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Abstract

Following recent interest in thestrong price of anarchy(SPOA), we consider this measure, as well as
the well knownprice of anarchy(POA) for the job scheduling problem on two uniformly related parallel
machines (or links). The atomic players are the jobs, and the delay of a job is the completion time of
the machine running it. The social goal is to minimize the maximum delay of any job. Thus the cost (or
social cost) in this case is the makespan of the schedule. The selfish goal of each job is to minimize its
delay, i.e., the delay of the machine that it chooses to run on.

A pure Nash equilibrium is a schedule where no job can obtain a smaller delay by selfishly moving
to a different configuration (machine), while other jobs remain in their original positions. A strong
equilibrium is a schedule where no (non-empty) subset of jobs exists, where all jobs in this subset can
benefit from changing their configuration. We say that all jobs in a subset benefit from moving to a
different machine if all of them have a strictly smaller delay as a result of moving (while the other jobs
remain in their positions, and may possibly have a larger delay as a result).

TheSPOAis the worst case ratio between the social cost of a (pure)strongequilibrium and the cost
of an optimal assignment, that is, the minimum achievable social cost. ThePOA is a standard measure
which takes into account not only strong equilibria but any (pure) equilibrium. These two measures
consolidate and give the same results for some problems, whereas for other problems, theSPOAgives
much more meaningful results than thePOA.

We study the behavior of theSPOAversus the behavior of thePOA for this scheduling problem and
give tight results for both these measures. We find the exactSPOAfor any possible speed ratios ≥ 1
of the machines, and compare it to the exactPOA which we also find. We show that for a wide range of
speeds ratios these two measures are very different (1.618 < s < 2.247), whereas for other values ofs,
these two measures give the exact same bound. We extend all our results for cases where a machine may
have an initial load resulting from jobs that can only be assigned to this machine, and show tight bounds
on theSPOAand thePOA for three such variants as well.

1 Introduction

John F. Nash earned his Ph.D. degree in 1950 with a dissertation on non-cooperative games. The thesis
contained the definition and properties of what would later be called the Nash equilibrium. In 1994, Nash
has received the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, which is
unofficially and commonly known as the Nobel Prize in Economics. A book and a movie, both calledA
beautiful mind, were inspired by his life.

A Nash equilibirum (which was actually considered earlier by Cournot) is a kind of solution concept
of a game, involving two or more players, where no player can gain anything by changing only his own
strategy unilaterally. If each player has chosen a strategy and no player can benefit by changing his strategy
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while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding
payoffs constitute a Nash equilibrium. If a player chooses to take one action with probability 1 then that
player is playing a pure strategy, and otherwise a mixed strategy. If all players have pure strategies, the
resulting equilibrium is calledpure(see [18]).

Side by side with this late recognition by the spectators of the movie and readers of the book, computer
scientists started to adopt some game theoretical concepts and terminology in their studies. A large number
of studies of Nash Equilibria, for problems coming from the field of computer science, were carried out in
the last few years. Koutsoupias and Papadimitriou [15] proposed to investigate the behavior of the worst
casecoordination ratio, which is the ratio between the cost of the worst Nash equilibrium and the social
optimum.

Robert J. Aumann was awarded the 2005 Nobel memorial prize in economics. The prize was awarded
to him for “having enhanced our understanding of conflict and cooperation through game-theory analysis”.
Aumann was the first one to introduce a number of concepts in game theory. One of these concepts was
a strong equilibrium, which is a pure Nash equilibrium, in which not only single players cannot benefit
from changing their strategy (to a different pure strategy), but no non-empty subset of players can form a
coalition, where a coalition means that all of them can change their strategies together, and all gain from the
change (see [2, 1, 7]).

In this paper, we study pure Nash equilibria and strong equilibria for a scheduling problem on uniformly
related machines. We next define the problem and the meaning of equilibria in this context.

Scheduling on uniformly related machines is a basic assignment problem. In such problems, a set of
jobsJ = {j1, j2, . . . , jn} is to be assigned to a set ofm machinesM = {M1, . . . ,Mm}, where machine
Mi has a speedsi. The size of jobjk is denoted bypk and it is equal to its running time on a unit speed
machine. Moreover, the running time of this job on a machine of speeds is pk

s . An assignment or schedule is
a functionS : J → M . The completion time of machineMi, which is also called the delay of this machine,
is

∑
k:S(jk)=Mi

pk
sk

. The cost, or thesocial costof a schedule is the maximum delay of any machine, i.e., the

makespan.
In this paper we consider the case of two uniformly related machines. We assume (without loss of

generality) thatM1 has unit speed andM2 has speeds ≥ 1. We consider pure Nash equilibria and strong
equilibria. The delay of a job is defined to be the delay of the machine that runs it. Seeing this scheduling
problem as a game, the players are the jobs who are selfishly interested in minimizing their own delays.

A schedule is aNash equilibriumif there exists no job that can decrease its delay by migrating to a
different machine. More precisely, consider an assignmentS : J → {M1,M2}. The class of schedulesS
contains all schedulesSk that differ fromS only in the assignment ofjk, that isSk(j`) = S(j`) for all ` 6= k
andSk(jk) 6= S(jk), that is if S(jk) = M1 thenSk(jk) = M2 and otherwiseSk(jk) = M1. For cases
where the number of machines is larger than2, S contains a wider class of schedules, allowing each job to
move to any machine. We say thatS is a (pure) Nash equilibrium if for any jobjk, the delay ofjk in Sk

is no smaller than its delay inS. Pure Nash equilibria do not necessary exists for all games (as opposed to
mixed Nash equilibria). It is known that for scheduling games of this type, a pure Nash equilibrium always
exists [12, 8].

A schedule is astrong equilibriumif there exists no (non-empty) subset of jobs, such that if all jobs
in this set migrate to a different machine simultaneously, this results in a smaller delay for each and every
one of them. More precisely, given a scheduleS, we can define a class of schedulesS which contains all
schedulesSK , whereK ⊆ J , K 6= ∅. For ` /∈ K, we haveSK(j`) = S(j`) whereas for̀ ∈ K, we have
SK(j`) 6= S(j`). S is a strong equilibrium if for anyK 6= ∅, there exists at least of jobjk ∈ K whose
delay inSK is no smaller than its delay inS. A strong equilibrium is always pure Nash equilibrium (by
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definition). Strong equilibria do not necessarily exist. Andelman, Feldman and Mansour [1] were the first
to study strong equilibria in the context of scheduling and proved that scheduling games (of a more general
form) admit strong equilibria. More general studies of the classes of congestion games which admit strong
equilibria were studied in [14, 22].

In general, there is a recent interest in studies that separate the effect of the lack of coordination between
players from the effect of their selfishness (see e.g. [13]). A Nash equilibrium that is not a social optimum
is a stable situation not only since users are selfish, but also since the type of moves they consider is uni-
lateral moves. Strong equilibria are stable situations whose stability is only the result of selfishness, since
coordination between players is possible.

We consider the following four variants of scheduling on two uniformly related machines. The first
variant is the standard one where any job can run on any machine. Three other variants relate to the so
called restricted assignmentproblem. In this problem, each job is associated not only with a size, but
also with a list of machines it can be processed on. This means that each job can run on one of the three
subsets{1, 2},{1} and{2}. Thus for the case of two machines, a job can either run on any machine, or is
restricted to one of the machines. Therefore, this model is equivalent to the case where machines may have
an initial load that cannot switch machines. This generalization was mentioned already in the seminal paper
of Koutsoupias and Papadimitriou [15]. The two additional models are the hierarchical models (see [4]),
in which every job is associated with a prefix (or suffix) of the machines. In the first hierarchical model,
each job is associated with one of the sets{1, 2},{1}, whereas in the second hierarchical model the sets are
{1, 2},{2} (if s = 1, only one hierarchical model exists). We therefore consider four different variants.1.
No machine may have an initial load.2. Any machine may have an initial load.3. Only M2 may have
initial load. 4. Only M1 may have initial load.

Let the initial load of machinei beei, and the total size of jobs assigned to machinei behi. The delay
of a machine is defined to be the total size of jobs and initial loads on this machine, divided by its speed.
Therefore, the delay ofM1 is e1 + h1 and the delay ofM2 is e2+h2

s .
In our scheduling model, thecoordination ratio, or price of anarchy (POA) (see [20]) is the worst case

ratio between the cost of a pure Nash equilibrium and the cost (i.e., makespan) of an optimal schedule. The
strong price of anarchy (SPOA) is defined similarly, but only strong equilibria are considered. Therefore
we refer to the pure price of anarchy byPOA and when we discuss the mixed price of anarchy we call it the
mixedPOA. Note that a pure equilibrium is a special case of mixed equilibria.

We study theprice of anarchy(POA) and thestrong price of anarchy(SPOA) for all these models as
functions ofs. We denote thePOA andSPOAfor thei-th variant byPOAi(s) andSPOAi(s).

It is noted an a series of papers (e.g., [15, 17, 19, 6, 5]) the model we study is a simplification of problems
arising in real networks, that seems appropriate for describing basic problems in networks.
Previous work. We mention several related results for similar models of scheduling. We survey the known
results for thePOA andSPOAand see that in some models these measures give the same results, whereas
in other models theSPOAallows to obtain much more meaningful results.

The most general case is unrelated machines, where the time to run a jobjk on a machineMi is a
function of k and i. In this model thePOA is unbounded [3], which holds already for a setting of two
machines. Surprisingly theSPOAfor this problem is bounded by the number of machinesm, as shown
by Fiat et al. [10], and this is tight [1]. The upper bound of2 for two machines was already shown in [1]
(an upper bound of2m − 1 for m ≥ 3 was shown in that paper as well). It can be seen that in this case,
separating the effect of lack of coordination from the effect of selfishness reveals a linear (in the number of
machines) ratio between the cost of worst case equilibrium and the optimal cost.

Awerbuch et al. [3] focused on scheduling with restricted assignment and identical speed machines.

3



Each job can run on only a subset of the machines, and has a fixed running time on all machines that can run
it. They show that thePOA is Θ( log m

log log m) (andΘ( log m
log log log m) for mixed strategies). Their result holds for

the hierarchical machines model as well, which form machines means that the subset of allowed machines
is a prefix of the machines for every job. Levy [16] observed that the results on the (pure)POA in this case
are valid for theSPOAas well.

For m identical machines, thePOA is 2m
m+1 which can be deduced from the results of [11] (the upper

bound) and [21] (the lower bound). It was shown in [1] that theSPOAhas the same value as thePOA for
everym. Note, however, that the mixedPOA is non constant already in this case, and equalsΘ( log m

log log m),
where the lower bound was shown by Koutsoupias and Papadimitriou [15] and the upper bound by Chumaj
and Vöcking [6]. Tight bounds of32 on the mixedPOA for two identical machines were shown by [15].

We finish this section with the known results for scheduling on uniformly related machines, the model
which we study in this paper. A number of papers studied this model [15, 17, 6, 9, 10]. It is typically
assumed that there is no initial load on the machines. Chumaj and Vöcking [6] showed that thePOA is
Θ( log m

log log m) (andΘ( log m
log log log m) for mixed strategies). Feldmann et al. [9] proved that thePOA for m = 2

andm = 3 is
√

4m−3+1
2 which equalsφ =

√
5+1
2 for two machines and2 for three machines. They did not

investigate thePOA as a function of the machine speeds. As for the mixedPOA, it was shown in [15] that
it is at least1 + s

s+1 for s ≤ φ. Recently, Fiat et al. showed that theSPOAfor this model isΘ( log m
(log log m)2

).

2 Statement of Results

In this paper, we find tight bounds on all eight functionsPOAi(s) andSPOAi(s) (for i = 1, 2, 3, 4).
We define the following five functions.

FA(s) =





1 + s
s+2 , 1 ≤ s ≤ √

2 ≈ 1.4142
s,

√
2 ≤ s ≤ φ = 1+

√
5

2 ≈ 1.618
1 + 1

s , s ≥ φ ,

FB(s) =





1 + 1
s+1 , 1 ≤ s ≤ √

2
s,

√
2 ≤ s ≤ φ

1 + 1
s , s ≥ φ ,

FC(s) =

{
1 + s

s+1 , 1 ≤ s ≤ φ

1 + 1
s , s ≥ φ ,

Lets1 be the root ofs3−2s2−s+1 = 0 in the interval(2, 3), and lets2 be the root of3s3−4s2−3s+2 =
0 in the interval(5

3 , 2).

GA(s) =





1 + s
s+2 , 1 ≤ s ≤ √

2
s,

√
2 ≤ s ≤ φ

1
s−1 , φ ≤ s ≤ √

3 ≈ 1.732
1 + 1

s+1 ,
√

3 ≤ s ≤ 2
s2

2s−1 , 2 ≤ s ≤ s1 ≈ 2.24698
1 + 1

s , s ≥ s1 ,
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GB(s) =





1 + s
s+1 , 1 ≤ s ≤ φ

1
s−1 , φ ≤ s ≤ s2 ≈ 1.69152
1 + s2

2s2+s−1
, s2 ≤ s ≤ s1

1 + 1
s , s ≥ s1 ,

We prove the following theorems. A summary of the results can be found in Table 1. Graphs of the
POA andSPOAfunctions can be found in Figures 1,2,3 and 4.
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Figure 1:POA1(s) (top) andSPOA1(s) (bottom)

Theorem 1 The price of anarchy as a function ofs ≥ 1 is exactlyFA(s) if no initial load may exist on any
of the machines,FB(s) if only M2 may have an initial load, andFC(s) if M1 may have an initial load.

Theorem 2 The Strong price of anarchy as a function ofs ≥ 1 is exactlyGA(s) if no initial load may exist
on any of the machines,GB(s) if M1 may have an initial load butM2 cannot have an initial load,FB(s)
if M2 may have an initial load butM1 cannot have an initial load, andFC(s) if bothM2,M1 may have an
initial load.

i 1 2 3 4

POA(i) FA(s) FC(s) FB(s) FC(s)

SPOA(i) GA(s) FC(s) FB(s) GB(s)

Table 1: Overview of Results
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Figure 2:POA2(s) = SPOA2(s)
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Figure 3:POA3(s) = SPOA3(s)

Note that for standard scheduling, we get that theSPOAandPOA are equal fors ≤ φ and fors > s1.
Thus for values ofs that are close to2, the two measures are different. On the other hand, for relatively small
values ofs and large values ofs, the two measures give the same result. We encounter a similar situation
for the case whereM1 (only) may have an initial load. The functions are different but the interval where
SPOA4(s) 6= POA4(s) is the same. In the other two cases we learn that the two measures give the same
result. The overall bound (maximum value over all speeds) isφ in all the cases, which is achieved fors = φ.
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Figure 4:POA4(s) (top) andSPOA4(s) (bottom)
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