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Abstract
Modeling the term structure of interest rate is very important to macroeconomists

and financial market practitioners in general. In this paper, we used the Diebold-Li
interpretation to the Nelson Siegel model in order to fit and forecast the Brazilian
yield curve. The data consisted of daily observations of the most liquid future ID yields
traded in the BM&F from January 2006 to February 2009. Differently from the literature
on the Brazilian yield curve, where the Diebold-Li model is estimated through the
two-step method, the model herein is put in the state-space form, and the parameters
are simultaneously and efficiently estimated using the Kalman filter. The results obtained
for the fit and for the forecast showed that the Kalman filter is the most suitable method
for the estimation of the model, generating better forecast for all maturities when we
consider the forecasting horizons of one and three months.
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Resumo
Modelar a estrutura a termo da taxa de juros é extremamente importante para

macroeconomistas e participantes do mercado financeiro em geral. Neste artigo é
empregada a formulação de Diebold-Li para ajustar e fazer previsões da estrutura a termo
da taxa de juros brasileira. São empregados dados diários referentes às taxas dos contratos
de DI Futuro negociados na BM&F que apresentaram maior liquidez para o período de
Janeiro de 2006 a Fevereiro de 2009. Diferentemente da maior parte da literatura sobre
curva de juros para dados brasileiros, em que o modelo de Diebold-Li é estimado pelo
método de dois passos, neste trabalho o modelo é colocado no formado de estado espaço, e
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os parâmetros são estimados simultaneamente, de forma eficiente, pelo Filtro de Kalman.
Os resultados obtidos tanto para o ajuste, mas principalmente no que diz respeito à
previsão, mostram que a estimação do modelo através do Filtro de Kalman é a mais
adequada, gerando melhores previsões para todas as maturidades quando é considerado
horizontes de previsão de um mês, três meses e seis meses.

1. Introduction

Understanding the behavior of the term structure of interest rate is important
to macroeconomists, financial economists and fixed income managers, and such
understanding has prompted remarkable improvement in theoretical modeling and
in the estimation of this type of process in the past few decades. The major
models developed during this period can be classified as follows: no-arbitrage
models; equilibrium models; and statistical or parametric models. No-arbitrage
models focus on the perfect adjustment of the term structure in a given time
period, warranting that arbitrage possibilities will not occur, which is important
for derivatives pricing. Examples of these models include Hull and White (1990),
and Heath et al. (1992). Equilibrium models place emphasis on the modeling of
the instantaneous yields, typically through affine models; then the yields of other
maturities can be derived under several hypotheses about the risk premium. Models
of this type were developed by Vasicek (1977), Cox et al. (1985) and by Duffie and
Kan (1996).

Statistical or parametric models consist of principal component models,
factor models or latent variables, and also interpolation models. According to
Matzner-Lober and Villa (2004), most of the intuition about the dynamics of bond
and bonus profitability arises from models belonging to this class, as in Robert
and Scheinkman (1991) and in Pearson and Sun (1994). Among factor models,
the model developed by Nelson and Siegel (1987) and its variants, are the most
popular amidst fixed income managers and central banks. The attractiveness of
factor models of the Nelson Siegel type is due to its parsimony and good empirical
performance. Models of this type can capture most of the behavior of the term
structure of interest rate by means of only three factors. Models with a larger
number of factors were used by Svensson (1994), Almeida and Vicente (2008),
Laurini and Hotta (2008), among others.

Interpolation models were developed, for instance, by McCulloch (1971, 1975),
who interpolated the discount function rather than the yields or the asset prices in
a direct manner; and by Vasicek and Fong (1982), who adjusted exponential splines
to the discount curve, obtaining smoother adjustments for the longest section of
the curve.
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Diebold and Li (2006) argue that, despite major improvements in theoretical
modeling of the term structure of interest rate, little attention has been paid to the
forecast of the term structure. No-arbitrage models place emphasis on fit to a given
time period and say too little about out-of-sample dynamics or forecast. Conversely,
equilibrium models have some dynamic implications in view of a certain risk
premium, which allows drawing some conclusions about out-of-sample forecasts.
However, according to Diebold and Li, most studies on equilibrium models focused
on in-sample performance. Exceptions include Duffee (2002), who demonstrates
that arbitrage-free models exhibit poor performance in out-of-sample forecasts;
and Egorov et al. (2010), who show that affine models with stochastic volatility
can predict the conditional joint distribution of bonus profitability.

Having good yields forecasts is essential to calculate the market value of an asset
portfolio, to assess fixed income derivatives, to build investment strategies and to
develop monetary policies.

Following a different line of research, Ang and Piazzesi (2003), Hördahl et al.
(2006), and Wu (2001) analyzed models with macroeconomic variables and showed
that these variables contribute towards improving the forecast of the yield curve
dynamics. Diebold et al. (2006) (hereinafter referred to as DRA), used a model with
latent factors for the yield curve and also included macroeconomic variables. Unlike
previous models which considered a unidirectional relationship of macroeconomic
variables towards the yield curve, or of the yield curve towards the macroeconomic
variables, DRA assessed the possibility of a bidirectional relationship and observed
that the inclusion of macroeconomic variables improved the predictability of the
model, mainly for six-month and one-year-ahead forecasting horizons, for the
medium-term maturities of the yield curve analyzed.

Vicente and Tabak (2007) compared the Gaussian affine model with Diebold
and Li model for Brazilian data and concluded that the latter model is slightly
superior in terms of yield curve forecasts. Almeida et al. (2007) obtained better
forecasting results than those from Diebold and Li model using a dynamic version
of Svensson’s model. Vargas (2007) uses Brazilian data for future ID contracts to
replicate the results obtained by Diebold and Li. Laurini and Hotta (2008), on the
other hand, estimate an extended Svensson’s model, where decay parameters vary
over time and stochastic volatility is added to the measurement equation of the
state-space system.

In this paper, we use the three-factor model for the term structure as proposed by
Nelson and Siegel (1987), but we reinterpret the factors as level, slope and curvature
of the yield curve just as in Diebold and Li, in order to make out-of-sample forecasts.
To estimate the models and perform the forecasting exercise, we use the state-space
approach introduced in this context by DRA, which allows simultaneously to fit
the yield curve in each time period and estimating the dynamics of the underlying
factors using maximum likelihood. This procedure obviates the a priori selection
of the decay parameter and permits obtaining optimal smoothed estimates of the
factors. The database consists of daily spot rate series of future ID contracts traded
in the BM&F, precluding the use of swap rates, which often do not represent actual
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trading rates.
The contribution of the paper is twofold: we estimate Diebold and Li yield curve

model efficiently in a single step by means of the Kalman filter, avoiding the a priori
selection of the decay parameter λ; and we use a new data set based on future ID
rates for maturities with higher liquidity than the often used data on swap rates.
Besides this Introduction, the paper is organized as follows. Section 2 introduces
the structure of Diebold-Li model for the yield curve and its state-space form.
Section 3 presents the data used in the estimation, and in addition to analyzing
the adjustment of the model, it performs a forecasting exercise to verify whether the
model can produce good out-of-sample forecasts. Section 4 concludes and suggests
avenues for further investigation.

2. The Factor Model of the Term Structure

This section introduces the factor model for the term structure of interest rates.
The version herein follows the three-factor model devised by Diebold and Li (2006),
and represents a reinterpretation of the yield curve that appears in Nelson and
Siegel (1987), where the three factors are interpreted as level, slope and curvature
factors.

2.1. Discount function, forward curve and yield curve

Before describing the structure of the model, it is necessary to define discount
curve, forward curve and yield curve, as well as their interrelations. The term
structure of interest rates is represented by a set spot rates for different maturities.
Each point corresponds to an yield yi(τ) associated with maturity τ , obtained from
a security traded on the market (Varga, 2008).

At any point of time t, there will be a collection of zero-coupon bonds that
differ only in terms of maturity. However, in a given moment, there may not be a
bond available to all desired maturities as bonds are not negotiated for all possible
maturities.

One of the most basic constructions describing the term structure of the interest
rate, from which other curves are often derived, is the discount function. Let
Pt(τ) be the price of a zero-coupon bond at time t, which pays $1 at maturity τ .
Supposedly, every zero-coupon bond is default-free and has strictly positive prices.
Thus, the discount function is defined by:

Pt(τ) = e−τyt(τ) (1)

The yield yt(τ) at which the bond is discounted is the internal rate of return of
the zero-coupon bond, at time t, and with maturity τ , expressed as:

yt(τ) =
− ln(Pt(τ))

τ
(2)
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The forward rate at time t applied to the time interval between τ1 and τ2 , is
defined by:

ft(τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

yt(x)dx (3)

The same argument applies to forward rates for k-periods. The forward rate can
be interpreted as the marginal rate of return necessary to maintain a bond for an
additional period. The limit of expression (3) when τ1 draws closer to τ2, denoted
by ft(τ), is the instantaneous forward rate:

ft(τ) =
−Pt(τ)
Pt(τ)

(4)

The instantaneous forward rate curve, ft(τ) , provides the decay rate of discount
function Pt(τ) in each point τ . The yield curve yt(τ) is the average decay rate for
the interval between 0 and τ , expressed by:

yt(τ) =
1
τ

∫ τ

0

ft(x)dx (5)

The function ft(τ) of forward rates describes the (instantaneous) rate of return of
an investment that is maintained for a very short time interval. The instantaneous
forward rate curve is a very important theoretical construct, even though its value
for a single maturity is of little practical interest, due to the high transaction cost
associated with a contract between two points in the future if these two points are
too close to one another. Only the mean of ft(τ) for a future time interval is of
practical interest.

In any point at time t, there will be a set of bonds with different maturities,
τ , and different payment flows, which may be used to estimate the yield curves,
discount curves and forward curves, which are not observable in practice. There
are different approaches to the construction of yield curves. McCulloch (1971,
1975) and Vasicek and Fong (1982) build yield curves using estimated smooth
discount curves and converting them into rates at relevant maturities. The method
put forward by McCulloch (1971, 1975) employs a cubic spline discount function
interpolation. The advantage of this method is that the estimation model only
has linear parameters, its disadvantage is the resulting erratic curves for longer
maturities, i.e., the adjusted discount curve diverges for longer maturities instead
of converging to zero. Vasicek and Fong’s approach suggests the use of exponential
splines to adjust the discount function, which would eliminate the divergence
problem for longer maturities.

Statistical models were also used to estimate the term structure of interest rate as
in Nelson and Siegel (1987), Svensson (1994), among others. These models proved
quite useful in the analysis and pricing of fixed income securities, and special
attention should be paid to the work carried out by Nelson and Siegel (1987),
which was given a new interpretation in Diebold and Li (2006), wherein short-,
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medium- and long-term factors began to be interpreted as slope, curvature and
level factors.

Fama and Bliss (1987) proposed a method for the construction of the term
structure using forward rates estimated for the observed maturities. The method
consists in sequentially building the forward rates necessary to successively price
bonds with longer maturities, known as the unsmoothed forward rates proposed by
Fama and Bliss. The yield curve resulting from this procedure is a (discontinuous)
function with jumps relative to the maturity of the bond being traded.

2.2. Diebold and Li yield curve model

The classic problem with the term structure requires the estimation of a smooth
yield curve based on bond prices observed. In recent years, the method has consisted
in computing the implicit forward rates in order to successively price bonds with
longer maturities in the observed maturities, known as unsmoothed forward rates.
Then a smooth forward rate curve is obtained by fitting a parametric functional
form using unsmoothed rates. One of the parametric functional forms most widely
used in the estimation of the yield curve was proposed by Nelson and Siegel
(1987), who developed a sufficiently flexible model that could represent curves of
different shapes. In this model, the parameters are associated with the long-term,
medium-term and short-term interest rates. Basically, this form describes the yield
curve through three factors, which are interpreted as level, slope and curvature,
and another factor that represents a time scale.

Nelson and Siegel (1987) suggest to fit the forward rate curve at a given
date with a mathematical class of approximating functions. The functional
form they advocate uses Laguerre functions which consist of the product
between a polynomial and an exponential decay term. The resulting Nelson-Siegel
approximating forward curve can be assumed to be the solution to a second order
differential equation with equal roots for spot rates:

ft(τ) = β1,t + β2,te
−λtτ + β3,tλte

−λtτ (6)

The parameters β1,t, β2,t and β3,t are determined by initial conditions and
λt is a constant associated with the equation. Recently, Diebold and Li (2006)
reinterpreted the exponential model proposed by Nelson and Siegel (1987),
considering a parametric form for the behavior of the term structure over time,
in which coefficients are treated as level, slope and curvature. By averaging over
forward rates, as in (5), we obtain the corresponding yield curve:

yt(τ) = β1,t + β2,t

(
1− eλtτ

λtτ

)
+ β3,t

(
1− eλtτ

λtτ
− eλtτ

)
(7)

Nelson and Siegel yield curve also corresponds to the discount function, assuming
value 1 at maturity zero, and drawing close to zero when maturity tends to infinity.
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The shape of the yield curve is determined by the three factors and by the factor
loadings associated with them. Parameter λ, kept fixed in Diebold and Li (2006),
governs the exponential decay rate, small (large) values of λ are associated with a
slow (quick) decay and fit better to long (short) maturities. The factor loading of
the first component is 1 (constant) and is interpreted as the level of the yield curve,
which equally influences the short- and long-term rates. The factor loading of the
second component

(
1−eλtτ
λtτ

)
begins at 1 and converges to zero monotonically and

quickly, being interpreted as slope. This factor has a major influence over short-term
interest rates. The factor loading of the third component,

(
1−eλtτ
λtτ

− eλtτ
)

, is a
concave function, assuming value zero for maturity zero, increasing, and converging
monotonically to zero at longer maturities. Thus, this factor is associated with
medium-term interest rates, and is treated as the curvature of the yield curve.

Since the factor loading of the first component is the only one that is equal to
1 when the maturity draws close to infinity, β1,t is associated with the long-term
interest rate. The slope of the yield curve is usually defined as yt(∞)−yt(0), in which
case the slope converges to β2,t. The curvature is defined as 2yt(τ∗)−yt(∞)−yt(0)
, where τ∗ represents a medium-term maturity. Note that the curvature is virtually
−β3,t. 1

Given that bonds with different maturities are observed in each time period, one
has a set of yields with maturities (τ1, τ2, . . . , τN ) for every t. Therefore, Diebold
and Li (2006) propose to fix λ to an a priori value and estimate equation (7) by
means of an ordinary least squares regression for every time period t, from which
the time series of the factors βj,t are obtained. The βj,t are obtained by estimating
the following regression for a given t:

yt(τi) = β1,t + β2,t

(
1− eλτi
λτi

)
+ β3,t

(
1− eλτi
λτi

− eλτi
)

+ εi,t (8)

where the errors (ε1,t, ε2,t, . . . , εN,t) are assumed to be independent, with zero mean
and constant variance σ2

t for a given time t.
In general, there are several specifications that can be used to fit the data.

Nevertheless, most of the existing literature basically relies on two specifications
for the fitting of the model. In one of the cases, it is assumed that the three state
variables follow an independent and first-order autoregressive process, used, for
instance, in Diebold and Li (2006). In the other case, the three nonobservable
factors in the state-space model, are modeled by a first-order vector autoregressive
process, VAR (1), as in Diebold et al. (2006) and Koopman et al. (2007). Both in
Diebold and Li (2006), and in Diebold et al. (2006), the factor loadings depend
upon a single decay parameter, and to allow the estimation of time-varying latent
factors in a linear fashion, the factor loadings are kept constant over time for each
maturity.

1 Diebold and Li (2006) define the slope as yt(120)− yt(3) = −0.78β2,t + 0.06β3,t, and the curvature
as 2yt(24)− yt(120)− yt(3) = 0.000053β2,t + 0.37β3,t.
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In the case of VAR(1) the transition equation, which governs the dynamics of
the state vector, is defined by:

β1,t

β2,t

β3,t

 =


µβ1

µβ2

µβ3

+


a11 a12 a13

a21 a22 a23

a31 a32 a33



β1,t−1

β2,t−1

β3,t−1

+


η1,t

η2,t

η3,t

 (9)

In the case in which the model is adjusted by a first-order autoregressive process,
the matrix A with elements ai,j above is diagonal. The measurement equation,
which associates the interest rates of N maturities with the three unobserved
components, is given by:

yt(τ1)

yt(τ2)
...

yt(τN )

 =



1 1−e−λtτ1
λtτ1

1−e−λtτ1
λtτ1

− e−λtτ1

1 1−e−λtτ2
λtτ2

1−e−λtτ2
λtτ2

− e−λtτ2
...

...
...

1 1−e−λtτN
λtτN

1−e−λtτN
λtτN

− e−λtτN




β1,t

β2,t

β3,t

+


ε1,t

ε2,t
...

εN,t

 (10)

The system comprising the transition equation and the measurement equation
can be written using a matrix notation:

βt+1 = µ+ Φβt + ηt (11)

yt = Λ(λ)βt + εt (12)

where Λ(λ) is an N × 3 matrix of factor loadings, which will be time-varying only
if the decay parameter is variable.

Measurement equation (12) defines the vector of yields N × 1 for N maturities
at time t, as the sum of factors multiplied by their factor loadings, with a normally
distributed and independent error vector across maturities. The 3 × 1 vector βt
represents the factors.

If the purpose is only to fit the yield curve, the measurement equation suffices.
However, to make forecasts of the term structure, it is necessary to model the
dynamics of factors as well. Following Diebold et al. (2006) and Koopman et al.
(2007), the dynamics of factors is specified as a first-order vector autoregressive
process. Finally, the errors of the measurement and state equations are assumed
to be orthogonal to each other and to the vector of initial states, β0, and are
distributed as:  ηt

εt

 ∼ N
 0

0

 Ση 0

0 Σε


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In addition, the errors of the transition and measurement equations are assumed
to be orthogonal to the initial state:

E [β0η
′] = 0

E [β0ε
′] = 0

The covariance matrix of the measurement errors εt constitutes a (N × N)
diagonal matrix Σε. The assumption that matrix Σε is diagonal implies that
the deviations of the interest rates to different maturities are uncorrelated. This
assumption facilitates the estimation of the model by reducing the number of
parameters, and is quite common in the literature. On the other hand, the
assumption that matrix Ση is unrestricted allows shocks on the three factors to
be correlated.

2.2.1. Estimation and forecasting using the state-space form
When the state-space form is used, two approaches can be employed to estimate

the latent factors and the parameters. The initial approach proposed by Diebold
and Li (2006) is based on two steps and, therefore, is inefficient, disregarding the
uncertainty that is inherent to the first-step estimates in the subsequent step. In
the first stage, the measurement equation is estimated using cross-sectional data,
in which the estimates for the factors are obtained for each time period. Assuming
that the decay parameter is constant, the measurement equation becomes linear
and can be estimated by ordinary least squares. In the second stage, the time
dynamics of the parameters is specified and estimated as an AR(1) or VAR(1)
process.

Diebold et al. (2006) showed that it is possible to estimate this model by
maximum likelihood in a single step by using the Kalman filter, providing efficient
estimates for the parameters and smoothed estimates for the unobservable factors.
This approach is not only adopted in Diebold et al. (2006), but also in Koopman
et al. (2007), among others. The procedure utilizes the Kalman filter to build
the likelihood function, which is then maximized in order to obtain parameters
estimates. We consider the Nelson-Siegel model 11 and 12 as a linear Gaussian
state space model. The vector of unobserved states βt can be estimated conditional
on the past and current observations y1, . . . , yt via Kalman filter. Define βt|t−1

as the expectation of βt given y1, . . . , yt−1 with mean square error (MSE) matrix
Pt|t. For given values of βt|t−1 and Pt|t−1, when observation yt−1 is available, the
predition error can be calculated vt = yt − Λ(λ)βt|t−1. Thus, after observing yt, a
more acurate inference can be made of βt and Pt|t:

βt|t = µ+ Pt|t−1 + Pt|t−1Λ(λ)′F−1
t vt

Pt|t = βt|t−1 − Pt|t−1Λ(λ)′F−1
t Λ(λ)Pt|t−1

where Ft = Λ(λ)Pt|t−1Λ(λ)′ + Σε is the predition error covariance matrix. The
estimator of the state vector for the next period t+ 1, conditional on y1, . . . , yt, is
given by the predition step
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βt+1|t = µ+ Φβt|t
Pt+1|t = ΦPt|tΦ′ + Ση

For a given time series y1, . . . , yT , the Kalman filter computations are carried
out recursively for t = 1, . . . , T with initializations β1|0 and P1|0. The parameters
in the VAR coefficient matrix Φ, variance matrices Ση and Σε together with µ and
λ are treated as unknown coefficients which are collected in the parameter vector
ψ. Estimation of ψ is based on the numerical maximization of the loglikelihood
function that is constructed via the predition error decomposition and given by

l(ψ) = −NT
2
log2π − 1

2

T∑
t=1

log|Ft| −
1
2

T∑
t=1

v′tlogF
−1
t vt (13)

As a result, l(ψ) can be evaluated by Kalman filter for a given value of ψ (for
details about Kalman filter estimation see Durbin and Koopman 2001; Anderson
and Moore 1979; Simon 2006).

The maximum likelihood estimator obtained thereby is preferable to the two-step
method, as in the later the estimation of parameters in the second stage does not
take into consideration the uncertainty over the values of the estimated factors
in the first stage, producing inefficient parameter estimates. The joint estimation
of the measurement and state equations on the other hand does not have such
problem and yields efficient estimates for the parameters. Another advantage of
likelihood estimation is the joint estimation of the decay parameter which, in the
two-step method, has to be calibrated according to some measure. Almeida et al.
(2007) show that different rules for the calibration of the decay parameter yield
different results for the out-of-sample forecast of the term structure of interest
rate, indicating that the two-step estimation method lacks robustness. Moreover,
the Kalman smoother allows obtaining smoothed estimates for the latent variables,
which take the whole sample information into account in order to infer on the time
series of the unobserved factors.

3. Data and Analysis of the Results

The future interbank deposit (future ID) contract with maturity τ is a future
contract of which the basic asset is the interest rate 2 accrued on a daily basis
(ID), capitalized between trading period t, and τ . The contract value is set by its
value at maturity, R$100, 000.00 discounted according to the accrued interest rate,
negotiated between the seller and the buyer.

When buying a future ID contract for the ID price at time t and keeping it until
maturity τ , the gain or loss is given by:

2 The ID rate is the average daily rate of interbank deposits (borowing/lending), calculated by the
Clearinghouse for Custody and Settlements (CETIP) for all business days. The ID rate, which is
published on a daily basis, is expressed in annually compounded terms, based on 252 business days.
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100.000

(∏ζ(t,τ)
i=1 (1 + yi)

1
252

(1 +DI∗)
ζ(t,τ)
252

− 1

)
where yi denotes the ID rate, (i−1) days after the trading day. The function ζ(t, τ)
represents the number of working days between t and τ .

The ID contract is quite similar to the zero-coupon bond, except for the daily
payment of marginal adjustments. Every day the cash flow is the difference between
the adjustment price of the current day and the adjustment price of the previous
day, indexed by the ID rate of the previous day.

Future ID contracts are negotiated in the BM&F, which determines the
number of maturities with authorized contracts. In general, there are around 20
maturities with authorized contracts every day, but not all of them have liquidity.
Approximately 10 maturities have contracts with greater liquidity. There exist
contracts with monthly maturities for the months at the beginning of each quarter
(January, April, July and October). In addition, there are contracts with maturities
for the four months that follow the current month. The maturity date is the first
working day of the month in which the contract is due.

3.1. Data

The data used in this paper consist of daily observations of yields of future ID
contracts, closing prices. In practice, contracts with all maturities are not observed
on a daily basis. Therefore, based on the rates observed daily for the available
maturities, the data were converted to fixed maturities of 1, 2, 3, 4, 6, 9, 12, 15, 18,
24, 27, 29, 31 and 33 months, by means of interpolations using cubic splines. The
data were observed between January 2006 and February 2009, and represent the
most liquid ID contracts negotiated during the analyzed period. Table 1 presents
statistics for Brazilian yield curve.

Only the data referring to the adjustments of future ID contracts were used,
thus excluding swap rates. According to the BM&F (Brazilian Mecantile Exchange
– Bolsa de Mercadorias e Futuros) selection criteria, the closing data on PRE
ID swap rates are obtained from data on the adjustment of future ID contracts
negotiated in the BM&F, thus not corresponding to data on actually processed
trades in the swap modality. Therefore, as swap data are obtained from the future
ID contract or by its interpolation, we consider that by using only the future ID
data the model will be free of distortions arising from the use of published swap
rates as if they were information about actually processed transactions. Thus, the
interpolation for obtaining fixed maturity rates used in the model will rely on the
data on the adjustment of future ID contracts as source of information, as these
data reflect the rates of actually processed transactions, avoiding an interpolation
of data that result from a previous interpolation.

The yield curve for the analyzed period has several shapes, with many changes
in slope and curvature, often assuming ascending and inverted shapes throughout
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Table 1
Descriptive statistics, yield curves (Jan-06 to Feb-09)

Maturity Mean Std. Dev. Minimum Maximum ρ̂(21) ρ̂(63)

(months)

1 13.13 1.73 11.05 17.71 0.894 0.672

2 13.08 1.68 11.04 17.60 0.890 0.662

3 13.05 1.62 11.02 17.40 0.885 0.650

4 13.03 1.57 11.02 17.21 0.879 0.635

6 13.03 1.52 10.90 16.72 0.866 0.597

9 13.06 1.53 10.78 16.54 0.858 0.575

12 13.12 1.57 10.68 16.47 0.851 0.560

15 13.19 1.60 10.60 16.91 0.849 0.553

18 13.25 1.61 10.46 17.15 0.845 0.550

24 13.29 1.62 10.37 17.36 0.840 0.543

27 13.31 1.63 10.28 17.57 0.836 0.536

29 13.32 1.63 10.21 17.72 0.831 0.527

31 13.36 1.63 10.15 17.83 0.828 0.521

33 13.33 1.63 10.13 17.87 0.827 0.517

Note: We present descriptive statistics for daily yields at different maturities. The last three

columns contain sample autocorrelations at displacements of 1 and 3 months.

the period. Figure 1 shows the 3D graph of the analyzed curve.
Note that there is a large amount of time changes in the level of the curve. The

analyzed period was characterized by several changes in the Brazilian monetary
policy conduct. These changes in monetary policy conduct influence the yields
utilized on the market of public and private bonds, causing the Brazilian term
structure of interest rate to take different shapes throughout the period. Quite
often, the term structure of interest rate demonstrates changes not only in the
curvature pattern, but also in the slope pattern. This way, the analyzed period
seems quite appropriate for checking the predictability of Nelson and Siegel (1987),
extended by Diebold and Li (2006).

3.2. Empirical assessment of the model for future ID data

In Section 2, the model of Diebold and Li (2006) was laid out in state-space
form, with a VAR(1) for the transition equation, which models the dynamics of
the factors, and a linear measurement equation that relates the observed yields
to the state vector. The parameters were estimated simultaneously by maximum
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Fig. 1. Term structure of the interest rate (Jan 2006 to Feb 2009)

likelihood using the Kalman filter, which is an efficient estimator and also eliminates
the problem related to how to calibrate the decay parameter. The yields used consist
of daily data on future ID rates between January 2006 and February 2009, totaling
772 daily observations for each of the 14 maturities; of these observations the latter
252 (one business year) were used for the out-of-sample analysis.

The minimization of the negative of the logarithm of the likelihood function
was obtained by the quasi-Newton method with updates of the inverse Hessian
matrix using the BFGS method. More specifically, we used the csminwel algorithm,
developed by Christopher Sims to be robust to certain pathologies common to
likelihood functions such as hyperplane discontinuities, which is available at http:
//sims.princeton.edu/yftp/optimize/. The algorithm was configured to cease
iterations when it is no longer possible to increase the function value by at least
1.0e-05.

Unlike the two-step method, in the Kalman filter estimation the parameters are
estimated in a single step. Besides, λ which governs the decay rate of factor loadings
of both the level and curvature, was estimated jointly with other parameters
and not determined a priori. The initial values of the parameters for Kalman
filter initialization were obtained from the estimation as in Diebold and Li (2006)
using the two-step method. Figure 2 shows the factor loadings for level, slope and
curvature, obtained from the estimate of λ.

With an estimated λ equal to 0.1047, the factor loading relative to the curvature
assumes maximum value for maturities between 13 and 18 months.

The main argument in favor of Diebold-Li three-factor model is its capacity to
yield good forecasts. Although it is not the best model when the fit of the term
structure of interest rate is the major goal, the model put forward by Diebold-Li
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Fig. 2. Factor loadings (λ = 0.1047)

can replicate the several shapes taken by the yield curves. Figure 3 shows the real
data on the yield curve for some days and the curve adjusted by the parameters of
the estimated factor model.

Fig. 3. Yield curve fit for different points in time
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Note that the model estimated with three factors fits well to a wide variety of
shapes of the yield curve: positively sloped, negatively sloped and with different
curvature shapes. Figure 4 plots the daily residuals of the yield curve obtained from
the fitted model. Observe that the residuals do not have a systematic behavior
and are of small magnitude, indicating that the model can replicate the patterns
exhibited by the yield curve for the period. The graph shows that residuals have
greater volatility to shorter maturities. This situation is regarded as a stylized fact
when it comes to yield curves – shorter maturities are more volatile than the rates
of longer maturities. One of the possible explanations is that shorter maturities
are more susceptible to fluctuations of the benchmark interest rate (Selic rate) – a
monetary policy instrument.

Fig. 4. Residuals of the estimated yield curve (Jan 2006 to Feb 2009)

The estimated level of the yield curve, β1, has a statistically significant mean of
13.72%, with high persistence. Note that the level of the yield curve exhibited a
more volatile behavior after August 2008, when the financial crisis had a stronger
impact on the assets traded in the Brazilian market. Also during this period, the
level of the yield curve had its highest value (19.47). It should also be observed that
there is a sudden change of behavior in the slope and curvature factors. Figures 5.1
through 5.3 clearly show that not only the level, but also the slope and curvature
oscillate during this period, and that autocorrelations reveal the high persistence
of these two factors.

The assessment of the predictability of the model is made by splitting the sample
into two parts. One of these parts is used to estimate the model and includes 520
observations, with data obtained from January 2006 to January 2008. The second
part is used to assess the performance of forecasts produced by the model, with
data from February 2008 to February 2009, totaling 252 observations. Forecasts
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Fig. 5. Smoothed estimates of the factors

for one day, one month, three months and six months ahead are analyzed based
on a rolling window scheme with growing window size. Note that the period used
to asses the out-of-sample performance of the model includes the present crisis.
To complete the forecasting exercise, we obtained forecasts from a random walk
model for the yields and from the Diebold-Li model estimated by the two-step
method(RW and 2S). 3

Tables 2 and 3 show the estimated VAR parameters and the covariance matrix
of the estimated factors. Most covariances estimated are statistically significant,
indicating that the VAR is the most suitable structure to capture the dynamics of
the factor.

3 In the two-step estimation λ was set to 0.1182, which is the value that minimizes the RMSE. This
value maximizes the loading of the curvature factor for the average maturity of 13 to 15 months.
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Table 2
Estimated VAR Parameters

β1,t−1 β2,t−1 β3,t−1 µ

β1,t 0.991∗∗∗ 0.003∗ 0.001 13.72∗∗∗

(0.002) (0.002) (0.002) (1.01)

β2,t 0.008∗∗∗ 0.993∗∗∗ 0.002 −.72

(0.003) (0.002) (0.001) (1.35)

β3,t −0.003 −.0012∗∗∗ 1.000∗∗∗ 1.46

(.002) (.003) (0.002) (1.66)

Note: Standard errors in parenthesis are calculated

as the square root of the diagonal elements of the

inverse Hessian.
∗,∗∗, and ∗∗∗ indicates statistical significance

�the 10%, 5% and 1% significance level respectively.

Table 3
Covariance matrix of the estimated VAR

η1,t η2,t η3,t

η1,t 0.25∗∗∗ −0.07∗∗∗ −0.04∗∗∗

(0.001) (0.001) (0.002)

η2,t 0.26∗∗∗ 0.03

(0.001) (0.002)

η3,t 0.40∗∗∗

(0.003)

Standard errors in parenthesis are calculated as

the square root of the diagonal elements

of the inverse Hessian.
∗,∗∗, and ∗∗∗ indicates statistical significance at the

10%, 5% and 1% significance level respectively.

The analysis of VAR parameters indicates high persistence in the dynamics of
the latent factors. The statistically significant cross-effects for the dynamics of the
factors are observed from β1,t−1 in β2,t, and in β3,t, reinforce the importance of
modelling the fators as a VAR.

The approach to forecast the yield curve using the Diebold Li model consists in
predicting the factors and then using the forecasted factors to adjust the predicted
yield curve. Forecasts at time t, for t+ h, of yield with maturity τ , are given by:

ŷt+h|t(τ) = β̂1,t+h|t + β̂2,t+h|t

(
1− e−λ̂τ

λ̂τ

)
+ β̂3,t+h|t

(
1− e−λ̂τ

λ̂τ
− e−λ̂τ

)
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The forecasts of the factors are obtained using the estimated parameters of the
transition equation (1):

β̂t+h|t = µ̂+ Â · β̂t

Tables 4 and 5 show the RMSE for the out-of-sample forecasts made with the
model estimated by the Kalman filter (KF), for horizons of one day, one month,
three months and six months ahead. We also present the RMSE for the same
horizons, obtained by random walk and by Diebold-Li model estimated by the
two-step method, for comparison of the results.
Table 4
RMSE for out-of-sample forecasts (Feb 2008 to Feb 2009)

Maturity One day ahead One month ahead

(months) RW 2S FK RW 2S FK

1 4.13 10.81 26.06 38.55 48.30 47.67

2 4.57 5.96 11.61 41.25 51.41 37.42

3 5.44 10.74 5.10 45.33 56.01 32.90

4 6.94 14.02 9.71 52.54 62.94 36.23

7 10.49 16.72 16.02 70.18 78.20 51.58

9 13.01 17.36 16.59 80.78 88.53 63.01

12 15.76 18.39 16.29 91.76 99.35 75.86

15 18.02 20.18 17.92 98.02 106.21 84.61

19 19.18 21.15 19.32 105.00 110.52 90.86

23 20.65 21.79 20.36 111.21 113.80 95.91

26 21.53 22.74 21.22 117.03 117.72 101.20

29 22.20 24.59 22.06 121.28 121.86 105.86

31 22.66 26.36 22.99 123.64 124.93 109.09

32 22.84 27.70 23.73 124.79 126.89 111.01

Note: RMSE expressed in basis points, and maturities in

months (RW =Random Walk Model, 2S=Two-Step

Estimation, KF=Kalman Filter Estimation).

For the one-day-ahead forecasting horizon, the model estimated by the Kalman
filter outperforms the random walk only in the case of maturities of 3, 15, 23
and 26 months. The remaining maturities, even though they are often better than
the forecasts obtained when the model is estimated by the two-step method, are
worse than the random walk. Note that the worst performance is observed for
the shortest maturity which, as previously mentioned, is more susceptible to Selic
rate fluctuations. However, the quality of the forecasts improves substantially when
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the horizon is broadened. For one-month-ahead forecasts, the model estimated by
the Kalman filter outperforms the model estimated in two steps in all maturities,
and underperforms the random walk only for the shortest one. For medium-term
maturities, between 3 and 24 months, the forecasts obtained by the KF have an
RMSE on average 15 basis points lower than the RW and 2S. When the forecasts for
the 3-month horizon are analyzed, we note that the KF consistently outperforms its
counterparts for all maturities, showing an RMSE on average 35 basis points lower
than those obtained by 2S. For six-months-ahead forecasts, the KF outperforms
the RW in all maturities, showing an RMSE on average 40 basis points lower than
those obtained by RW, but is able to outperform the 2S only for shorter maturities.

Table 5
RMSE for out-of-sample forecasts (Feb 2008 to Feb 2009)

Maturity Three months ahead Six months ahead

(months) RW 2S FK RW 2S FK

1 88.44 100.69 71.49 141.17 133.81 96.20

2 94.41 106.67 63.03 144.59 133.30 91.99

3 103.89 112.69 62.97 151.28 132.77 95.78

4 117.66 121.39 71.31 161.65 134.04 108.59

7 146.13 140.99 97.11 189.94 144.11 144.43

9 161.48 153.07 114.38 205.41 150.81 166.10

12 176.11 164.42 131.42 222.08 158.63 186.12

15 184.61 170.51 140.98 230.55 162.08 196.50

19 186.01 172.97 144.58 229.31 161.33 197.64

23 187.03 173.43 144.46 223.25 157.71 192.37

26 189.83 173.79 144.18 219.10 154.77 186.64

29 192.88 175.16 144.63 214.69 153.46 182.12

31 194.89 176.22 145.20 212.30 152.78 179.17

32 196.01 177.05 145.72 211.16 152.52 177.48

Note: RMSE expressed in basis points, and maturities in

months (RW =Random Walk Model, 2S=Two-Step

Estimation, KF=Kalman Filter Estimation).

In the case of forecasts for the 6-month horizon, the KF outperforms the RW in all
maturities, but it is outclassed by DP for longer maturities. The smallest liquidity of
contracts with longer maturities may deteriorate the quality of forecasts, as pointed
out by Bali et al. (2006). According to their work, liquidity plays an important role
in the predictability of yields.
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To confirm whether the differences among the out-of-sample forecasts generated
by the model using Kalman filter are statistically significant, we applied the Diebold
and Mariano (DM) test to compare forecasts (see Diebold and Mariano 1995;
McCracken 2007). We compared the paired forecasts generated with Kalman filter,
using the two step and random walk methodologies. Let {di}ni=1 be a function of
the difference of square forecast errors produced by two models. We can write di
as:

di = (ŷt+h,i(τ)− yt+h(τ))2 − (ŷt+h,j(τ)− yt+h(τ))2 (14)
where i = FK or 2S and j = 2S or RW . The variables ŷt+h,i are h-step
ahead forecast at time t of FK, 2S and random walk (RW) models, respectively.

DM propose a test to check whether the average loss differential d = 1
n

n∑
i=1

di is

statistically different from zero, which is given by:

DM =
d√
δ̂
n

−→d N(0, 1) (15)

where δ̂ is an estimate of the long run covariance matriz of the di. We employ the
Newey and West (1987) estimate for δ̂, which allows controlling for serial correlation
in the forecasting errors.

Tables 6 and 7 show Diebold and Mariano statistics for a quadratic loss function.
Negative values indicate the superiority of the first method of the pair. High
absolute values for DM statistics indicate large probability to reject the null
hypothesis (differences between the mean quadratic errors are negligible). Absolute
values higher than 1.96 indicate rejection of the null hypothesis at 95% confidence.
Diebold and Mariano statistics support most of the conclusions above, such as, the
good results of the model estimated through Kalman filter for forecasts one and
three months ahead, overperforming the two step method for one day forecast and
showing a slightly inferior performance for the 6-month horizon.
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Table 6
Diebold and Mariano test for out-of-sample forecasts

Maturity One day ahead One month ahead

(months) FK×2S FK×RW 2S×RW FK×2S FK×RW 2S×RW

1 2.66 2.94 4.05 0.58 1.99 4.58

2 3.30 4.22 4.39 -0.15 -1.59 0.90

3 -3.50 -0.58 3.46 -0.90 -3.18 -0.09

4 1.00 3.28 3.38 -1.51 -3.68 -0.11

7 1.05 2.96 5.27 -2.24 -3.17 -0.16

9 -1.35 3.31 6.15 -2.46 -2.52 -0.03

12 -7.63 1.45 8.22 -2.29 -1.63 0.21

15 -5.83 -0.66 6.20 -2.19 -1.73 0.27

19 -5.23 0.61 4.95 -1.56 -1.82 -0.21

23 -5.04 -0.79 4.68 -1.41 -2.10 -1.01

26 -4.27 -1.25 3.99 -1.36 -2.20 -1.36

29 -3.17 -0.60 2.77 -1.32 -2.13 -1.48

31 -2.30 1.13 2.19 -1.31 -2.13 -1.52

32 -1.63 2.22 2.07 -1.23 -2.13 -1.56

Note: Diebold and Mariano statistics for one day and one month ahead,

comparing the methods by pairs. Negative values indicate superiority

of the forecast for the first method of the pair.
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Table 7
Diebold and Mariano test for out-of-sample forecasts

Maturity Three months ahead Six months ahead

(months) FK×2S FK×RW 2S×RW FK×2S FL×RW 2S×RW

1 -1.95 -1.30 -0.93 -0.18 -1.55 -1.17

2 -8.35 -1.89 -1.04 -0.17 -17.91 -7.18

3 -1.31 -2.24 -1.24 -0.09 -23.38 -5.30

4 -1.14 -2.76 -1.28 0.09 -9.88 -7.51

7 -1.03 -3.53 -1.40 2.44 -9.16 -2.15

9 -1.23 -3.45 -1.39 0.78 -21.02 -1.43

12 -6.85 -3.25 -1.38 0.73 -12.93 -1.58

15 -5.99 -3.32 -1.51 0.60 -32.44 -1.81

19 -2.16 -3.52 -1.83 0.52 -1.77 -1.94

23 -0.77 -3.07 -2.23 0.42 -1.68 -1.99

26 -0.78 -2.71 -2.50 0.35 -1.64 -1.92

29 -0.82 -2.45 -2.48 0.86 -1.62 -1.89

31 -0.82 -2.37 -2.31 9.67 -1.62 -1.90

32 -0.84 -2.34 -2.18 4.91 -1.64 -1.92

Note: Diebold and Mariano statistics for one day and one month ahead,

comparing the methods by pairs. Negative values indicate superiority

of the forecast for the first method of the pair.

4. Conclusion

In the present paper, Diebold and Li model, usually estimated for Brazilian data
by the inefficient two-step method, was put in the state-space form and efficiently
estimated by maximum likelihood using the Kalman filter. The maximum likelihood
estimation allows for the joint estimation of all parameters of the model, preventing
the a priori selection of the decay parameter. Smoothed estimates of the parameters,
which contemplate the whole information of the sample in order to infer on the
time series of the factors, were obtained by the Kalman smoother and used for the
out-of-sample forecast. The results indicate that the model estimated by maximum
likelihood yields better out-of-sample forecasts than the model estimated by the
two-step method for all forecasting horizons. In addition, the forecasts based on
the model estimated by maximum likelihood are better than those of the random
walk model for all maturities when horizons of one month, three months and six
months are considered. The yield curve factor models are the most widely used by
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central banks worldwide and by most market participants to adjust and forecast the
term structure of interest rate. The results obtained herein show the flexibility and
capacity of the model to adjust itself to a wide variety of yield curve shapes, and
that the estimation by the Kalman filter is better than its counterparts estimated
by the two-step method. A possible suggestion for further investigation is the
estimation of the model using four factors as proposed by Cochrane and Piazzesi
(2005), which include an additional curvature that improves the predictability in
markets with more volatile curves, as occurs in emerging markets.
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