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Abstract

Recent approaches to testing for a unit root when uncertainty exists over the
presence and timing of a trend break employ break detection methods, so that
a with-break unit root test is used only if a break is detected by some auxil-
iary statistic. While these methods achieve near asymptotic e�ciency in both
�xed trend break and no trend break environments, in �nite samples pronounced
\valleys" in the power functions of the tests (when mapped as functions of the
break magnitude) are observed, with power initially high for very small breaks,
then decreasing as the break magnitude increases, before increasing again. In
response to this problem we propose two practical solutions, based either on
the use of a with-break unit root test but with adaptive critical values, or on a
union of rejections principle taken across with-break and without break unit root
tests. These new procedures are shown to o�er improved reliability in terms of
�nite sample power. We also develop local limiting distribution theory for both
the extant and the newly proposed unit root statistics, treating the trend break
magnitude as local-to-zero. We show that this framework allows the asymp-
totic analysis to closely approximate the �nite sample power valley phenomenon,
thereby providing useful analytical insights.
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1 Introduction

Macroeconomic series appear to often be characterized by broken trend functions; see,
inter alia, Stock and Watson (1996,1999,2005) and Perron and Zhu (2005). Conse-
quently, following the seminal paper by Perron (1989), when testing for a unit root
it has become a matter of regular practice to allow for the possibility of this kind of
deterministic structural change. While Perron (1989) treated the location of the po-
tential trend break as known, most recent approaches have focused on the case where
the possible break occurs at an unknown point in the sample; see, inter alia, Zivot
and Andrews (1992), Banerjee et al. (1992), Perron (1997) and Perron and Rodr��guez
(2003) [PR].
Taking the presence of a linear trend in the data generation process [DGP] as given,

among augmented Dickey-Fuller [ADF] style unit root tests it is the Elliott et al. (1996)
[ERS] test based on GLS detrending that is near asymptotically e�cient1 in terms of
local power when no additional trend break is present. When a trend break is known
to be present, it is now a test based on PR's GLS detrended ADF statistic which allows
for a trend break in the deterministic function that is asymptotically e�cient, provided
the break point is known. This e�ciency carries over to the case where a break occurs
at an unknown point, the case we consider here, provided the unknown break point
can be detected (i.e. dated) precisely enough, as this allows the critical values for the
known break point case of to be applied in the limit.
However, when a trend break does not occur the PR test is no longer asymptoti-

cally e�cient since an irrelevant trend break regressor is included in its deterministic
speci�cation which compromises power. There is also a second consideration arising
from the fact that the unit root null asymptotic critical values for the PR test based
on estimating the break point di�er markedly according to whether a break occurs or
not. Estimation is typically carried out by minimizing the OLS or GLS residual sum
of squares across an interval of candidate trend break points. If a trend break exists
and is of su�ciently large magnitude, then it will be correctly identi�ed by this proce-
dure. However, when no break exists, we �nd that the no break case critical values are
substantially left-shifted relative to their break case counterparts. Since the PR test
is a left-tailed unit root test, it is then necessary to always employ the no break case
critical values in order to avoid over-sizing problems in the no break case. Of course,
this implies that when a break does occur (and can be dated with su�cient precision),
the PR test is rendered conservative (under-sized) which obviously reduces the level
of power from that obtainable if the non-conservative break critical values had been
employed. The underlying problem is then essentially one of uncertainty over whether
or not a trend break occurs.
Two recent papers by Carrion-i-Silvestre et al. (2009) [CKP] and Harris et al.

(2009) [HHLT] have proposed solutions to the issues raised in the last paragraph.

1Although not formally asymptotically e�cient, in the limit these tests lie arbitrarily close to the
asymptotic Gaussian local power envelopes for these testing problems and, hence, with a small abuse
of language we shall refer to tests with this property as `asymptotically e�cient'.
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Although the two procedures di�er, essentially, both utilize auxiliary statistics which
are employed to detect the presence of a trend break occurring at an unknown point
and then use the outcome of the detection step to indicate whether the unit root test
should include a trend break in the deterministic speci�cation. HHLT employ their
detection methods, either a modi�ed break fraction estimator or the trend break test
of Harvey et al. (2009b), to choose between the ERS and PR tests, while CKP use their
detection method, the trend break test of Perron and Yabu (2009b) [PY], to choose
between likelihood ratio [LR] test variants of ERS and PR. When there is no break all
the procedures are asymptotically e�cient, and when a break exists both procedures
are also asymptotically e�cient since they can employ non-conservative critical values
in this case by virtue of their respective break point estimators converging to the
unknown break fraction at a su�ciently fast rate. The only real di�erence between the
procedures lies in the way in which the break detection stage is carried out.2

Both CKP and HHLT provide �nite sample simulation evidence on the power per-
formance of their respective unit root test procedures and, since the simulation DGPs
are similar, the �nite sample powers, shown as functions of the trend break magnitude,
appear similar also. What is very much apparent from these results is that while the
�nite sample power levels are acceptably high when the trend break magnitude is either
zero or large, there is an intermediate range of values of the trend break magnitude
where the power falls o� to an alarming extent, giving rise to a pronounced \valley"
in the power pro�les when graphed across trend break magnitudes. This behaviour
arises since a range of break magnitudes exists where the breaks are simply too small
to be reliably detected, so that unit root tests which exclude the trend break regres-
sors will tend to be conducted here. Whilst these breaks are not readily detectable,
they are still of su�cient magnitude to e�ect a severe decrease in the power of the
without-break unit root tests. This phenomenon is not predicted by the preceding
asymptotic analyses in either CKP or HHLT and therefore comes as something of an
unpleasant surprise. The reason for this discrepancy is that the asymptotics of CKP
and HHLT assume that the trend breaks have a �xed (independent of the sample size)
magnitude. By virtue of consistency of the break detection procedures it follows that
in the limit trend breaks are detected (and dated) with complete certainty - no matter
how small their magnitude. The �nite sample e�ects of breaks with magnitudes lying
in an intermediate region where, as in practice, detection is not a certain event (indeed,
the probability of detection may be very low), are thereby entirely obscured under the
�xed magnitude break asymptotic framework.
These observations throw up two natural questions. The �rst is whether or not

a solution to the power valley problem can be found, and attempting to address this
constitutes the �rst contribution of this paper. If we consider only procedures that use
some auxiliary statistic to select between application of unit root tests which exclude

2It should be noted that the procedure outlined in CKP also allows for the possibility of multiple
breaks in trend. Moreover, CKP also consider procedures based on the GLS de-trended M -type unit
root tests of Ng and Perron (2001) and PR, but only report simulation results in the unknown break
date case for the approach based on LR-type tests.
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or include trend break regressors, then the answer is almost certainly no, since the
discriminatory ability of any statistic in �nite samples must necessarily be poor for
some range of break magnitudes, leading to application of unit root tests that neglect
the break, which is where the problem arises. However, if we are prepared to sacri�ce
all, or at least some, of the (potential) power available from those unit root tests which
exclude trend break regressors then progress can be made. The simplest approach
available would be to just apply a PR-type test employing conservative critical values.
However, we show that one can do rather better than this. We explore two possible
procedures, both of which employ auxiliary statistics in a discriminatory role, but at a
somewhat less explicit level than CKP and HHLT. The �rst involves again using only
the PR test but with adaptive critical values, whereby the conservative critical value
is used only when no break is detected; otherwise the known break date critical value
is used. This approach avoids the potential for very low power in the presence of small
breaks seen with the HHLT and CKP tests, but can never achieve the additional power
available when no break is present. The second approach, based on a union of rejections
approach (again with adaptive critical values), rejects if either the with-break or the
without-break version of the unit root test rejects, which thereby allows us to capture
some of the additional power available under the no break case.
The second question raised is can we �nd an alternative asymptotic framework

which, unlike the prior approaches based on the assumption of a �xed trend break
magnitude, is capable of reproducing the power valley phenomenon which we observe
in �nite samples? Addressing this question is the second contribution of this paper.
To this end, we examine the local (to unit root) asymptotic power of the tests when
the trend break is also made local (to zero) in magnitude, by means of shrinking
its magnitude with the sample size. By employing the relevant Pitman drift for a
local trend break we �nd that resulting local asymptotic theory can indeed yield very
good predictions of �nite sample behaviour. The local trend break model is therefore
important because it retains in the asymptotic framework the genuine uncertainty that
will exist in �nite samples as to whether or not a trend break is present in the data. This
kind of uncertainty, of course, is exactly that which the CKP and HHLT procedures
were designed to address and yet, ironically, it is precisely in these situations where
they perform most poorly.
The paper is organised as follows. Our reference trend break model is outlined in

section 2. The unit root test procedures of HHLT and CKP are presented in section
3, along with an analysis of the �nite sample behaviour of these tests. In section
4 we introduce the alternative procedures discussed above based on adaptive critical
values and/or a union of rejections principle, and examine their �nite sample behaviour
relative to the HHLT and CKP tests. Section 5 details the large sample distributions
of all the procedures under a local-to-zero trend break, and local asymptotic power
simulations con�rm that the limit representations can closely predict the �nite sample
power functions of the tests. Section 6 o�ers some concluding remarks. Proofs are
collected in an Appendix.

In what follows the notation: `b�c' denotes the integer part; ` d!' denotes weak
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convergence, and `
p!' convergence in probability; `1(:)' denotes the indicator function

and `x := y' (`x =: y') indicates that x is de�ned by y (y is de�ned by x).

2 The Trend Break Model

In keeping with the analysis of HHLT and CKP in the case of a single break in trend,
we consider a time series fytg to be generated according to the following model,

yt = �+ �t+ TDTt(� 0) + ut; t = 1; :::; T (1)

ut = �Tut�1 + "t; t = 2; :::; T (2)

where DTt(� 0) := 1(t > b� 0T c)(t�b� 0T c), with b� 0T c the potential trend break point
with associated break fraction � 0, and break magnitude T . A break in trend occurs in
fytg at time b� 0T c when T 6= 0. The true break fraction � 0 is treated as unknown, but
is assumed to satisfy � 0 2 �, where � := [�L; �U ] with 0 < �L < �U < 1; the fractions
�L and �U representing trimming parameters, below and above which, respectively, no
break is deemed allowable to occur.
We assume the initialization of futg is such that u1 = op(T

1=2), while f"tg is assumed
to satisfy the following linear process assumption:

Assumption 1. The stochastic process f"tg is such that

"t = C (L) �t; C (L) :=
1X
j=0

CjL
j

with C(1)2 > 0 and
P1

i=0 ijCij < 1, and where f�tg is an IID sequence with mean
zero, variance �2� and �nite fourth moment. The long-run variance of "t is de�ned

as !2" := limT!1 T
�1E(

PT
t=1 "t)

2 = �2�C(1)
2. Finally, let �2" denote the (short-run)

variance of "t.

Our focus is on testing the unit root null hypothesis H0 : �T = 1, against the local
alternative, H1 : �T = 1 � c=T , 0 < c < 1, without assuming knowledge of whether
or not a trend break is actually present. As discussed in section 1, two alternative
assumptions can be made regarding the trend break magnitude. The �rst, employed
by HHLT and CKP, is that the magnitude is �xed (independent of the sample size, T );
i.e., T = . Alternatively, one can let the break magnitude be local-to-zero by setting
T = �!"T

�1=2, thereby adopting the appropriate Pitman drift for a trend break in
a local-to-unity process; cf. Vogelsang (1998).3 For a given sample size, these two
assumptions are, of course, observationally equivalent, but as we shall see in section 5,
they deliver quite di�erent asymptotic distribution theory. In particular the local-to-
zero assumption allows the asymptotic theory to accurately reproduce the power valley
phenomenon observed in �nite samples.

3Scaling the trend break by !" is merely a convenience device allowing it to be factored out of the
local limit distributions that arise in section 5.
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3 The HHLT and CKP Tests

HHLT and CKP both propose testing strategies for the unit root null when there is
uncertainty regarding the presence of a break in trend. The two procedures centre
on implementing either a GLS-detrended unit root test allowing for simply a constant
and trend, or a corresponding test that additionally allows for a break in trend; in
the latter case, critical values associated with a known break fraction are used. The
decision as to whether the with-break or without-break version of the unit root test
is employed is governed by auxiliary statistics designed to detect the presence of a
trend break occurring at an unknown point. The HHLT and CKP testing approaches
di�er in the form of unit root tests employed, the break fraction estimator adopted,
and the auxiliary method proposed for determining whether or not a trend break is
incorporated into the unit root test. We now give a description of the HHLT and CKP
procedures; in what follows, it is convenient to de�ne r� generically as the residuals
from a regression of y� on Z�, and r�;� as the residuals from a regression of y� on Z�;� ,
where

y� := [y1; y2 � �y1; :::; yT � �yT�1]
0

Z� := [z1; z2 � �z1; :::; zT � �zT�1]
0 with zt := [1; t]

0

Z�;� := [z1; z2 � �z1; :::; zT � �zT�1]
0 with zt := [1; t; DTt (�)]

0:

and with the corresponding residual sums of squares denoted by S(�) := r0�r� and
S(�; �) := r0�;�r�;� .

3.1 The HHLT Tests

HHLT propose two approaches to testing. The starting point for their preferred proce-
dure is to compute an initial estimator of the break fraction, based on a �rst di�erenced
version of the regression in (1), that is,

~� := argmin
�2�

S(1; �):

Next, conditional on this break fraction estimator, they construct a modi�ed break
date estimator which also assumes the role of break detection. Speci�cally, following
Vogelsang (1997,1998), they �rst compute the Wald statistic

WT (~�) :=
SR

SU(~�)
� 1

with SR the RSS from the �tted (cumulated) restricted OLS regressionPt
i=1 yi = �̂t+ �̂

Pt
i=1 i+ ŝRt

and SU(~�) the RSS from the �tted (cumulated) unrestricted OLS regression4Pt
i=1 yi = �̂t+ �̂

Pt
i=1 i+ ̂

Pt
i=1DTi(~�) + ŝUt:

4We suppress the dependence of the estimates on � for notational brevity, unless it becomes essential
to the argument. Similarly, we also use the \hat" notation for estimates in a generic sense.
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Following this, WT (~�) is used in a weight function of the form

�� := expf�gWT�1=2WT (~�)g (3)

where gW is some positive constant, to yield the �nal modi�ed estimator of � 0, given
by

�� := (1� ��)~� :
The modi�ed estimator has the properties that: (i) when no break occurs, �� converges
to unity in such a way that �� converges to zero (at rate Op(T

�1=2)), thereby signalling
the lack of a trend break in the series, and (ii) when a break in trend of �xed magnitude
occurs, �� converges to zero in such a way that �� converges to � 0 (at the rate Op(T

�1)),
achieving the same rate of consistency as the �rst di�erenced-based estimator, ~� . It
is therefore evident that HHLT use the modi�ed estimator �� as an auxiliary statistic
for detecting whether or not a break in trend is present: if �� lies within the range of
allowable break fractions, that is if �L � �� � �U , a unit root test allowing for a break
in trend is applied; alternatively if �� < �L, a standard unit root test with unbroken
trend is used.
The �rst HHLT test statistic is then given by

HHLT �� :=

�
DFGLSt if �� < �L
DFGLStb (��) if �� � �L

: (4)

Here DFGLSt is the ERS unit root statistic which allows for a constant and linear time
trend, viz., the t-ratio associated with �̂ in the �tted ADF regression

�~ut = �̂~ut�1 +

pX
j=1

�̂j�~ut�j + �̂t; t = p+ 2; :::; T (5)

where ~ut := yt � ~� � ~�t, with ~� and ~� obtained from the regression of y�� on Z�� with
�� = 1 � �c=T (with �c = 13:5). For a generic break fraction � , DFGLStb (�) is the PR

statistic obtained as the t-ratio for �̂ in the �tted ADF regression

�~u�;t = �̂~u�;t�1 +

pX
j=1

�̂j�~u�;t�j + �̂t; t = p+ 2; :::; T (6)

where ~u�;t := yt�~��� ~�� t�~�DTt (�), with ~�� , ~�� and ~� obtained from the regression
of y��� on Z��� ;� with ��� = 1� �c�=T . Here, �c� is chosen according to � using either Table
1 of HHLT or Table 1 of CKP. All these expressions are evaluated at � = �� . Standard
critical values pertaining to DFGLSt are used, while for DFGLStb (��), the statistic is
compared with critical values associated with a known break fraction, as given in
HHLT. In both (5) and (6), and indeed in all subsequent ADF-type regressions in
this paper, the lag truncation parameter, p, is taken to have been chosen according
to an appropriate model selection procedure, such as the modi�ed Akaike information
criterion (MAIC) procedure of Ng and Perron (2001) and Perron and Qu (2007).
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The second procedure considered by HHLT selects between DFGLSt and DFGLStb (~�)
on the basis of the outcome of a robust pre-test for a break in trend. Speci�cally, they
�rst apply the trend break test of Harvey et al. (2009b), given by

t� := � jt0(�̂)j+m�(1� �) jt1(��)j (7)

with m� a positive �nite constant as detailed in HHLT. For a generic break fraction � ,
t0(�) and t1(�) are the autocorrelation-adjusted t-ratios

t0(�) :=
̂�q

!̂2(û�;t)(
PT

t=1 x0;� ;tx
0
0;� ;t)

�1
33

; t1(�) :=
��q

!̂2(�v�;t)(
PT

t=2 x1;� ;tx
0
1;� ;t)

�1
22

where x0;� ;t := [1; t; DTt (�)]
0 and x1;� ;t := [1; DUt (�)]

0 with DUt(�) := 1(t > b�T c),
and where ̂� and û�;t obtained from the estimated OLS regression

yt = �̂� + �̂� t+ ̂�DTt (�) + û�;t

and �� and �v�;t from the estimated regression

�yt = ��� + ��DUt (�) + �v�;t:

Here, for a generic et, !̂
2(et) denotes the long-run variance estimator using a Bartlett

kernel, that is

!̂2(et) :=  ̂0 + 2
lX

j=1

(1� j

l + 1
) ̂j;  ̂j = T�1

TX
t=j+1

etet�j (8)

where the bandwidth, l, is required to satisfy the usual condition that 1=l + l2=T ! 0
as T ! 1. We follow HLT and set l = O(T 1=4) in what follows. In (7) the t0(�) and
t1(�) statistics are evaluated at �̂ := argmax�2� jt0(�)j and �� := argmax�2� jt1(�)j,
respectively. Finally, � is a weight function given by

� := expf�(gSS0S1)2g (9)

with gS a positive �nite constant and

S0 :=

PT
t=1(

Pt
i=1 û�̂ ;i)

2

T 2!̂2(û�̂ ;t)
; S1 :=

PT
t=2(

Pt
i=2 �v��;i)

2

(T � 1)2!̂2(�v��;t)
:

The t� pre-test is conducted using a sample size-dependent critical value cvt�;T , which
shrinks the Type 1 error of t� towards zero with increasing sample size (i.e. cvt�;T !1
as T !1), but also chosen such that t� remains a consistent test. The pre-test-based
HHLT procedure is then

HHLT t� :=

�
DFGLSt if t� < cvt�;T
DFGLStb (~�) if t� � cvt�;T

: (10)

In keeping with the HHLT �� approach, standard critical values are used for DF
GLS
t

(along with �c = 13:5), and for DFGLStb (~�), critical values and �c� values associated with
a known break fraction are employed.
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3.2 The CKP Test

In the CKP procedure, the auxiliary statistic used for trend break detection is the
pre-test of Kejriwal and Perron (2010). Since here we are considering only a single
trend break, this reduces to performing the PY test for one break. The PY statistic,
which builds on the trend testing approach of Perron and Yabu (2009a), has the form

PY := log[T�1
P

�2� expf12W RQF (�)g]

where

W RQF (�) :=
S(~�MS)� S(~�MS; �)

ĥ"

with

~�MS :=

�
~�M if j~�M � 1j > T�1=2

1 if j~�M � 1j � T�1=2
(11)

where ĥ" denotes the \AN" long-run variance estimator detailed in section 4 of PY
(the exact form of which depends on whether ~�MS = ~�M or ~�MS = 1), and ~�M is the
Roy and Fuller (2001) bias-corrected estimator of �T .

5 The latter has the form

~�M := ~�+ C(t�̂)�̂�̂

with ~� := 1 + �̂ obtained from the �tted ADF regression

�û�;t = �̂û�;t�1 +

pX
j=1

�̂j�û�;t�j + �̂t; t = p+ 2; :::; T (12)

and �̂�̂ and t�̂ denote the standard error of �̂ and the t-ratio on �̂, respectively. Here,
C(t�̂) is a four-regime step function, the precise detail of which can be found in section
2.5 of PY. As with HHLT t� , the PY pre-test is conducted using a critical value cvPY;T
which shrinks the Type 1 error of PY towards zero with T , but again chosen such
that the test remain consistent. Depending on the outcome of this pre-test for a break
in trend, a corresponding GLS de-trended unit root test6 is then applied which either
includes or excludes a broken trend.
The LR-based CKP test statistic is then given by

CKP :=

�
PGLSt if PY < cvPY;T
PGLStb (��) if PY � cvPY;T

(13)

where PGLSt is the feasible point optimal unit root test considered in ERS, i.e.

PGLSt :=
S(��)� ��S(1)

~!2

5Again, we suppress the dependence of the estimators on � .
6A corresponding approach based on ADF unit root tests formed from OLS de-trended data is

considered in Kim and Perron (2009).
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with ~!2, based on the estimated regression (5), given by

~!2 :=
(T � p� 1)�1

PT
t=p+2 �̂

2
t

(1�
Pp

j=1 �̂j)
2

and �c = 13:5. For a generic � , PGLStb (�) is given by

PGLStb (�) :=
S(��� ; �)� ���S(1; �)

~!2(�)

where ~!2(�) is de�ned as for ~!2 above, but based on the estimated regression (6).7

As with the HHLT approach, values of �c� are chosen according to � , and can again
be obtained from either Table 1 of HHLT or Table 1 of CKP. These expressions are
evaluated at � = �� , where �� is an estimate of the true break fraction � 0 based on a
GLS regression, i.e.

�� := argmin
�2�

S(��� ; �):

Standard critical values are used for PGLSt , and critical values associated with a known
break fraction are used for PGLStb (��), as provided by CKP.

3.3 Finite Sample Size and Power

We now consider the �nite sample behaviour of HHLT �� , HHLT t� and CKP, using
a set of size and power simulations based on the DGP (1)-(2). For a given sample
size T and break fraction � 0, we compute the size (�T = 1) and size-adjusted power
(�T = 1 � c=T , c > 0) of nominal 0.05-level tests across break magnitudes ranging
from T = 0 to settings that ensure the break is obvious and very easily detected by
the relevant procedures (T � 1:2 for T = 150 and T � 0:9 for T = 300 with IID
errors). Speci�cally, and in line with the Pitman drift rate detailed in Section 2, we
let T = �!"T

�1=2 with � = f0; :::; 15g. We conduct simulations for the sample sizes
T = 150 and T = 300, basing the results on 5,000 Monte Carlo replications.
The tests are conducted using 15% trimming, i.e. � = [0:15; 0:85], and are imple-

mented using the asymptotic critical values and �c� values reported in Table 1 of HHLT,
along with similarly simulated asymptotic critical values based on the limit distribu-
tions of PGLSt (see ERS) and PGLStb (�) (see CKP) with a known date (i.e. � = � 0), as
required for the CKP procedure.8 The tests are computed as described above, with
gW = 1:5 in (3) - this setting delivered the test with the best size control in HHLT,

7It is worth noting from the results reported in ERS and PR that the asymptotic local power
functions of PGLSt and DFGLSt , and indeed those of the corresponding M -type unit root tests, are
virtually indistinguishable from one another, as are those of PGLStb (�), DFGLStb (�) and the analogous
M -type tests, and so in practice it does not matter to any great extent which of these unit root tests
we use in computing the HHLT and CKP procedures.

8Given that the procedures use estimated break fractions, in each replication we obtained the �c�
values and critical values by linear interpolation between the two nearest grid points in � .
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along with the HHLT settings of l =
�
4(T=100)1=4

�
in (8) and gS = 500 in (9); the

break detection procedures t� and PY implicit in HHLT t� and CKP, respectively, are
implemented at the nominal 0.05-level for both sample sizes (i.e. the signi�cance level
is not shrunk towards zero in T here). For each test and combination of DGP settings,
we report the maximum size observed across � = f0; :::; 15g, along with the value of �
for which the maximum size is obtained, denoted ��. Power curves across � are then
reported, and are size-adjusted by scaling the with-break and without-break unit root
test critical values involved in the relevant procedure by a common factor, such that
the size of the overall procedure is 0.05 when � = ��; this same scaling is used for all
values of �.
First, we abstract from the e�ects of serial correlation and lag selection by inves-

tigating the behaviour of the tests for "t � NIID(0; 1), with p = 0 assumed in the
ADF-type regressions. We set � = � = 0 and consider � 0 = f0:3; 0:5; 0:7g. Table 1 re-
ports the maximum sizes of the tests (and the relevant �� values) across � = f0; :::; 15g
for these settings, and Figures 1(a)-(c) through 4(a)-(c) report the corresponding size-
adjusted powers for the two sample sizes considered and c = f20; 30g. The HHLT �� and
HHLT t� procedures are subject to noticeable over-size in small samples (for both tests
the maximum size is 0.11 for T = 150), although these distortions do fall as the sample
size increases. For CKP, we observe very little upward size distortion for T = 150
where it displays the best size control of all of the tests considered (including the new
test procedures proposed in section 4 below), and although the distortions worsen for
T = 300, the maximum size is at most 0.07 here; in this case DFGLStb (~�) shows the best
overall size control.
Our primary focus here concerns the size-adjusted powers. When � = 0, the powers

of HHLT �� , HHLT t� and CKP are fairly similar to one another, and capture much
of the superior power available from the without-break tests when no break in trend
occurs. At the other extreme, when � is large, the power of the procedures is seen to
change little in �, since here the breaks are readily detected, and the break fraction
estimators are close to the true � 0; in this region all the tests have lower powers than for
� = 0 due to the fact that it is the with-break test that is now applied. For these large
� values, the power curves of the tests essentially only di�er due to the level of size-
corrections applied, with the resultant power of HHLT �� and HHLT t� being lower than
that of CKP. The key �nding in Figures 1(a)-(c) through 4(a)-(c), however, is the �nite
sample power behaviour of the procedures for intermediate trend break magnitudes.
Here, we see clearly the power valley phenomenon, whereby power for all tests falls
well below the levels associated with very small or very large break magnitudes. The
relative power rankings in this valley region depend on the values of � 0 and c: for
� 0 = 0:3 and � 0 = 0:5, the power drop-o� is most pronounced for CKP when c = 20,
and for CKP and HHLT t� when c = 30, while for � 0 = 0:7 it is the HHLT �� test
that displays the greatest valley. In general, we observe that the power valleys appear
deeper for c = 30 than for c = 20, a feature that arises because the increase in the
power of the procedures is greater for large � than elsewhere.
Figures 1(a)-(c) through 4(a)-(c) also report powers for the without-break unit
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root test DFGLSt and comparison of this test's power pro�le with that of (say) the
HHLT tests provides some insight into the cause of the power valleys. We observe
that the HHLT �� and HHLT t� powers closely follow that of DF

GLS
t for small values

of �; this occurs, of course, because the implicit break detection procedures fail to
identify a break for these magnitudes. For very small �, failure to detect a break
does not signi�cantly compromise the power of DFGLSt nor, consequently, the power of
the HHLT tests; however, for intermediate magnitudes of � we observe that while the
break magnitudes are too small to be reliably detected, they can be su�ciently large
to drastically reduce the power of DFGLSt and therefore the HHLT tests. For larger �,
the power pro�les of the latter tests now begin to deviate upwards from that of DFGLSt

since here the breaks become increasingly detectable (and dateable) and consequently
the more powerful with-break unit root test is being applied. Similar comments also
apply to the valley associated with CKP. The power valley phenomenon is therefore
seen to arise from the interplay of the performance of the break detection procedures
and the impact of breaks on without-break unit root tests.
To investigate the behaviour of the tests in the presence of serially correlated errors,

we also conduct simulations with autoregressive and moving average speci�cations
for "t in (2). To that end, we now let the "t be generated according to either an
AR(1) process: "t = 0:5"t�1 + �t (with �t � NIID(0; 1) and "1 = �1), or an MA(1)
process: "t = �t � 0:5�t�1 (again with �t � NIID(0; 1) and "1 = �1). As noted
in section 2, when a break in trend is present the break magnitude is standardised
by !" in each case. In the ADF regressions, we now set p to the value selected by
the MAIC procedure of Ng and Perron (2001), as modi�ed by Perron and Qu (2007),
with pmax =

�
12(T=100)1=4

�
. Focusing on the representative case of � 0 = 0:5 and

c = 30, Table 2 reports the maximum sizes of the tests across � (and the corresponding
�� values), and Figures 5(a)-(c) and 6(a)-(c) present the power curves (size-adjusted
for all cases where the corresponding maximum size exceeds 0.05); also reported as
a benchmark case are results for IID errors, but where p is selected according to
the MAIC criterion rather than set to zero. Comparing �rst the IID results with the
corresponding p = 0 versions in Table 1 and Figures 3(b) and 4(b), we �nd that the use
of lag selection lowers the maximum sizes observed for each procedure, and also reduces
overall power. However, the central �nding of the power valley phenomenon, and also
the rankings of the di�erent tests across �, are una�ected by this change. Relative to
the IID case, results for the AR(1) and MA(1) speci�cations show higher maximum
sizes (although all tests have maximum empirical size less than 0.10), with the best
overall size properties apparently shown by DFGLStb (~�), and while the overall picture
of the power valley phenomenon remains, we observe that the valleys are relatively
more exaggerated in the AR(1) case, and relatively less pronounced for the MA(1)
case considered.
To provide some perspective of the potential seriousness of the power valleys under

intermediate magnitude trend breaks at a practical level, Figure 7(a) presents a real-
isation from the DGP (1)-(2) for T = 300 when "t � NIID(0; 1). Here we set when
� 0 = 0:5 a break magnitude of � = 2 (i.e. T � 0:12), with � = � = 0 and c = 20 (i.e.
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�T = 1� c=T � 0:93). From visual inspection, it is certainly debatable as to whether
there is a trend break present in yt; this series is fairly typical of the kind of empirical
time series data for which a priori we might be unsure whether or not to allow for
a trend break when conducting a unit root test. However, it is also just this sort of
speci�cation for which HHLT �� , HHLT t� and CKP have very low power, according to
Figure 2(b). Figure 7(b) shows the same realisation but with a larger local trend break
of � = 6 (i.e. T � 0:35). Here, from Figure 2(b), HHLT �� , HHLT t� and CKP have
essentially emerged from the power valley region. However, we observe that the trend
break now clearly dominates the behaviour of yt, and there is no real uncertainty as to
whether a trend break should be incorporated when testing for a unit root. The point
being made here is that these procedures are designed speci�cally for cases where there
is genuine uncertainty over the presence of a break; unfortunately, however, it is in
precisely this range of break magnitudes that the procedures lack power. The region
of trend break magnitudes where this arises is far from a theoretical irrelevance; on
the contrary, it represents a region that is likely to be really rather important to those
analyzing empirical data.

4 Alternative Procedures

It is di�cult to envisage alternative procedures that retain the (asymptotic) e�ciency
properties of HHLT �� , HHLT t� and CKP in the cases of no break or a �xed magnitude
break, but are not susceptible to the �nite sample power valley problem observed
in Section 3, since all such procedures must ultimately rely on an imperfect form
of break detection in deciding whether to apply a without-break or with-break unit
root test. One option would be to always implement DFGLStb (~�) or PGLStb (��), cf. PR,
thereby removing completely the potential for low power that can arise from applying a
without-break unit root test. Such an approach is essentially the same as implementing
HHLT- or CKP-type procedures but with the break detection step biased entirely in
favour of \detecting" a break. The inherent disadvantage of this approach is that in
order to control size across all possible break magnitudes (including T = 0) the with-
break unit root test must be applied with a conservative critical value obtained under
the no-break DGP (where ~� and �� are Op(1) variates with support on �).
To illustrate the performance of this procedure, Tables 1-2 and Figures 1(d)-(f)

through 6(d)-(f) report the maximum sizes, and size-adjusted powers, respectively, of
DFGLStb (~�), respectively, when implemented using an asymptotic conservative critical
value (denoted cvconsvtb ); this test is essentially that proposed by PR, but adopting the ~�
break fraction estimator.9 As expected, this procedure delivers decent �nite sample size
control and clearly avoids the power valley problem since a break is always �tted (i.e.
no decision is made whether or not to �t a break on the basis of pre-testing). However,
its power is considerably lower than that of HHLT �� , HHLT t� and CKP when the break
in trend is absent, since there is now no option to apply a without-break unit root test,

9At the nominal 0.10-, 0.05- and 0.01-levels, cvconsvtb is �3:44, �3:72 and �4:26.
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and is also lower when the break is large due to the use of the conservative critical
value.
We now examine two alternative procedures which are designed to help mitigate

the power valley phenomenon, but without taking recourse to simply applying only
DFGLStb (~�) or PGLStb (��) with conservative critical values. Our procedures are moti-
vated more by pragmatic considerations, rather than by those of achieving asymptotic
e�ciency in all possible circumstances, given the inherent practical disadvantages as-
sociated with the latter approach. Additionally, they do not involve the computation
of any statistics not already required as part of the HHLT �� , HHLT t� and CKP proce-
dures.

4.1 DFGLStb (~�) with Adaptive Critical Values

As noted above, a disadvantage of using DFGLStb (~�) is that to control size in the event
that no break occurs, conservative critical values must be used. These have the inherent
cost that when a break of reasonable magnitude occurs, power is lost in comparison to
using critical values associated with a known break fraction. A possibility we consider
here then is to adapt the critical values of DFGLStb (~�) according to the outcome of a
break detection pre-test, generically labelled B, with an associated critical value cvB.
Denoting the asymptotic known break fraction critical value corresponding to ~� by cv~�tb,
we de�ne the following adaptive procedure:

A(B) := DFGLStb (~�) with critical value

�
cvconsvtb if B < cvB
cv~�tb if B � cvB

: (14)

Here, then, conservative critical values are applied to DFGLStb (~�) only in those cases
where no trend break is detected by the pre-test B, with known date critical values
used when a break has been identi�ed. In keeping with the behaviour of DFGLStb (~�)
when employing cvconsvtb alone, this approach avoids the potential for very low power in
the presence of small breaks, since the pre-test is only used to determine critical values
for a with-break unit root test, and does not allow for the possibility of inappropriately
applying a without-break unit root test procedure. Given that both HHLT t� and CKP
employ robust (to the order of integration) pre-tests for a break in trend, it makes
sense to also use these procedures for B in (14); in what follows, we therefore consider
two versions of A(B), namely A(t�) using the Harvey et al. (2009b) test, and A(PY )
using the PY test, with corresponding critical values cvt� and cvPY .

10

4.2 An Adaptive Union of Rejections of DFGLSt and DFGLStb (~�)

The second procedure we propose is in the spirit of work of Harvey et al. (2009a), and
attempts to capture some of the additional power associated with DFGLSt when there

10Note that we use �xed critical values for the pre-tests, rather than the sample size-dependent
versions used in in HHLT t� and CKP.
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is no break in trend, while excluding the possibility of only implementing DFGLSt when
a break is present. Denoting the asymptotic critical value associated with DFGLSt by
cvt

11, the starting point is a \union of rejections" decision rule:

U := Reject H0 if
�
DFGLSt < cvt or DF

GLS
tb (~�) < cvconsvtb

	
whereby the unit root null is rejected if either DFGLSt or DFGLStb (~�) rejects. The overall
decision rule U will be asymptotically over-sized (for zero and non-zero breaks) due to
the combination of two tests. To control size under zero and �xed magnitude breaks,
we apply a common scaling constant to cvt and cv

consv
tb , i.e.

U � := Reject H0 if
�
DFGLSt < �cvt or DF

GLS
tb (~�) < �cvconsvtb

	
where � (> 1) is evaluated under H0 in the no trend break case (where the size of U
is at a maximum). For a given signi�cance level for U �, the value of � can be derived
as follows, using the procedure in the rejoinder to the commentaries in Harvey et al.
(2009a). First note that U � can alternatively be expressed as

U � := Reject H0 if

�
DFGLSUR := min

�
DFGLSt ;

cvt
cvconsvtb

DFGLStb (~�)

�
< �cvt

�
:

The appropriate constant � can then be determined by simulating the limit distribution
of DFGLSUR , calculating the asymptotic critical value for this empirical distribution, say
cvUR, and then computing � := cvUR=cvt. We obtained constants in this way at the
0.10, 0.05 and 0.01 nominal signi�cance levels, simulating the limit distributions of
DFGLSt and DFGLStb (�) given in ERS and PR, respectively, with � evaluated using the
limit representation of ~�

~�
d! arg sup

�2�

�
Wc(1)
Wc(1)�Wc(�)

�0 �
1 (1� �)

(1� �) (1� �)

��1 �
Wc(1)
Wc(1)�Wc(�)

�
where Wc(r) :=

R r
0
e�(r�s)cdW (s), with W (r) a standard Wiener process (see the proof

of Theorem 3(i) below with � = 0). Here and throughout the paper, all asymptotic sim-
ulations were conducted using 50000 Monte Carlo replications, and by approximating
the Wiener processes using NIID(0; 1) random variates, with the integrals approxi-
mated by normalized sums of 2000 steps. At the nominal 0.10-, 0.05- and 0.01-levels,
the appropriate values are � = 1:092, � = 1:065 and � = 1:029.
It is possible, however, to further modify this simple union of rejections to capture

additional power when a break is present. Using a related strategy to that adopted in
the case of the adaptive critical values procedure in A of (14) above, if there is clear
evidence of a break in trend, it is unnecessary to include DFGLSt in the union, and also
to use the conservative critical value for DFGLStb (~�). Instead, as with A(B), in these
cases we can simply apply DFGLStb (~�) with a critical value associated with a known

11At the nominal 0.10-, 0.05- and 0.01-levels, cvt is �2:56, �2:84 and �3:41 respectively
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break fraction. Using the break pre-test B to decide between these possibilities, we
can specify an adaptive union of rejections decision rule as follows:

U �B :=

�
Reject H0 if

�
DFGLSt < �cvt or DF

GLS
tb (~�) < �cvconsvtb

	
if B < cvB

Reject H0 if fDFGLStb (~�) < cv~�tbg if B � cvB
(15)

where the � are those values calculated for U �. As with A(B) we consider B = t� and
B = PY as candidate pre-tests for constructing U �B, leading to two alternative versions
of the procedure.

4.3 Finite Sample Size and Power

We now consider the �nite sample behaviour of the alternative procedures A(t�),
A(PY ), U �t� and U

�
PY , using the same size and power simulations employed in Sec-

tion 3.3. The same settings for the DGP and the implementation of the tests are
employed, and Tables 1-2 and Figures 1(d)-(f) through 6(d)-(f) report the maximum
sizes, and powers, of the tests, respectively. The powers are size-adjusted using the
same methodology as before, scaling the unit root test critical values (i.e. cvconsvtb and
cv~�tb in A(B); cvt, cv

consv
tb and cv~�tb in U

�
B) by a common factor, such that the size of the

overall procedure is 0.05 when � = �� (note that in the case of U �B, this is in addition
to the critical value scaling � on cvt and cv

consv
tb ); as before, this same scaling is then

used across all �.
For the cases of IID errors with p = 0, the maximum sizes of the alternative

procedures that employ the t� pre-test are in the region of 0.10 for T = 150 and 0.08-
0.09 for T = 300, while those based on PY are around 0.08 for T = 150 and 0.07-0.08
for T = 300. The sizes can therefore be somewhat more distorted than the CKP test,
but are at least as well behaved as the HHLT procedures.
As expected, and in line with the results for (conservative) DFGLStb (~�), the power

curves for the adaptive procedures A(t�) and A(PY ) do not display valleys, and have
minimum powers across � that are in many cases considerably higher than those for
HHLT �� , HHLT t� and CKP. For large �, A(PY ) has size-adjusted power similar to
that of CKP, and therefore higher than HHLT �� and HHLT t� , while the power of
A(t�) is closer to the HHLT �� and HHLT t� powers in these cases, due to the greater
degree of size correction required for this procedure. It can also be seen that A(t�) and
A(PY ) have generally more appealing power pro�les than DFGLStb (~�). As expected,
the power gains are most marked for the larger values of � where the pre-tests reject
in favour of a break, although some power losses do exist for small � due to the fact
that A(t�) and A(PY ) require greater size-adjustment. Comparing A(t�) with A(PY ),
we observe that the A(PY ) procedure has the greater power for small and large trend
break magnitudes, with the ranking reversed for intermediate values of �. Overall, the
picture is one of greater robustness to � compared to the power pro�les of HHLT �� ,
HHLT t� and CKP ; the price of this robustness is seen when � = 0 or very small, where
A(t�) and A(PY ) lose power relative to the tests of HHLT and CKP, due to their
lack of an option to implement a without-break unit root test. Qualitatively similar
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comments apply to the results for AR(1) and MA(1) errors, although in the moving
average case, A(t�) and A(PY ) have similar power to each other for intermediate and
large breaks.
The U �t� and U

�
PY procedures also display a lesser degree of sensitivity to the mag-

nitude of � than the original HHLT �� , HHLT t� and CKP tests. Relative to A(t�) and
A(PY ) (and DFGLStb (~�)), these union of rejections-based procedures have much higher
power when no break is present, capturing much of the power attained by HHLT �� ,
HHLT t� and CKP tests at this point due to the inclusion of DFGLSt in the decision
rule. For large break magnitudes, U �PY retains the high power enjoyed by both CKP
and A(PY ); U �t� also displays decent power in this region, roughly achieving the (some-
what lower) level of power seen for HHLT �� , HHLT t� and A(t�). In the intermediate
range of � values, U �t� and U

�
PY also display power valleys; for these procedures, the

valleys do not arise as a result of an inappropriate use of DFGLSt , but instead because
for intermediate local break magnitudes, they are essentially applying DFGLStb (~�) with
a doubly scaled conservative critical value, unsurprisingly reducing the power in these
cases. However, the valleys are less pronounced relative to the tests of HHLT and
CKP, and the minimum powers across � exceed those of HHLT �� , HHLT t� and CKP
(with the exception of U �PY which can have power lower than the minimum of HHLT ��

when c = 20 and � 0 = 0:3; 0:5). Comparing U �t� and U
�
PY , U

�
t�
has relatively lower

power for small and large �, but manifests a smaller power valley for intermediate
break magnitudes. Qualitatively similar comments apply in the case of AR(1) errors;
in the presence of MA(1) dynamics, U �t� now outperforms U

�
PY for most values of �,

and the bene�ts relative to CKP are less clear-cut.
Overall, we �nd that the alternative testing procedures proposed o�er a reasonable

degree of robustness to the break magnitudes in terms of size-adjusted power, and in
doing so provide potential improvements over the HHLT and CKP testing strategies.
Of the di�erent A(B) and U �B approaches, the A(t�) and A(PY ) procedures o�er the
greater robustness to � combined with the most appealing minimum power values,
while U �t� and U

�
PY deliver superior power gains for small and zero break magnitudes,

at the cost of some power losses for intermediate break magnitudes.

5 Local Asymptotic Behaviour

In this section we examine the asymptotic behaviour of HHLT �� , HHLT t� and CKP,
together with the newly proposed procedures A(t�), A(PY ), U

�
t�
and U �PY , with the pur-

pose of adequately mimicking the observed �nite sample power properties of HHLT �� ,
HHLT t� and CKP in the limit. To do this, we must clearly dispense with the �xed
magnitude trend break assumption of HHLT and CKP, since such an approach only
adequately models the cases of either a zero break or a large, essentially perfectly de-
tectable break, and does not provide any asymptotic prediction of the power valleys
phenomenon seen in section 3.3. Instead, we consider the asymptotic behaviour of the
tests in a doubly-local setting where, in addition to allowing local-to-unity behaviour
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in the autoregressive root, we adopt the local trend break magnitude assumption of
Section 2 setting T = �!"T

�1=2. This framework ensures that the magnitude of the
local trend, �, appears in the limit distributions of the aforementioned statistics such
that the asymptotic theory can then form a useful approximation to the �nite sample
distributions of these statistics (as we shall demonstrate in section 5.6 when we simu-
late these local limiting distributions). However, the local nature of the autoregressive
root and trend raises a number of calibration issues which warrant careful consideration
before we proceed with the asymptotic analysis. We discuss these now.
Consider �rst the HHLT �� statistic. Here the local trend break necessarily ren-

ders WT (~�) of order Op(1). As a consequence, T
�1=2WT (~�)

p! 0 and therefore �� =

expf�gWT�1=2WT (~�)g
p! 1. Hence, ��

p! 0 and in the limit HHLT �� will always re-
duce to the without-break unit root test statistic DFGLSt under a local break in trend.
Therefore, as it stands, DFGLStb (��) is precluded from inuencing the asymptotic local
behaviour of HHLT �� . This is clearly an unsatisfactory state of a�airs since our inten-
tion here is to conduct a local asymptotic analysis to proxy �nite sample behaviour,
where DFGLSt and DFGLStb (��) should clearly both come into play. To this end, in what
follows we replace the gWT

�1=2 scaling on WT (~�) with a positive constant g
0
W , which

ensures that �� is not degenerate at 1 in the limit, but instead has a proper distribution.
Notice that in this modi�ed framework, the constant g0W will now have an asymptotic
e�ect, unlike gW in the original formulation of HHLT �� .
For HHLT t� , HHLT show that when � = 0 in a local to unit root setting, t0(�̂) =

Opf(T=l)1=2g and S0 = Op(T=l). The latter result implies �
p! 0 at an exponentially

fast rate, giving t�
p! m� jt1(��)j. The same rates also pertain under a local trend

break (� 6= 0). There is consequently no exibility for t� to reect any less persistent
autoregressive (i.e. local to unit root rather than exact unit root) behaviour, which
again sits rather uncomfortably if we wish our asymptotics to mirror �nite sample
behaviour. We therefore replace gS in (9) with g

0
S(T=l)

�1, and then also replace t0(�̂)
in (7) with g0t(T=l)

�1=2t0(�̂), where g
0
S and g

0
t are positive constants. This ensures that

� = Op(1) and also keeps t� = Op(1), such that t� then uses a combination of jt0(�̂)j
and jt1(��)j in the limit, with the constants g0S and g0t having an asymptotic e�ect. An
additional consideration is the fact that since the t� pre-test is found to be Op(1) under
a local trend break, if it is implemented with a sample-size dependent critical value
such that cvt�;T !1 as T !1, then in the limit HHLT t� will always reduce to the
without-break unit root test statistic DFGLSt . To ensure that DFGLStb (~�) also enters
the local asymptotic analysis, in what follows we replace cvt�;T with a �xed critical
value, denoted cvt� . The same issues also apply to the use of t� in A(t�) and U

�
t�
, hence

we adopt the aforementioned modi�cations in establishing the limit behaviour of t� in
these contexts also.
Turning to CKP, we �nd that the local-to unity-autoregressive results in T j~�M � 1j =

Op(1). Since we may write (11) in the equivalent form

~�MS :=

�
~�M if T j~�M � 1j > T 1=2

1 if T j~�M � 1j � T 1=2

18



it is clear that ~�MS

p! 1 and so, asymptotically, PY will always be based on W RQF (�)
calculated with ~�MS = 1. Since we again �nd that the pre-test statistic is unable to
capture any local to unit root behaviour, in parallel with the modi�cation to t�, we
instead set

~�MS :=

�
~�M if T j~�M � 1j > g0M
1 if T j~�M � 1j � g0M

(16)

where g0M is a positive constant. We can then choose g0M (which will enter the limit
distribution of PY ) to ensure that both ~�M and 1 are represented in the limit distribu-
tion of ~�MS. Finally, since PY is Op(1) under a local trend break, use of a sample-size
dependent critical value such that cvPY;T !1 as T !1 results in CKP reducing to
the without-break unit root test statistic PGLSt in the limit. To ensure that PGLStb (��) is
also present in the asymptotic analysis, as is suggested for the HHLT t� statistic above,
we replace cvPY;T with a �xed critical value cvPY . As with t�, we also adopt these PY
modi�cations when deriving the local limit representations for A(PY ) and U �PY .
We now establish the limiting properties of the constituent components of the tests

under our doubly-local framework. We begin with DFGLSt and PGLSt , followed by their
with-trend break counterparts evaluated at a generic break fraction. Next we consider
the break fraction estimators involved in the construction of the statistics. These limit
analyses can be conducted without reference to the modi�cations discussed above.
These modi�cations do become important, however, once we move forward to discuss
the limit behaviour of the break detection elements, and subsequently the limits of the
HHLT �� , HHLT t� , CKP, A(t�), A(PY ), U

�
t�
and U �PY procedures in their entirety under

the doubly-local asymptotic framework.12

5.1 Limits of DFGLSt and PGLSt

We �rst establish the limits of the without-break unit root tests DFGLSt and PGLSt

under a neglected local break in trend. The asymptotic behaviour of these statistics is
given in the following theorem.

Theorem 1 Let yt be generated according to (1)-(2) under Assumption 1. Then,

(i)

DFGLSt
d! Kc;�c(1; � 0; �)

2 � 1

2
qR 1

0
Kc;�c(r; � 0; �)2dr

=: DDFtc;�c (� 0; �)

where
Kc;�c(r; � 0; �) :=Wc(r) + �(r � � 0)Ir�0 � fbc;�c + �fc;�c(� 0)gr=a�c

12Notice, however, that these modi�cations are made only for the purpose of calibrating the re-
sulting local asymptotic distributions to the �nite sample distributions observed previously. Practical
calculation of the statistics should still be done as outlined in sections 3 and 4.
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with

bc;�c := (1 + �c)Wc(1) + �c
2
R 1
0
sWc(s)dr;

fc;�c(� 0) := (1� � 0) fa�c � �c2� 0(1 + � 0)=6g;
a�c := 1 + �c+ �c2=3

and Wc(r) :=
R r
0
e�(r�s)cdW (s), W (r) a standard Wiener process.

(ii)

PGLSt
d! fbc;0 + �fc;0(� 0)g2 � fbc;�c + �fc;�c(� 0)g2=a�c

+�c2
R 1
0
Wc(r)

2dr + �cWc(1)
2 + �jc;�c(� 0) + �2k�c(� 0) =: DPtc;�c(� 0; �)

where

jc;�c(� 0) := 2�c2
R 1
�0
(r � � 0)Wc(r)dr + 2�c

R 1
�0
(r � � 0)dWc(r) + 2�c

R 1
�0
Wc(r)dr;

k�c(� 0) := �c2(1� 3� 0 + 3� 20 � � 30)=3 + �c(1� � 0)
2:

Remark 1: Notice that for � = 0 the representations given in Theorem 1 reduce to
those given in, for example, ERS, for the limit distributions of DFGLSt and PGLSt for
the without-break case, as would be expected. When � 6= 0, however, the statistics
continue to be of Op(1), but are now dependent on both the timing and magnitude of
the neglected local break in trend.

5.2 Limits of DFGLStb (�) and PGLStb (�)

Next we determine the limits of the with-break unit root tests DFGLStb (�) and PGLStb (�),
implemented for some generic break fraction, � , which may be di�erent from the true
break fraction, � 0. In what follows it is also convenient to de�ne Iij := 1(i > j).

Theorem 2 Let the conditions of Theorem 1 hold. Then, for any � 2 �,

(i)

DFGLStb (�)
d! Lc;�c� (1; � 0; � ; �)

2 � 1

2
qR 1

0
Lc;�c� (r; � 0; � ; �)

2dr
=: DDFtbc;�c� (� 0; � ; �)

where

Lc;�c� (r; � 0; � ; �) := Wc(r) + �(r � � 0)Ir�0

�
�

r
(r � �)Ir�

�0 �
a�c� m�c� (�)

m�c� (�) d�c� (�)

��1 �
bc;�c� + �fc;�c� (� 0)

bc;�c� (�) + �fc;�c� (� 0; �)

�
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with

bc;�c� (�) := (1 + �c� � �c��)Wc(1)�Wc(�) + �c
2
�

R 1
�
(s� �)Wc(s)ds;

fc;�c� (� 0; �) := (1� � 0)fa�c� � �c�� � �c2��(1� � 0)=2� �c2�� 0(1 + � 0)=6g
�(� � � 0)f1� �c2� (� � � 0)

2=6gI��0 ;
m�c� (�) := a�c� � �(1 + �c� + �c

2
�=2� �c2�� 2=6);

d�c� (�) := a�c� � �(1 + 2�c� � �c�� + �c2� � �c2�� + �c2�� 2=3)

(ii)

PGLStb (�)
d!

�
bc;0 + �fc;0(� 0)

bc;0(�) + �fc;0(� 0; �)

�0 �
1 m0(�)

m0(�) d0(�)

��1 �
bc;0 + �fc;0(� 0)

bc;0(�) + �fc;0(� 0; �)

�
�
�

bc;�c� + �fc;�c� (� 0)
bc;�c� (�) + �fc;�c� (� 0; �)

�0 �
a�c� m�c� (�)

m�c� (�) d�c� (�)

��1 �
bc;�c� + �fc;�c� (� 0)

bc;�c� (�) + �fc;�c� (� 0; �)

�
+�c2�

R 1
0
Wc(r)

2dr + �c�Wc(1)
2 + �jc;�c� (� 0) + �2k�c� (� 0) =: DPtbc;�c� (� 0; � ; �)

Remark 2: It is straightforward to show that setting � = � 0 in the limiting repre-
sentations given in Theorem 2 yields the known break fraction limiting distributions
of DFGLStb (�) and PGLStb (�), as given in HHLT and CKP, respectively. In this case,
the limit distributions are invariant to the break magnitude �. However, in the more
general situation where the unit root tests are computed for a break fraction � that
di�ers from the true break fraction � 0 (as is required in a local break context where, as
we shall see directly below, the break fraction cannot be consistently estimated), the
local asymptotic distributions will, as with the without-break unit root tests DFGLSt

and PGLSt , depend on the timing and magnitude of the trend break, but also on the
value of � used in computing the statistic.

5.3 Limits of ~� , �̂ , �� , ��

The break fraction estimators employed in the unit root test procedures have the
following limits.

Theorem 3 Let the conditions of Theorem 1 hold. Then,

(i)

~� ;��
d! arg sup

�2�

�
Wc(1) + �(1� � 0)
Wc(1)�Wc(�) + �(1� � 0)� �(� � � 0)I��0

�0 �
1 (1� �)

(1� �) (1� �)

��1
�
�
Wc(1) + �(1� � 0)
Wc(1)�Wc(�) + �(1� � 0)� �(� � � 0)I��0

�
=: D~�

c (� 0; �)
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(ii)

�̂
d! arg sup

�2�
jDt0c (� 0; � ; �)j =: D�̂c (� 0; �)

with

Dt0c (� 0; � ; �) :=
R 1
0
Vc(r; � 0; �)F (r; �)drqR 1

0
Nc(r; � 0; � ; �)2dr

R 1
0
F (r; �)2dr

where Vc(r; � 0; �) and Nc(r; � 0; � ; �) denote the continuous time residual processes from
the projections of Wc(r)+�Ir�0(r�� 0) onto the space spanned by f1; rg, and f1; r; Ir� (r�
�)g, respectively, and where F (r; �) denotes the continuous time residual process from
the projection of Ir� (r � �) onto the space spanned by f1; rg.

(iii)

��
d! arg sup

�2�

�
bc;�c� + �fc;�c� (� 0)

bc;�c� (�) + �fc;�c� (� 0; �)

�0 �
a�c� m�c� (�)

m�c� (�) d�c� (�)

��1
�
�

bc;�c� + �fc;�c� (� 0)
bc;�c� (�) + �fc;�c� (� 0; �)

�
� �c2�

R 1
0
Wc(r)

2dr � �c�fWc(1)
2 � 1g

��jc;�c� (� 0)� �2k�c� (� 0)� �c� (1�
�2"
!2"
) =: D��

c;�c��
(� 0; �; �"=!")

Remark 3: Under our local-to-zero speci�cation for the trend break magnitude, the
break fraction estimators are not consistent for � 0. Rather, they are Op(1) with limit
distributions that depend on � 0 and �, and also on the choice set � and the local-to-
unity parameter, c.13

Remark 4: From part (iii) of Theorem 3, we see that, and in contrast to the other
break fraction estimators considered in parts (i) and (ii), the limiting distribution for
the GLS-based estimator, �� , used by CKP is non-pivotal as it depends on the ratio
of the short- and long-run variances, �2"=!

2
". This arises because the GLS detrending

parameter �c� used in constructing S(��� ; �) is allowed to vary with � , and it clearly
represents a somewhat undesirable side-e�ect of using this level of sophistication for
break date location. Also, the problem is an endemic one for this estimator, not one
which is dependent on whether c and � are zero or not. However, notice, crucially,
that this issue would not arise if �c� was held constant across � ; as, for example, with
~� , where the implicit value of �c� is zero for all � .

13It is straightforward to simplify the limit distribution for ~� given in Theorem 3(i), giving a result
in line with Yang (2011). However, we maintain use of the quadratic form representation due to its
parallels with the �� limit in Theorem 3(iii), and the fact that the �� limit expression does not readily
simplify.
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5.4 Limits of �� , t�, PY

The �nal components of HHLT �� , HHLT t� , CKP, A(t�), A(PY ), U
�
t�
and U �PY are the

statistics used in the respective break detection procedures. The limit distributions of
the (modi�ed) �� , t� and PY statistics are given in the following theorem.

Theorem 4 Let the conditions of Theorem 1 hold. Then,

(i)

�� = [1� expf�g0WWT (~�)g]~�
d! [1� expf�g0WJc(� 0;D~�

c (� 0; �); �)g]D~�
c (� 0; �)

=: D��
c (� 0; �; g

0
W )

where

Jc(� 0; � ; �) :=

R 1
0
sR(r; � 0; �)

2drR 1
0
sU(r; � 0; � ; �)2dr

� 1

and sR(r; � 0; �) and sU(r; � 0; � ; �) denote the continuous time residuals from the pro-
jection of

R r
0
Wc(s)ds + �Ir�0

R r
�0
(s � � 0)ds onto the space spanned by fr;

R r
0
sdsg, and

fr;
R r
0
sds; Ir�

R r
�
(s� �)dsg, respectively.

(ii)

t� = �
��g0t(T=l)�1=2t0(�̂)��+m�(1� �) jt1(��)j ; � = expf�(g0S(T=l)�1S0S1)2g

d! D�c (� 0; �; g0S)
��g0tDt0c (� 0;D�̂c (� 0; �); �)��+m�(1�D�c (� 0; �; g0S))

��Dt1c (� 0;D~�
c (� 0; �); �)

��
=: Dt�c (� 0; �; g0S; g0t)

where

D�c (� 0; �; g0S) := exp[�fg0SDS0c (� 0;D�̂c (� 0; �); �)DS1c (� 0;D~�
c (� 0; �); �)g2]

with Dt0c (� 0; � ; �) is as de�ned in Theorem 3 and

Dt1c (� 0; � ; �) :=
p
�(1� �)G2;c(� 0; � ; �);

DS0c (� 0; � ; �) :=

R 1
0

�R r
0
Nc(s; � 0; � ; �)ds

�2
drR 1

0
Nc(r; � 0; � ; �)2dr

;

DS1c (� 0; � ; �) :=
R 1
0
Qc(r; � 0; � ; �)

2dr

where

Qc(r; � 0; � ; �) :=Wc(r) + �(r � � 0)Ir�0 �G1;c(� 0; � ; �)r �G2;c(� 0; � ; �)(r � �)Ir�
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with

G1;c(� 0; � ; �) := ��1fWc(�) + �(� � � 0)I��0g;
G2;c(� 0; � ; �) := ��1 (1� �)�1 f�Wc(1)�Wc(�)� �(� � � 0)I��0 + ��(1� � 0)g

(iii)

PY
d! log

�Z
�2�

expf1
2
Mc(� 0; � ; �; g

0
M ; ��=!")gd�

�
=: DPYc (� 0; �; g

0
M ; ��=!")

where

Mc(� 0; � ; �; g
0
M ; ��=!") :=

(
DW
c;���

!"
D~�Mc (�0;� ;�)

(� 0; � ; �) if j��
!"
D~�Mc (� 0; � ; �)j > g0M

DWc;0(� 0; � ; �) if j��
!"
D~�Mc (� 0; � ; �)j � g0M

;

DWc;c0(� 0; � ; �) :=
Hc;c0(� 0; � ; �)

2

Rc0(�)
;

D~�Mc (� 0; � ; �) := D�̂c (� 0; � ; �) +DBCc (� 0; � ; �)

with

Hc;c0(� 0; � ; �) := c0
R 1
�
(r � �)dWc(r) + c02

R 1
�
(r � �)Wc(r)dr +Wc(1)�Wc(�) + c0

R 1
�
Wc(r)dr

+�f1� � 0 � I��0(� � � 0)g+ �c0 (1� �) (1� � 0)

+�c02[f1� � 0 � I��0(� � � 0)g2f2 + � 0 � 3� + 4I��0(� � � 0)g]=6
�(1� �)fac0 � c02� (1 + �) =6gfc0

R 1
0
rdWc(r) +Wc(1) + c02

R 1
0
rWc(r)dr

+c0
R 1
0
Wc(r)dr + �(1� � 0)(ac0 � c02� 0(1 + � 0)=6)g=ac0 ;

Rc0(�) := � (1� �)

�
1 + c02� (1� �)

�
1

3
� c02(1 + �)2

36ac0

��
and

D�̂c (� 0; � ; �) :=
Nc(1; � 0; � ; �)

2 �Nc(0; � 0; � ; �)
2 � 1

2
R 1
0
Nc(r; � 0; � ; �)2dr

;

DBCc (� 0; � ; �) :=

8>>>>><>>>>>:
�D�̂c (� 0; � ; �) if Dt�̂c (� 0; � ; �) > cvP

� 4D
�̂
�̂

c (�0;� ;�)�
1+

4�cv2
P

cvP (10+cvP )

�
D
t
�̂
c (�0;� ;�)+

10(4�cv2
P
)

cvP (10+cvP )

if � 10 < Dt�̂c (� 0; � ; �) � cvP

�4D
�̂
�̂

c (�0;� ;�)

D
t
�̂
c (�0;� ;�)

if Dt�̂c (� 0; � ; �) � �10
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with

D�̂�̂c (� 0; � ; �) :=

s
1R 1

0
Nc(r; � 0; � ; �)2dr

;

Dt�̂c (� 0; � ; �) :=
Nc(1; � 0; � ; �)

2 �Nc(0; � 0; � ; �)
2 � 1

2
qR 1

0
Nc(r; � 0; � ; �)2dr

where ac0 := 1 + c0 + c02=3 and Nc(r; � 0; � ; �) is as de�ned in Theorem 3. Here cvP

represents a critical value from Dt�̂0 (� 0; � 0; �).

Remark 5: From (iii), we see that the limiting distribution of PY of the CKP test
depends on the ratio ��=!". This stems from the dependence of W RQF (�) on ~�MS

and then of that estimate on T (~�M � 1), whose limit is (��=!")D~�Mc (� 0; � ; �). Here
then, T (~�M � 1) is essentially a normalized bias Dickey-Fuller statistic, but one which
lacks the necessary variance standardisation that is required to yield a pivotal limit
distribution when the "t are non-IID.

Remark 6: Also notice that in (iii), DBCc (� 0; � ; �), the limit of the step function
associated with the bias correction term C(t�̂), has three regimes rather than four.
This arises because the local to unit root asymptotics render the fourth regime in

C(t�̂) asymptotically redundant. Note also that when D
t�̂
c (� 0; � ; �) > cvP , it follows

that D~�Mc (� 0; � ; �) = 0.

5.5 Limits of HHLT �� , HHLT t�, CKP, DF
GLS
tb (~�), A(B), U �B

Having established the limit distributions of the constituent components of the test
procedures, we are now in a position to determine the asymptotic behaviour of the
three original tests HHLT �� , HHLT t� and CKP under our doubly-local model. The
results follow immediately from the previous results and applications of the continuous
mapping theorem [CMT].

Theorem 5 Let the conditions of Theorem 1 hold. Then,

(i)

HHLT��
d!
�
DDFtc;�c (� 0; �) if D��

c (� 0; �; g
0
W ) < �L

DDFtbc;�c�� (� 0;D��
c (� 0; �; g

0
W ); �) if D��

c (� 0; �; g
0
W ) � �L

where �c�� denotes the value of �c� corresponding to D��
c (� 0; �; g

0
W ):

(ii)

HHLTt�
d!
�
DDFtc;�c (� 0; �) if Dt�c (� 0; �; g0S; g0t) < cvt�
DDFtbc;�c~� (� 0;D~�

c (� 0; �); �) if Dt�c (� 0; �; g0S; g0t) � cvt�
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where �c~� denotes the value of �c� corresponding to D~�
c (� 0; �):

(iii)

CKP
d!
�
DPtc;�c(� 0; �) if DPYc (� 0; �; g

0
M ; ��=!") < cvPY

DPtbc;�c�� (� 0;D��
c;�c��
(� 0; �; �"=!"); �) if DPYc (� 0; �; g

0
M ; ��=!") � cvPY

where �c�� denotes the value of �c� corresponding to D��
c;�c��
(� 0; �; �"=!"):

Remark 7: It is important to note that the limiting representations given in Theorem
5 do not reduce to those given in HHLT and, in the IID case, CKP, even when � = 0;
this is because of the changes to ��, t� and PY , as outlined above.

The limit distributions of DFGLStb (~�), A(t�), A(PY ), U
�
t�
and U �PY follow in an en-

tirely straightforward way using the results from the earlier Theorems and applications
of the CMT; thus it is not informative to state them explicitly here. The dependence
of the asymptotic local power functions of HHLT �� , HHLT t� , CKP, DF

GLS
tb (~�), A(t�),

A(PY ), U �t� and U
�
PY on the trend break location and magnitude, � 0 and � respectively,

under local trend breaks is explored numerically in the next sub-section.

5.6 Asymptotic Size and Local Power

We now consider the asymptotic size and local power of the procedures under the local
trend break assumption T = �!"T

�1=2, by simulating the limit representations given
above. Here, decisions must be made regarding the values of the constants g0W , g

0
S, g

0
t

and g0M , which enter the limit distributions of the modi�ed versions of the procedures
that we examine. The settings chosen for these constants a�ect the ability of the limit
theory to model the power valley phenomenon observed in �nite samples; for example,
setting g0W close to zero would result in �� close to zero, and the asymptotic behaviour of
HHLT �� would simply resemble that of DF

GLS
t , while at the other extreme, setting g0W

very large would result in the limit of �� being close to the limit of ~� , and the asymptotic
behaviour of HHLT �� would then replicate that of just DF

GLS
tb (~�): Similar considerations

also apply to the settings for g0S, g
0
t and g

0
M . Given that our focus is to establish an

asymptotic model of test behaviour that predicts actual �nite sample behaviour, we
wish to select values for these control constants that result in local asymptotic power
functions that closely mimic those seen in �nite samples. Perhaps unsurprisingly, we
found the most suitable settings for these asymptotic control constants were generally
those calibrated according to the implied values used in the implementations of the
tests in �nite samples. For example, for HHLT �� using gW = 1:5 (as in this paper),
equating g0W to gWT

�1=2 yields g0W = 0:123 for T = 150 and g0W = 0:087 for T = 300.
We found that use of the intermediate value g0W = 0:1 delivered an local asymptotic
power pro�le for HHLT �� that closely mirrored observed �nite sample behaviour. This
same calibration approach was also found to be appropriate for g0t and g

0
M , leading us
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to set g0t = 7 and g
0
M = 15, although for g0S we found that a larger value, g

0
S = 40000,

resulted in a better predictor of �nite sample power behaviour than that indicated by
the �nite sample-based calibration (which implied values of g0S = 18750 and g

0
S = 30000

for T = 150 and T = 300, respectively).
We use the same settings for �, � 0 and c as in the �nite sample analysis of Sections

3.3 and 4.3, and again report maximum asymptotic sizes of nominal 0.05-level tests
across � (Table 3), and the corresponding asymptotic local power functions for c = 20
and c = 30 (Figures 8 and 9, respectively). Once again, the powers are size-adjusted,
using the scaling constant required to ensure correct size at the point where size is at
a maximum (��). The need for size-adjustment arises because the variants of the tests
used for the local trend break analysis are not asymptotically correctly sized in the
same way as their �xed magnitude trend break counterparts; instead, the asymptotic
sizes of the procedures depend on the timing and magnitude of the local break, as
the limits in Theorem 5 show. For the trend break pre-tests the critical values cvt�
and cvPY are those for the the nominal asymptotic 0.05-level. We also set cvP to its
0.05-level value. Given that the limit distributions of CKP, A(PY ) and U �PY depend
on nuisance serial correlation parameters due to their dependence on �� and/or PY ,
the results we report are those which pertain to the IID case (i.e. for �� = �" = !").
As with the �nite sample size results, the asymptotic sizes are seen to depend

on �, but with the exception of CKP, we �nd the maximum asymptotic sizes to be
closer to nominal size than in �nite samples. More importantly, however, the asymp-
totic size-adjusted power pro�les bear a very close resemblance to their �nite sample
counterparts in Figures 1-4, especially for T = 300, demonstrating the value of our
local-to-zero model of the trend magnitude. In particular, and in contrast to asymp-
totic results obtained under a �xed break assumption (as in HHLT and CKP), the local
asymptotic behaviour of HHLT �� , HHLT t� and CKP in Figures 8(a)-(c) and 9(a)-(c)
now reproduces the power valley phenomenon observed in �nite samples. The potential
value of the alternative procedures seen in �nite samples is also very clearly mirrored
here, with the extent of the drop-o� in power for intermediate break magnitudes sub-
stantially ameliorated.

6 Conclusions

In this paper we have further investigated the \valleys" observed for trend breaks of
relatively small but non-zero magnitude in the �nite sample power functions of the
recently proposed unit root testing procedures of CKP and HHLT which both employ
auxiliary detection devices for whether a trend break is present in the data or not.
These valleys, not predicted by the asymptotic analyses of the aforementioned authors
who treat the trend break magnitude as �xed, appear when the �nite sample power
functions of the unit root tests are plotted as functions of the break magnitude.
The contribution of this paper has been two-fold. First, on a practical level we

have discussed how the power valley problem can be ameliorated. A valley in the
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�nite sample power functions can be largely eliminated by implementing a unit root
test that always allows for a break in trend, such as the test of PR. However, as well
as losing power when no break in trend exists, this approach involves power losses
when a break is present due to the necessary use of conservative critical values. We
have shown that part of this latter power loss can be recouped by the use of adaptive
critical values, whereby the conservative critical value is used if a trend break pre-test
fails to reject and otherwise the known break date critical value is used. We have also
outlined a union of rejections based approach, whereby we reject the unit root null if
either the with-break or the without-break version of the unit root test rejects. This
allows us to capture some of the additional power available under the no break case.
Overall our results suggest that no one approach is superior in all worlds but that
the approach based on the union of rejections principle seems to represent a decent
approach, considerably ameliorating the large valleys seen with the tests of CKP and
HHLT, yet not losing all the power gains available when no break exists, as happens
if a test which always allows for a break is used in isolation. If a greater degree of
robustness to the power valley problem is required then the adaptive tests would be
recommended.
The second contribution of this paper has been a theoretical one. We have shown

that by setting the trend break magnitude to be local to zero (in a Pitman drift
sense) the resulting asymptotic local power functions of the unit root tests can in fact
closely predict the �nite sample power valley phenomenon. Crucially, setting the break
magnitude as local to zero reects in the asymptotic analysis the genuine uncertainty
that will exist in �nite samples as to whether a trend break exists or not, which is
not the case when the break magnitude is taken to be �xed (where the trend break
detection devices can distinguish perfectly between break and no-break environments).
We conclude with a suggestion for further research. This paper has focused on

testing for a unit root in the presence of a single possible break in trend. It would
be interesting to extend the work in this paper to the case where we allow for the
possibility of multiple trend breaks. It seems likely that the power valley phenomenon
we have discussed in this paper could only be expected to worsen in the multiple breaks
case, although in principle the new tests proposed in this paper, namely A(t�), A(PY ),
U �t� and U

�
PY , could also be extended to the context of multiple possible trend breaks.
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Appendix

The results stated in Theorems 1 and 2 are derived pointwise in � 2 �, the generic
break fraction argument. The subsequent results in Theorem 3 onwards often require a
continuous mapping applied to a sequence of statistics taken across � . In each of these
cases the stated limiting representations follow from the �xed � representation, using
the arguments proved in Zivot and Andrews (1992). It is understood that we appeal
to those arguments on each occasion a function is taken across a sequence of statistics
indexed by the argument � .

In what follows, we can set � = � = 0 in (1) without loss of generality. Moreover,
the dependence of certain quantities on parameters such as �c, � etc. is suppressed when
not essential to the developments.

Proof of Theorem 1

(i) First consider ~� and ~� �
~�
~�

�
=

�
g11 g12
g12 g22

��1 �
h1
h2

�
where

g11 := 1 + (1� ��)2(T � 1); g12 := 1 + (1� ��)
PT

t=2ft� ��(t� 1)g
g22 := 1 +

PT
t=2ft� ��(t� 1)g2; h1 := y1 + (1� ��)

PT
t=2(yt � ��yt�1)

h2 := y1 +
PT

t=2(yt � ��yt�1)ft� ��(t� 1)g:

The limits involved in the 2� 2 matrix are standard: g11 ! 1, g12 ! 1 + �c+ �c2=2 and
T�1g22 ! 1 + �c+ �c2=3 = a�c. Those for the 2� 1 vector are as follows

h1 = y1 + �cT
�1(yT � y1) + �c

2T�2
PT

t=2 yt�1 = u1 + op(1):

T�1=2h2 = �cT�3=2
PT

t=2 t�ut + T�1=2uT + �c
2T�5=2

PT
t=2 tut�1 + �cT

�3=2PT
t=2 ut�1

+�c�T�2
PT

t=2 tDUt(� 0) + �T�1(T � b� 0T c) + �c2�T�3
PT

t=2 tDTt�1(� 0)

+ �c�T�2
PT

t=2DTt�1(� 0) + op(1)
d! �c!"fWc(1)�

R 1
0
Wc(s)dsg+ !"Wc(1) + �c

2!"
R 1
0
sWc(s)ds+ �c!"

R 1
0
Wc(s)ds

+�c!"�(1� � 20)=2 + !"�(1� � 0) + �c
2!"�f(1� � 30)=3� � 0(1� � 20)=2g

+�c!"�(1� � 0)
2=2

= (1 + �c)!"Wc(1) + �c
2
R 1
0
sWc(s)dr + !"� (1� � 0) fa�c � �c2� 0(1 + � 0)=6g

= !"fbc;�c + �fc;�c(� 0)g

where, for a generic argument � , DUt (�) := 1(t > b�T c), and where bc;�c and �fc;�c(� 0)
are implicitly de�ned. Consequently,�

~�

T 1=2~�

�
=

�
g11 T�1=2g12

T�1=2g12 T�1g22

��1 �
h1

T�1=2h2

�
d!
�

u1
!"fbc;�c + �fc;�c(� 0)g=a�c

�
:
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The limit of T�1=2~ubrT c can now be obtained

T�1=2~ubrT c = T�1=2ybrT c � T�1=2~�� T�1=2~�brT c
= T�1=2ubrT c + !"�(r � � 0)Ir�0 � T 1=2~�r + op(1)
d! !"Wc(r) + !"�(r � � 0)Ir�0 � !"fbc;�c + �fc;�c(� 0)gr=a�c
= !"Kc;�c(r; � 0; �):

Next, and in order to simplify the presentation of the proofs, we will assume that
f"tg follows a stationary AR(p) process, i.e.

�(L)"t = �t; �(L) = 1� �1L� �2L
2 � :::� �pL

p: (A.1)

Setting p appropriately in the regression (5), and de�ning vt := �ut�
Pp

j=1 �j"t�j, we
can write26664

T �̂

T 1=2(�̂1 � �1)
...

T 1=2(�̂p � �p)

37775 =

26664
T�2

P
~u2t�1 T�3=2

P
~ut�1�~ut�1 : : : T�3=2

P
~ut�1�~ut�p

T�3=2
P
~ut�1�~ut�1 T�1

P
�~u2t�1 : : : T�1

P
�~ut�1�~ut�p

...
... : : :

...
T�3=2

P
~ut�1�~ut�p T�1

P
�~ut�1�~ut�p : : : T�1

P
�~u2t�p

37775
�1

0BBB@
26664

T�1
P
~ut�1vt

T�1=2
P
�~ut�1vt
...

T�1=2
P
�~ut�pvt

37775�
26664

T�1
P
~ut�1(�ut ��~ut)

T�1=2
P
�~ut�1(�ut ��~ut)

...
T�1=2

P
�~ut�p(�ut ��~ut)

37775

+

26664
Pp

j=1 �jT
�1P ~ut�1("t�j ��~ut�j)Pp

j=1 �jT
�1=2P�~ut�1("t�j ��~ut�j)

...Pp
j=1 �jT

�1=2P�~ut�p("t�j ��~ut�j)

37775
1CCCA

where the
P
summation denotes

PT
t=p+2. We �nd, on simplifying the Kc;�c(r; � 0; �)

notation to K, and fbc;�c + �fc;�c(� 0)g=a�c to b,
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26664
T �̂

T 1=2(�̂1 � �1)
...

T 1=2(�̂p � �p)

37775 d! !�2"

26664
R 1
0
K2dr 0 : : : 0
0 E("2t ) : : : E("t"t�p+1)
...

... : : :
...

0 E("t"t�p+1) : : : E("2t )

37775
�1

0BBB@
26664
�!2"c

R 1
0
KWc(r)dr + !"��

R 1
0
KdW (r)

Op(1)
...

Op(1)

37775�
26664
!2"(b

R 1
0
Kdr � �

R 1
�0
Kdr)

Op(1)
...

Op(1)

37775

+

26664
!2"fc

R 1
0
KWc(r)dr + b

R 1
0
Kdr � �

R 1
�0
Kdrg

Pp
j=1 �j

Op(1)
...

Op(1)

37775
1CCCA

since

T�1
PT

t=j+2�~ut�~ut�j = T�1
PT

t=j+2(�ut + !"�T
�1=2It�0 � ~�)(�ut�j + !"�T

�1=2It�j�0
� ~�)

= T�1
PT

t=j+2�ut�ut�j + op(1)

= T�1
PT

t=j+2 "t"t�j + op(1)
p! E("t"t�j)

T�1
P
~ut�1vt = T�TT

�2P ~ut�1ut�1 + T�1
P
~ut�1�t

d! �!2"c
Z 1

0

KWc(r)dr + !"��

Z 1

0

KdW (r)

and, using �ut ��~ut = ~� � !"�T
�1=2DUt(� 0),

T�1
P
~ut�1(�ut ��~ut) = T 1=2~�T�3=2

P
~ut�1 � !"�T

�3=2PDUt(� 0)~ut�1

d! !2"[fbc;�c + �fc;�c(� 0)g=a�c]
Z 1

0

Kdr � !2"�

Z 1

�0

Kdr

and also, using "t ��~ut = cT�1ut�1 +�ut ��~ut, for all j,
T�1

P
~ut�1("t�j ��~ut�j) = cT�2

P
~ut�1ut�j�1 + T�1

P
~ut�1(�ut�j ��~ut�j)

d! !2"c

Z 1

0

KWc(r)dr + !2"b

Z 1

0

Kdr � !2"�

Z 1

�0

Kdr:

It then follows that, using !" = ��(1�
Pp

j=1 �j)
�1,

T �̂
d!

�!"c��
R 1
0
KWc(r)dr + !"��

R 1
0
KdW (r)� !"��(b

R 1
0
Kdr � �

R 1
�0
Kdr)

!2"
R 1
0
K2dr

=
��
!"

hR 1
0
KdWc(r)� b

R 1
0
Kdr + �

R 1
�0
Kdr

i
R 1
0
K2dr

:
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Next, observe that this limit can alternatively be expressed as

T �̂
d! ��

!"

R 1
0
Kc;�c(r; � 0; �)dKc;�c(r; � 0; �)R 1

0
Kc;�c(r; � 0; �)2dr

=
��
!"

Kc;�c(1; � 0; �)
2 � 1

2
R 1
0
Kc;�c(r; � 0; �)2dr

since
dKc;�c(r; � 0; �) = dWc(r)� fbc;�c + �fc;�c(� 0)g=a�c + �Ir�0 :

Then, writing the standard error associated with �̂ as s:e:(�̂) :=
q
�̂2�V11, where �̂

2
� :=

(T � p � 1)�1
PT

t=p+2 �̂
2
t and V11 denotes the (1,1) element of (X

0X)�1, with X the
regressor matrix associated with (5), we have

�̂2�
p! �2�; T 2V11

d! f!2"
Z 1

0

Kc;�c(r; � 0; �)
2drg�1

and

DFGLSt =
T �̂q
�̂2�T

2V11

d! Kc;�c(1; � 0; �)
2 � 1

2
qR 1

0
Kc;�c(r; � 0; �)2dr

which is the limit given in (i). It can be shown that this same limit for DFGLSt is also
obtained under the more general conditions for f"tg given in Assumption 1, provided
the number of lagged di�erences p satis�es the condition that 1=p + p3=T ! 0 as
T !1; cf. Chang and Park (2002).

(ii) A little manipulation shows that we can write

S(��)� y21 �
TX
t=2

(yt � ��yt�1)2 = �
�
h1 T�1=2h2

� � g11 T�1=2g12
T�1=2g12 T�1g22

��1 �
h1

T�1=2h2

�
d! �

�
u1 !"fbc;�c + �fc;�c(� 0)g

� � 1 0
0 a�c

��1 �
u1

!"fbc;�c + �fc;�c(� 0)g

�
= �u21 � !2"fbc;�c + �fc;�c(� 0)g2=a�c

from which it follows that

S(1)� y21 �
PT

t=2(yt � yt�1)
2 d! �u21 � !2"fbc;0 + �fc;0(� 0)g2

and since

y21 +
PT

t=2(yt � ��yt�1)
2 � ��y21 � ��

PT
t=2(yt � yt�1)

2

d! !2"�c
2
R 1
0
Wc(r)

2dr + !2"�cWc(1)
2

+!2"�f2�c2
R 1
�0
(r � � 0)Wc(r)dr + 2�c

R 1
�0
(r � � 0)dWc(r) + 2�c

R 1
�0
Wc(r)drg

+!2"�
2f�c2(1� 3� 0 + 3� 20 � � 30)=3 + �c(1� � 0)

2g
= !2"[�c

2
R 1
0
Wc(r)

2dr + �cWc(1)
2 + �jc;�c(� 0) + �2k�c(� 0)] (A.2)
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we obtain, using an application of the CMT, that

S(��)� ��S(1) d! !2"[fbc;0 + �fc;0(� 0)g2 � fbc;�c + �fc;�c(� 0)g2=a�c + �c2
R 1
0
Wc(r)

2dr

+�cWc(1)
2 + �jc;�c(� 0) + �2k�c(� 0)]:

Also, assuming f"tg is generated as in (A.1), from (i) above, we �nd

~!2 =
(T � p� 1)�1

PT
t=p+2 �̂

2
t

(1�
Pp

j=1 �̂j)
2

p!
�2�

(1�
Pp

j=1 �j)
2
= !2"

and the result of (ii) follows, which again holds under the more general conditions for
"t of Assumption 1, again provided 1=p+ p3=T ! 0 as T !1.

Proof of Theorem 2

(i) First consider ~�� , ~�� and ~� :24 ~��
~��
~�

35 =
24 g11 g12 g13
g12 g22 g23
g13 g23 g33

35�1 24 h1
h2
h3

35
where

g13 := (1� ��)
PT

t=b�T c+1ft� b�T c � ��(t� b�T c � 1)g
g23 :=

PT
t=b�T c+1ft� ��(t� 1)gft� b�T c � ��(t� b�T c � 1)g

g33 :=
PT

t=b�T c+1ft� b�T c � ��(t� b�T c � 1)g2

h3 :=
PT

t=b�T c+1(yt � ��yt�1)ft� b�T c � ��(t� b�T c � 1)g:

For these new terms

T�1=2h3 = T�1=2yT � T�1=2yb�T c + �cT
�3=2PT

t=b�T c+1 t�yt � �c�T�1=2
PT

t=b�T c+1�yt

+�cT�3=2
PT

t=b�T c+1 yt�1 + �c
2T�5=2

PT
t=b�T c+1 tyt�1 � �c2�T�3=2

PT
t=b�T c+1 yt�1

+op(1)

= T�1=2uT � T�1=2ub�T c + �cT
�3=2PT

t=b�T c+1 t�ut � �c�T�1=2
PT

t=b�T c+1�ut

+�cT�3=2
PT

t=b�T c+1 ut�1 + �c
2T�5=2

PT
t=b�T c+1 tut�1 � �c2�T�3=2

PT
t=b�T c+1 ut�1

+�!"(1� � 0)� �(� � � 0)I��0 + �c�!"T
�2PT

t=b�T c+1 tDUt(� 0)

� �c�!"�T�1
PT

t=b�T c+1DUt�1(� 0) + �c�!"T
�2PT

t=b�T c+1DTt�1(� 0)

+ �c2�!"T
�3PT

t=b�T c+1 tDTt�1(� 0)� �c2�!"�T�2
PT

t=b�T c+1DTt�1(� 0) + op(1)
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d! !"fWc(1)�Wc(�)g+ !"�cfWc(1)� �Wc(�)�
R 1
�
Wc(s)dsg � !"�c�fWc(1)�Wc(�)g

+!"f�c
R 1
�
Wc(s)ds+ �c

2
R 1
�
sWc(s)ds� �c2�

R 1
�
Wc(s)dsg+ !"f�(1� � 0)� �(� � � 0)I��0g

+!"�c�f(1� � 20)=2� (� 2 � � 20)I��0=2g � !"�c��f1� � 0 � (� � � 0)I��0g
+!"�c�(1� �c�)f(1� � 0)

2=2� (� � � 0)
2I��0=2g+ !"�c

2�[(1� � 30)=3� � 0(1� � 20)=2

�f(� 3 � � 30)=3� � 0(�
2 � � 20)=2gI��0 ]

= !"(1 + �c� �c�)Wc(1)� !"Wc(�) + !"�c
2
R 1
�
(s� �)Wc(s)ds+ !"�[(1� � 0)fa�c � �c�

� �c2�(1� � 0)=2� �c2� 0(1 + � 0)=6g � (� � � 0)f1� �c2(� � � 0)
2=6gI��0 ]

= !"fbc;�c(�) + �fc;�c(� 0; �)g:

Collecting results, we therefore have that24 ~��
T 1=2~��
T 1=2~�

35 =

24 g11 T�1=2g12 T�1=2g13
T�1=2g12 T�1g22 T�1g23
T�1=2g13 T�1g23 T�1g33

35�1 24 h1
T�1=2h2
T�1=2h3

35
d!

24 1 0 0
0 a�c m�c(�)
0 m�c(�) d�c(�)

35�1 24 u1
!"fbc;�c + �fc;�c(� 0)g

!"fbc;�c(�) + �fc;�c(� 0; �)g

35
giving of the limit of T�1=2~u�;brT c as

T�1=2~u�;brT c = T�1=2ybrT c � T�1=2~�� � T�1=2~��brT c � T�1=2~�fbrT c � b�T cgIr�

= T�1=2ubrT c + !"�(r � � 0)Ir�0 �
�
r (r � �)Ir�

� � T 1=2~��
T 1=2~�

�
+ op(1)

d! !"Wc(r) + !"�(r � � 0)Ir�0

�
�
r (r � �)Ir�

� � a�c m�c(�)
m�c(�) d�c(�)

��1 �
!"fbc;�c + �fc;�c(� 0)g

!"fbc;�c(�) + �fc;�c(� 0; �)g

�
= !"Lc;�c(r; � 0; � ; �):

The remainder of the proof to establish the limit behaviour of DFGLStb (�) follows a
straightforward parallel of the approach applied for DFGLSt in Theorem 1 (i).

(ii) Write

S(��; �)� y21 �
PT

t=2(yt � ��yt�1)2

= �
�
h1 T�1=2h2 T�1=2h3

� 24 g11 T�1=2g12 T�1=2g13
T�1=2g12 T�1g22 T�1g23
T�1=2g13 T�1g23 T�1g33

35�1 24 h1
T�1=2h2
T�1=2h3

35
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d! �
�
u1 !"fbc;�c + �fc;�c(� 0)g !"fbc;�c(�) + �fc;�c(� 0; �)g

� 24 1 0 0
0 a�c m�c(�)
0 m�c(�) d�c(�)

35�1

�

24 u1
!"fbc;�c + �fc;�c(� 0)g

!"fbc;�c(�) + �fc;�c(� 0; �)g

35
= �u21 � !2"

�
bc;�c + �fc;�c(� 0) bc;�c(�) + �fc;�c(� 0; �)

� � a�c m�c(�)
m�c(�) d�c(�)

��1
�
�

bc;�c + �fc;�c(� 0)
bc;�c(�) + �fc;�c(� 0; �)

�
(A.3)

from which it follows that

S(1; �)� y21 �
PT

t=2(yt � yt�1)
2 d! �u21 � !2"

�
bc;0 + �fc;0(� 0) bc;0(�) + �fc;0(� 0; �)

�
�
�

1 m0(�)
m0(�) d0(�)

��1 �
bc;0 + �fc;0(� 0)

bc;0(�) + �fc;0(� 0; �)

�
and since fy21 +

PT
t=2(yt� ��yt�1)2� ��y21 � ��

PT
t=2(yt� yt�1)2g has the same limit as in

(A.2), we �nd using the CMT that

S(��; �)� ��S(1; �) d!

!2"
�
bc;0 + �fc;0(� 0) bc;0(�) + �fc;0(� 0; �)

� � 1 m0(�)
m0(�) d0(�)

��1 �
bc;0 + �fc;0(� 0)

bc;0(�) + �fc;0(� 0; �)

�
�!2"

�
bc;�c + �fc;�c(� 0) bc;�c(�) + �fc;�c(� 0; �)

� � a�c m�c(�)
m�c(�) d�c(�)

��1 �
bc;�c + �fc;�c(� 0)

bc;�c(�) + �fc;�c(� 0; �)

�
+!2"[�c

2
R 1
0
Wc(r)

2dr + �cWc(1)
2 + �jc;�c(� 0) + �2k�c(� 0)]:

The result in (ii) then follows since ~!2(�)
p! !2".

Proof of Theorem 3

(i) It is straightforward to show that

S(1; �) =
PT

t=2�y
2
t �

(h
T�1=2

PT
t=2�yt T�1=2

PT
t=b�T c+1�yt

i � 1 (1� �)
(1� �) (1� �)

��1
�
"
T�1=2

PT
t=2�yt

T�1=2
PT

t=b�T c+1�yt

#)
+ op(1):

Denoting the expression within curly brackets asA, it is then seen that argmin�2� S(1; �)
is asymptotically equivalent to argmax�2�A. Next observe that

T�1=2
PT

t=2�yt = T�1=2
PT

t=2�ut + !"�T
�1PT

t=2DUt(� 0)
d! !"fWc(1) + �(1� � 0)g
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and that

T�1=2
PT

t=b�T c+1�yt = T�1=2
PT

t=b�T c+1�ut + !"�T
�1PT

t=b�T c+1DUt(� 0)

d! !"[Wc(1)�Wc(�) + �(1� � 0)� �(� � � 0)I��0 ]:

On substituting we therefore obtain using the CMT that

~� = argmin
�2�

S(1; �)

= argmin
�2�

!�2" S(1; �)

d! arg sup
�2�

�
Wc(1) + �(1� � 0) Wc(1)�Wc(�) + �(1� � 0)� �(� � � 0)I��0

�
�
�

1 (1� �)
(1� �) (1� �)

��1 �
Wc(1) + �(1� � 0)
Wc(1)�Wc(�) + �(1� � 0)� �(� � � 0)I��0

�
:

To show that �� has the same limit distribution as ~� , on de�ning �̂2(�v�;t) :=
T�1S(1; �), we note that t1(�)

2 can be written as

t1(�)
2 =

�̂2(�v�;t)

!̂2(�v�;t)

�2�

�̂2(�v�;t)(
PT

t=2 x1;� ;tx
0
1;� ;t)

�1
22

=
�̂2(�v�;t)

!̂2(�v�;t)
T

�
S(1)

S(1; �)
� 1
�

=
S(1; �)

!̂2(�v�;t)

�
S(1)

S(1; �)
� 1
�
=

1

!̂2(�v�;t)
fS(1)� S(1; �)g

Since, as is shown below, !̂2(�v�;t)
p! !2", then, in the limit argmax�2� jt1(�)j is identical

to argmin�2� S(1; �).

(ii) As is shown below, (T=l)�1=2t0(�)
d! Dt0c (� 0; � ; �) and so

�̂ = argmax
�2�

jt0(�)j

= argmax
�2�

��(T=l)�1=2t0(�)�� d! arg sup
�2�

��Dt0c (� 0; � ; �)��
as follows via the CMT.

(iii) In view of (A.3), and using the fact that y1 = u1, as � = � = 0, we can write

S(��� ; �)�
PT

t=2�y
2
t = �!2"

(�
bc;�c� + �fc;�c� (� 0) bc;�c� (�) + �fc;�c� (� 0; �)

� � a�c� m�c� (�)
m�c� (�) d�c� (�)

��1
�
�

bc;�c� + �fc;�c� (� 0)
bc;�c� (�) + �fc;�c� (� 0; �)

��
+
PT

t=2(yt � ���yt�1)2 �
PT

t=2�y
2
t

+op(1):
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Now,PT
t=2(yt����yt�1)2�

PT
t=2�y

2
t

d! !2"�c
2
�

R 1
0
Wc(r)

2dr+�c�f!2"Wc(1)
2��2"g+!2"�j�c� (� 0)+!2"�2k�c� (� 0)

so that

�� = argmin
�2�

S(��� ; �)

= argmin
�2�

n
S(��� ; �)�

PT
t=2�y

2
t

o
d! arg sup

�2�
!2"
�
bc;�c� + �fc;�c� (� 0) bc;�c� (�) + �fc;�c� (� 0; �)

� � a�c� m�c� (�)
m�c� (�) d�c� (�)

��1
�
�

bc;�c� + �fc;�c� (� 0)
bc;�c� (�) + �fc;�c� (� 0; �)

�
� !2"�c

2
�

R 1
0
Wc(r)

2dr � �c�f!2"Wc(1)
2 � �2"g

�!2"�jc;�c� (� 0)� !2"�
2k�c� (� 0)

= arg sup
�2�

�
bc;�c� + �fc;�c� (� 0) bc;�c� (�) + �fc;�c� (� 0; �)

� � a�c� m�c� (�)
m�c� (�) d�c� (�)

��1
�
�

bc;�c� + �fc;�c� (� 0)
bc;�c� (�) + �fc;�c� (� 0; �)

�
� �c2�

R 1
0
Wc(r)

2dr � �c�fWc(1)
2 � 1g � �jc;�c� (� 0)

��2k�c� (� 0)� �c�
�
1� �2"

!2"

�
:

Proof of Theorem 4

(i) Considering a generic argument � , we have

WT (�) =
T�1

PT
t=1(T

�3=2ŝRt)
2

T�1
PT

t=1fT�3=2ŝUtg2
� 1

d!
!2"
R 1
0
sR(r; � 0; �)

2dr

!2"
R 1
0
sU(r; � 0; � ; �)2dr

� 1

where sR(r; � 0; �) and sU(r; � 0; � ; �) denote the continuous time residuals from the
projection of

R r
0
Wc(s)ds + �Ir�0

R r
�0
(s � � 0)ds onto the space spanned by fr;

R r
0
sdsg,

and fr;
R r
0
sds; Ir�

R r
�
(s � �)dsg, respectively. The result then follows using Theorem 3

(i) and the CMT.

(ii) Examining û�;t, we �nd that

T�1=2û�;[rT ]
d! !"Nc(r; � 0; � ; �):

Now, for generic � , we �nd that

(T=l)�1S0 =
T�1

PT
t=1

�
T�3=2

Pt
i=1 û�;i

�2
(lT )�1!̂2(û�;t)

d!
!2"
R 1
0

�R r
0
Nc(s; � 0; � ; �)ds

�2
dr

!2"
R 1
0
Nc(r; � 0; � ; �)2dr

= DS0c (� 0; � ; �)
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the limit result for (lT )�1!̂2(û�;t) following from a generalization of the approach of
Kwiatkowski et al. (1992), and using equation (24) on p. 168 of that paper in the case
of the Bartlett kernel. Also, as is straightforward to show,

(T=l)�1=2t0(�) =
T 1=2̂�q

(lT )�1!̂2(û�;t)(T�3
PT

t=1 x0;� ;tx
0
0;� ;t)

�1
33

d!
!"
R 1
0
Vc(r; � 0; �)F (r; �)drq

!2"
R 1
0
Nc(r; � 0; � ; �)2dr

R 1
0
F (r; �)2dr

= Dt0c (� 0; � ; �):

Next,

T�1=2
PbrT c

t=2 ~u�;t = T�1=2
PbrT c

t=2 �yt � T 1=2���T
�1PbrT c

t=2 1� T 1=2��T
�1PbrT c

t=2 DUt (�)
d! !"fWc(r) + �(r � � 0)Ir�0 �G1c(� 0; � ; �)r �G2c(� 0; � ; �)(r � �)Ir�g
= !"Qc(r; � 0; � ; �)

using the fact that, as is easily shown, T 1=2���
d! !"G1;c(� 0; � ; �) and T 1=2��

d!
!"G2;c(� 0; � ; �). Then,

S1 =
T�1

PT
t=2

�
T�1=2

Pt
i=2 �v�;i

�2
T�2(T � 1)2!̂2(�v�;t)

d!
!2"
R 1
0
Qc(r; � 0; � ; �)

2dr

!2"
= DS1c (� 0; � ; �)

which uses the fact that !̂2(�v�;t)
p! !2". This arises since !̂

2(�v�;t) employs the sample
autocovariances of �v�;t and

T�1
PT

t=j+2 �v�;t�v�;t�j = T�1
PT

t=j+2�ut�ut�j + op(1)

= T�1
PT

t=j+2 "t"t�j + op(1)
p! E("t"t�j):

Also,

t1(�) =
T 1=2��q

!̂2(�v�;t)(T�1
PT

t=2 x1;� ;tx
0
1;� ;t)

�1
22

d! !"G2c(� 0; � ; �)p
!2"=�(1� �)

= Dt1c (� 0; � ; �)

Combining the above results, together with those for �̂ and �� , yields the required
limit via the CMT.

(iii) For the OLS estimator �̂ in (12) we can show, along the same lines as the GLS
counterpart in Theorem 1 (i), that

T �̂
d! ��
!"

Nc(1; � 0; � ; �)
2 �Nc(0; � 0; � ; �)

2 � 1
2
R 1
0
Nc(r; � 0; � ; �)2dr

=
��
!"
D�̂c (� 0; � ; �):
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Also, we �nd

T �̂�̂
d!

s
�2�

!2"
R 1
0
Nc(r; � 0; � ; �)2dr

=
��
!"
D�̂�̂c (� 0; � ; �)

t�̂
d! Nc(1; � 0; � ; �)

2 �Nc(0; � 0; � ; �)
2 � 1

2
qR 1

0
Nc(r; � 0; � ; �)2dr

= Dt�̂c (� 0; � ; �):

Next write, T (~�M�1) = T �̂+C(t
�̂
)T �̂

�̂
. The limit of the step function C(t�̂), as given

in PY section 2.5, under our speci�cation simpli�es to

C(t�̂)
d!

8>>>><>>>>:
�Dt�̂c (� 0; � ; �) if Dt�̂c (� 0; � ; �) > cvP

� 4�
1+

4�cv2
P

cvP (10+cvP )

�
D
t
�̂
c (�0;� ;�)+

10(4�cv2
P
)

cvP (10+cvP )

if � 10 < Dt�̂c (� 0; � ; �) � cvP

� 4

D
t
�̂
c (�0;� ;�)

if Dt�̂c (� 0; � ; �) � �10:

So,

C(t�̂)T �̂�̂
d! ��

!"

8>>>>><>>>>>:
�D�̂c (� 0; � ; �) if Dt�̂c (� 0; � ; �) > cvP

� 4D
�̂
�̂

c (�0;� ;�)�
1+

4�cv2
P

cvP (10+cvP )

�
D
t
�̂
c (�0;� ;�)+

10(4�cv2
P
)

cvP (10+cvP )

if � 10 < Dt�̂c (� 0; � ; �) � cvP

�4D
�̂
�̂

c (�0;� ;�)

D
t�̂
c (�0;� ;�)

if Dt�̂c (� 0; � ; �) � �10

=
��
!"
DBCc (� 0; � ; �)

and therefore

T (~�M � 1)
d! ��

!"
fD�̂�̂c (� 0; � ; �) +DBCc (� 0; � ; �)g

=
��
!"
D~�Mc (� 0; � ; �):

Finally, then, we obtain

T (~�MS � 1)
d!
(

��
!"
D~�Mc (� 0; � ; �) if j��

!"
D~�Mc (� 0; � ; �)j > g0M

0 if j��
!"
D~�Mc (� 0; � ; �)j � g0M :

Now we consider the behaviour of W RQF (�). We will evaluate this at the value
�0 = 1� c0=T where c0 is arbitrary. First note that we may write

S(�0)� S(�0; �) =
(T�1=2r0�0;� ;3r�0)

2

T�1r0�0;� ;3r�0;� ;3
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where r�0;� ;3 denotes the residuals from a regression of the �nal column of Z�0;� , which
we denote Z�0;� ;3, on Z�0 , and r�0 denotes the residuals from a regression of y�0 on Z�0 .
Then

T�1r0�0;� ;3r�0;� ;3 = T�1Z0�0;� ;3Z�0;� ;3�T�1=2Z0�0;� ;3Z�0��1
3 (�

�1
3 Z

0
�0Z�0�

�1
3 )

�1T�1=2��1
3 Z

0
�0Z�0;� ;3

where

�3 =

�
1 0
0 T 1=2

�
:

This term contains no stochastic components and the following limits are easily veri�ed

T�1Z0�0;� ;3Z�0;� ;3 ! (1� �) + c02(1� �)3=3 + 2c0(1� �)2=2

��1
3 Z

0
�0Z�0�

�1
3 !

�
1 + c0 0
0 1 + c0 + c02=3

�
T�1=2��1

3 Z
0
�0Z�0;� ;3 !

�
0

(1� �) + c0(1� �) + c02(1� �)2(2 + �)=6

�
which, upon simpli�cation, yields

T�1r0�0;� ;3r�0;� ;3 ! � (1� �)

�
1 + c02� (1� �)

�
1

3
� c02(1 + �)2

36(1 + c0 + c02=3)

��
= Rc0(�):

Now consider the term

T�1=2r0�0;� ;3r�0 = T�1=2Z0�0;� ;3y�0 � T�1=2Z0�0;� ;3Z�0�
�1
3 (�

�1
3 Z

0
�0Z�0�

�1
3 )

�1��1
3 Z

0
�0y�0 :

We require

T�1=2Z0�0;� ;3y�0 = T�1=2
PT

t=�T+1fDTt(�)� (1� c0=T )DTt�1(�)gfyt � (1� c0=T )yt�1g
= c0T�3=2

PT
t=�T+1(t� �T )�ut + c02T�5=2

PT
t=�T+1(t� �T )ut�1

+T�1=2
PT

t=�T+1�ut + c0T�3=2
PT

t=�T+1 ut�1

+!"�c
0T�2

PT
t=�T+1(t� �T )DUt(� 0) + !"�c

02T�3
PT

t=�T+1(t� �T )DTt�1(� 0)

+!"�T
�1PT

t=�T+1DUt(� 0) + !"�c
0T�2

PT
t=�T+1DTt�1(� 0) + op(1)

d! !"[c
0R 1
�
(r � �)dWc(r) + c02

R 1
�
(r � �)Wc(r)dr +Wc(1)�Wc(�) + c0

R 1
�
Wc(r)dr

+�c0f(1� � 0) (1 + � 0 � 2�) =2 + I(� � � 0)
2=2g

+�c02[f1� � 0 � I(� � � 0)g2f2 + � 0 � 3� + 4I(� � � 0)g]=6
+�f1� � 0 � I(� � � 0)g+ �c0f(1� � 0)

2 =2� I(� � � 0)
2=2g]
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��1
3 Z

0
�0y�0 =

�
y1 +

PT
t=2f1� (1� c0=T )gfyt � (1� c0=T )yt�1g

T�1=2[y1 +
PT

t=2ft� (1� c0=T )(t� 1)gfyt � (1� c0=T )yt�1g]

�

=

2664
u1 + op(1)

c0T�3=2
PT

t=2 t�ut + T�1=2
PT

t=2�ut + c02T�5=2
PT

t=2 tut�1
+c0T�3=2

PT
t=2 ut�1 + !"�c

0T�2
PT

t=2 tDUt(� 0) + !"�T
�1PT

t=2DUt(� 0)

+!"�c
02T�3

PT
t=2 tDTt�1(� 0) + !"�c

0T�2
PT

t=2DTt�1(� 0) + op(1)

3775
d!

24 u1
!"fc0

R 1
0
rdWc(r) +Wc(1) + c02

R 1
0
rWc(r)dr + c0

R 1
0
Wc(r)dr

+�c0(1� � 20)=2 + �(1� � 0) + �c02(1� � 0)
2(2 + � 0)=6 + �c

0(1� � 0)
2=2g

35
which on substituting and simplifying gives

T�1=2r0�0;� ;3r�0
d! !"[c

0R 1
�
(r � �)dWc(r) + c02

R 1
�
(r � �)Wc(r)dr +Wc(1)�Wc(�) + c0

R 1
�
Wc(r)dr

+�f1� � 0 � I(� � � 0)g+ �c0 (1� �) (1� � 0)

+�c02[f1� � 0 � I(� � � 0)g2f2 + � 0 � 3� + 4I(� � � 0)g]=6� (1� �)

�f1 + c0 + c02=3� c02� (1 + �) =6gfc0
R 1
0
rdWc(r) +Wc(1) + c02

R 1
0
rWc(r)dr

+c0
R 1
0
Wc(r)dr + �(1� � 0)(1 + c0 + c02=3� c02� 0(1 + � 0)=6)g=(1 + c0 + c02=3)]

= !"Hc;c0(� 0; � ; �):

Then, since ĥ"
p! !2" we have

W RQF (�) =
S(�0)� S(�0; �)

ĥ"
d! Hc;c0(� 0; � ; �)

2

Rc0(�)
= DWc;c0(� 0; � ; �):

We obtain the limit of W RQF (�) based on T (~�MS � 1) upon replacing c0 with the limit
of �T (~�MS � 1). That is,

W RQF (�)
d!

(
DW
c;���

!"
D~�Mc (�0;� ;�)

(� 0; � ; �) if j��
!"
D~�Mc (� 0; � ; �)j > g0M

DWc;0(� 0; � ; �) if j��
!"
D~�Mc (� 0; � ; �)j � g0M

= Mc(� 0; � ; �; g
0
M ; ��=!")

and so

PY = log
�
T�1

P
�2� exp

�
1
2
W RQF (�)

	�
d! log

�Z
�2�

expf1
2
Mc(� 0; � ; �; g

0
M ; ��=!")d�g

�
= DPYc (� 0; �; g

0
M ; ��=!"):
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Table 1. Finite sample maximum sizes and corresponding local break magnitudes.

Panel A. T = 150

τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

max. size κ∗ max. size κ∗ max. size κ∗

HHLT τ̄ 0.111 1.8 0.110 1.0 0.108 1.4
HHLT tλ 0.110 1.8 0.113 1.2 0.111 1.4
CKP 0.052 0.0 0.052 1.2 0.053 8.2

DFGLS
tb (τ̃) 0.068 1.8 0.069 1.8 0.069 0.4

A(tλ) 0.097 2.2 0.102 3.4 0.105 5.4
A(PY ) 0.079 2.2 0.087 7.8 0.089 6.6
U δtλ 0.101 1.8 0.101 1.6 0.102 4.8
U δPY 0.076 0.0 0.085 7.8 0.085 7.6

Panel B. T = 300

τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

max. size κ∗ max. size κ∗ max. size κ∗

HHLT τ̄ 0.086 0.2 0.091 4.2 0.089 0.2
HHLT tλ 0.086 0.2 0.087 0.4 0.088 1.0
CKP 0.060 8.6 0.074 7.8 0.065 8.6

DFGLS
tb (τ̃) 0.061 0.0 0.062 0.2 0.064 0.4

A(tλ) 0.082 5.2 0.092 4.4 0.085 5.6
A(PY ) 0.070 4.4 0.081 6.2 0.078 6.2
U δtλ 0.080 5.2 0.088 4.4 0.083 6.2
U δPY 0.067 10.6 0.076 7.8 0.073 6.8

T.1



Table 2. Finite sample maximum sizes and corresponding local break magnitudes:
τ 0 = 0.5; tests with lag selection.

Panel A. T = 150

IID errors AR(1) errors MA(1) errors

max. size κ∗ max. size κ∗ max. size κ∗

HHLT τ̄ 0.079 0.8 0.077 0.6 0.104 1.6
HHLT tλ 0.080 1.2 0.074 0.6 0.099 0.2
CKP 0.040 0.4 0.089 9.8 0.092 1.4

DFGLS
tb (τ̃) 0.045 1.6 0.037 0.8 0.073 1.4

A(tλ) 0.072 3.4 0.063 3.8 0.093 3.8
A(PY ) 0.059 7.8 0.054 8.0 0.105 1.4
U δtλ 0.072 3.2 0.065 1.6 0.095 1.4
U δPY 0.057 7.8 0.053 8.0 0.122 0.2

Panel B. T = 300

IID errors AR(1) errors MA(1) errors

max. size κ∗ max. size κ∗ max. size κ∗

HHLT τ̄ 0.068 4.4 0.070 0.0 0.084 0.2
HHLT tλ 0.065 0.0 0.068 0.0 0.086 0.2
CKP 0.053 7.8 0.079 8.0 0.085 0.0

DFGLS
tb (τ̃) 0.041 0.2 0.041 0.0 0.055 0.2

A(tλ) 0.064 4.4 0.065 4.6 0.072 4.2
A(PY ) 0.057 6.2 0.058 6.0 0.081 0.4
U δtλ 0.064 4.4 0.064 4.2 0.076 0.0
U δPY 0.053 9.8 0.055 6.6 0.097 0.0

T.2



Table 3. Asymptotic maximum sizes and corresponding local break magnitudes.

τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

max. size κ∗ max. size κ∗ max. size κ∗

HHLT τ̄ 0.081 0.0 0.081 0.0 0.081 0.0
HHLT tλ 0.068 0.0 0.068 7.6 0.068 0.0
CKP 0.083 9.4 0.094 8.2 0.081 9.2

DFGLS
tb (τ̃) 0.052 1.4 0.051 1.0 0.050 1.0

A(tλ) 0.067 7.6 0.072 5.4 0.063 7.4
A(PY ) 0.066 7.8 0.070 6.6 0.062 7.8
U δtλ 0.065 8.2 0.069 6.4 0.063 8.2
U δPY 0.064 9.2 0.068 8.0 0.061 8.8

T.3



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 1. Finite sample size-adjusted power: T = 150, c = 20
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.1



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 2. Finite sample size-adjusted power: T = 300, c = 20
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.2



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 3. Finite sample size-adjusted power: T = 150, c = 30
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.3



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 4. Finite sample size-adjusted power: T = 300, c = 30
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.4



(a) IID errors (d) IID errors

(b) AR(1) errors (e) AR(1) errors

(c) MA(1) errors (f) MA(1) errors

Figure 5. Finite sample size-adjusted power: T = 150, c = 30, τ 0 = 0.5
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.5



(a) IID errors (d) IID errors

(b) AR(1) errors (e) AR(1) errors

(c) MA(1) errors (f) MA(1) errors

Figure 6. Finite sample size-adjusted power: T = 300, c = 30, τ 0 = 0.5
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.6



(a) T = 300, c = 20, τ0 = 0.5, κ = 2 (b) T = 300, c = 20, τ0 = 0.5, κ = 6

Figure 7. Simulated series with 1 break

F.7



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 8. Asymptotic size-adjusted local power: c = 20
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.8



(a) τ0 = 0.3 (d) τ0 = 0.3

(b) τ0 = 0.5 (e) τ0 = 0.5

(c) τ0 = 0.7 (f) τ0 = 0.7

Figure 9. Asymptotic size-adjusted local power: c = 30
(a)-(c): DFGLS

t : H , HHLT τ̄ : – – , HHLT tλ
: - - - , CKP :

(d)-(f): DFGLS

tb
(τ̃ ): – . – , A(tλ): - - - , A(PY ): . . . , U δ

tλ
: , U δ

PY
: – –

F.9


