
Automatic C Compiler Generation from
Architecture Description Language ISAC
Adam Husár1, Miloslav Trmač1, Jan Hranáč2, Tomáš Hruška1,
Karel Masařík1, Dušan Kolář1, and Zdeněk Přikryl1

1 Brno University of Technology, Faculty of Information Technology
Bozetechova 2, Brno, Czech Republic
{ihusar, itrmac, hruska, masarik, kolar, iprikryl}@fit.vutbr.cz

2 ApS Brno, s.r.o.
Purkynova 93a, Brno, Czech Republic
hranac@aps-brno.cz

Abstract
This paper deals with retargetable compiler generation. After an introduction to application-
specific instruction set processor design and a review of code generation in compiler backends,
ISAC architecture description language is introduced. Automatic approach to instruction se-
mantics extraction from ISAC models which result is usable for backend generation is presented.
This approach was successfully tested on three models of MIPS, ARM and TI MSP430 architec-
tures. Further backend generation process that uses extracted instruction is semantics presented.
This process was currently tested on the MIPS architecture and some preliminary results are
shown.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.47

1 Introduction

As semiconductor process node technology advances and allows Moore’s law to be still
valid, chip designers are faced with a problem how to make a chip that conforms to given
performance, power, and cost requirements, but still can be used in many different devices in
order to alleviate non-recurring engineering costs (chip design and mask manufacturing) that
rise tremendously with each new technology process node.

Electronic System Level (ESL) methodologies try to lower design costs by providing
guidelines for SoC (System on Chip) and MPSoC (Multiprocessor SoC) design. One ESL
methodology for MPSoC design presented in [5] comprises of several steps, where the most
important ones are target application analysis, task partitioning to specific processors,
and optimization of such specific processors to suit performance, power and cost require-
ments. Processors optimized for a certain task are called Application Specific Instruction-set
Processors (ASIPs).

When an ASIP is designed, the target application is analyzed and hot spots are found.
New instructions that accelerate frequent computations are added to the ASIP’s instruction
set and the application is compiled and analyzed again. This process, often called compiler-in-
the-loop ASIP design [2], is iteratively repeated until requirements are satisfied. To allow such
optimization process, compiler, assembler, and simulator for the current ASIP architecture
must be available.

Project Lissom running at the Brno University of Technology approaches this problem
by providing an development environment for application-specific instruction processor
(ASIP) design and optimization. Using Architecture Description Language (ADL) ISAC [7],
the user can describe both the architecture (instruction set, registers and memories) and

© A. Husár, M. Trmač, J. Hranáč, T. Hruška, K. Masařík, D. Kolář, Z. Přikryl;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 47–53

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.47
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

48 Automatic C Compiler Generation from ADL ISAC

microarchitecture (usually pipelined processor implementation). From this description can
all the needed tools and hardware description be generated. C language compiler is one of
the essential tools and this paper presents a novel approach to higher-level programming
language compiler generation from an ADL model.

2 Related Work

2.1 Retargetable Compilers

Retargetable compilers are higher-level programming language compilers that can be adapted
to compile for different architectures.

Compilers are usually divided into three components. A frontend first parses input
language, performs semantic checks and generates intermediate program representation
(IR). Then a midend (also called optimizer or middle-end) is applied and performs mostly
target-independent optimizations on IR. Resulting IR is passed to a backend (also called
code generator) whose task is to transform the IR into target architecture program.

Examples of retargetable compilers are gcc, LLVM, CoSy, SUIF, lcc, Trimaran, LANCE,
and SPAM. Target features may vary substantially and because of flexibility and needs for
some target-specific modifications is adapting these listed compilers for a different target
requiring extensive compiler expertise and it is up to the tool developers to make the compiler
retargetting based on an ADL model as user-retargetable as possible.

2.2 Automatical Compiler Retargeting using an ADL Model

Instruction selection pass is usually performed in a backend as one of the first passes. The
purpose is to transform input intermediate representation that uses compiler’s IR instructions
to a representation with target instructions. Instruction selection pass is generated by
so-called code generator generators from some instruction description, where instruction
semantics is in form of a tree or DAG (Directed Acyclic Graph) patterns.

Instruction selection pass is the most problematic pass to generate from an ADL model,
and in this paper we will focus only on it. For example in LISATek Processor Designer suite,
one of the most advanced ASIP design environments used in practice, significant manual
effort to create instruction selection patterns from LISA language model is needed [3]. In a
recent book C Compilers for ASIPs: Automatic Compiler Generation with LISA [2], they
state that to derive instruction selection patterns from instruction behavior in C “is quite
difficult, if not impossible”. In the first compiler generator version, patterns were described
using graphical interface and this caused the semantics information to be stored outside
the LISA model in a special format. To partially overcome this problem, a special section
SEMANTICS for patterns description was introduced, however, the instruction semantics is
still present in the model twice, once in SEMANTICS and once in BEHAVIOR. A similar
approach is used in Tensilica TIE [5], where two types of description: one for simulation
and for hardware generation, second for compiler generation, are used. Review of other
approaches to compiler generation can be found in [8], and also in [2].

We are convinced that a potential ADL user is usually familiar with the C language and
to specify instruction behavior using this language is very convenient, better than to learn a
new specification language with new syntax and a set of operations. However, as the LISA
approach shows, to extract instruction semantics from C language description suitable for
compiler generation is difficult and even is such a large project was not solved.

A. Husár, M. Trmač, J. Hranáč, T. Hruška, K. Masařík, D. Kolář, Z. Přikryl 49

This paper comes with a novel solution that approaches this problem and that allows
to extract automatically instruction selection patterns. Further, the process of compiler
backend generation that uses such extracted instruction semantics is briefly presented.

3 ISAC Language

The ISAC (Instruction Set Architecture C) language falls into the category of mixed ADLs
and allows both to describe architecture and microarchitecture. For purposes of this paper,
we will consider only the architectural description. The ISAC language is originally based on
the language LISA [1] where we simplified syntax and improved some constructs. Processor
architecture consists of register, memory, and instruction set specification.

Description of each instruction consists of textual and binary representation and also of
its semantics (behavior). For most existing instruction sets, many of instruction features are
similar (like register and immediate operands, or conditional predicates), so for conciseness,
the description is hierarchical and it is based on translational context-free grammars. There
are two main constructs used to describe the instruction set. The first one is OPERATION,
where parts of instruction’s syntax, coding, and semantics are described. Construct GROUP
is used to describe situations where an instance in an operation can be one of a set of
operations or groups. One special group and operation modifier was introduced to the ISAC
language because of compiler generation. It is a keyword REPRESENTS and tells that this
group or operation is a register operand.

Example description of MIPS architecture instructions ADD and SUB is in fig. 1. Names
of sections ASSEMBLER, CODING, and EXPRESSION were abbreviated to ASM, COD,
and EXPR, also binary encoding was slightly modified in this example.

OPERATION reg REPRESENTS regs {
ASM { "R" regnum=#U }; COD { regnum=0bx[5] }; EXPR { regnum; } }

OPERATION opc_add { ASM{ "ADD" }; COD{ 0b10 }; EXPR{ 0x2; };}
OPERATION opc_sub { ASM{ "SUB" }; COD{ 0b11 }; EXPR{ 0x3; };}
GROUP opc = opc_add, opc_sub;
OPERATION instr {

INSTANCE reg ALIAS {rd, rs, rt}; INSTANCE opc;
ASM { opc rd "," rs "," rt }; // Assembly syntax
COD { 0b00 rs rt rd opc }; // Binary coding
BEHAVIOR { // Instruction behavior described using C

switch (opc) {
case 0x2: regs[rd] = regs[rs] + regs[rt]; break;
case 0x3: regs[rd] = regs[rs] - regs[rt]; break;

}};}

Figure 1 Description of MIPS instructions ADD and SUB in ISAC

To generate a C compiler, we need to extract instruction semantics and syntax for each
instruction and then use it to generate compiler backend. We will look at these two steps in
the following sections.

MEMICS’10

50 Automatic C Compiler Generation from ADL ISAC

instr instr__opc_add__reg__reg__reg__, // Name
%R1 = i32 regop(cl0, 1); // Semantics
%R2 = i32 regop(cl0, 2);
%add = add(%R1, %R2);
regop(cl0, 0) = i32 %add;,
"ADD" 0 "," 1 "," 2 // Syntax

Figure 2 Extracted instruction ADD with its semantics and syntax

4 Instruction Semantics Extraction

In the ISAC language is the instruction set described hierarchically using context-free
grammars, there is no notion of an instruction present. However, to be able to identify
particular instructions in the backend, we need to extract a set of instructions. To get such a
set, we simply generate the assembly language from the assembly language grammar obtained
from the model. Absence of cycles in this grammar is ensured by the ISAC language compiler,
therefore the generated language is finite. Detailed information on grammar extraction from
an ISAC model can be found in [6]. For our example in fig. 1, we get a language consisting
of two words “ADD reg , reg , reg” and “SUB reg , reg , reg”.

We also need unique instruction identification and instruction semantics. To obtain this,
we construct a finite automaton with three types of terminals on transitions: operation
names, assembly syntax parts, and instance names and parts of semantics in language C.
Each path from the starting state to a final state then represents one instruction. For each
such path we separately concatenate operation names, assembly terminals, and we also create
C code that represents the instruction semantics.

Like this we obtain the instruction syntax and semantics, the only problem is that the
form of semantics in the C language we retrieved from the ISAC model is neither suitable
for instruction selection pass generation nor for other analyses.

But we can simplify it. We parse this code, then apply optimizations like constant
propagation and dead code elimination. Further, memory and register accesses are identified.
This way we obtain semantics representation that is usable for instruction selection pass
generation. This process is fully automatic and we need no to add to the model information
about instructions specific only for compiler generation. This approach overcomes possible
inconsistency problems when behavior is described twice in LISA approach (described in
subsection 2.2).

The result for our example can be seen in fig. 2. Semantics is described using our SSA-
based intermediate representation, auxiliary variables have prefix % and cl0 is an identifier
that specifies general-purpose register class.

In this example, instruction semantics is described as a simple DAG with two register
input operands on leaves. Register values are added and stored into another register operand.
As operations in semantics description can be standard arithmetic, register read/write, and
memory load/store operations used. Conditional execution is expressed using operation if,
and jumps with operation br.

5 Retargetable Backend Generation

We have decided to base our work on the open-source LLVM compiler[4]. Only trivial
modifications are necessary in the frontend, most of the work involves the backend (which

A. Husár, M. Trmač, J. Hranáč, T. Hruška, K. Masařík, D. Kolář, Z. Přikryl 51

def instr__opc_add__reg__reg__reg__:
LissomInst<
(outs cl0:$op0), (ins cl0:$op1, cl0:$op2), // Operands
"ADD $op0 , $op1 , $op2", // Syntax
[(set cl0:$op0, (add cl0:$op1, cl0:$op2))]>; // Selection pattern

Figure 3 LLVM instruction description example

generates the actual assembler output).
The largest component of the LLVM backend is instruction selector, which converts an

input program from a target-independent representation into a lower-level representation
that deals with instructions of the target architecture. LLVM uses a tree pattern matching
instruction selector, which can take advantage of complex instructions, as long as they
generate only one result. The instruction selector is automatically generated from instruction
descriptions, they include an expression tree representation of the semantics to match, but it
also allows adding C++ code to handle more complex cases.

An example of instruction description that is generated from example in fig. 2 is provided
in fig. 3.

LLVM also needs some information about the overall structure of the instruction set. Most
important is the legalization pass, which modifies the input program to only use operations
that are available in the target architecture. Unfortunately LLVM cannot extract the required
information from the individual instruction descriptions, so this information is generated
separately.

Fuirther LLVM needs to generate some target instructions after instruction selection has
finished, notably instructions for moves and memory accesses necessary for register allocation
and spilling. These instructions are located by finding instructions matching a specific form
of operations, that do not have any unwanted side effects.

Finally, we generate code handling function frames, function calls, parameter passing,
and other transformations dependent on the architecture Application Binary Interface (ABI)
describing calling conventions and register allocation rules. Means to allow the user to specify
the ABI are currently being added to the ISAC language. In absence of such information,
the backend generator automatically generates a reasonable ABI by examining the existing
instructions, e.g. looking for a “return” or “call” instruction.

6 Results and Future Work

Program that extracts compiler generator information from ISAC model was implemented
and tested on architectural models of 2 32-bit general-purpose processors MIPS (MIPS32,
Release 1) and ARM (ARMv5) and a 16-bit microcontroller MSP430 from Texas Instruments.
MIPS and ARM models describe all basic instructions from their instruction set without any
extensions and co-processors, model of MSP430 is complete and describes all the instructions
this instruction set provides. Results are shown in table 1. All tests were run on Intel Core2
Quad 9550 @2.83GHz, Fedora 9, x86_64, only one core was used. Semantics extraction
program was compiled with gcc 4.4.1 using -O3. Total execution time is an average from 5
runs and the standard deviation was ± 3%.

Each instruction of the ARM architecture can have one of 15 different predicates and may
use one of 8 different addressing modes and this is the reason why the extracted instructions
count is so high. The behavior of most instructions of the the MSP430 architecture is described

MEMICS’10

52 Automatic C Compiler Generation from ADL ISAC

using just one ISAC operation that contains large switches. For each such instruction is lots
of code generated and this causes high relative extraction time.

We cannot compare these counts of extracted instructions to other approaches, because in
the available publications on related work, intermediate instruction-set forms are neglected,
and directly the results of generated compilers are presented.

Table 1 Transformation time and count of generated instructions for ISAC models of MIPS and
ARM architectures

MIPS ARM MSP430
ISAC lines 1110 1450 2040
C lines 610 1190 665
Count of extracted instructions 281 5741 718
Extraction time 0.5 s 35.5 s 16.0 s

When creating the ISAC model, the designer must be careful about using correct data
types, otherwise unnecessary data type conversions in selection patterns are generated.
Inspection of generated patterns can reveal diverse bugs in instruction behavior. A tool that
graphically displays extracted patterns was developed and this and this can greatly aid in
processor design verification.

Extracted semantics for the MIPS architecture was used to generate MIPS LLVM backend.
This backend was first working at the time of writing this paper, therefore we present here
only preliminary results for a simple program that calculates the Fibonacci sequence.

This program was compiled for MIPS by compilers GCC 4.4.1, and CLANG 1.0 with
LLVM 2.8 (CLANG is a frontend that generates intermediate representation for LLVM).
Input for our generated backed was obtained by compiling source code with CLANG 1.0
and then optimized (for -O3) with LLVM 2.8 optimizer. Resulting assembly code was then
assembled and simulated using tools automatically generated from the MIPS ISAC model
(e.g. [7]). Cycle counts needed to execute the program are shown in table 2.

Table 2 Preliminary results for backend generator for the MIPS architecture, values are cycle
counts needed to simulate compiled program that calculates the Fibonacci sequence

GCC LLVM Backend generated from the
ISAC model

No optimizations (-O0) 1991 2200 1416
All optimizations (-O3) 508 506 913

Current plans for the future are: to allow the user to specify ABI, support for predicated
execution, arbitrary bit-width integral data types, floating and vector (SIMD) variables and
operations. Also we will improve the backend generator according to semantics description
extracted from ARM, MSP430, and other models.

7 Conclusion

This paper presents an approach to higher-level language compiler generation. Backend is
the part of compiler, where most of target-specific transformations is done and to accelerate
application-specific processor architecture development, we need to generate compiler backend
as automatically as possible.

A. Husár, M. Trmač, J. Hranáč, T. Hruška, K. Masařík, D. Kolář, Z. Přikryl 53

First, architecture description language ISAC is briefly presented. Further, translation
from ISAC architecture model to the compiler generation model is described. This approach
overcomes problems caused by possible architecture model inconsistencies when one type
of description is used for simulation and hardware generation and another type is used for
compiler generation as is in similar projects usual. Inspection of extracted patterns can also
point to some bugs that may be present in the architecture model and leads the user to
use exact data types. Usage of exact data types also results in a model usable for efficient
hardware generation.

Instruction semantics extraction from ISAC is fully automatic and it was tested on
architectures MIPS, ARM, and MSP430. Extracted information was used to generate a
backend for the MIPS architecture and some preliminary results were presented.

Acknowledgments

This research was supported by the grants of MPO Czech Republic FR-TI1/038, by the
Research Plan MSM No. 0021630528, by the doctoral grant GA CR 102/09/H042, by the
BUT FIT grant FIT-SS-10-1, and by the European project SMECY.

References
1 Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture Exploration for Em-

bedded Processors with Lisa. Kluwer Academic Publishers, Norwell, MA, USA, 2002.
2 Manuel Hohenauer and Rainer Leupers. C Compilers for ASIPs: Automatic Compiler

Generation with LISA. Springer Publishing Company, Incorporated, 2009.
3 Paolo Ienne and Rainer Leupers, editors. Customizable Embedded Processors. Morgan

Kaufmann, 2007.
4 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In CGO ’04: Proceedings of the international symposium on
Code generation and optimization, page 75, Washington, DC, USA, 2004. IEEE Computer
Society.

5 Steve Leibson. Designing SOCs with Configured Cores: Unleashing the Tensilica Xtensa and
Diamond Cores (Systems on Silicon). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2006.

6 Roman Lukáš, Tomáš Hruška, Dušan Kolář, and Karel Masařík. Two-Way Deterministic
Translation and Its Usage in Practice. In Proceedings of 8th Spring International Conference
- ISIM’05, pages 101–107, 2005.

7 Karel Masařík, Tomáš Hruška, and Dušan Kolář. Language and Development Environ-
ment For Microprocessor Design Of Embedded Systems. In Proceedings of IFAC Workshop
on Programmable Devices and Embedded Systems PDeS 2006, pages 120–125. Faculty of
Electrical Engineering and Communication BUT, 2006.

8 Prabhat Mishra and Nikil Dutt, editors. Processor Description Languages. Morgan
Kaufmann, 2008.

MEMICS’10

	Introduction
	Related Work
	Retargetable Compilers
	Automatical Compiler Retargeting using an ADL Model

	ISAC Language
	Instruction Semantics Extraction
	Retargetable Backend Generation
	Results and Future Work
	Conclusion

