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Abstract

I argue that data becomes temporarily interesting by itself to some self-impro-

ving, but computationally limited, subjective observer once he learns to predict or

compress the data in a better way, thus making it subjectively simpler and more

beautiful. Curiosity is the desire to create or discover more non-random, non-

arbitrary, regular data that is novel and surprising not in the traditional sense of

Boltzmann and Shannon but in the sense that it allows for compression progress

because its regularity was not yet known. This drive maximizes interestingness, the

first derivative of subjective beauty or compressibility, that is, the steepness of the

learning curve. It motivates exploring infants, pure mathematicians, composers,

artists, dancers, comedians, yourself, and (since 1990) artificial systems.

First version of this preprint published 23 Dec 2008; revised 15 April 2009. Short

version: [91]. Long version: [90]. We distill some of the essential ideas in earlier

work (1990-2008) on this subject: [57, 58, 61, 59, 60, 108, 68, 72, 76] and especially

recent papers [81, 87, 88, 89].
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1 Store & Compress & Reward Compression Progress

If the history of the entire universe were computable [123, 124], and there is no evi-

dence against this possibility [84], then its simplest explanation would be the shortest

program that computes it [65, 70]. Unfortunately there is no general way of finding the

shortest program computing any given data [34, 106, 107, 37]. Therefore physicists

have traditionally proceeded incrementally, analyzing just a small aspect of the world

at any given time, trying to find simple laws that allow for describing their limited

observations better than the best previously known law, essentially trying to find a pro-

gram that compresses the observed data better than the best previously known program.

For example, Newton’s law of gravity can be formulated as a short piece of code which

allows for substantially compressing many observation sequences involving falling ap-

ples and other objects. Although its predictive power is limited—for example, it does

not explain quantum fluctuations of apple atoms—it still allows for greatly reducing the

number of bits required to encode the data stream, by assigning short codes to events

that are predictable with high probability [28] under the assumption that the law holds.

Einstein’s general relativity theory yields additional compression progress as it com-

pactly explains many previously unexplained deviations from Newton’s predictions.

Most physicists believe there is still room for further advances. Physicists, however,

are not the only ones with a desire to improve the subjective compressibility of their

observations. Since short and simple explanations of the past usually reflect some

repetitive regularity that helps to predict the future as well, every intelligent system

interested in achieving future goals should be motivated to compress the history of raw

sensory inputs in response to its actions, simply to improve its ability to plan ahead.

A long time ago, Piaget [49] already explained the explorative learning behav-

ior of children through his concepts of assimilation (new inputs are embedded in old

schemas—this may be viewed as a type of compression) and accommodation (adapting

an old schema to a new input—this may be viewed as a type of compression improve-

ment), but his informal ideas did not provide enough formal details to permit computer

implementations of his concepts. How to model a compression progress drive in arti-

ficial systems? Consider an active agent interacting with an initially unknown world.

We may use our general Reinforcement Learning (RL) framework of artificial curiosity
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(1990-2008) [57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89] to make the agent dis-

cover data that allows for additional compression progress and improved predictability.

The framework directs the agent towards a better understanding the world through ac-

tive exploration, even when external reward is rare or absent, through intrinsic reward

or curiosity reward for actions leading to discoveries of previously unknown regulari-

ties in the action-dependent incoming data stream.

1.1 Outline

Section 1.2 will informally describe our algorithmic framework based on: (1) a contin-

ually improving predictor or compressor of the continually growing data history, (2) a

computable measure of the compressor’s progress (to calculate intrinsic rewards), (3) a

reward optimizer or reinforcement learner translating rewards into action sequences ex-

pected to maximize future reward. The formal details are left to the Appendix, which

will elaborate on the underlying theoretical concepts and describe discrete time im-

plementations. Section 1.3 will discuss the relation to external reward (external in

the sense of: originating outside of the brain which is controlling the actions of its

“external” body). Section 2 will informally show that many essential ingredients of

intelligence and cognition can be viewed as natural consequences of our framework,

for example, detection of novelty & surprise & interestingness, unsupervised shifts of

attention, subjective perception of beauty, curiosity, creativity, art, science, music, and

jokes. In particular, we reject the traditional Boltzmann / Shannon notion of surprise,

and demonstrate that both science and art can be regarded as by-products of the desire

to create / discover more data that is compressible in hitherto unknown ways. Section

3 will give an overview of previous concrete implementations of approximations of

our framework. Section 4 will apply the theory to images tailored to human observers,

illustrating the rewarding learning process leading from less to more subjective com-

pressibility. Section 5 will outline how to improve our previous implementations, and

how to further test predictions of our theory in psychology and neuroscience.

1.2 Algorithmic Framework

The basic ideas are embodied by the following set of simple algorithmic principles

distilling some of the essential ideas in previous publications on this topic [57, 58, 61,

59, 60, 108, 68, 72, 76, 81, 88, 87, 89]. As mentioned above, formal details are left to

the Appendix. As discussed in Section 2, the principles at least qualitatively explain

many aspects of intelligent agents such as humans. This encourages us to implement

and evaluate them in cognitive robots and other artificial systems.

1. Store everything. During interaction with the world, store the entire raw history

of actions and sensory observations including reward signals—the data is holy as

it is the only basis of all that can be known about the world. To see that full data

storage is not unrealistic: A human lifetime rarely lasts much longer than 3×109

seconds. The human brain has roughly 1010 neurons, each with 104 synapses on

average. Assuming that only half of the brain’s capacity is used for storing raw

data, and that each synapse can store at most 6 bits, there is still enough capacity

4



to encode the lifelong sensory input stream with a rate of roughly 105 bits/s,

comparable to the demands of a movie with reasonable resolution. The storage

capacity of affordable technical systems will soon exceed this value. If you can

store the data, do not throw it away!

2. Improve subjective compressibility. In principle, any regularity in the data

history can be used to compress it. The compressed version of the data can be

viewed as its simplifying explanation. Thus, to better explain the world, spend

some of the computation time on an adaptive compression algorithm trying to

partially compress the data. For example, an adaptive neural network [8] may

be able to learn to predict or postdict some of the historic data from other his-

toric data, thus incrementally reducing the number of bits required to encode the

whole. See Appendix A.3 and A.5.

3. Let intrinsic curiosity reward reflect compression progress. The agent should

monitor the improvements of the adaptive data compressor: whenever it learns to

reduce the number of bits required to encode the historic data, generate an intrin-

sic reward signal or curiosity reward signal in proportion to the learning progress

or compression progress, that is, the number of saved bits. See Appendix A.5

and A.6.

4. Maximize intrinsic curiosity reward [57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88,

87]. Let the action selector or controller use a general Reinforcement Learning

(RL) algorithm (which should be able to observe the current state of the adaptive

compressor) to maximize expected reward, including intrinsic curiosity reward.

To optimize the latter, a good RL algorithm will select actions that focus the

agent’s attention and learning capabilities on those aspects of the world that allow

for finding or creating new, previously unknown but learnable regularities. In

other words, it will try to maximize the steepness of the compressor’s learning

curve. This type of active unsupervised learning can help to figure out how the

world works. See Appendix A.7, A.8, A.9, A.10.

The framework above essentially specifies the objectives of a curious or creative

system, not the way of achieving the objectives through the choice of a particular

adaptive compressor or predictor and a particular RL algorithm. Some of the possi-

ble choices leading to special instances of the framework (including previous concrete

implementations) will be discussed later.

1.3 Relation to External Reward

Of course, the real goal of many cognitive systems is not just to satisfy their curiosity,

but to solve externally given problems. Any formalizable problem can be phrased as an

RL problem for an agent living in a possibly unknown environment, trying to maximize

the future external reward expected until the end of its possibly finite lifetime. The new

millennium brought a few extremely general, even universal RL algorithms (universal

problem solvers or universal artificial intelligences—see Appendix A.8, A.9) that are

optimal in various theoretical but not necessarily practical senses, e. g., [29, 79, 82,
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83, 86, 85, 92]. To the extent that learning progress / compression progress / curiosity

as above are helpful, these universal methods will automatically discover and exploit

such concepts. Then why bother at all writing down an explicit framework for active

curiosity-based experimentation?

One answer is that the present universal approaches sweep under the carpet certain

problem-independent constant slowdowns, by burying them in the asymptotic notation

of theoretical computer science. They leave open an essential remaining question:

If the agent can execute only a fixed number of computational instructions per unit

time interval (say, 10 trillion elementary operations per second), what is the best way

of using them to get as close as possible to the recent theoretical limits of universal

AIs, especially when external rewards are very rare, as is the case in many realistic

environments? The premise of this paper is that the curiosity drive is such a general

and generally useful concept for limited-resource RL in rare-reward environments that

it should be prewired, as opposed to be learnt from scratch, to save on (constant but

possibly still huge) computation time. An inherent assumption of this approach is that

in realistic worlds a better explanation of the past can only help to better predict the

future, and to accelerate the search for solutions to externally given tasks, ignoring the

possibility that curiosity may actually be harmful and “kill the cat.”

2 Consequences of the Compression Progress Drive

Let us discuss how many essential ingredients of intelligence and cognition can be

viewed as natural by-products of the principles above.

2.1 Compact Internal Representations or Symbols as By-Products

of Efficient History Compression

To compress the history of observations so far, the compressor (say, a predictive neural

network) will automatically create internal representations or symbols (for example,

patterns across certain neural feature detectors) for things that frequently repeat them-

selves. Even when there is limited predictability, efficient compression can still be

achieved by assigning short codes to events that are predictable with high probability

[28, 95]. For example, the sun goes up every day. Hence it is efficient to create internal

symbols such as daylight to describe this repetitive aspect of the data history by a short

reusable piece of internal code, instead of storing just the raw data. In fact, predictive

neural networks are often observed to create such internal (and hierarchical) codes as a

by-product of minimizing their prediction error on the training data.

2.2 Consciousness as a Particular By-Product of Compression

There is one thing that is involved in all actions and sensory inputs of the agent, namely,

the agent itself. To efficiently encode the entire data history, it will profit from creating

some sort of internal symbol or code (e. g., a neural activity pattern) representing

the agent itself. Whenever this representation is actively used, say, by activating the
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corresponding neurons through new incoming sensory inputs or otherwise, the agent

could be called self-aware or conscious.

This straight-forward explanation apparently does not abandon any essential as-

pects of our intuitive concept of consciousness, yet seems substantially simpler than

other recent views [1, 2, 105, 101, 25, 12]. In the rest of this paper we will not have to

attach any particular mystic value to the notion of consciousness—in our view, it is just

a natural by-product of the agent’s ongoing process of problem solving and world mod-

eling through data compression, and will not play a prominent role in the remainder of

this paper.

2.3 The Lazy Brain’s Subjective, Time-Dependent Sense of Beauty

Let O(t) denote the state of some subjective observer O at time t. According to our lazy

brain theory [67, 66, 69, 81, 87, 88], we may identify the subjective beauty B(D, O(t))
of a new observation D (but not its interestingness - see Section 2.4) as being propor-

tional to the number of bits required to encode D, given the observer’s limited previous

knowledge embodied by the current state of its adaptive compressor. For example, to

efficiently encode previously viewed human faces, a compressor such as a neural net-

work may find it useful to generate the internal representation of a prototype face. To

encode a new face, it must only encode the deviations from the prototype [67]. Thus

a new face that does not deviate much from the prototype [17, 48] will be subjectively

more beautiful than others. Similarly for faces that exhibit geometric regularities such

as symmetries or simple proportions [69, 88]—in principle, the compressor may ex-

ploit any regularity for reducing the number of bits required to store the data.

Generally speaking, among several sub-patterns classified as comparable by a given

observer, the subjectively most beautiful is the one with the simplest (shortest) descrip-

tion, given the observer’s current particular method for encoding and memorizing it

[67, 69]. For example, mathematicians find beauty in a simple proof with a short

description in the formal language they are using. Others like geometrically simple,

aesthetically pleasing, low-complexity drawings of various objects [67, 69].

This immediately explains why many human observers prefer faces similar to their

own. What they see every day in the mirror will influence their subjective prototype

face, for simple reasons of coding efficiency.

2.4 Subjective Interestingness as First Derivative of Subjective

Beauty: The Steepness of the Learning Curve

What’s beautiful is not necessarily interesting. A beautiful thing is interesting only as

long as it is new, that is, as long as the algorithmic regularity that makes it simple has

not yet been fully assimilated by the adaptive observer who is still learning to compress

the data better. It makes sense to define the time-dependent subjective Interestingness

I(D, O(t)) of data D relative to observer O at time t by

I(D, O(t)) ∼
∂B(D, O(t))

∂t
, (1)
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the first derivative of subjective beauty: as the learning agent improves its compression

algorithm, formerly apparently random data parts become subjectively more regular

and beautiful, requiring fewer and fewer bits for their encoding. As long as this process

is not over the data remains interesting and rewarding. The Appendix and Section 3 on

previous implementations will describe details of discrete time versions of this concept.

See also [59, 60, 108, 68, 72, 76, 81, 88, 87].

2.5 Pristine Beauty & Interestingness vs External Rewards

Note that our above concepts of beauty and interestingness are limited and pristine

in the sense that they are not a priori related to pleasure derived from external re-

wards (compare Section 1.3). For example, some might claim that a hot bath on a cold

day triggers “beautiful” feelings due to rewards for achieving prewired target values

of external temperature sensors (external in the sense of: outside the brain which is

controlling the actions of its external body). Or a song may be called “beautiful” for

emotional (e.g., [13]) reasons by some who associate it with memories of external plea-

sure through their first kiss. Obviously this is not what we have in mind here—we are

focusing solely on rewards of the intrinsic type based on learning progress.

2.6 True Novelty & Surprise vs Traditional Information Theory

Consider two extreme examples of uninteresting, unsurprising, boring data: A vision-

based agent that always stays in the dark will experience an extremely compressible,

soon totally predictable history of unchanging visual inputs. In front of a screen full

of white noise conveying a lot of information and “novelty” and “surprise” in the tra-

ditional sense of Boltzmann and Shannon [102], however, it will experience highly

unpredictable and fundamentally incompressible data. In both cases the data is bor-

ing [72, 88] as it does not allow for further compression progress. Therefore we re-

ject the traditional notion of surprise. Neither the arbitrary nor the fully predictable

is truly novel or surprising—only data with still unknown algorithmic regularities are

[57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89]!

2.7 Attention / Curiosity / Active Experimentation

In absence of external reward, or when there is no known way to further increase

the expected external reward, our controller essentially tries to maximize true nov-

elty or interestingness, the first derivative of subjective beauty or compressibility, the

steepness of the learning curve. It will do its best to select action sequences expected

to create observations yielding maximal expected future compression progress, given

the limitations of both the compressor and the compressor improvement algorithm.

It will learn to focus its attention [96, 116] and its actively chosen experiments on

things that are currently still incompressible but are expected to become compressible

/ predictable through additional learning. It will get bored by things that already are

subjectively compressible. It will also get bored by things that are currently incom-

pressible but will apparently remain so, given the experience so far, or where the costs
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of making them compressible exceed those of making other things compressible, etc.

[57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89].

2.8 Discoveries

An unusually large compression breakthrough deserves the name discovery. For exam-

ple, as mentioned in the introduction, the simple law of gravity can be described by a

very short piece of code, yet it allows for greatly compressing all previous observations

of falling apples and other objects.

2.9 Beyond Standard Unsupervised Learning

Traditional unsupervised learning is about finding regularities, by clustering the data,

or encoding it through a factorial code [4, 64] with statistically independent compo-

nents, or predicting parts of it from other parts. All of this may be viewed as special

cases of data compression. For example, where there are clusters, a data point can be

efficiently encoded by its cluster center plus relatively few bits for the deviation from

the center. Where there is data redundancy, a non-redundant factorial code [64] will

be more compact than the raw data. Where there is predictability, compression can be

achieved by assigning short codes to those parts of the observations that are predictable

from previous observations with high probability [28, 95]. Generally speaking we may

say that a major goal of traditional unsupervised learning is to improve the compression

of the observed data, by discovering a program that computes and thus explains the his-

tory (and hopefully does so quickly) but is clearly shorter than the shortest previously

known program of this kind.

Traditional unsupervised learning is not enough though—it just analyzes and en-

codes the data but does not choose it. We have to extend it along the dimension of

active action selection, since our unsupervised learner must also choose the actions

that influence the observed data, just like a scientist chooses his experiments, a baby its

toys, an artist his colors, a dancer his moves, or any attentive system [96] its next sen-

sory input. That’s precisely what is achieved by our RL-based framework for curiosity

and creativity.

2.10 Art & Music as By-Products of the Compression Progress

Drive

Works of art and music may have important purposes beyond their social aspects [3]

despite of those who classify art as superfluous [50]. Good observer-dependent art

deepens the observer’s insights about this world or possible worlds, unveiling previ-

ously unknown regularities in compressible data, connecting previously disconnected

patterns in an initially surprising way that makes the combination of these patterns

subjectively more compressible (art as an eye-opener), and eventually becomes known

and less interesting. I postulate that the active creation and attentive perception of all

kinds of artwork are just by-products of our principle of interestingness and curiosity

yielding reward for compressor improvements.
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Let us elaborate on this idea in more detail, following the discussion in [81, 88].

Artificial or human observers must perceive art sequentially, and typically also actively,

e.g., through a sequence of attention-shifting eye saccades or camera movements scan-

ning a sculpture, or internal shifts of attention that filter and emphasize sounds made by

a pianist, while surpressing background noise. Undoubtedly many derive pleasure and

rewards from perceiving works of art, such as certain paintings, or songs. But differ-

ent subjective observers with different sensory apparati and compressor improvement

algorithms will prefer different input sequences. Hence any objective theory of what

is good art must take the subjective observer as a parameter, to answer questions such

as: Which sequences of actions and resulting shifts of attention should he execute to

maximize his pleasure? According to our principle he should select one that maximizes

the quickly learnable compressibility that is new, relative to his current knowledge and

his (usually limited) way of incorporating / learning / compressing new data.

2.11 Music

For example, which song should some human observer select next? Not the one he

just heard ten times in a row. It became too predictable in the process. But also not

the new weird one with the completely unfamiliar rhythm and tonality. It seems too

irregular and contain too much arbitrariness and subjective noise. He should try a song

that is unfamiliar enough to contain somewhat unexpected harmonies or melodies or

beats etc., but familiar enough to allow for quickly recognizing the presence of a new

learnable regularity or compressibility in the sound stream. Sure, this song will get

boring over time, but not yet.

The observer dependence is illustrated by the fact that Schönberg’s twelve tone

music is less popular than certain pop music tunes, presumably because its algorithmic

structure is less obvious to many human observers as it is based on more complicated

harmonies. For example, frequency ratios of successive notes in twelve tone music

often cannot be expressed as fractions of very small integers. Those with a prior ed-

ucation about the basic concepts and objectives and constraints of twelve tone music,

however, tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our principle: The learning algorithm of the compressor

of a given subjective observer tries to better compress his history of acoustic and other

inputs where possible. The action selector tries to find history-influencing actions that

help to improve the compressor’s performance on the history so far. The interesting

musical and other subsequences are those with previously unknown yet learnable types

of regularities, because they lead to compressor improvements. The boring patterns are

those that seem arbitrary or random, or whose structure seems too hard to understand.

2.12 Paintings, Sculpture, Dance, Film etc.

Similar statements not only hold for other dynamic art including film and dance (taking

into account the compressibility of controller actions), but also for painting and sculp-

ture, which cause dynamic pattern sequences due to attention-shifting actions [96, 116]

of the observer.
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2.13 No Objective “Ideal Ratio” Between Expected and Unexpected

Some of the previous attempts at explaining aesthetic experiences in the context of

information theory [7, 41, 6, 44] emphasized the idea of an “ideal” ratio between

expected and unexpected information conveyed by some aesthetic object (its “order”

vs its “complexity”). Note that our alternative approach does not have to postulate

an objective ideal ratio of this kind. Instead our dynamic measure of interestingness

reflects the change in the number of bits required to encode an object, and explicitly

takes into account the subjective observer’s prior knowledge as well as the limitations

of its compression improvement algorithm.

2.14 Blurred Boundary Between Active Creative Artists and Pas-

sive Perceivers of Art

Just as observers get intrinsic rewards for sequentially focusing attention on artwork

that exhibits new, previously unknown regularities, the creative artists get reward for

making it. For example, I found it extremely rewarding to discover (after hundreds of

frustrating failed attempts) the simple geometric regularities that permitted the con-

struction of the drawings in Figures 1 and 2. The distinction between artists and

observers is blurred though. Both execute action sequences to exhibit new types of

compressibility. The intrinsic motivations of both are fully compatible with our simple

principle.

Some artists, of course, crave external reward from other observers, in form of

praise, money, or both, in addition to the intrinsic compression improvement-based

reward that comes from creating a truly novel work of art. Our principle, however,

conceptually separates these two reward types.

2.15 How Artists and Scientists are Alike

From our perspective, scientists are very much like artists. They actively select experi-

ments in search for simple but new laws compressing the resulting observation history.

In particular, the creativity of painters, dancers, musicians, pure mathematicians, physi-

cists, can be viewed as a mere by-product of our curiosity framework based on the com-

pression progress drive. All of them try to create new but non-random, non-arbitrary

data with surprising, previously unknown regularities. For example, many physicists

invent experiments to create data governed by previously unknown laws allowing to

further compress the data. On the other hand, many artists combine well-known ob-

jects in a subjectively novel way such that the observer’s subjective description of the

result is shorter than the sum of the lengths of the descriptions of the parts, due to some

previously unnoticed regularity shared by the parts.

What is the main difference between science and art? The essence of science is to

formally nail down the nature of compression progress achieved through the discovery

of a new regularity. For example, the law of gravity can be described by just a few

symbols. In the fine arts, however, compression progress achieved by observing an

artwork combining previously disconnected things in a new way (art as an eye-opener)

may be subconscious and not at all formally describable by the observer, who may feel
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the progress in terms of intrinsic reward without being able to say exactly which of his

memories became more subjectively compressible in the process.

The framework in the appendix is sufficiently formal to allow for implementation

of our principle on computers. The resulting artificial observers will vary in terms of

the computational power of their history compressors and learning algorithms. This

will influence what is good art / science to them, and what they find interesting.

2.16 Jokes and Other Sources of Fun

Just like other entertainers and artists, comedians also tend to combine well-known

concepts in a novel way such that the observer’s subjective description of the result

is shorter than the sum of the lengths of the descriptions of the parts, due to some

previously unnoticed regularity shared by the parts.

In many ways the laughs provoked by witty jokes are similar to those provoked by

the acquisition of new skills through both babies and adults. Past the age of 25 I learnt

to juggle three balls. It was not a sudden process but an incremental and rewarding

one: in the beginning I managed to juggle them for maybe one second before they fell

down, then two seconds, four seconds, etc., until I was able to do it right. Watching

myself in the mirror (as recommended by juggling teachers) I noticed an idiotic grin

across my face whenever I made progress. Later my little daughter grinned just like

that when she was able to stand on her own feet for the first time. All of this makes

perfect sense within our algorithmic framework: such grins presumably are triggered

by intrinsic reward for generating a data stream with previously unknown regularities,

such as the sensory input sequence corresponding to observing oneself juggling, which

may be quite different from the more familiar experience of observing somebody else

juggling, and therefore truly novel and intrinsically rewarding, until the adaptive pre-

dictor / compressor gets used to it.

3 Previous Concrete Implementations of Systems Driven

by (Approximations of) Compression Progress

As mentioned earlier, predictors and compressors are closely related. Any type of par-

tial predictability of the incoming sensory data stream can be exploited to improve the

compressibility of the whole. Therefore the systems described in the first publications

on artificial curiosity [57, 58, 61] already can be viewed as examples of implementa-

tions of a compression progress drive.

3.1 Reward for Prediction Error (1990)

Early work [57, 58, 61] described a predictor based on a recurrent neural network

[115, 120, 55, 62, 47, 78] (in principle a rather powerful computational device, even

by today’s machine learning standards), predicting sensory inputs including reward

signals from the entire history of previous inputs and actions. The curiosity rewards

were proportional to the predictor errors, that is, it was implicitly and optimistically

assumed that the predictor will indeed improve whenever its error is high.
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3.2 Reward for Compression Progress Through Predictor Improve-

ments (1991)

Follow-up work [59, 60] pointed out that this approach may be inappropriate, espe-

cially in probabilistic environments: one should not focus on the errors of the predic-

tor, but on its improvements. Otherwise the system will concentrate its search on those

parts of the environment where it can always get high prediction errors due to noise or

randomness, or due to computational limitations of the predictor, which will prevent

improvements of the subjective compressibility of the data. While the neural predic-

tor of the implementation described in the follow-up work was indeed computationally

less powerful than the previous one [61], there was a novelty, namely, an explicit (neu-

ral) adaptive model of the predictor’s improvements. This model essentially learned to

predict the predictor’s changes. For example, although noise was unpredictable and led

to wildly varying target signals for the predictor, in the long run these signals did not

change the adaptive predictor parameters much, and the predictor of predictor changes

was able to learn this. A standard RL algorithm [114, 33, 109] was fed with curiosity

reward signals proportional to the expected long-term predictor changes, and thus tried

to maximize information gain [16, 31, 38, 51, 14] within the given limitations. In fact,

we may say that the system tried to maximize an approximation of the (discounted)

sum of the expected first derivatives of the data’s subjective predictability, thus also

maximizing an approximation of the (discounted) sum of the expected changes of the

data’s subjective compressibility.

3.3 Reward for Relative Entropy between Agent’s Prior and Pos-

terior (1995)

Additional follow-up work yielded an information theory-oriented variant of the ap-

proach in non-deterministic worlds [108] (1995). The curiosity reward was again

proportional to the predictor’s surprise / information gain, this time measured as the

Kullback-Leibler distance [35] between the learning predictor’s subjective probability

distributions before and after new observations - the relative entropy between its prior

and posterior.

In 2005 Baldi and Itti called this approach “Bayesian surprise” and demonstrated

experimentally that it explains certain patterns of human visual attention better than

certain previous approaches [32].

Note that the concepts of Huffman coding [28] and relative entropy between prior

and posterior immediately translate into a measure of learning progress reflecting the

number of saved bits—a measure of improved data compression.

Note also, however, that the naive probabilistic approach to data compression is

unable to discover more general types of algorithmic compressibility [106, 34, 37, 73].

For example, the decimal expansion of π looks random and incompressible but isn’t:

there is a very short algorithm computing all of π, yet any finite sequence of digits

will occur in π’s expansion as frequently as expected if π were truly random, that is,

no simple statistical learner will outperform random guessing at predicting the next

digit from a limited time window of previous digits. More general program search
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techniques (e.g., [36, 75, 15, 46]) are necessary to extract the underlying algorithmic

regularity.

3.4 Zero Sum Reward Games for Compression Progress Revealed

by Algorithmic Experiments (1997)

More recent work [68, 72] (1997) greatly increased the computational power of con-

troller and predictor by implementing them as co-evolving, symmetric, opposing mod-

ules consisting of self-modifying probabilistic programs [97, 98] written in a universal

programming language [18, 111] allowing for loops, recursion, and hierarchical struc-

tures. The internal storage for temporary computational results of the programs was

viewed as part of the changing environment. Each module could suggest experiments

in the form of probabilistic algorithms to be executed, and make confident predictions

about their effects by betting on their outcomes, where the ‘betting money’ essentially

played the role of the intrinsic reward. The opposing module could reject or accept

the bet in a zero-sum game by making a contrary prediction. In case of acceptance,

the winner was determined by executing the algorithmic experiment and checking its

outcome; the money was eventually transferred from the surprised loser to the con-

firmed winner. Both modules tried to maximize their money using a rather general RL

algorithm designed for complex stochastic policies [97, 98] (alternative RL algorithms

could be plugged in as well). Thus both modules were motivated to discover truly novel

algorithmic regularity / compressibility, where the subjective baseline for novelty was

given by what the opponent already knew about the world’s repetitive regularities.

The method can be viewed as system identification through co-evolution of com-

putable models and tests. In 2005 a similar co-evolutionary approach based on less

general models and tests was implemented by Bongard and Lipson [11].

3.5 Improving Real Reward Intake

Our references above demonstrated experimentally that the presence of intrinsic reward

or curiosity reward actually can speed up the collection of external reward.

3.6 Other Implementations

Recently several researchers also implemented variants or approximations of the cu-

riosity framework. Singh and Barto and coworkers focused on implementations within

the option framework of RL [5, 104], directly using prediction errors as curiosity re-

wards as in Section 3.1 [57, 58, 61] —they actually were the ones who coined the ex-

pressions intrinsic reward and intrinsically motivated RL. Additional implementations

were presented at the 2005 AAAI Spring Symposium on Developmental Robotics [9];

compare the Connection Science Special Issue [10].
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4 Visual Illustrations of Subjective Beauty and its First

Derivative Interestingness

As mentioned above (Section 3.3), the probabilistic variant of our theory [108] (1995)

was able to explain certain shifts of human visual attention [32] (2005). But we can also

apply our approach to the complementary problem of constructing images that contain

quickly learnable regularities, arguing again that there is no fundamental difference

between the motivation of creative artists and passive observers of visual art (Section

2.14). Both create action sequences yielding interesting inputs, where interestingness

is a measure of learning progress, for example, based on the relative entropy between

prior and posterior (Section 3.3), or the saved number of bits needed to encode the data

(Section 1), or something similar (Section 3).

Here we provide examples of subjective beauty tailored to human observers, and

illustrate the learning process leading from less to more subjective beauty. Due to

the nature of the present written medium, we have to use visual examples instead of

acoustic or tactile ones. Our examples are intended to support the hypothesis that unsu-

pervised attention and the creativity of artists, dancers, musicians, pure mathematicians

are just by-products of their compression progress drives.

4.1 A Pretty Simple Face with a Short Algorithmic Description

Figure 1 depicts the construction plan of a female face considered ‘beautiful’ by some

human observers. It also shows that the essential features of this face follow a very

simple geometrical pattern [69] that can be specified by very few bits of information.

That is, the data stream generated by observing the image (say, through a sequence

of eye saccades) is more compressible than it would be in the absence of such regu-

larities. Although few people are able to immediately see how the drawing was made

in absence of its superimposed grid-based explanation, most do notice that the facial

features somehow fit together and exhibit some sort of regularity. According to our

postulate, the observer’s reward is generated by the conscious or subconscious discov-

ery of this compressibility. The face remains interesting until its observation does not

reveal any additional previously unknown regularities. Then it becomes boring even in

the eyes of those who think it is beautiful—as has been pointed out repeatedly above,

beauty and interestingness are two different things.

4.2 Another Drawing That Can Be Encoded By Very Few Bits

Figure 2 provides another example: a butterfly and a vase with a flower. It can be

specified by very few bits of information as it can be constructed through a very simple

procedure or algorithm based on fractal circle patterns [67]—see Figure 3. People who

understand this algorithm tend to appreciate the drawing more than those who do not.

They realize how simple it is. This is not an immediate, all-or-nothing, binary process

though. Since the typical human visual system has a lot of experience with circles, most

people quickly notice that the curves somehow fit together in a regular way. But few

are able to immediately state the precise geometric principles underlying the drawing
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[81]. This pattern, however, is learnable from Figure 3. The conscious or subconscious

discovery process leading from a longer to a shorter description of the data, or from

less to more compression, or from less to more subjectively perceived beauty, yields

reward depending on the first derivative of subjective beauty, that is, the steepness of

the learning curve.

5 Conclusion & Outlook

We pointed out that a surprisingly simple algorithmic principle based on the notions

of data compression and data compression progress informally explains fundamen-

tal aspects of attention, novelty, surprise, interestingness, curiosity, creativity, subjec-

tive beauty, jokes, and science & art in general. The crucial ingredients of the corre-

sponding formal framework are (1) a continually improving predictor or compressor

of the continually growing data history, (2) a computable measure of the compres-

sor’s progress (to calculate intrinsic rewards), (3) a reward optimizer or reinforce-

ment learner translating rewards into action sequences expected to maximize future

reward. To improve our previous implementations of these ingredients (Section 3),

we will (1) study better adaptive compressors, in particular, recent, novel RNNs [94]

and other general but practically feasible methods for making predictions [75]; (2) in-

vestigate under which conditions learning progress measures can be computed both

accurately and efficiently, without frequent expensive compressor performance evalu-

ations on the entire history so far; (3) study the applicability of recent improved RL

techniques in the fields of policy gradients [110, 119, 118, 56, 100, 117], artificial

evolution [43, 20, 21, 19, 22, 23, 24], and others [71, 75].

Apart from building improved artificial curious agents, we can test the predictions

of our theory in psychological investigations of human behavior, extending previous

studies in this vein [32] and going beyond anecdotal evidence mentioned above. It

should be easy to devise controlled experiments where test subjects must anticipate

initially unknown but causally connected event sequences exhibiting more or less com-

plex, learnable patterns or regularities. The subjects will be asked to quantify their in-

trinsic rewards in response to their improved predictions. Is the reward indeed strongest

when the predictions are improving most rapidly? Does the intrinsic reward indeed

vanish as the predictions become perfect or do not improve any more?

Finally, how to test our predictions through studies in neuroscience? Currently

we hardly understand the human neural machinery. But it is well-known that certain

neurons seem to predict others, and brain scans show how certain brain areas light

up in response to reward. Therefore the psychological experiments suggested above

should be accompanied by neurophysiological studies to localize the origins of intrinsic

rewards, possibly linking them to improvements of neural predictors.

Success in this endeavor would provide additional motivation to implement our

principle on robots.
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A Appendix

This appendix is based in part on references [81, 88].

The world can be explained to a degree by compressing it. Discoveries correspond

to large data compression improvements (found by the given, application-dependent

compressor improvement algorithm). How to build an adaptive agent that not only

tries to achieve externally given rewards but also to discover, in an unsupervised and

experiment-based fashion, explainable and compressible data? (The explanations gained

through explorative behavior may eventually help to solve teacher-given tasks.)

Let us formally consider a learning agent whose single life consists of discrete

cycles or time steps t = 1, 2, . . . , T . Its complete lifetime T may or may not be

known in advance. In what follows, the value of any time-varying variable Q at time t
(1 ≤ t ≤ T ) will be denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t)
by Q(≤ t), and the (possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t). At any

given t the agent receives a real-valued input x(t) from the environment and executes

a real-valued action y(t) which may affect future inputs. At times t < T its goal is to

maximize future success or utility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (2)

where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple

[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eµ(· | ·) denotes the

conditional expectation operator with respect to some possibly unknown distribution

µ from a set M of possible distributions. Here M reflects whatever is known about

the possibly probabilistic reactions of the environment. For example, M may con-

tain all computable distributions [106, 107, 37, 29]. There is just one life, no need for

predefined repeatable trials, no restriction to Markovian interfaces between sensors and

environment, and the utility function implicitly takes into account the expected remain-

ing lifespan Eµ(T | h(≤ t)) and thus the possibility to extend it through appropriate

actions [79, 82, 80, 92].

Recent work has led to the first learning machines that are universal and optimal in

various very general senses [29, 79, 82]. As mentioned in the introduction, such ma-

chines can in principle find out by themselves whether curiosity and world model con-

struction are useful or useless in a given environment, and learn to behave accordingly.

The present appendix, however, will assume a priori that compression / explanation of

the history is good and should be done; here we shall not worry about the possibility

that curiosity can be harmful and “kill the cat.” Towards this end, in the spirit of our

previous work since 1990 [57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89] we split the

reward signal r(t) into two scalar real-valued components: r(t) = g(rext(t), rint(t)),
where g maps pairs of real values to real values, e.g., g(a, b) = a + b. Here rext(t)
denotes traditional external reward provided by the environment, such as negative re-

ward in response to bumping against a wall, or positive reward in response to reaching

some teacher-given goal state. But for the purposes of this paper we are especially

interested in rint(t), the internal or intrinsic or curiosity reward, which is provided

whenever the data compressor / internal world model of the agent improves in some
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measurable sense. Our initial focus will be on the case rext(t) = 0 for all valid

t. The basic principle is essentially the one we published before in various variants

[57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87]:

Principle 1 Generate curiosity reward for the controller in response to improvements

of the predictor or history compressor.

So we conceptually separate the goal (explaining / compressing the history) from the

means of achieving the goal. Once the goal is formally specified in terms of an algo-

rithm for computing curiosity rewards, let the controller’s reinforcement learning (RL)

mechanism figure out how to translate such rewards into action sequences that allow

the given compressor improvement algorithm to find and exploit previously unknown

types of compressibility.

A.1 Predictors vs Compressors

Much of our previous work on artificial curiosity was prediction-oriented, e. g., [57,

58, 61, 59, 60, 108, 68, 72, 76]. Prediction and compression are closely related though.

A predictor that correctly predicts many x(τ), given history h(< τ), for 1 ≤ τ ≤ t, can

be used to encode h(≤ t) compactly. Given the predictor, only the wrongly predicted

x(τ) plus information about the corresponding time steps τ are necessary to reconstruct

history h(≤ t), e.g., [63]. Similarly, a predictor that learns a probability distribution of

the possible next events, given previous events, can be used to efficiently encode obser-

vations with high (respectively low) predicted probability by few (respectively many)

bits [28, 95], thus achieving a compressed history representation. Generally speaking,

we may view the predictor as the essential part of a program p that re-computes h(≤ t).
If this program is short in comparison to the raw data h(≤ t), then h(≤ t) is regular

or non-random [106, 34, 37, 73], presumably reflecting essential environmental laws.

Then p may also be highly useful for predicting future, yet unseen x(τ) for τ > t.
It should be mentioned, however, that the compressor-oriented approach to predic-

tion based on the principle of Minimum Description Length (MDL) [34, 112, 113, 54,

37] does not necessarily converge to the correct predictions as quickly as Solomonoff’s

universal inductive inference [106, 107, 37], although both approaches converge in the

limit under general conditions [52].

A.2 Which Predictor or History Compressor?

The complexity of evaluating some compressor p on history h(≤ t) depends on both p
and its performance measure C. Let us first focus on the former. Given t, one of the

simplest p will just use a linear mapping to predict x(t + 1) from x(t) and y(t + 1).
More complex p such as adaptive recurrent neural networks (RNN) [115, 120, 55,

62, 47, 26, 93, 77, 78] will use a nonlinear mapping and possibly the entire history

h(≤ t) as a basis for the predictions. In fact, the first work on artificial curiosity [61]

focused on online learning RNN of this type. A theoretically optimal predictor would

be Solomonoff’s above-mentioned universal induction scheme [106, 107, 37].
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A.3 Compressor Performance Measures

At any time t (1 ≤ t < T ), given some compressor program p able to compress

history h(≤ t), let C(p, h(≤ t)) denote p’s compression performance on h(≤ t). An

appropriate performance measure would be

Cl(p, h(≤ t)) = l(p), (3)

where l(p) denotes the length of p, measured in number of bits: the shorter p, the

more algorithmic regularity and compressibility and predictability and lawfulness in

the observations so far. The ultimate limit for Cl(p, h(≤ t)) would be K∗(h(≤ t)),
a variant of the Kolmogorov complexity of h(≤ t), namely, the length of the shortest

program (for the given hardware) that computes an output starting with h(≤ t) [106,

34, 37, 73].

A.4 Compressor Performance Measures Taking Time Into Account

Cl(p, h(≤ t)) does not take into account the time τ(p, h(≤ t)) spent by p on computing

h(≤ t). An alternative performance measure inspired by concepts of optimal universal

search [36, 75] is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (4)

Here compression by one bit is worth as much as runtime reduction by a factor of 1
2

.

From an asymptotic optimality-oriented point of view this is one of the best ways of

trading off storage and computation time [36, 75].

A.5 Measures of Compressor Progress / Learning Progress

The previous sections only discussed measures of compressor performance, but not of

performance improvement, which is the essential issue in our curiosity-oriented con-

text. To repeat the point made above: The important thing are the improvements of

the compressor, not its compression performance per se. Our curiosity reward in re-

sponse to the compressor’s progress (due to some application-dependent compressor

improvement algorithm) between times t and t + 1 should be

rint(t + 1) = f [C(p(t), h(≤ t + 1)), C(p(t + 1), h(≤ t + 1))], (5)

where f maps pairs of real values to real values. Various alternative progress measures

are possible; most obvious is f(a, b) = a − b. This corresponds to a discrete time

version of maximizing the first derivative of subjective data compressibility.

Note that both the old and the new compressor have to be tested on the same data,

namely, the history so far.

A.6 Asynchronous Framework for Creating Curiosity Reward

Let p(t) denote the agent’s current compressor program at time t, s(t) its current con-

troller, and do:
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Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and execute y(t + 1).

2. Observe x(t + 1).

3. Check if there is non-zero curiosity reward rint(t + 1) provided by the separate,

asynchronously running compressor improvement algorithm (see below). If not,

set rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) algorithm use h(≤ t + 1) in-

cluding rint(t + 1) (and possibly also the latest available compressed version of

the observed data—see below) to obtain a new controller s(t + 1), in line with

objective (2).

Compressor: Set pnew equal to the initial data compressor. Starting at time 1, repeat

forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold = h(≤ t).

2. Evaluate pold on hold, to obtain C(pold, hold) (Section A.3). This may take many

time steps.

3. Let some (application-dependent) compressor improvement algorithm (such as

a learning algorithm for an adaptive neural network predictor) use hold to ob-

tain a hopefully better compressor pnew (such as a neural net with the same size

but improved prediction capability and therefore improved compression perfor-

mance [95]). Although this may take many time steps (and could be partially

performed during “sleep”), pnew may not be optimal, due to limitations of the

learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This may take many time steps.

5. Get current time step τ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew, hold)], (6)

e.g., f(a, b) = a − b; see Section A.5.

Obviously this asynchronuous scheme may cause long temporal delays between con-

troller actions and corresponding curiosity rewards. This may impose a heavy burden

on the controller’s RL algorithm whose task is to assign credit to past actions (to in-

form the controller about beginnings of compressor evaluation processes etc., we may

augment its input by unique representations of such events). Nevertheless, there are

RL algorithms for this purpose which are theoretically optimal in various senses, to be

discussed next.
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A.7 Optimal Curiosity & Creativity & Focus of Attention

Our chosen compressor class typically will have certain computational limitations. In

the absence of any external rewards, we may define optimal pure curiosity behavior

relative to these limitations: At time t this behavior would select the action that maxi-

mizes

u(t) = Eµ

[

T
∑

τ=t+1

rint(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

. (7)

Since the true, world-governing probability distribution µ is unknown, the resulting

task of the controller’s RL algorithm may be a formidable one. As the system is re-

visiting previously incompressible parts of the environment, some of those will tend

to become more subjectively compressible, and the corresponding curiosity rewards

will decrease over time. A good RL algorithm must somehow detect and then predict

this decrease, and act accordingly. Traditional RL algorithms [33], however, do not

provide any theoretical guarantee of optimality for such situations. (This is not to say

though that sub-optimal RL methods may not lead to success in certain applications;

experimental studies might lead to interesting insights.)

Let us first make the natural assumption that the compressor is not super-complex

such as Kolmogorov’s, that is, its output and rint(t) are computable for all t. Is there

a best possible RL algorithm that comes as close as any other to maximizing objective

(7)? Indeed, there is. Its drawback, however, is that it is not computable in finite time.

Nevertheless, it serves as a reference point for defining what is achievable at best.

A.8 Optimal But Incomputable Action Selector

There is an optimal way of selecting actions which makes use of Solomonoff’s theo-

retically optimal universal predictors and their Bayesian learning algorithms [106, 107,

37, 29, 30]. The latter only assume that the reactions of the environment are sampled

from an unknown probability distribution µ contained in a set M of all enumerable

distributions—compare text after equation (2). More precisely, given an observation

sequence q(≤ t) we want to use the Bayes formula to predict the probability of the next

possible q(t + 1). Our only assumption is that there exists a computer program that

can take any q(≤ t) as an input and compute its a priori probability according to the µ
prior. In general we do not know this program, hence we predict using a mixture prior

instead:

ξ(q(≤ t)) =
∑

i

wiµi(q(≤ t)), (8)

a weighted sum of all distributions µi ∈ M, i = 1, 2, . . ., where the sum of the con-

stant positive weights satisfies
∑

i wi ≤ 1. This is indeed the best one can possibly do,

in a very general sense [107, 29]. The drawback of the scheme is its incomputability,

since M contains infinitely many distributions. We may increase the theoretical power

of the scheme by augmenting M by certain non-enumerable but limit-computable dis-

tributions [73], or restrict it such that it becomes computable, e.g., by assuming the

world is computed by some unknown but deterministic computer program sampled
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from the Speed Prior [74] which assigns low probability to environments that are hard

to compute by any method.

Once we have such an optimal predictor, we can extend it by formally including

the effects of executed actions to define an optimal action selector maximizing future

expected reward. At any time t, Hutter’s theoretically optimal (yet uncomputable) RL

algorithm AIXI [29] uses an extended version of Solomonoff’s prediction scheme to

select those action sequences that promise maximal future reward up to some horizon

T , given the current data h(≤ t). That is, in cycle t + 1, AIXI selects as its next action

the first action of an action sequence maximizing ξ-predicted reward up to the given

horizon, appropriately generalizing eq. (8). AIXI uses observations optimally [29]:

the Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the sense that

its average utility value converges asymptotically for all µ ∈ M to the optimal value

achieved by the Bayes-optimal policy pµ which knows µ in advance. The necessary

and sufficient condition is that M admits self-optimizing policies. The policy pξ is

also Pareto-optimal in the sense that there is no other policy yielding higher or equal

value in all environments ν ∈ M and a strictly higher value in at least one [29].

A.9 A Computable Selector of Provably Optimal Actions

AIXI above needs unlimited computation time. Its computable variant AIXI(t,l) [29]

has asymptotically optimal runtime but may suffer from a huge constant slowdown. To

take the consumed computation time into account in a general, optimal way, we may

use the recent Gödel machines [79, 82, 80, 92] instead. They represent the first class of

mathematically rigorous, fully self-referential, self-improving, general, optimally effi-

cient problem solvers. They are also applicable to the problem embodied by objective

(7).

The initial software S of such a Gödel machine contains an initial problem solver,

e.g., some typically sub-optimal method [33]. It also contains an asymptotically opti-

mal initial proof searcher based on an online variant of Levin’s Universal Search [36],

which is used to run and test proof techniques. Proof techniques are programs written

in a universal language implemented on the Gödel machine within S. They are in prin-

ciple able to compute proofs concerning the system’s own future performance, based

on an axiomatic system A encoded in S. A describes the formal utility function, in our

case eq. (7), the hardware properties, axioms of arithmetic and probability theory and

data manipulation etc, and S itself, which is possible without introducing circularity

[92].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel ma-

chine rewrites any part of its own code (including the proof searcher) through a self-

generated executable program as soon as its Universal Search variant has found a proof

that the rewrite is useful according to objective (7). According to the Global Optimal-

ity Theorem [79, 82, 80, 92], such a self-rewrite is globally optimal—no local maxima

possible!—since the self-referential code first had to prove that it is not useful to con-

tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewritingS at all, then humans will not

find one either. But if there is one, then S itself can find and exploit it. Unlike the previ-

ous non-self-referential methods based on hardwired proof searchers [29], Gödel ma-

22



chines not only boast an optimal order of complexity but can optimally reduce (through

self-changes) any slowdowns hidden by the O()-notation, provided the utility of such

speed-ups is provable. Compare [83, 86, 85].

A.10 Non-Universal But Still General and Practical RL Algorithms

Recently there has been substantial progress in RL algorithms that are not quite as uni-

versal as those above, but nevertheless capable of learning very general, program-like

behavior. In particular, evolutionary methods [53, 99, 27] can be used for training Re-

current Neural Networks (RNN), which are general computers. Many approaches to

evolving RNN have been proposed [40, 122, 121, 45, 39, 103, 42]. One particularly

effective family of methods uses cooperative coevolution to search the space of net-

work components (neurons or individual synapses) instead of complete networks. The

components are coevolved by combining them into networks, and selecting those for

reproduction that participated in the best performing networks [43, 20, 21, 19, 22, 24].

Other recent RL techniques for RNN are based on the concept of policy gradients

[110, 119, 118, 56, 100, 117]. It will be of interest to evaluate variants of such control

learning algorithms within the curiosity reward framework.
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Figure 1: Previously published construction plan [69, 88] of a female face (1998).

Some human observers report they feel this face is ‘beautiful.’ Although the drawing

has lots of noisy details (texture etc) without an obvious short description, positions

and shapes of the basic facial features are compactly encodable through a very sim-

ple geometrical scheme, simpler and much more precise than ancient facial proportion

studies by Leonardo da Vinci and Albrecht Dürer. Hence the image contains a highly

compressible algorithmic regularity or pattern describable by few bits of information.

An observer can perceive it through a sequence of attentive eye movements or sac-

cades, and consciously or subconsciously discover the compressibility of the incoming

data stream. How was the picture made? First the sides of a square were partitioned

into 24 equal intervals. Certain interval boundaries were connected to obtain three ro-

tated, superimposed grids based on lines with slopes ±1 or ±1/23 or ±23/1. Higher-

resolution details of the grids were obtained by iteratively selecting two previously

generated, neighboring, parallel lines and inserting a new one equidistant to both. Fi-

nally the grids were vertically compressed by a factor of 1 − 2−4. The resulting lines

and their intersections define essential boundaries and shapes of eyebrows, eyes, lid

shades, mouth, nose, and facial frame in a simple way that is obvious from the con-

struction plan. Although this plan is simple in hindsight, it was hard to find: hundreds

of my previous attempts at discovering such precise matches between simple geome-

tries and pretty faces failed.
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Figure 2: Image of a butterfly and a vase with a flower, reprinted from Leonardo

[67, 81]. An explanation of how the image was constructed and why it has a very short

description is given in Figure 3.
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Figure 3: Explanation of how Figure 2 was constructed through a very simple algo-

rithm exploiting fractal circles [67]. The frame is a circle; its leftmost point is the center

of another circle of the same size. Wherever two circles of equal size touch or intersect

are centers of two more circles with equal and half size, respectively. Each line of the

drawing is a segment of some circle, its endpoints are where circles touch or intersect.

There are few big circles and many small ones. In general, the smaller a circle, the

more bits are needed to specify it. The drawing is simple (compressible) as it is based

on few, rather large circles. Many human observers report that they derive a certain

amount of pleasure from discovering this simplicity. The observer’s learning process

causes a reduction of the subjective complexity of the data, yielding a temporarily high

derivative of subjective beauty: a temporarily steep learning curve. (Again I needed a

long time to discover a satisfactory and rewarding way of using fractal circles to create

a reasonable drawing.)
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