
1;t�1; : : : ; x

c
S�;t�1; x

s
S�;t�1; xS=2;t�1

i0
and Czz(n) := T�1

P
1�t;t+n�T ztz

0
t+n.

Then, under Assumption 1, T�1Czz(n)) G(n), where G(n) := diag[G0(n); G1(n); :::; GS�(n); GS=2(n)],

with G0(n) := �2c(1)2
R 1
0 J0;�0(r)

2dr, GS=2(n) := (�1)n�2c(�1)2 R 10 JS=2;�S=2(r)2dr, and, for k =

1; : : : ; S�,

Gk(n) :=
1

4
�2
��c(ei!k)��2 Z 1

0

�
Jk;�k;c(r)

2 + Jk;�k;s(r)
2
�
dr

2
64 cosn!k � sinn!k

sinn!k cosn!k

3
75 :

Proof of Lemma 2. For n = 0 the fact that T�2
P

t x
2
0;t�1 ) G0(0) follows from Lemma 1 of Phillips

(1987). For n 6= 0 note that 1
T 2

P
t x0;t�1x0;t+n�1 = e�0n=T 1

T 2

P
t x

2
0;t�1 + op(1), and the result follows

because e�0n=T ! 1. For k = 1; : : : ; S� note that

xk;t+n = e�i(t+n+1)!kPk;t+n + e�i(t+n+1)!ke�k(t+n)=Txk;0 (A.3)

while Pk;t+n = e�kn=TPk;t +
Pt+n

j=t+1 e
�k(t+n�j)=T �k;j . Combining these expressions yields xk;t+n =
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e�in!ke�kn=Txk;t + e�i(t+n+1)!k
Pt+n

j=t+1 e
�k(t+n�j)=T �k;j , from which it follows that

1

T 2

X
t

xk;t�1xk;t+n�1 = e�in!ke�kn=T
1

T 2

X
t

x2k;t�1 + op(1);

1

T 2

X
t

xk;t�1xk;t+n�1 = ein!ke�kn=T
1

T 2

X
t

xk;t�1xk;t�1 + op(1):

Setting n = 0 and lagging by one period in (A.3) we �nd that

1

T 2

X
t

x2k;t�1 =
1

T 2

X
t

e�2it!kP 2
k;t�1 + 2xk;0

1

T 2

X
t

e�2it!ke�kt=TPk;t�1

+x2k;0
1

T 2

X
t

e�2it!ke2�kt=T =
1

T 2

X
t

e�2it!kP 2
k;t�1 + op(1)) 0

from an extension of Lemma 3.3.6 of Chan andWei (1988) and Lemma A.1 of Gregoir (2006). Similarly,

1

T 2

X
t

xk;t�1xk;t�1 =
1

T 2

X
t

Pk;t�1Pk;t�1 + xk;0
1

T 2

X
t

e�kt=TPk;t�1

+
1

T 2

X
t

e�kt=TPk;t�1xk;0 +
1

T 2

X
t

e2�kt=Txk;0xk;0

=
1

T 2

X
t

Pk;t�1Pk;t�1 + op(1)) 1

2
�2
��c(ei!k)��2 Z 1

0
Jk;�k(r)Jk;�k(r)dr:

It follows that T�2
P

t xk;t�1xk;t+n�1 ) 0 while

1

T 2

X
t

xk;t�1xk;t+n�1 ) ein!k
1

2
�2
��c(ei!k)��2 Z 1

0
Jk;�k(r)Jk;�k(r)dr =: �k := �k;c + i�k;s:

Using these two results and the fact that

xk;t�1xk;t+n�1 = xck;t�1x
c
k;t+n�1 + xsk;t�1x

s
k;t+n�1 + i(xsk;t�1x

c
k;t+n�1 � xck;t�1x

s
k;t+n�1);

xk;t�1xk;t+n�1 = xck;t�1x
c
k;t+n�1 � xsk;t�1x

s
k;t+n�1 + i(xsk;t�1x

c
k;t+n�1 + xck;t�1x

s
k;t+n�1);

we �nd that T�2
P

t x
s
ktx

s
k;t+n ) 1

2�
c
k, T

�2
P

t x
c
ktx

c
k;t+n ) 1

2�
c
k, T

�2
P

t x
s
ktx

c
k;t+n ) 1

2�
s
k, and

T�2
P

t x
c
ktx

s
k;t+n ) �1

2�
s
k. The stated result then follows immediately. Finally, the properties involv-

ing xS=2;t are a special case of the above obtained by taking the real part of the limiting distribution,

setting !k = � and noting that cosn� = (�1)n. 2

Lemma 3. Let Czu(n) := T�1
P

1�t;t+n�T ztut+n and de�ne j := E(u0uj) and ei := (1; i)0. Then,
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under Assumption 1, Czu(n)) g(n), where g(n) :=
�
g0(n); g1(n)

0; : : : ; gS�(n)
0; gS=2(n)

�0
,

g0(n) := �2c(1)2
Z 1

0
J0;�0(r)dW0(r) +

1X
j=n+1

j ;

e0igk(n) := ein!k
�2jc(ei!k)j2

2

Z 1

0
Jk;�k(r)dWk(r) +

1X
j=n+1

ei(n�j)!kj ; k = 1; : : : ; S�;

gS=2(n) := cos(n�)�2c(�1)2
Z 1

0
JS=2;�S=2(r)dWS=2(r) +

1X
j=n+1

cos[(n� j)�]j :

Proof of Lemma 3. From Lemma 1 of Phillips (1987) T�1
P

t x0;t�1ut ) g0(0). Now x0;t =

e�0=Tx0;t�1 + ut so that x0;t+n�1 = en�0=Tx0;t�1 +
Pn�1

`=0 e
`�0=Tut+n�1�` for n > 0. Solving this

expression for x0;t�1 it follows that

1

T

X
t

x0;t�1ut+n = e�n�0=T

(
1

T

X
t

x0;t+n�1ut+n �
n�1X
`=0

e`�0=T
1

T

X
t

ut+n�1�`ut+n

)

) �2c(1)2
Z 1

0
J0;�0(r)dW0(r) +

1X
j=1

j �
n�1X
`=0

`+1 = g0(n):

For k = 1; : : : ; S�, usual arguments (e.g. extending Lemma A.1 of Gregoir, 2006) establish that

T�1
P

t xk;t�1ut ) gk(0). Noting that xk;t�1 = e�n�k=T
n
ein!kxk;t+n�1 � e�it!k

Pt+n�1
`=t e�k(t+n�1�`)=T �k;`

o
,

we obtain that

1

T

X
t

xk;t�1ut+n = e�n�0=T

(
ein!k

1

T

X
t

xk;t+n�1ut+n � 1

T

X
t

e�it!k
t+n�1X
`=t

e�k(t+n�1�`)=T �k;`ut+n

)
:

Recalling that �k;t = eit!kut, the second term in parentheses above can be written as

�
nX

j=1

e�k(j�1)=T ei(n�j)!k
1

T

X
t

ut+n�jut+n

and converges in probability to �Pn
j=1 e

i(n�j)!kj ; hence T
�1
P

t xk;t�1ut+n ) gk(n) as stated. Pick-
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ing out the real and imaginary parts this result can also be written in the form

1

T

X
t

0
B@ xck;t�1

xsk;t�1

1
CAut+n =

�2jc(ei!k j2
2

2
64 cosn!k � sinn!k

sinn!k cosn!k

3
75

�

2
64
R 1
0 (Jk;�k;c(r)dWk;c(r) + Jk;�k;s(r)dWk;s(r))R 1
0 (Jk;�k;s(r)dWk;c(r)� Jk;�k;c(r)dWk;s(r))

3
75

+
1X

j=n+1

0
B@ cos(n� j)!k

sin(n� j)!k

1
CA j :

Finally, the result for gS=2(n) follows the same lines as above by setting !k = �. Analogous arguments

apply when n < 0. 2

Lemma 4. Let HT :=
P

j2JT
Izz(�j)fu(�j)

�1. Then, under Assumption 1, T�2HT ) H, where H :=

diag[H0; H1; :::; HS� ; HS=2], with Hj :=
R 1
0 Jj;�j (r)

2dr, j = 0; S=2, and Hk :=
1
4I2
R 1
0

�
Jk;�k;c(r)

2 + Jk;�k;s(r)
2
�
dr,

k = 1; : : : ; S�, and where I2 denotes the 2� 2 identity matrix.

Proof of Lemma 4. Let �(�) := fu(�)
�1 and consider its Nth �rst-order Ces�aro mean �N (�) :=

1
2�

R �
�� �(�)FN (� � �)d�, where FN (�) := N�1

���PN�1
n=0 e

in�
���2 =

P
jnj<N (1 � jnjN�1)ein� is Fej�er's

kernel. Then, forN su�ciently large, sup� j�(�)��N (�)j < �. ConsiderHT (�) :=
P

j2JT
Izz(�j)�(�j).

Then

T�2HT (�)� T�2HT (�N )
 =

T�2
X
j2JT

Izz(�j) [�(�j)� �N (�j)]


� �T�2

X
j2JT

kIzz(�j)k � �(2�T )�1tr

 
T�1

TX
t=1

ztz
0
t

!
= Op(�);

using an inequality of Robinson (1972, p.764) and Lemma 2. Since � is arbitrary, we can replace � by

�N . Then, following Robinson (1976, pp.231{232),

T�2HT (�N ) =
1

T 2

X
j2JT

Izz(�j)�N (�j)

=
1

T 2

X
j2JT

 
1

2�

T�1X
l=�T+1

Czz(l)e
�il�j

!0@ 1

2�

Z �

��
�(�)

X
jnj<N

�
1� jnj

N

�
ein(�j��)d�

1
A
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=

�
1

2�

�2 1

T 2

X
j2JT

T�1X
l=�T+1

X
jnj<N

Z �

��
Czz(l)

�
1� jnj

N

�
�(�)ei(n�l)�j�in�d�

=

�
1

2�

�2 1

T

X
jnj<N

Czz(n)

Z �

��

�
1� jnj

N

�
�(�)e�in�d�+ op(1):

From Lemma 2 we know that T�1Czz(n) ) G(n). Let HT;k(�N ) (k = 0; 1; : : : ; S�; S=2) denote the

elements and 2�2 sub-matrices of HT (�N ) corresponding to the non-zero terms of G(n). Taking each

in turn we �nd that:

T�2HT;0(�N ) ) �2c(1)2
Z 1

0
J0;�0(r)

2dr

�
1

2�

�2 Z �

��
�(�)

X
jnj<N

�
1� jnj

N

�
e�in�d�

= �2c(1)2
Z 1

0
J0;�0(r)

2dr
1

2�
�N (0):

But
����2c(1)2 R 10 J0;�0(r)2dr(1=2�) ��N (0)� fu(0)

�1
���� � (�=2�)�2c(1)2

R 1
0 J0;�0(r)

2dr = Op(�), so we

can replace �N (0) by fu(0)
�1. Noting that (1=2�)fu(0)

�1 = [�2c(1)2]�1 yields the limit
R 1
0 J0;�0(r)

2dr.

Next, following the same arguments as above and noting that (�1)n = ein�, we �nd that T�2HT;S=2(�N ))
�2c(�1)2 R 10 JS=2;�S=2(r)2dr(1=2�)�N (�). But

�����2c(�1)2
Z 1

0
JS=2;�S=2(r)

2dr
1

2�

�
�N (�)� fu(�)

�1
����� � �

2�
�2c(�1)2

Z 1

0
JS=2;�S=2(r)

2dr = Op(�);

so we can replace �N (�) by fu(�)
�1. Noting that (1=2�)fu(�)

�1 = [�2c(�1)2]�1 yields the required
limit. Finally, for the remaining non-zero elements (k = 1; : : : ; S�) we �nd that

T�2HT;k(�N ) ) �2

4

��c(ei!j )��2 Z 1

0

�
Jk;�k;c(r)

2 + Jk;�k;s(r)
2
�
dr

�
1

2�

�2 Z �

��
�(�)

�
X
jnj<N

�
1� jnj

N

�
e�in�d�

2
64 cosn!k � sinn!k

sinn!k cosn!k

3
75 :

Note that cos(n!k)e
�in� = Refein(!k��)g, sin(n!k)e�in� = Imfein(!k��)g and, furthermore that,

(1=2�)
R �
�� �(�)

P
jnj<N (1� jnjN�1)ein(!k��)d� = �N (!k) so that, by similar arguments to above, we

can replace �N (!k) by fu(!k)
�1, whose imaginary part is zero. But the real part is (2�=�2)jc(ei!k)j�2,

and so T�2HT;k(�N )) 1
4I2
R 1
0

�
Jk;�k;c(r)

2 + Jk;�k;s(r)
2
�
dr, as required. 2

Lemma 5. Let hT :=
P

j2JT
Izufu(�j)

�1. Then, under Assumption 1, T�1hT ) h, where h :=
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�
h0; h

0
1; : : : ; h

0
S� ; hS=2

�0
, hj :=

R 1
0 Jj;�j (r)dWj(r) (j = 0; S=2), and

hk :=

2
64 1

2

R 1
0 (Jk;�k;c(r)dWk;c(r) + Jk;�k;s(r)dWk;s(r))

1
2

R 1
0 (Jk;�k;s(r)dWk;c(r)� Jk;�k;c(r)dWk;s(r))

3
75 ; k = 1; : : : ; S�:

Proof of Lemma 5. Let hT (�) :=
P

j2JT
Izu(�j)�(�j) where �(�) := fu(�)

�1. Then, with �N (�)

denoting the Nth �rst-order Ces�aro mean of �(�), as in the proof of Lemma 4,

T�1hT (�)� T�1hT (�N )
 � �T�1

X
j2JT

kIzu(�j)k = Op(�)

by Lemma A of Chambers and McCrorie (2007). Hence, because � is arbitrary, we can replace � by

�N , obtaining

T�1hT (�N ) =
1

T

X
j2JT

Izu(�j)�N (�j)

=
1

T

X
j2JT

 
1

2�

T�1X
l=�T+1

Czu(l)e
�il�j

!0@ 1

2�

Z �

��
�(�)

X
jnj<N

�
1� jnj

N

�
ein(�j��)d�

1
A

=

�
1

2�

�2 1

T

X
j2JT

T�1X
l=�T+1

X
jnj<N

Z �

��
Czu(l)

�
1� jnj

N

�
�(�)ei(n�l)�j�in�d�

=

�
1

2�

�2 X
jnj<N

Czu(n)

Z �

��

�
1� jnj

N

�
�(�)e�in�d�+ op(1):

From Lemma 3 we know that Czu(n) ) g(n). De�ning hT;k(�N ) (k = 0; 1; : : : ; S�; S=2) to be the

corresponding elements and sub-vectors of hT (�N ) and taking each in turn we �nd, �rst, that

T�1hT;0(�N ) ) �2c(1)2
Z 1

0
J0;�0(r)dW0(r)

�
1

2�

�2 Z �

��
�(�)

X
jnj<N

�
1� jnj

N

�
e�in�d�

+

�
1

2�

�2 Z �

��
�(�)

X
jnj<N

�
1� jnj

N

�
e�in�

1X
j=n+1

jd� = p0(�N ) + q0(�N );

where p0(�N ) := �2c(1)2
R 1
0 J0;�0(r)dW0(r)(1=2�)�N (0) and, de�ning an := 1 � jnjN�1, q0(�N ) :=

(1=2�)�2
R �
�� �(�)

P
jnj<N ane

�in�
P1

l=0 l+n+1d�. Now
��p0(�N )� p0(�)

�� � � �
2�

�
�2c(1)2

���R 10 J0;�0(r)dW0(r)
���

= Op(�), and so we can replace �N (0) by �(0) = fu(0)
�1 in p0(�). But fu(0) = (�2=2�)c(1)2 and hence
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p0(�) =
R 1
0 J0;�0(r)dW0(r). Turning to q

0(�N ) we can write

q0(�N ) =

�
1

2�

�2 Z �

��
�(�)

X
jnj<N

ane
�in�

1X
l=0

Z �

��
ei(l+n+1)�fu(�)d�d� =

1X
l=0

q0l (�N );

where q0l (�N ) := (1=2�)
R �
�� �N (�)fu(�)e

i(l+1)�d�. Now let q0(�N ) := q01N (�N ) + q02N (�N ) where

q01N (�N ) :=
PN

l=0 q
0
l (�N ) and q

0
2N (�N ) :=

P1
l=N+1 q

0
l (�N ). For su�ciently large but �nite N :

��q01N (�N )� q01N (�)
�� =

�����
NX
l=0

1

2�

Z �

��
[�N (�)� �(�)] fu(�)e

i(l+1)�d�

����� � �(N + 1)

2�

Z �

��
jfu(�)j d�:

Replacing �N by � in q01N (�) it follows that q01N (�) = (1=2�)
PN

l=0

R �
�� e

i(l+1)�d� in view of �(�)fu(�) =

1. But, for l 6= �1, R ��� ei(l+1)�d� = 0 and hence q01N (�) = 0. As N ! 1 we �nd that q02N (�N ) ! 0

and hence q0(�N )! 0, from which we can conclude that T�1hT;0(�))
R 1
0 J0;�0(r)dW0(r). Turning to

hT;S=2(�N ) we proceed as before by using the decomposition T�1hT;S=2(�N )) pS=2(�N ) + qS=2(�N ),

where it follows from Lemma 3 that pS=2(�N ) = �2c(�1)2 R 10 JS=2;�S=2(r)dWS=2(r)(1=2�)�N (�) and

qS=2(�N ) =
P1

l=0 q
S=2
l (�N ) where we have de�ned q

S=2
l (�N ) := e�(l+1)�(1=2�)

R �
�� �N (�)fu(�)e

i(l+1)�d�.

But
��pS=2(�N )� pS=2(�)

�� � �
�
2�

�
�2c(�1)2

���R 10 JS=2;�S=2(r)dWS=2(r)
��� = Op(�), and so we can replace

�N (�) by �(�) = fu(�)
�1, resulting in pS=2(�) =

R 1
0 JS=2;�S=2(r)dWS=2(r). Let q

S=2(�N ) := q
S=2
1N (�N )+

q
S=2
2N (�N ), q

S=2
1N (�N ) :=

PN
l=0 q

S=2
l (�N ) and q

S=2
2N (�N ) :=

P1
l=N+1 q

S=2
l (�N ). For su�ciently large, �nite

N it can be shown that jqS=21N (�N )� qS=21N (�)j = O(�) and, replacing �N by � we �nd that q
S=2
1N (�) = 0.

As N !1, q
S=2
2N (�N )! 0 and hence it follows that T�1hT;S=2(�))

R 1
0 JS=2;�S=2(r)dWS=2(r). For the

remaining terms it is convenient to work with the complex random variables

�T;k(�N ) := e0ihT;k(�N ) := hT;k1(�N ) + ihT;k2(�N ); k = 1; : : : ; S�;

where hT;k(�N ) := [hT;k1(�N ); hT;k2(�N )]
0. Proceeding as before, from Lemma 3 we obtain T�1�T;k(�N ))

pk(�N ) + qk(�N ) with pk(�N ) := (�2jc(ei!k)j2=2) R 10 Jk;�k(r)dWk(r)(1=2�)�N (!k) and qk(�N ) :=P1
l=0 q

k
l (�N ) with q

k
l (�N ) := e�(l+1)!k(1=2�)

R �
�� �N (�)fu(�)e

i(l+1)�d�. Now

���pk(�N )� pk(�)
��� � � �

4�

�
�2jc(ei!k)j2

����
Z 1

0
Jk;�k(r)dWk(r)

���� = Op(�);

and replacing �N by � we obtain pk(�) = (1=2)
R 1
0 Jk;�k(r)dWk(r). Using the decomposition q

k(�N ) :=

qk1N (�N ) + qk2N (�N ) where q
k
1N (�N ) :=

PN
l=0 q

k
l (�N ) and q

k
2N (�N ) :=

P1
l=N+1 q

k
l (�N ) we �nd that for
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su�ciently large but �nite N , jqk1N (�N )� qk1N (�)j = O(�). Replacing �N by � as before we �nd that

qk1N (�) = 0 while q2N (�N )! 0 asN !1, the result being that T�1�T;k(�)) (1=2)
R 1
0 Jk;�k(r)dWk(r),

from which the real and imaginary components are easily extracted. 2

B Appendix B

Proof of Theorem 1. Detailed proofs are given for the WPE under Assumptions 1 and 2; suitable

modi�cations need to be made for the ASDE under Assumptions 1 and 3. Using (3.5) and (3.4),

T (�̂ � �) =

2
4T�2

X
j2JT

Izz(�j)f̂û(�j)
�1

3
5
�1 2
4X
j2JT

Izu(�j)f̂û(�j)
�1

3
5 ; (B.1)

where Izu(�j) denotes the cross-periodogram between zt and ut. In order to save on notation we de�ne

Izz;j := Izz(�j), Izu;j := Izu(�j), f̂û;j := f̂û(�j), f̂u;j := f̂u(�j), and fu;j := fu(�j), so that the �rst

term of interest may be written

T�2
X
j

Izz;j f̂
�1
û;j = T�2

X
j

Izz;j

�
f̂�1û;j � f̂�1u;j

�
+ T�2

X
j

Izz;j

�
f̂�1u;j � f�1u;j

�
+ T�2HT ; (B.2)

where HT is de�ned in Lemma 4 where its limiting distribution is obtained. We make use of the fact

that ût = yt�z0t�̂OLS = ut�z0t(�̂OLS��) from which it follows that wû(�) = wu(�)�(�̂OLS��)0wz(�).

The periodogram of ût can then be written

Iûû(�) =
h
wu(�)� (�̂OLS � �)0wz(�)

i h
wu(�)� (�̂OLS � �)0wz(�)

i�
= Iuu(�)� 2(�̂OLS � �)0Re fIzu(�)g+ (�̂OLS � �)0Izz(�)(�̂OLS � �): (B.3)

Now, in view of f̂x(�) = (2m+ 1)�1
Pm

k=�m Ixx(�+ �k) for a variable x, we obtain

f̂û;j � f̂u;j =
1

2m+ 1

mX
k=�m

[Iûû(�j + �k)� Iuu(�j + �k)]

= �2(�̂OLS � �)0�j + (�̂OLS � �)0�j(�̂OLS � �) (B.4)

where (noting that �j + �k = �j+k)

�j :=
1

2m+ 1

mX
k=�m

Re fIzu(�j+k)g ; �j :=
1

2m+ 1

mX
k=�m

Izz(�j+k): (B.5)
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By the Cauchy-Schwarz inequality we have


1

T 2

X
j

Izz;j(f̂
�1
û;j � f̂�1u;j )


2

�
0
@X

j

���f̂û;j � f̂u;j

���2 ���f̂û;j f̂u;j���2
1
A
0
@ 1

T 4

X
j

kIjk2
1
A : (B.6)

The �rst term in the right member of (B.6) is bounded by supj

���f̂û;j f̂u;j����2Pj

���f̂u;j � f̂û;j

���2. Because
f̂û;j � K > 0 and f̂u;j � K > 0 with probability approaching 1 as T !1 (see, for example, Hannan,

1963 or p.489 of Hannan, 1970) we have supj jf̂û;j f̂u;j j�2 <1. Furthermore, from (B.4), we �nd that,

by Minkowski's inequality,

X
j

���f̂u;j � f̂û;j

���2 �
8><
>:
2
44k�̂OLS � �k2

X
j

k�jk2
3
5

1

2

+

2
4k�̂OLS � �k4

X
j

k�jk2
3
5

1

2

9>=
>;

2

: (B.7)

Now, because of the nature of vt and ut, �̂OLS�� = Op(T
�1). From an extension of the proof of Lemma

A of Chambers and McCrorie (2007) it follows that Ek�jk2 = O(1), and from the Markov inequality we

can always �nd anM� such that Pr
�
T�1

P
j k�jk2 �M�

�
�
P

j Ek�jk
2

TM�
< �, implying that

P
j k�jk2 =

Op(T ) and hence that the �rst term in the right member of (B.7) is Op(T
�1). Turning to the second

term we note that the expression in square brackets is bounded by k�̂OLS � �k4 supj k�jk
P

j k�jk.
The �rst component is Op(T

�4) while the last satis�es

X
j

k�jk = 1

2m+ 1

X
j


X
k

Izz(�j+k)

 � 1

2m+ 1

X
j

X
k

kIzz(�j+k)k

=
X
j

kIzz(�j)k by periodicity

= tr
X
j

Izz(�j) because kIzz(�)k = trIzz(�)

=
1

2�
tr
X
t

ztz
0
t = Op(T

2); (B.8)

the last line following because
P

j Izz(�j) = (2�T )�1
P

j

P
t

P
s ztz

0
se

i(t�s)�j = (1=2�)
P

t ztz
0
t due toP

j e
i(t�s)�j = T if t = s and 0 otherwise. Similarly note that

k�jk = 1

2m+ 1


X
k

Izz(�j+k)

 � 1

2m+ 1

X
k

kIzz(�j+k)k

� 1

2m+ 1

X
j

kIzz(�j)k = Op

�
T 2

m

�
(B.9)
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uniformly in j. Hence the contribution of the second term on the right hand side of (B.7) is Op(m
�1)

and so
P

j

���f̂u;j � f̂û;j

���2 = op(1), thereby implying that the �rst term on the right hand side of (B.6)

is also op(1). The second term in (B.6) satis�es T�4
P

j kIzz;jk2 � T�2 supj kIzz;jkT�2
P

j kIzz;jk. By
the arguments leading to (B.9) and (B.8), respectively, supj kIzz;jk = Op(T

2) and
P

j kIzz;jk = Op(T
2).

Hence (B.6) is op(1) and we are led to consider the next term in (B.2), which satis�es

T�2
X
j

Izz;j

�
f̂�1u;j � f�1u;j

� =

T�2
X
j

Izz;j

�
fu;j � f̂u;j

�
f̂�1u;j f

�1
u;j


� sup

j

���f̂�1u;j f
�1
u;j

��� sup
j

���fu;j � f̂u;j

���T�2
X
j

kIzz;jk: (B.10)

As before we have supj

���f̂�1u;j f
�1
u;j

��� � K and T�2
P

j kIzz;jk = Op(1). Furthermore, under Assumptions

1 and 2, we have Ejf̂u;j � fu;j j2 = o(1) uniformly in j (see Brockwell and Davis, 1991, p.353) implying

(by Markov's inequality) that jf̂u;j � fu;j j = op(1) uniformly in j. Hence the right member of (B.10)

is op(1) and we are led to consider the �nal term in (B.2) whose limit was established in Lemma 4.

Turning to the cross-product term and proceeding in a similar fashion we obtain

T�1
X
j

Izu;j f̂
�1
û;j = T�1

X
j

Izu;j

�
f̂�1û;j � f̂�1u;j

�
+ T�1

X
j

Izu;j

�
f̂�1u;j � f�1u;j

�
+ T�1hT ; (B.11)

where hT is de�ned in Lemma 5 where its limiting distribution is obtained. The squared modulus of

the �rst term on the right hand side of (B.11) is bounded by

0
@sup

j

���f̂û;j f̂u;j����2X
j

���f̂u;j � f̂û;j

���2
1
A
0
@T�2

X
j

kIzu;jk2
1
A :

The �rst component has already been shown to be op(1) while our earlier examination of
P

j k�jk2

can be used to show that the second component is Op(1). Turning to the second term on the right

hand side of (B.11) we note that its modulus is bounded by

sup
j

���f̂�1u;j f
�1
u;j

��� sup
j

���fu;j � f̂u;j

���T�1
X
j

kIzu;jk: (B.12)

The arguments following (B.10) are also relevant here and the fact that T�1
P

j kIzu;jk = Op(1)

establishes that (B.12) is op(1). Hence the limiting distribution of (B.11) is determined by the third

term on the right hand side which has been given in Lemma 5. The limiting distribution of T (�̂ � �)
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then follows directly from the limit of the product (T�2HT )
�1T�1hT using Lemmas 4 and 5 and the

continuous mapping theorem. 2

Proof of Theorem 2. All of the statistics of interest can be written in terms of (elements of) the

normalised vector T �̂ and matrix T 2Q̂. Theorem 1 describes the limiting behaviour of T �̂ under the

null by setting � = 0, while the proof of Theorem 1, following the decomposition (B.2), and Lemma

4 establish that T 2Q̂) H�1, where H is the diagonal matrix of random variables de�ned in Lemma

4. The limiting distributions of the statistics of interest then follow straightforwardly by picking out

the relevant elements from these limits. 2
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Table 1: Empirical Null Rejection Frequencies: DGP (4.1).

Conventional OLS and GLS De-trended HEGY Tests - Scheme 3.

OLS De-trended Tests GLS De-trended Tests
� � N t�

0
t�
2

tc�
1

ts�
1

F �

1
F �

12
F �

012
t�
0

t�
2

tc�
1

ts�
1

F �

1
F �

12
F �

012

Panel A: pmax = 4
0.9 0.0 50 5.4 4.6 2.8 16.5 4.9 4.6 5.1 4.7 4.6 4.4 5.1 4.8 4.7 4.6
0.0 -0.6 21.1 21.9 3.9 6.5 4.7 14.3 19.1 21.6 22.3 3.1 6.6 5.2 15.6 21.0
0.0 0.6 4.1 4.3 22.6 1.2 18.8 16.0 14.2 3.2 3.5 21.7 1.1 13.9 11.3 9.3
0.9 0.0 100 5.2 4.8 2.8 17.7 4.8 4.7 4.8 5.2 5.0 4.9 5.5 5.1 5.3 5.3
0.0 -0.6 21.0 20.9 3.3 6.9 4.6 12.8 18.2 20.6 20.5 3.0 7.1 5.4 14.7 20.9
0.0 0.6 3.5 3.5 23.2 0.8 18.3 14.4 11.7 3.1 3.1 21.8 0.8 12.5 10.3 8.7

Panel B: pmax = 12
0.9 0.0 50 6.0 4.3 3.1 15.5 4.8 4.5 5.3 5.6 4.4 4.5 5.1 4.7 4.5 5.0
0.0 -0.6 14.4 14.7 5.2 5.5 5.5 11.2 13.6 12.7 13.0 4.8 5.4 5.5 10.1 12.4
0.0 0.6 5.4 5.7 13.4 2.5 11.3 10.9 10.6 5.4 5.6 11.0 2.5 7.1 7.2 7.1
0.9 0.0 100 5.3 4.8 2.9 15.6 5.0 5.0 5.2 5.1 4.6 4.4 5.1 4.8 4.5 4.8
0.0 -0.6 9.6 10.3 4.9 5.1 5.2 8.1 8.9 8.9 9.0 4.7 5.2 5.0 6.8 8.1
0.0 0.6 5.0 5.7 9.0 2.9 7.8 7.6 7.3 5.1 5.2 8.6 3.0 5.6 5.5 5.5

Table 2: Empirical Null Rejection Frequencies: DGP (4.1).

OLS and GLS De-trended Frequency Domain HEGY (ASDE) Tests - Scheme 3.

OLS De-trended Tests GLS De-trended Tests
� � N t0 t2 tc

1
ts
1

F1 F12 F012 t0 t2 tc
1

ts
1

F1 F12 F012
Panel A: pmax = 4

0.9 0.0 50 8.9 7.1 7.5 5.1 7.4 8.1 10.5 8.4 6.5 6.7 5.0 6.2 7.1 11.8
0.0 -0.6 24.0 24.9 2.9 8.1 4.5 15.5 25.7 24.5 25.0 2.6 8.5 6.3 19.1 28.9
0.0 0.6 3.4 3.7 29.2 1.0 23.5 18.5 15.3 3.0 3.3 26.3 0.9 16.9 13.5 11.3
0.9 0.0 100 9.7 5.9 6.2 4.9 6.0 6.2 9.1 7.7 5.9 6.2 4.9 5.5 6.2 10.2
0.0 -0.6 22.4 22.4 3.0 7.9 4.5 13.9 23.1 21.7 21.6 2.8 8.1 6.3 16.5 24.7
0.0 0.6 3.4 3.3 27.2 0.7 21.5 16.9 13.8 3.1 3.1 23.7 0.7 13.7 11.5 9.8

Panel B: pmax = 12
0.9 0.0 50 9.7 7.2 7.4 5.0 7.1 8.0 11.1 8.9 6.6 6.7 5.1 5.9 6.9 12.1
0.0 -0.6 16.5 17.1 3.7 7.2 5.0 11.8 17.6 16.0 16.3 4.1 7.6 6.7 13.5 19.0
0.0 0.6 4.9 5.0 16.4 2.3 12.7 11.0 10.1 5.3 5.5 15.3 2.3 9.0 8.4 8.1
0.9 0.0 100 10.1 5.8 6.4 5.0 6.2 6.4 9.0 7.5 5.4 5.4 4.9 5.3 5.4 9.5
0.0 -0.6 10.5 10.8 4.3 6.1 5.0 8.2 10.6 10.1 10.1 4.6 6.4 6.0 8.6 11.0
0.0 0.6 5.0 5.1 11.4 2.9 9.1 8.2 7.5 5.5 5.5 10.4 2.7 6.5 6.3 6.3

T.1



Table 3: Empirical Null Rejection Frequencies: DGP (4.1).

OLS and GLS De-trended Frequency Domain HEGY (WPE) Tests - Scheme 3.

OLS De-trended Tests GLS De-trended Tests
� � N t0 t2 tc

1
ts
1

F1 F12 F012 t0 t2 tc
1

ts
1

F1 F12 F012
Panel A: Fixed Bandwidth, m = [T 0:5]

0.9 0.0 50 5.0 53.0 27.1 22.3 33.4 62.7 60.1 0.1 56.3 32.0 18.1 31.3 63.4 61.9
0.0 -0.6 47.9 49.3 2.4 7.3 3.9 35.3 56.1 47.8 48.6 1.8 7.5 5.2 38.6 59.1
0.0 0.6 1.9 2.1 51.2 0.1 43.3 35.8 30.4 1.3 1.4 45.0 0.1 32.4 27.2 23.5
0.9 0.0 100 5.6 55.6 33.9 13.7 33.9 64.4 61.4 0.2 54.8 34.5 11.4 28.7 60.1 59.5
0.0 -0.6 40.2 40.5 2.5 6.6 3.4 28.5 47.2 38.0 38.2 2.4 6.8 4.9 30.3 47.4
0.0 0.6 2.5 2.4 39.6 0.2 33.0 27.0 23.2 2.1 2.1 34.6 0.2 23.7 20.2 17.8

Panel B: Automatic Bandwidth Selection, Lee method
0.9 0.0 50 7.9 72.7 58.3 48.1 64.8 85.1 84.2 5.0 76.3 63.3 43.3 61.8 85.0 84.6
0.0 -0.6 55.0 56.2 2.3 7.9 3.9 41.7 63.9 55.6 56.2 1.6 8.3 5.9 45.3 66.8
0.0 0.6 1.8 2.0 61.4 0.1 53.4 44.8 38.3 1.0 1.2 54.1 0.0 40.0 33.9 29.8
0.9 0.0 100 8.9 70.6 58.7 36.1 59.8 81.9 80.6 4.4 70.7 58.8 32.7 53.4 78.7 78.8
0.0 -0.6 46.8 47.0 2.5 6.8 3.5 34.9 54.8 44.2 44.0 2.3 7.1 5.4 35.9 53.6
0.0 0.6 2.5 2.3 48.1 0.1 41.3 34.7 30.2 2.0 1.8 41.6 0.1 29.2 25.4 22.8

Panel B: Automatic Bandwidth Selection, Ombao et al method
0.9 0.0 50 9.4 38.1 23.0 29.5 33.4 50.8 52.8 0.0 43.6 28.2 24.0 32.0 53.0 56.8
0.0 -0.6 68.5 69.8 1.8 11.6 5.0 52.0 79.3 69.4 70.4 0.7 12.2 8.5 59.1 83.5
0.0 0.6 1.8 1.8 83.6 0.0 76.7 67.6 59.5 0.6 0.6 75.9 0.0 61.0 52.1 45.0
0.9 0.0 100 4.9 30.3 7.1 7.9 10.1 28.0 26.5 0.0 32.6 12.3 6.2 11.8 32.0 36.1
0.0 -0.6 40.0 40.4 1.7 7.6 3.0 26.0 45.1 37.9 38.0 1.5 7.8 5.6 29.3 46.5
0.0 0.6 1.9 1.8 44.6 0.1 36.5 28.8 23.6 1.5 1.4 38.2 0.1 25.4 20.5 17.4

T.2



Table 4: Empirical Power: DGP (4.2).

OLS and GLS De-trended Conventional HEGY Tests - Scheme 3.

OLS De-trended Tests GLS De-trended Tests
N vk t�

0
t�
2

tc�
1

ts�
1

F �

1
F �

12
F �

012
t�
0

t�
2

tc�
1

ts�
1

F �

1
F �

12
F �

012

Panel A: pmax = 4
50 -3 7.9 8.5 11.9 4.7 10.7 13.2 14.9 16.0 16.6 36.1 4.2 23.6 32.9 39.9

-5 11.9 12.3 20.4 4.2 18.0 23.4 28.2 28.0 29.1 67.8 4.1 47.8 63.5 74.1
-7 17.4 18.2 34.3 3.9 29.1 39.4 48.4 42.3 44.0 88.5 4.1 71.6 86.6 93.5
-11 35.1 35.7 68.4 3.2 59.7 76.2 86.4 71.5 72.5 99.2 3.9 95.8 99.2 99.8
-15 56.3 57.9 90.7 3.0 84.9 95.2 98.3 89.6 90.6 99.9 3.7 99.6 100.0 100.0
-19 76.3 77.3 97.8 2.9 95.9 99.3 99.7 96.9 97.5 100.0 3.8 99.9 100.0 100.0

100 -3 8.2 7.5 11.4 5.0 10.6 12.4 14.4 16.9 16.8 37.3 5.0 23.9 31.9 40.5
-5 12.0 11.5 19.8 4.2 17.3 22.7 28.2 30.2 30.6 70.2 4.8 48.7 64.4 77.0
-7 18.1 17.3 33.9 3.7 28.6 39.0 49.1 46.8 46.8 90.9 4.7 73.3 88.1 95.3
-11 35.8 34.3 69.6 3.4 60.1 77.1 87.7 77.2 77.7 99.7 4.7 97.1 99.6 100.0
-15 58.4 56.4 92.2 3.2 86.4 96.2 99.0 93.7 93.8 100.0 4.8 99.9 100.0 100.0
-19 78.1 76.5 98.7 3.1 97.0 99.6 99.9 98.7 98.8 100.0 4.8 100.0 100.0 100.0

Panel B: pmax = 12
50 -3 8.7 8.3 11.7 4.9 10.2 12.4 14.4 16.4 15.9 33.7 4.1 20.8 28.7 36.1

-5 12.6 11.9 19.4 4.4 16.0 20.9 26.1 27.6 27.6 61.6 4.1 40.3 55.8 68.2
-7 17.9 17.4 31.3 3.8 25.3 34.5 43.4 40.5 41.4 82.3 4.0 62.0 79.7 89.3
-11 32.4 31.9 60.5 3.3 50.4 67.7 79.2 65.5 67.7 97.4 3.9 89.8 97.6 99.2
-15 50.6 49.3 83.3 3.1 74.9 89.4 95.8 83.9 86.1 99.5 3.9 97.9 99.7 99.9
-19 67.6 67.4 94.0 3.0 89.8 97.5 99.0 93.1 95.1 99.9 3.9 99.5 100.0 100.0

100 -3 8.3 8.3 11.6 4.8 10.5 12.8 14.4 16.9 16.4 36.0 4.7 21.8 29.1 36.3
-5 12.0 11.9 20.5 4.3 17.3 22.3 27.4 29.6 28.8 66.7 4.7 44.3 59.2 71.5
-7 17.7 17.9 33.1 3.7 27.2 37.9 46.5 45.3 44.5 87.2 4.5 67.2 83.5 92.4
-11 34.0 33.5 65.0 3.5 55.7 73.2 84.2 73.4 73.1 99.1 4.8 94.3 98.9 99.7
-15 53.3 53.7 87.9 3.1 80.7 93.7 97.7 90.3 90.5 99.9 4.7 99.3 99.9 100.0
-19 71.9 71.5 96.7 3.1 93.9 99.0 99.7 97.0 97.1 100.0 4.7 99.9 100.0 100.0

T.3



Table 5: Empirical Power: DGP (4.2).

OLS and GLS De-trended Frequency Domain HEGY (ASDE) Tests - Scheme 3.

OLS De-trended Tests GLS De-trended Tests
N vk t0 t2 tc

1
ts
1

F1 F12 F012 t0 t2 tc
1

ts
1

F1 F12 F012
Panel A: pmax = 4

50 -3 8.4 8.9 13.0 5.2 12.0 15.4 18.5 16.1 16.6 36.3 4.7 23.5 32.3 39.5
-5 12.9 13.6 22.9 4.9 20.9 28.4 35.8 27.9 29.1 68.2 4.8 47.6 62.8 73.5
-7 19.1 20.3 38.8 4.9 34.6 47.0 58.7 42.2 44.0 89.0 5.0 71.6 86.2 93.2
-11 38.8 39.4 74.0 4.4 67.2 83.3 92.1 71.5 72.5 99.3 5.0 95.9 99.3 99.8
-15 60.8 62.3 93.9 4.5 90.0 97.6 99.4 89.8 90.6 100.0 5.3 99.7 100.0 100.0
-19 80.1 81.5 98.9 4.9 98.0 99.8 100.0 97.1 97.5 100.0 5.7 100.0 100.0 100.0

100 -3 8.4 8.1 12.0 5.4 11.6 13.8 16.7 16.9 16.8 37.3 5.2 23.9 31.7 40.4
-5 12.6 12.3 21.4 4.9 19.3 26.0 33.1 30.3 30.6 70.6 5.3 48.6 64.3 76.8
-7 19.2 18.7 36.9 4.6 32.3 44.4 56.1 46.7 46.8 91.2 5.5 73.4 88.1 95.4
-11 38.1 37.1 73.4 4.4 65.8 82.3 91.7 77.1 77.7 99.7 5.8 97.2 99.6 100.0
-15 61.6 60.1 94.1 4.5 89.9 97.8 99.6 93.8 93.8 100.0 6.1 99.9 100.0 100.0
-19 80.8 79.8 99.2 4.6 98.2 99.8 100.0 98.7 98.8 100.0 6.5 100.0 100.0 100.0

Panel B: pmax = 12
50 -3 9.3 9.1 12.6 6.1 11.9 15.1 19.0 16.6 15.9 34.0 5.0 19.9 28.0 35.2

-5 14.3 14.2 22.5 6.2 20.8 28.3 36.3 28.2 27.6 62.8 5.6 39.9 55.2 66.9
-7 21.1 21.5 38.1 5.9 33.7 46.2 58.1 41.6 41.4 84.0 5.7 61.7 79.4 88.9
-11 39.5 40.3 70.9 5.9 64.3 81.2 90.5 68.1 67.7 98.2 6.1 90.6 97.8 99.4
-15 61.3 60.9 90.9 6.0 86.7 96.2 99.0 86.4 86.1 99.8 6.5 98.4 99.9 100.0
-19 78.3 78.9 97.5 6.2 96.2 99.4 99.9 95.1 95.1 100.0 6.8 99.7 100.0 100.0

100 -3 8.6 8.6 11.6 5.7 11.6 14.0 16.9 17.0 16.4 36.3 5.5 21.7 28.6 36.1
-5 13.2 13.1 21.3 5.5 19.8 26.2 33.6 29.7 28.8 67.5 5.9 44.5 58.6 71.1
-7 20.5 20.2 36.3 5.4 32.5 45.0 56.1 45.7 44.5 88.2 6.1 67.6 83.4 92.4
-11 39.3 39.0 70.7 5.8 64.4 81.2 90.9 74.2 73.1 99.3 7.2 94.6 99.1 99.8
-15 60.8 60.8 91.7 5.7 87.7 97.0 99.2 91.1 90.5 100.0 7.4 99.5 100.0 100.0
-19 78.9 78.6 98.3 5.7 97.0 99.7 100.0 97.6 97.1 100.0 7.7 99.9 100.0 100.0
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