
09432 Report: Quantitative Software Design

Astrid Kreissig,1 Iman Poernomo,2 and Ralf Reussner3

1 IBM Entwicklungslabor, Böblingen, Germany
2 Department of Computer Science, King’s College London

Strand, London WC2R 2LS UK
3 Universität Karlsruhe (TH), Germany

Abstract. Between 20.10.09 and 23.10.09, the Dagstuhl Seminar 09432,
Quantitative Software Design, was held at the International Conference
and Research Center (IBFI), Schloss Dagstuhl.
Quantitative software design is a field of research that is not yet firmly
established. A number of challenging open research issues are only re-
cently being addressed by the academic research community (see below).
The topic is also gaining increasing emphasis in industrial research, as
any progress towards a more systematic and goal-driven software design
promises the reduction of costs and risks of software projects, by avoiding
current trial-and-error approaches to design. The whole field is therefore
of high industrial relevance, though it is far from providing ready-to-use
solutions.
The seminar was structured around ten discussion groups that consid-
ered the question of how quantitative software engineering is, could and
should be done. A number of interesting insights were gained, particu-
larly due to the interdisciplinary nature of the seminar group and the
mix of industrialists and academics. This collection summarizes these
group discussions.
Keywords: software design, software architecture, software components,
quality of service, software quality, machine learning, optimisation and
software quality attributes (including dependability, maintainability and
security metrics).

Quantitative software design is a field of research that is not yet firmly es-
tablished. A number of challenging open research issues are only recently being
addressed by the academic research community (see below). The topic is also
gaining increasing emphasis in industrial research, as any progress towards a
more systematic and goal-driven software design promises the reduction of costs
and risks of software projects, by avoiding current trial-and-error approaches to
design. The whole field is therefore of high industrial relevance, though it is far
from providing ready-to-use solutions.

The research area of quantitative software design is not yet firmly established.
Its subject is the investigation of the relationship of the design of a software
system on quantitatively measurable quality attributes. Such quality attributes
include internal quality attributes (such as maintainability), but also externally
measurable attributes (such as performance metrics, reliability or availability).

Dagstuhl Seminar Proceedings 09432
Quantitative Software Design
http://drops.dagstuhl.de/opus/volltexte/2010/2515

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

This also includes quality attributes where quantitative metrics are under cur-
rent investigation, such as security. While there is no debate on the fact that the
software design (mainly its architecture) is the main influencing factor on the
quality of the resulting software system, an understanding of how an architec-
tures influence on the quality is currently primarily anecdotal. Much progress was
made on recent years in the area of model-based and model-driven quality pre-
diction where software architectures are used as an input for the prediction of the
quality of the system, namely various performance metrics, such as throughput,
response time or reaction time. However, several important scientific questions
remain unanswered:

– trade-off decisions between antagonistic quality attributes
– quantitative metrics for relevant quality attributes such as security
– software design as an optimisation problem
– lifting classical maintainability metrics to the architectural level

The aim of the seminar was to bring together industrial and academic experts
from relevant areas to establish the field of quantitative software design. We
were fortunate enough to have a group whose expertise cut across the relevant
domains:software architecture, component-based software engineering, model-
based software, quality of service and business informatics.

The seminar was organized into smaller discussion groups who attempted to
define and problematise the relevant sub areas of the field. This report summa-
rizes the outcomes of these groups.

Discussion group 1: Dependencies between QoS attributes:
towards a taxonomy

Participants: Steffan Becker, Raffaela Mirandola, Assel Akzhalova, Anne Martens
The group developed a tentative taxonomy of the relationships between QoS

attributes. Relations were found to range over inclusion, functional dependency,
antagonistic and complementarily aspects.

Discussion group 2: Dependencies between QoS attributes:
two perspectives on non-functional runtime attributes

Bara Buhnova, Carlo Ghezzi, Florian Matthes, Jens Happe, Lucia Kapova
The quality of software systems used to be understood in terms of various

quality attributes that can hardly be studied independently. The aim of this
break-out group was to deeper understand the interdependencies among non-
functional run-time attributes of software systems and their components. A tax-
onomy was developed that attempted to localize these quality attributes within
software architectures. The taxonomy distinguished between user and system
administrator perspective. For illustration, an end user considers performance
in terms of response time and throughput of the system as a black box, while

3

the administration view in addition considers performance in terms of the re-
source utilization aspects of the internal subcomponents of the system. For each
of the two perspectives, we have structured the identified run-time quality at-
tributes into hierarchies, and presented the roots of the hierarchies in terms of
a dependency map.

The focus of this group was on non-functional runtime attributes. A taxon-
omy was developed that attempted to localize these quality attributes within
software architectures. Interesting discussion about non-functional properties.
The taxonomy distinguished between user perspectives: specifically end user/blackbox
and and administration perspectives. For example, an end-user will consider per-
formance in terms of response time and throughput of the system as a blackbox.
In contrast, an administration view will consider performance in terms of the
resource utilization aspects of the internal subcomponents of the system. One of
the novel, and contentious, opinion of this group was that reliability and avail-
ability are more closely related from an end user perspective, but diverge at an
administration view.

Discussion group 3&4: Maintainability

Participants: Astrid Kreissig, Frantisek Plasil, Iman Poernomo, Judith Stafford,
Johannes Stammel, Ralf Reussner, Eitan Farchi, Heiko Koziolek

This group considered the problem of the impact architectural design deci-
sions can have on the maintainability attribute. It considered correlations be-
tween intuitions of maintainability and currently proposed metrics. The group
discussed also how to validate the impact and how to then predict the impact
of the architectural design on the maintainability.

Discussion group 5: Software Design as an Optimisation
problem

Participants: Anne Martens, Assel Akzhalova, Raffaela Mirandola, Lucia Kapova,
Bara Buhnova, Heiko Koziolek, Eitan Farchi, Carlo Ghezzi

The optimization design decision requires choosing between different alterna-
tives optimizing for multiple objectives. For example, optimize performance and
cost of development and configuration of a composition of software components
mapped to some hardware configuration. In addition, each stakeholder involved
in the design decision has different preferences over the design alternatives. An-
other observation is that the stakeholder preference is typically not linear. When
the preference is linear it may be mapped to a utility or measure. Sometimes
an external measure – for example, throughput – can be measured and/or opti-
mized but the mapping of these external measures to stakeholders utility is non
trivial. As a consequence partial order is the basic model that represents a stake-
holder preference. When partial order applies, as it typically does, appropriate
optimization techniques from economy and game theory could be used.

4

One of the greatest research challenges in the context of quantitative analysis
of software is validation of metrics. It seems that an axiomatic approach could
server to provide some initial necessary conditions for the quality of diffrent
metrics. Correlation with cost functions based on historical data can serve as a
validation mechanism for suggested metrics.

A range of different optimization design problems and optimal control tech-
niques were considered. One example was the tradeoff analysis for response time
versus reliability and search-based techniques. Another example was of conflict-
ing stakeholder requirements and the possibility of employing economic optimal
decision making theory.

Discussion group 6: Agility and architecture

Johannes Stammel, Christine Hofmeister, Frantisek Plasil, Florian Matthias,
Ralf Reussner

This group considered possible compatibilities and incompatibilities between
agile approaches to software development and software architecture-oriented de-
sign and implementation.

It was observed that, while agile processes work well for projects in the small,
larger modern forms of development, such as service oriented architectures, are
not readily described in code as per agile principles.

On the other hand, it was felt that there is good motivation for introducing
architecture into agile processes, to facilitate cross project reuse and to better
deal with extra-functional analysis.

It was suggested that one means of reconciliation might be through the use
of Domain Specific Languages (DSLs). If a development team has a DSL, then
it can be used in an agile process. The development of the DSL itself would not
be susceptible to agile development, but the DSL could then be used to support
agility. A case in point that is already ubiquitous would be rapid application
development frameworks such as Smalltalk, Delphi and, more recently, Eclipse.
These can be considered as DSLs that support agile development. If such DSLs
were developed to encapsulate architectural issues, the two realms might be
reconciled.

The group concluded that such research will demand support for a range of
difficult issues, such as co-evolution, refactoring at both code and architectural
levels, permanent traceability and new forms of syntax (possibly visual).

Discussion group 7: Quantitative perspective of systems of
sytems

Astrid Kreissig, Iman Poernomo, Jens Happe, Judith Stafford, Steffen Becker,
Florian Matthes

This group had a promising interdisciplinary nature, attempting to seek com-
mon ground between business informatics and software engineering. On the busi-
ness side, it is understood that Key Performance Indicators (KPIs) are forms of

5

metrics over an organizations work, and are increasingly important as a means of
doing business management at the top level of an organization. They are different
from technical software metrics. However, as organizations become increasingly
dependent on integrated automation, the group considered how technical soft-
ware and resource metrics at the lower levels of an organization might be linked
to these higher level KPIs.

It was understood that simply combining existing metrics of multiple sys-
tems is not sufficient to arrive at useful recommendations for key performance
indicators (KPIs) in organizations. This is for two reasons: 1) a mismatch in
terminology and 2) complexity in the nature of the socio-technical system itself.
The group investigated the kind of problems that need to be addressed in a solu-
tion, taking the form of interaction between the KPI view and systems quantity
attributes.

Discussion group 8: Design-time versus run-time

Florian Matthes, Assel Akzhalova, Bara Buhnova, Carlo Ghezzi, Christine Hofmeis-
ter, Florian Matthes, Frantisek Plasil, Jens Happe

This group considered possible inconsistencies between design-time models
and runtime and considered the reason for their occurrence. Such deviations
occur because of changes in environment e.g., usage patters, behaviour of called
services. The group developed a goal-oriented control cycle model: moving from
a quantitative goal, via planning to a design-time model, whose implementation
leads to an interaction trace and analyzable run-time model that can be checked
for deviation from the goal and some appropriate control action. It was felt that
there is a need to develop the science behind this loop and to investigate the
suitability for runtime usage of existing models.

Discussion group 10: MDD

Steffen Becker, Jens Happe
While model driven engineering is now emerging as a viable industrial ap-

proach to developing systems, the question of quality of transformations appears
to be very much an open question. The focus of this group was on what the
metrics for model transformations might be, particularly in rule-based transfor-
mation languages.

Abstract: Quantitative Software Engineering

Eitan Farchi, IBM, Haifa
Optimization design decision requires choosing between different alternatives

optimizing for multiple objectives For example, optimize performance and cost of
development and configuration of a composition of software components mapped
to some hardware configuration. In additin, each stakeholder involved in the

6

design decision has different preferences over the design alternatives. Another
observation is that the stakeholder preference is typically not linear. When the
preference is linear it may be mapped to a utility or measure. Sometimes an
external measure, e.g., throughput, can be measured and/or optimized but the
mapping of these external measures to stakeholders utility is non trivial. As a
consequence partial order is the basic model that represents a stakeholder pref-
erence. When partial order applies, as it typically does, appropriate optimization
techniques from economy and game theory could be used.

One of the greatest research challenges in the context of quantitative analysis
of software is validation of metrics. It seems that an axiomatic approach could
server to provide some initial necessary conditions for the quality of diffrent
metrics. Correlation with cost functions based on historical data can serve as a
validation mechanism for suggested metrics.

