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Abstract

We study bi-variate conditional volatility and correlation dynamics for individual commod-

ity futures and �nancial assets from May1990-July 2009 using DSTCC- GARCH (Silvennoinen

and Teräsvirta 2009). These models allow correlation to vary smoothly between extreme states

via transition functions driven by indicators of market conditions. Expected stock volatility

and money manager open interest in futures markets are relevant transition variables. Results

point to increasing integration between commodities and �nancial markets. Higher commodity

returns volatility is predicted by lower interest rates and corporate bond spreads, US dollar

depreciations, higher expected stock volatility and �nancial traders open positions. We observe

higher and more variable correlations between commodity futures and �nancial asset returns,

particularly from mid-sample, often predicted by higher expected stock volatility. For many

pairings, we observe a structural break in the conditional correlation processes from the late

1990s.

Keywords: commodity futures; double smooth transition; conditional correlation; �nancializa-

tion
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1 Introduction

Over the past decade, commodity prices have shown rapid and widespread rises followed by sharp

falls during the 2008-09 �nancial crisis. While macroeconomic forces, including demand from

commodity-intensive industrializing economies, played a key role in this boom and bust, other fac-

tors, including the �nancialization of commodity derivatives markets, contributed. Institutional

investors and hedge funds have intensi�ed their interest in commodities as an alternative to tra-

ditional asset classes, allocating funds to indices such as the Goldman Sachs Commodities Index

(GSCI), and trading in derivatives markets.

Much institutional investor interest is motivated by the belief that commodities o¤er reliable

diversi�cation against downturns in stock markets, exhibiting low correlation with traditional assets

that is robust to extreme events (Gorton and Rouwenhorst 2006; Kat and Oomen 2006; Chong and

Mi¤re 2008; Büyükşahn, Haigh and Robe 2008). But as �nancial investor interest in commodities

expands, it is natural to ask whether shocks from conventional asset markets and the strategies

of �nancial players, rather than underlying commodity market fundamentals, will begin to weaken

the diversi�cation value of commodities.

Here we re-examine the time path of correlation between conventional assets and returns to

commodity futures over the past two decades for evidence of increased integration. We model bi-

variate correlation dynamics for 24 individual commodity futures returns with major equity indices

for the US, UK, Germany, and France, and with US �xed interest, using weekly data from May

1990 to July 2009.

Financialization and macroeconomic are likely to change volatility and correlation gradually,

so we model dynamics using Double Smooth Transition Conditional Correlation models (DSTCC�

GARCH) (Silvennoinen and Teräsvirta 2005, 2009). Earlier studies use rolling correlation estima-

tion and/or Dynamic Conditional Correlation (DCC) models. DSTCC models allow conditional

correlation to change smoothly between (up to) four extreme states, combined in a convex combi-

nation which depends on two logistic transition functions. These transition functions can depend

on observable economic variables, giving an interpretation to correlation dynamics. Hence one ad-

vantage of our chosen modelling framework is that it allows us to test the presence of links between

time-varying correlations and important indicators of market conditions. Once the relevance of an

indicator is established, the correlations are modelled, allowing us to draw conclusions regarding the

quality of the time-variation in conditional correlations (e.g., whether the correlations are increasing

or decreasing with the given indicator). Here we test the expected stock market volatility index,
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VIX, as a gauge to investor sentiment, and the percentage of non-commercial traders�open interest

in futures markets from the Commodity Futures Trading Commission (CFTC) reports, which is a

measure of the intensity of interest of money managers. We examine commodities individually in

order to pick up the heterogeneous features of the di¤erent markets.

If commodity and conventional asset markets become more integrated because of �nancializa-

tion, the systematic component of commodity prices may increasingly dominate returns, raising

correlation with other asset classes, creating more time-variation in correlation and causing volatil-

ity to track systematic shocks more closely. We �nd evidence of these patterns in estimated volatility

and correlation models.

Estimated conditional variance models con�rm signi�cant positive spillovers from common �-

nancial factors including equity market volatility (VIX), the exchange rate, short rates and spreads,

for many commodities that are components of the investable GSCI1. Financial traders�positions

also in�uence commodity volatility. An increase in the percentage of open interest held short by

non-commercial commodity futures traders, such as hedge funds, increases futures returns volatility,

but the impact of increasing long interest varies between markets, sometimes raising and sometimes

lowering volatility. Since hedge fund activity has escalated over the past decade, swings in com-

modity returns volatility are thus likely to have been ampli�ed.

Dynamic correlation patterns show that the diversi�cation bene�ts of commodities to eq-

uity market investors are weaker, contrary to �ndings of other studies (Chong and Mi¤re 2008;

Büyükşahn, Haigh and Robe 2008). Correlations between S&P500 returns and returns to the ma-

jority commodity futures have increased, sometimes sharply during the recent crisis, but in many

cases also more gradually, and from much earlier in the sample. For 12 of the 24 commodities

we study, high expected stock market volatility (VIX) shifts correlations with S&P500 returns up-

wards, suggesting that both stock and futures returns are falling as VIX increases. We �nd this

e¤ect is concentrated later in the sample (from around 2000 onwards) consistent with increased

commodity and stock market integration over recent years. We also identify time breaks in the

correlation structure around the beginning of the current decade, between stocks and most metals,

some grains and some foods, during a period when both underlying demand and �nancial investor

interest were intensifying. Further we show that futures market positions of non-commercial traders

drive some bi-variate correlations, with patterns suggesting that money managers can time their

positions to o¤set stock market losses.

Correlation between commodities and stock markets returns for European stocks show similar
1Tang and Xiong (2009) �nd similar results.
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patterns, whereas �xed interest correlations have shown less variation, if anything tending more

negative. Expected stock market volatility and �nancial trading intensity measures are again

relevant to correlation dynamics in many instances.

Policy makers have also been concerned about sharp increases in energy prices and their po-

tential impact on other commodities, both directly through price in�uences as more agricultural

commodities interact with the biofuels industry, and also as an increase to input costs. We iden-

tify the strengthening links between agriculture and energy markets by tracking the correlation

path between individual commodity futures and crude oil futures. Soy crops have shown strong

increases with crude oil over the second half of the current decade. Other agricultural commodities

also exhibit more co-movement with oil in the recent past, possibly re�ecting competition among

agricultural commodities and biofuels for production capacity.

Section 2 gives background on commodity futures price determination, �nancialization and

current empirical studies. Section 3 outlines the sources and construction of the series used here

and Section 4 describes the model and estimation process. Results and conclusions follow.

2 Background

Advocates of commodity investment usually base their case on diversi�cation bene�ts rather than

expected returns since the theoretical and empirical evidence for excess returns to commodities

is inconclusive. Conventional models treat commodity prices as driven by both systematic and

idiosyncratic factors but exactly what these factors are, what is their quantitative impact on returns

and volatility, and how they might be a¤ected by increased �nancialization, are open questions.

We brie�y review pricing theory and outline the case for integration between conventional assets

and commodity futures.

2.1 Commodity futures pricing

Common macroeconomic factors, such as the short interest rate, dividend yield and corporate bond

spread, connect commodity futures to stock and bond markets but idiosyncratic factors create

segmentation between commodities and �nancial assets, as well as between groups of commodities

(Bessembinder and Chan 1992, Bailey and Chan 1993, Frankel and Rose 2009, Hong and Yogo

2009). It follows that the long run diversi�cation bene�ts of commodity futures as alternative

assets will erode if systematic risk factors rise or if a priced idiosyncratic component weakens.
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The conventional cost of carry relationship for commodity i that links the forward price at time

t for delivery at time � , fi;t;� ; and the current spot price Si;t; depends on interest rates, storage

costs and the �convenience yield�, that is, the bene�t to inventory holders of supplying the market

at some future time if spot prices are unexpectedly high.2 The convenience yield is stochastic,

will be high when the basis (the di¤erence between the forward price and current spot) is strongly

negative, is economically signi�cant, and positively correlated with the spot price.3 The forward

pricing condition is

fi;t;� = Si;t (1 + rf;t) + wi;t;� � 'i;t;� ; (1)

where rf;t is the relevant risk free interest rate, wi;t;� is the cost of storing commodity i until period

� , and 'i;t;� is the convenience yield for the period between t and � : Hence inventory conditions are

one idiosyncratic factor for commodity futures returns, and interest rates and the term structure

are systematic factors.4

Equation (1) is not a perfect arbitrage condition because of the likelihood of stockouts, lim-

itations on shorting the spot commodity and the fact that not all commodities can be stored

inde�nitely. Without a strict arbitrage relationship, pricing a forward or futures contract requires

another valuation method. While stores of the physical commodity are part of the market port-

folio, futures contracts are in zero net supply and are not necessarily of any in�uence on spot

markets, so any risk premium to holders of futures contracts accrues when futures positions carry

non-diversi�able market risk (Black 1975). However, under some pricing kernels, this systematic

risk premium could be zero.

Further, commodity futures may receive a residual risk premium when underlying claims (such

as shares in the commodity production process) are not traded, and where transactions costs

and/or capital constraints apply (Stoll 1979; Hirshleifer 1988a,b; de Roon, Nijman and Veld 2000;

Acharya, Lochstoer and Ramadorai 2009). Hedgers, such as producers, who stock the physical

2The theory of storage predicts that convenience yields are non-linearly declining in inventories (Pindyck 1993;
Routlege et al. 2000), whereas the theory of stockouts suggests that commodity prices will exhibit regimes of sharp
spikes followed by long periods of doldrums (Deaton and Laroque 1992; Routlege et al. 2000; Carlson, Khoker and
Titman 2007). For early work on the theory of storage Kaldor (1939), Working (1949), Brennan (1958) and Telser
(1958).

3We use the term �basis�to mean the di¤erence between forward or futures prices and current spot, and reserve
the terms �backwardation�and �contango�for the relationship between current futures and expected future spot.

4The large amount of serial correlation in price data seems to refute simple versions of the stockout model (Deaton
and Laroque 1996), although Heaney (2005) �nds evidence for two regimes in metals prices consistent with periods
of high pressure on inventories. On the relationship between storage, interest rates convenience yield and the basis,
Gorton, Hayashi and Rouwenhorst (2007) argue that when market participants are risk averse, long futures receive a
risk premium for bearing uncertainty about the future spot price when inventories are low and test this proposition
using data on 31 commodities and physical inventories. Heaney also �nds support for additional e¤ects of storage on
metals prices even after controlling for regime e¤ects.
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commodity, will pay a premium to insure the non-marketable component of their exposure to spot

price variability, creating a positive return to (long) futures. Such �hedging pressure�can be positive

or negative, producing both backwardation which pays positive returns to buyers of futures (where

the future price is lower than expected future spot) and contango, which pro�ts sellers (where the

future price is higher).

Empirical support for a positive systematic and/or residual risk premium on commodity futures

is mixed.5 In fact, studies con�ict over whether commodity futures earn any long-term excess return:

Gorton and Rouwenhorst (2006), for example, argue that a rebalanced portfolio of commodity

futures consistently earns a return comparable to equities, whereas Erb and Harvey (2006) and

Hochachka (2007) view this as an historical anomaly.

2.2 Price trends

Notwithstanding doubts about returns, recent rapid commodity price growth has drawn the atten-

tion of both investors and policy makers. After more than four decades of real declines on average,

prices increased dramatically between 2002 and 2008 and although most real commodity prices

failed to reach the peaks of the �60s and �70s, the recent cycle is historically unprecedented in scope

and strength (Helbling, Mercer-Blackman and Cheng 2008; Vansteenkiste 2009; IMF 2006). Figure

1 graphs group averages of nominal commodity prices from May 1990 to July 2009, showing positive

trends from 2002 as well as the 2008-9 boom and bust. Energy prices rose to around eight times

1990 levels, metals were two to three times higher, and crop prices almost doubled.

2.2.1 Macroeconomic drivers

Demand and supply fundamentals have contributed to this cycle. A sustained depreciation in the

US dollar and low interest rates created a stimulatory environment, while industrialization in China,

India and emerging Asia accelerated consumption of fuels, metals and food (Helbling et al. 2008).

Changes to biofuel policies in developed countries placed pressure on food prices and production,

as feedstocks were diverted to biofuel, and energy prices pressured food prices. On the other hand,

supply was slow to respond, partly because of low inventories and production capacity after several

decades of weak prices but also because of structural and technological constraints on production,

crucially for oil, a key input to production of other commodities.

5Dusak (1973) �nds that at least some commodities showed no systematic risk, whereas the futures premia due
to hedging pressures are supported by Carter, Rausser and Schmitz (1983), Chang (1985) and Bessembinder (1992),
even when the systematic risk premium is zero.
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Macroeconomic fundamentals may increase commodity futures correlations with other assets

via common drivers such as interest rates and spreads, and expectations of future world growth.

2.2.2 Financialization

In addition, recent �nancialization may have increased commodity price exposure to macroeconomic

and �nancial shocks compared with past cycles. Financial activity in commodity securities markets

relative to world commodity production has grown substantially since 2000. The number of open

contracts in commodity exchanges grew by 170% between 2002-2008:2, putting volumes of exchange

traded derivatives at 20 to 30 times physical production for many commodities. Similar trends have

shown up in over-the-counter trade (Redrado et al. 2008; Domanski and Heath 2007).

Two groups have increased their activity in commodities markets: �buy and hold� investors

such as pension funds, endowments and mutual funds, accruing collateralized long positions in

futures; and hedge funds, actively trading in derivatives. Jack Meyer, CEO of Harvard Management

Company argued that �commodities are a diversifying asset class with no correlation - and in

some cases negative correlation - with other asset classes� (quoted in Sesit 2004). His opinion

is representative of many institutional investment managers who have embraced commodities as

a pro�table alternative asset, relying on low correlations with conventional assets, positive co-

movement of commodity prices with in�ation and a tendency to backwardation in the futures

curve. After the share market crash in 2001, institutional investors began viewing commodities as

prime sources of portfolio diversi�cation rather than as assets that were imprudent and di¢ cult to

hedge (Tang and Xiong 2009).

Increases in capital �ows from institutional investors have been marked: some commentators

estimated passive investment at $150-200 billion by 2008. Trends in the GSCI also point to increas-

ing integration with conventional securities: Figure 2 graphs the GSCI total returns index value

against returns indices for US and major European stock markets. The GSCI looks independent

of stock index trends in the �rst decade of the sample, declining during the bull market of the �90s

and relatively una¤ected by the downturn in 2000, but from 2002, the GSCI trends up with stock

indices, before plunging, slightly ahead of the S&P500, in 2008.

Hedge funds and exchange traded commodity funds also have been active in commodities deriv-

atives markets.6 The Commodity Futures Exchange Commission (CFTC) reported that as early

as 2003, the majority of the largest US hedge funds were operating as Commodity Pool Operators

6Financial interest in commodity futures markets is volatile, tends to a long position on average and is positively
correlated with the spot price (Redrado et al. 2008).
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(CPOs), which invest pooled funds into futures or options on behalf of customers, or Commodity

Trading Advisors (CTAs), which provide advice or analysis on commodity securities value (Brown-

Hruska 2004). Indeed, hedge fund activity in commodity futures markets tripled between 2004 and

2007 (Domanski and Heath 2007).

Along with trending prices and low correlations, the Commodity Futures Modernization Act

of 2000 may have made commodity investments even more attractive by reducing cost of futures

trading to some groups. The Act aimed to �rationalize regulation for sophisticated or otherwise

regulated entities� by exempting certain groups of investors from registration with the National

Futures Association and consequently freeing then from some aspects of compliance. These exempt

groups included �funds engaging in de minimus futures investments...; otherwise regulated entities

such as mutual funds, insurance companies, and banks; and funds that cater to highly sophisticated

investors...�(quoting from Brown-Hruska 2004). CFTC policy also aimed to protect hedge funds

from extensive disclosure of their holdings and asset selection strategies.7

Financialization could a¤ect commodity price volatility and correlation with conventional assets

in several ways. First, if commodity securities, stocks and bonds are all held by a growing number

of investors with similar portfolios, the set of common state variables driving stochastic discount

factors, and therefore securities prices in each market, increases. A larger set of common shocks

raises correlation between asset classes since bad news becomes more likely to force liquidation

of asset holdings in several markets at the same time, as the marginal investor adjusts his or

her portfolio (Kyle and Xiong 2001). Second, if commodity futures tend to be viewed more as

a uni�ed group than as individual securities by index investors, we could also see increasing co-

movement between relatively unrelated commodities (Pindyck and Rotemberg 1990; Tang and

Xiong 2009). Third, theoretical models of �nancial markets (Pavlova and Rigobon 2008, Schornick

2009) show that if traders such as CPOs and CTAs hold di¤use beliefs, changes to regulation like the

Modernization Act may raise time-variation in capital �ows to commodities derivatives markets,

creating swings in correlation. Fourth, we could see post-liberalization volatility rise if greater

capital �ow volatility raises risk premia (Schornick 2009).8 On the other hand, if easier access to

7 In her Keynote Address to the Securities Industry Association Hedge Funds Conference in 2004, Acting Chairman
of the CFTC Sharon Brown-Hruska argued that the SEC and CFTC �must not sti�e the innovative and entrepreneurial
spirit that has characterized the hedge fund industry. And ... must also strive not to burden funds with duplicative
requirement and regulations. ... An even greater risk to enacting a prescriptive regulatory program that includes
a securities style disclosure regime is that it will chill innovation by forcing fund managers to reveal too much
information about their holdings and their asset selection.�

8Empirical studies of emerging market integration show that volatility and correlation with previously separated
markets may increase or decrease after liberalization (see, among others Bekeart and Harvey 1997; Miles 2002; Edison
and Warnock). On time-variation in correlation see Calvo et al (1993) and Tylor and Sarno (1997).
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futures markets increases liquidity available to hedgers of non-marketable risk, such as commodity

producers, then the premium paid for bearing non-marketable risk will decline and futures price

volatility may fall.

Other things being equal, the systematic component of commodity prices may increasingly dom-

inate returns, raising correlation with other asset classes, creating more time-variation in correlation

and causing volatility to track systematic shocks more closely.

2.3 Correlation and integration

Empirical studies of the period leading up to the 2008 crash conclude that conditional correlations

between stock returns and commodities are insigni�cantly di¤erent from zero in the majority of

cases, have tended to decline over time and are noticeably lower during periods of high stock mar-

ket risk (Chong and Mi¤re 2008; Büyükşahn, Haigh and Robe 2008). These authors encourage

investors to choose commodities as a refuge during periods of stress in traditional asset markets,

arguing that macroeconomic shocks tend to work on commodity and stock prices in opposite direc-

tions. They �nd no evidence that the increased �nancialization of commodity futures markets has

changed co-movement patterns with traditional asset classes con�rming the diversi�cation bene�ts

of commodity exposures.

The coincidence of an increase in derivatives trading with strongly increasing commodity prices

has prompted several other investigations of whether price e¤ects have been ampli�ed by �nancial

trading. Most have concluded that higher prices may be driving speculation rather than the reverse,

though a direction for causality is di¢ cult to establish (IMF 2006, Redrado et al. 2008, Frankel and

Rose 2009). Price movements may be su¢ ciently well explained by macroeconomic fundamentals

and idiosyncratic commodity shocks (Vansteenkiste 2009). Hedge funds appear to provide futures

market liquidity rather than destabilizing volatility (Haigh et al. 2005).

Tang and Xiong (2009) reach di¤erent conclusions. They �nd an increase in the impact of

world equity shocks and US dollar exchange rates shocks on the GSCI investable commodities

index in the past few years, coinciding with increased �nancialization. Further evidence that

this higher exposure to common shocks is driven by �nancialization rather than macroeconomic

fundamentals is that individual commodities in the investable indices (GSCI and DJ-AIG) exhibit

stronger responses than similar commodities that are not in the indices. They identify volatility

spillovers from the �nancial crisis as a key driver of recent commodity price volatility.

In what follows, we focus on time-varying volatility and conditional correlation, reviewing the
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hypothesis that the connection between commodity futures and other assets is una¤ected by �-

nancialization, and that the attractive features of commodities as an alternative asset class have

been robust to the crisis. We use double smooth transition conditional correlation models because

they can capture both gradual and sudden changes in correlation regimes, picking up both slowly

developing macroeconomic/�nancial trends and rapid changes in investor expectations. Our dis-

aggregated approach compares individual commodity futures returns against stock and bond and

crude oil futures returns, and allows us to compare commodities in and out of the major investable

indices. The results catalogue underlying volatility dynamics including the exposure of conditional

variances to �nancial trading positions in futures markets, stock and exchange rate spillovers, as

well as size and time variation in correlation. We also identify structural changes in correlations be-

tween commodities and conventional asset classes using a range of potentially important indicators

of market conditions.

3 Data

Heterogeneity is a key feature of commodity markets so we take a disaggregated approach, collecting

daily spot and futures prices on 24 commodities, including grains and oilseeds, meat and livestock,

food and �bre and metals and petroleum. (The Appendix lists all series and sources.) The complete

data set covers the period from May 1990 to July 2009. Where no spot price series is reported,

we treat the nearest futures contract as spot, and use all (complete) actively-traded futures price

series to compute average futures returns. We extract weekly from daily series using Wednesday

closing prices or the preceding Tuesday where Wednesdays are missing. The return9 at time t; to

commodity future contract i; with maturity date � ; is

~ri;t;� = 100 ln(
Fi;t;�
Fi;t�1;�

) (2)

where Fi;t;� is the time t price of the futures contract. For all commodities except base metals,

the daily futures price data are continuous series that track a particular contract until its last

trading day, whereupon the series switches into the next nearby contract. (Futures contracts are

usually closed before reaching expiration to avoid delivery of the underlying commodity along with

associated freight and storage costs and for many �nancial futures, trading in a particular contract

stops at the delivery period.) Consequently, the continuous series can give the return to an investor

9Our approach to computing returns and basis is similar to Hong and Yogo (2009).

9



who closes out their position on the last Wednesday prior to the contract�s �nal trading day and

then immediately purchases the next nearest futures contract. For London Metal Exchange (LME)

base metals futures however, daily settlement prices are quoted for spot and for the futures contracts

closest to a �xed maturity period (3-months and 15-months) rather than continuous futures, and

weekly returns do not need to account for the contract switch.

To capture as full a measure of the futures curve as possible, we collect prices on all actively

traded contracts with maturity dates up to one year. We then average across all returns in each

period and collateralize by adding the 3-month Treasury Bill rate (adjusted to weekly). The

averaged weekly futures return is

yit;F =
1

K

KX
k=1

~ri;t;�k + rf;t; (3)

where yit;F is the average of the K collateralized futures returns and rf;t is the weekly short rate.10

Common pricing factors are the nominal 3 month US Treasury Bill rate (weekly), and the

corporate bond spread, measured as the di¤erence between the yield on Moody�s AAA Corporate

Bonds and the T-bill (Hong and Yogo 2009). Idiosyncratic commodity factors are the interest-

adjusted commodity basis and relevant exchange rate changes. The basis is the ratio of futures

and spot prices: an important indicator of market conditions and a proxy for inventory levels, as

discussed in section 2. We compare the spot price (or nearest futures price) with the average futures

prices collected for each commodity and adjust for interest rates, writing the basis as

bi;t = 100 ln

 
1
K

PK
k=1 Fi;t;�k
Si;t

!
� rf;t; (4)

where Si;t is the spot price at time t.11

We also collect data on the investable continuous commodities index the GSCI, and CRB

commodity price index (Reuters-Commodity Research Bureau spot and futures indexes), the DXY

US dollar futures index (measuring the value of the USD against six major world currencies) and

an array of USD exchange rates for commodity-producing countries.

To compute correlations with equity and bond returns we use total returns share price indices

for the US (S&P500), UK (FTSE100), Germany (DAX) and France (CAC) in local currencies, a

10Collateralizing assumes that the investor has a risk-free investment equivalent to the long position in the com-
modity futures contract.
11The number of contracts and their maturity dates vary between commodities. See the Appendix for details.
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total returns �xed interest index for US Treasuries (JP Morgan US Government Bonds). Returns

to stock, bond and commodity indices, and exchange rates, are the logarithm of Wednesday on

Wednesday prices scaled by 100. All data sources and samples are listed in the Appendix.

3.1 Transition variables

DSTCC-GARCH models use observed transition variables to move correlation between extreme

states, and we look at three indicators. The �rst is time, scaled as t=T where t is the current

observation number and T is the sample size, second, the weekly lagged level of the CBOE volatility

index, VIX, which represents the stock market expectation of 30 day volatility, third, the lagged

percentage of long open interest held by non-commercial traders (OI) in each commodity, where

available, and fourth the lagged di¤erence between (percentage) long and short open interest by

non-commercial traders divided by total percentage non-commercial interest (DOI). The VIX is

negatively correlated with the US stock index and is widely regarded as a indicator of future

uncertainty or �fear�. The percentage of all open interest attributable to non-commercial traders�

long positions(OI) proxies overall money manager interest in futures markets.12 The di¤erence

series DOI, we compute as DOIt = (long%t � short%t)=(long%t + short%t + spread%t) which

gauges the intensity of interest of non-commercial traders on either side of the contract. For all

open interest data, we rely on the CFTC, which reports weekly (Tuesdays) on the percentage of

all open interest (number of speci�ed futures contracts) held by commercial and non-commercial

traders.

Academic studies generally view �non-commercial�traders as �nancial investors (Gorton et al.

2007), since this category includes primarily money managers or speculators. Haigh et al. (2005)

identify the non-commercial sub-category CPOs as predominantly hedge funds - managers who

pool funds from smaller investors and can take long or short positions in the futures markets. (The

CFTC de�nes �commercial� traders as those engaged in business activities hedged by the use of

futures, including most �nancial organizations such as banks, endowments and pension funds as

well as producers (Haigh, Hranaiova and Overdahl 2005)).

Harmonizing the open interest series with other components of our weekly data requires man-

aging gaps and breaks. First, we can match up the OI and Bloomberg futures for 15 of the 24

commodities but in some cases the contracts underlying Bloomberg price data and the CFTC

commodity codes underlying the OI data are not the same; in those cases we match up generic

12Non-commercial positions tend to be long on average and increase following a period of rising prices, consistent
with momentum strategies (Gorton et al. 2007; Redrado et al. 2008).
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commodities. Second, prior to October 1992, the open interest is reported mid- month and end-

month, rather than weekly, so to enlarge our sample, albeit with limited information, we �ll in the

missing weeks by repeating the prior observation for the weeks of 2 May 1990 to 7 October 1992.

Third, the speci�c CFTC commodity codes sometimes switch within sample, creating structural

breaks. We model the breaks by regressing each long open interest series on a constant and as

many indicator variables as needed to model the switches. Each OI series thus enters the GARCH

and transition equations as deviations from the mean. (The DOI series is a proportion so we do

not need to adjust it for structural breaks.) Finally, Haigh et al. (2005) point out that these series

are highly aggregated and blur the positions of �nancial and non-�nancial investors but we have

no disaggregated data.

3.2 Summary statistics

Empirical distributions of commodity futures returns vary substantially by commodity, though the

majority show lower return/risk ratios than stocks. Table 1 sets out summary statistics for all series

apart from individual exchange rates. Mean returns to agricultural commodity futures other than

soybeans, meat and livestock were below the mean T-bill rate (3.8% in this sample), whereas most

metals and energy futures returns exceeded it. Commodity volatility was higher than US equity

returns for all but two series, sample skewness was negative for 17 of 24 commodities, and kurtosis

was high. The GSCI return exceeded the mean T-bill rate and volatility exceeded the S&P500,

re�ecting its high weight in energy commodities.

The long open interest of non-commercial traders has trended up over the sample period for

all of the contracts we study, con�rming the increasing in�uence of �nancial traders in the futures

markets. Mean long open interest exceeds mean short open interest for all contracts except cotton

but percentages of interest on both sides were substantial, and show that non-commercial traders are

active on both sides of the market. The maximum percentages of contracts held either long or short

by non-commercials are never less than 21% (crude oil) and go as high as 77% (platinum). Non-

commercial trading pressures are a signi�cant driver of futures returns volatility and correlation,

as we report below.
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4 Modelling Strategy

Following Silvennoinen and Teräsvirta (2009), we de�ne the vector of fully collateralized commodity

futures, �xed interest and equity returns as a stochastic N -dimensional vector process

yt = E [ytjFt�1] + "t; t = 1; :::; T (5)

where Ft�1 is the sigma-�eld generated by information up until time t � 1, and the conditional

mean is a function of common and idiosyncratic factors and ARMA terms, so that

yitjFt�1 = �i0 +
PX
p=1

�ipxip;t�1 +
JX
j=1

�ijyi;t�j +
MX
m=1

�im"i;t�m + "it: (6)

The vector xi includes common factors and commodity-speci�c factors, and the remaining terms

capture seasonality and time dependence via autoregressive and/or moving average structure. In

estimating conditional means, we aim to generate uncorrelated residuals and avoid biases in the

estimation of DSTCC-GARCH. Following Hong and Yogo (2009) we include in every conditional

mean equation known predictors of stock market and bond returns: the T-bill rate and the corporate

bond spread.13 Commodity-speci�c factors in xi are the interest-adjusted commodity basis (a proxy

for the in�uences of inventories and convenience yield), and log changes in the DXY and/or exchange

rates of major producers of commodity i; where statistically signi�cant. Clement and Fry (2008) and

Chen, Rogo¤and Rossi (2008) draw attention to the potential predictive power of the exchange rates

of major commodity producers for some commodities, possibly due to market power on the part

of some producers or because of stronger forward-looking elements in exchange rate determination,

while Tang and Xiong (2009) attribute it to integration with world �nancial markets. All elements

of xi are lagged one period.

Common, idiosyncratic and transition factors may also in�uence the conditional volatility

process so excluding them can bias conditional correlation estimation. For GARCH estimation,

we add the transition variables VIX, OI and DOI to the xi vector and augment the conditional

variance process by any elements of the xi that are relevant. We write the univariate error processes

as

"it = h
1=2
it zit; (7)

13Hong and Yogo use the dividend yield as well but �nd that it is not relevant.
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where hit is a GJR-GARCH process expanded by lags of xi,

hit = �i0 +

JX
j=1

�ij"
2
it�j + �iJ+1"

2
it�1It�1 +

PX
p=1

�ipxip;t�1 +
KX
k=1

�ikhit�k; (8)

It�1 is the indicator function equal to one when "it�1 < 0 and zero otherwise (Glosten, Jagannathan

and Runkle 1993) and zit are i:i:d: random variables with mean zero and unit variance.

The conditional covariance matrix of the vector zt is

E
�
ztz

0
tjFt�1

�
= Pt; (9)

which by virtue of the unit variance of zit for all i, is also the correlation matrix for "t and has

elements �ij;t which are time-varying for i 6= j: The conditional covariance matrix Ht = StPtSt;

where St = diag
�
h
1=2
1t ; :::; h

1=2
Nt

�
, is positive de�nite when Pt is positive de�nite.

We model the bivariate conditional correlation structure in commodity futures, equity and

bond returns using the Smooth Transition Conditional Correlation modelling framework set out in

Silvennoinen and Teräsvirta (2005, 2009). The STCC�GARCH model incorporates time-variation

in correlations that is attributable to a single transition variable, whereas the Double Smooth

Transitions Conditional Correlation (DSTCC) GARCH model allows for two indicator variables.

The STCC (DSTCC) framework can be used to describe correlation dynamics much like the DCC�

GARCH (Engle 2002) and VC�GARCH (Tse and Tsui 2002) models do, by choosing a transition

variable that utilizes information from the past correlations. It can also be seen as combining

aspects of regime switching correlation models (e.g., Pelletier (2006)). The main advantage of the

STCC framework is that, unlike in the models above, the transition variables can be chosen to

be observable and interpretable economic quantities or general proxies for latent factors. It also

provides a basis for testing the relevance of such indicators. In the STCC framework the conditional

correlations move smoothly between two (STCC�GARCH model) or four (DSTCC�GARCH model)

extreme states of constant correlations. This allows the model to track the correlation paths de�ned

by the transition variables. In the estimations below, the transition variables are time, VIX, OI or

DOI in the case of a single transition model, and the last three combined with time when using the

double transition model.

The DSTCC�GARCH model proposes that correlation varies between four extreme correlation

states where the transition between the states is smoothly governed by logistic functions of transition
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variables (here indexed as i = 1; 2). The conditional covariance matrix Pt is a convex combination

of four positive de�nite matrices P(11);P(12);P(21) and P(22) each corresponding to an extreme

state of constant correlation. In the bivariate models reported below each Pt is 2� 2 but has only

one interesting element on the o¤-diagonal. The model is

Pt = (1�G1t)P(1)t +G1tP(2)t (10)

P(i)t = (1�G2t)P(i1) +G2tP(i2); i = 1; 2;

with a logistic function for each transition variable,

Git =
�
1 + e

� 
i
�i
(sit�ci)

��1
; 
i > 0: (11)

where sit is the value of transition variable i at time t, 
i de�nes the speed of transition, ci is

the location of the transition, and �i is the standard deviation of the transition variable i. By

substitution, equation (10) can be rewritten as

Pt = (1�G2t) ((1�G1t)P(11) +G1tP(21)) +G2t
�
(1�G1t)P(12) +G1tP(22)

�
: (12)

If the second transition variable is time (s2t = t=T ), early in the sample when t=T < c2 and G2t is

close to zero, more weight goes to the �rst term in equation (12) and Pt moves between the two

correlation matrices P(11) and P(21): Later in time the matrices in the second term dominate. This

formulation can match an array of conditional correlation paths.

If using only one transition is su¢ cient, an STCC�GARCH model is employed instead. In this

case, the model is simply

Pt = (1�Gt)P(1) +GtP(2) (13)

where Gt is the logistic function de�ned above.

We assume joint conditional normality of the errors:

ztjFt�1 � N (0;Pt) : (14)

For inference, the asymptotic distribution of the ML-estimator of the DSTCC parameter vector
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denoted � is assumed to be normal

p
T
�
�̂T � �0

�
d! N

�
0;J �1 (�0)

�
(15)

where �0 is the true parameter and J �1 (�0) is the population information matrix evaluated at

� = �0: Estimation follows a similar process to that outlined in Silvennoinen and Teräsvirta (2009).

We divide the parameter vector into two sets: parameters for the correlations and for the transition

functions. The log-likelihood is iteratively maximized and concentrated over each of the parameter

subsets until convergence. We bound the speed of transition parameters 
i between 0 < 
i < 500 to

prevent them asymptoting towards in�nity in series where switches between correlation states are

especially rapid. In several cases the best estimated models use the upper bound on 
i; consequently

other estimated parameters in those models are conditioned on 
i = 500. That is, these models

follow a regime switching structure with respect to the transition variable i.

The model selection follows the steps outlined in Silvennoinen and Teräsvirta (2005, 2009).

For each bivariate combination, a model with a constant level of correlation is estimated. The

tests of constancy of correlations against single and double transition models are then carried out.

Where the constancy of correlations hypothesis is rejected, the alternative model is estimated. A

similar procedure is followed after estimating a single transition model: the tests for needing a

double transition are performed, and if the single transition model is found insu¢ cient, the double

transition models are estimated. For each estimated STCC�GARCH or DSTCC�GARCH model,

this procedure ensures the parameters are identi�able and their estimates are consistent. Due to

the two-step estimation (i.e. the GARCH and the correlation parameters are estimated in two

separate, consecutive stages), we acknowledge the loss of e¢ ciency and hence allow for a higher

than conventional level of the test (10%). The resulting �nal model candidates are gauged for

abnormalities such as large standard errors of the parameter estimates, insigni�cance of the level

changes in correlations, inconsistent likelihood values (when compared across models with di¤erent

combinations of transition variables), and inconsistencies in the test results. Based on these criteria,

the best models are chosen for each bivariate system.

5 Estimation results and discussion

We estimate univariate mean equations separately, use conditionally de-meaned residuals in 2-step

maximum likelihood estimation of the parameters of the conditional correlation model, and select
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conditional correlation models using an array of indicators of �t and diagnostics.

5.1 Conditional means

Common and idiosyncratic factors are relevant in conditional means and variances of most commodi-

ties. For mean estimation, we include the T-bill rate, corporate bond spread and the commodity-

speci�c interest-adjusted basis in each model even when estimated coe¢ cients are not signi�cant.

In addition, we retain any exchange rate if the p-value of the estimated coe¢ cient is less than 0.2,

and any signi�cant ARMA terms. (Commodity futures, stocks and bond index returns almost all

show some signi�cant serial correlation, and many commodity series have seasonal patterns.) Table

2 reports estimation results for equation (6) with estimated coe¢ cients signi�cant at 20% or lower

marked with an asterisk.

Interest rates a¤ect futures returns directly via collateralization and the cost of carry relation-

ship, since falling interest rates reduce current futures prices. Further, commodity price momentum

(and potentially increased speculation) can be driven by accommodating macroeconomic policy,

especially low short rates, creating both higher demand and stronger incentives for producers to re-

strict supply.14 We con�rm that lower interest rates and spreads predict higher commodity futures

returns, and these e¤ects are most clear among metals futures. Lower short rates predict higher

returns to soybeans, most metals and Brent oil futures, the CRB spot index and the S&P500. The

lagged corporate bond spread is also a signi�cant negative predictor of corn and wheat futures

returns, of all metal futures returns apart from nickel, of Brent oil futures, and of the CRB spot

index. Earlier studies argue that a positive spread will forecast higher equity returns, and that the

negative relationship between the corporate bond spread and commodities makes commodities a

hedge for long-horizon equity investors (Hong and Yogo 2009), but in our sample the coe¢ cient on

the lagged spread is signi�cantly negative for the S&P500 and the CAC returns. Increases in the

corporate bond spread and short rate forecast higher returns to the bond index.

As to idiosyncratic factors, the interest-adjusted basis is signi�cant for seven commodities,

although the sign varies. We estimate a positive relationship between lagged basis and futures

returns for live cattle, heating oil and natural gas, which suggests that the prevailing e¤ect is mean

reversion in spot prices: a high basis here implies that current futures exceed current spot and that

the spot price must rise to create a positive return to the (long) futures investor. On the other

hand, for wheat, co¤ee, platinum and Brent oil, the negative link between basis and futures may

14See discussion in Frankel and Rose (2009) and references therein.
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imply high future spot price volatility during periods of low inventory (low basis), and therefore

higher returns to futures via a risk premium. Studies of longer runs of aggregated monthly data

generally �nd a negative relationship between basis and futures returns (e.g., Hong and Yogo 2009,

Gorton et al. 2007).

All of the signi�cant exchange rate e¤ects (excepting three base metals) apply to commodities

included in the GSCI index, possibly showing their higher susceptibility to world shocks. A USD

depreciation makes futures contracts cheaper to foreign buyers, and we �nd that a fall in the USD

predicts higher futures returns to sugar (against major currencies DXY), co¤ee (against Mexican

peso, MXN), live cattle (against Australian dollars, AUD), wheat (AUD and with the opposite sign

against the Canadian dollar, CND), gold (DXY, CND, AUD and South Africa with the reverse

sign), silver (MXN), aluminium, nickel and zinc (AUD), copper (DXY) and heating oil and natural

gas (CND).

5.2 Conditional variances

Common factors and transition variables are also key predictors of conditional volatility of futures

returns (Table 3). Volatility rises as the T-bill rate falls for 10 of the 24 commodities and the link is

especially strong for metals. A decline in the corporate bond spread also predicts higher volatility

in wheat, hogs, gold, copper, nickel, tin, crude oil and natural gas, but lower volatility for pork

bellies, co¤ee and platinum. Commodity returns volatility also tends to rise on a depreciation in

the USD as measured by the lagged change in the DXY index (wheat, hogs, orange juice, gold,

and platinum). Higher expected US stock volatility (VIX) predicts higher volatility in gold, nickel,

all energy futures, the GSCI, and all stock indexes, but has the reverse sign for co¤ee and orange

juice.

Our results have a similar �avour to those of Tang and Xiong (2009) who also noted the

importance of spillovers from equity markets and the US exchange rate into commodity volatility.

Like them we �nd signi�cant positive spillovers from equity market volatility and the DXY for

many commodities that are key components of the investable GSCI, such as energy commodities,

and we �nd reverse signs on some spillover coe¢ cients for orange juice, pork bellies and platinum,

commodities that are not included in the GSCI index. These results also re�ect the close connection

between the energy-producing sector and general macroeconomic conditions (see, for example,

Hamilton 2009 and Barsky and Kilian 2004).

Measures of market activity by non-commercial traders, OI and DOI, also predict changes
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in conditional variances. Rises in the percentage of long open interest held by non-commercials

dampen volatility of soybean oil, live cattle and wheat returns. For co¤ee, sugar, gold and silver,

volatility declines when the percentage of open ineterest held long exceeds the percentage held

short, but increases when short interest exceeds long, whereas for corn, soybeans, and cotton, the

interaction of the coe¢ cients on OI and DOI means that rises in both long interest and short open

interest increase volatility. So overall, an increase in the percentage of open interest held short

by non-commercial traders always increases futures returns volatility, but the impact of rises in

long interest varies between markets. This asymmetry between short and long non-commercial

positions in some markets may re�ect the calming role of money managers who provide liquidity

to the market when acting as counterparty to (net short) commodity producers. In other markets

it appears that a higher proportion of non-commercial trade on either side unambiguously raises

expected volatility.

Nonlinearities (leverage e¤ects) in stock index volatility are well-known, and although less well

documented, non-linear volatility regimes in commodity returns are also supported theoretically

and empirically (Deaton and Laroque 1992, Carlson, Khoker and Titman 2007, Fong and See

2001). While higher volatility is linked to bear markets in stocks, commodities price volatility

may increase when prices are abnormally high because of stresses on inventories. Consequently

we expect the GJR parameter, which adjusts predicted variance for negative returns shocks, to

raise expected stock volatility, producing an increase in variance during bear markets, and possibly

the opposite for commodities, so that variance is higher for large positive shocks. Here we �nd

signi�cant negative GJR parameters for most metals, GSCI, and bonds, and signi�cant positive

GJR parameters for all stock indices, three agricultural series and the CRB spot index.

Omitting exogenous factors and nonlinearities can bias estimated GARCH coe¢ cients, causing

an overestimation of persistence in conditional volatility and making �tted conditional variance too

high. It follows that estimated conditional correlations will be too low.

Mean �tted conditional volatility was considerably higher for most commodity futures returns

from 2001 onwards. The last rows of Table 3 show that predicted volatility rose for all but three

commodities. We can get an idea of how commodity volatility increases post-2000 compare with

stocks: the S&P500 volatility was around 17% higher but commodities experienced a rise of around

30% on average (across those series showing volatility increases).
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5.3 Conditional correlation

We estimate conditional correlation using ẑt, the standardized residuals from these univariate

GARCH models. Commodities o¤er diversi�cation bene�ts to investors in traditional asset classes

when correlations are low and remain low during periods of market turbulence. Table 4 reports

sample unconditional correlation coe¢ cients between commodities and major stock and bond in-

dices. For stocks, correlations with agricultural commodities and metals are low and signi�cant

but insigni�cant for gold and energy commodities. Bond correlations tend to be low and negative,

insigni�cant for grains and livestock, but signi�cant for foods, metals (not gold) and energy. The

sample correlations for GSCI and CRB indices are all low and signi�cant, negative for bonds and

positive for equities.

Conditional correlations give us more insight into the dynamics of stock, bond and commodity

markets linkages. We begin by reviewing results for US and European stocks, US bonds and then

consider the links between crude oil and other commodities.

5.3.1 US Stocks

Figure 3 graphs estimated conditional correlations between individual commodity futures returns

and returns to the GSCI, and returns to the S&P500 over the sample from May 1990 to July 2009.

Table 5a reports estimated parameters of preferred DSTCC models.

Beginning with the meat and livestock group, conditional correlation between live cattle and

stocks switches between four states where transitions depend on VIX and time. High expected stock

market volatility (high VIX) raises correlation signi�cantly, from 0 to 0.3 early in the sample (up to

mid 1993) and from -0.13 to 0.16, later. Correlations for live hogs and pork bellies are constant and

insigni�cant. Live cattle and hogs futures are components of the investable commodities indices,

whereas pork belly futures are not, but we �nd that only cattle futures correlations are connected

to stock market uncertainty.

Of the four commodities in the food and �bre group, only orange juice is excluded from the

investable indices (DJ-AIG and GSCI) and its correlation with stock returns are constant. By

contrast, co¤ee transitions between a low (0.06) and high (0.6) correlation state when expected

stock volatility is high, with peaks in 2001-02 and 2008-09. Cotton and sugar correlations have four

regimes, transitioning on DOI and time. For both of these futures series, highest correlation with

stocks occurs during the most recent decade, and in the low DOI states when short open interest by

non-commercials is strong relative to long interest. In these states, correlation between cotton and
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stocks increases from 0 to 0.3, and from -0.18 to 0.5 for sugar. These results indicate that money

managers and hedge funds may be successfully timing a hedge between stocks and commodities in

these markets.

The best correlation models for grains and oilseeds all show marked peaks during the 2008-09

crisis. Corn correlation rises to around 0.5 from 0, from �05 onwards in high VIX states. Soybeans

and soybean oil transition to high correlation states (0.4 and 0.6) during high expected stock

volatility, whereas wheat responds to increasing long open interest. Both wheat and corn show

time breaks in the correlation structure (2004 and 2007).

Similar breaks in correlation regime show up in precious and base metals. Platinum and silver

switch to signi�cantly higher correlation states (around 0.3 from 0) from �03-�04 onwards, and all the

base metals correlations increase from �99-�01 onwards. Platinum, silver, lead and tin correlations

rise during high VIX states later in the sample, but are not signi�cantly responsive to VIX earlier.

These results indicate a stronger integration between equity and metals markets over the past

decade that has produced higher and more time-varying correlation.

Finally, all the oil futures returns series switch to high correlation with stocks (around 0.4 from

low negative levels) largely in step, during high VIX states, with a sustained increase during the

�08-�09 period.

In summary, most conditional correlations between commodity futures returns and US stock

index returns have increased, generally peaking in the recent crisis at levels dramatically higher

than earlier. For 12 of the 24 commodities, high expected stock market volatility shifts correlations

upwards. Since VIX is negatively correlated with stock returns, we conclude that both stock and

futures returns are falling as VIX increases and the concentration of this e¤ect later in the sample

points to increased commodity and stock market integration over time. Further, breaks in the

correlation structure emerge for most metals, some grains and some foods, around the beginning

of the current decade when both fundamentals and �nancial investor interest were intensifying.

Futures market positions of non-commercial traders drive correlations with stocks for 3 contracts

and switches suggest that money managers may be able to time their positions to o¤set stock

market losses. No regular pattern has emerged between commodities in the GSCI index compared

with excluded commodities.

European stocks We consider European stock returns indices to see if correlation patterns

between commodity futures returns and other developed economies are consistent with the US.

estimated parameters of the models are reported in Table 5(b-d) but to save space, we do not
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graph the correlations.

We �nd that many of the features of US stock commodity futures correlations are repeated

in the German, French and UK stock markets. For meat and livestock, live cattle correlations

transition on VIX and time and show the highest correlation in high VIX states. For hogs, VIX

becomes a relevant transition variable for correlation with the CAC and DAX around the middle

of the sample.

For the food and �bre commodities, co¤ee correlation patterns follow the US, with all three

European stocks correlations close to 0.6 during high VIX states later in the sample (FTSE and

DAX correlations have a signi�cant time break). Findings for cotton are also similar to the US,

con�rming a high correlation state when money manager open interest is concentrated short in

the second half of the sample. Sugar correlations with CAC and DAX rise dramatically as long

open interest (OI) falls, but the time break is later than for the US. Unlike the US, orange juice

correlation with FTSE, DAX and CAC also depends on money manager interest.

Grain and oilseed correlations with European indices rise to around the same levels as for the

S&P500, although time breaks between �04 and �06 are more marked.

Time breaks to regimes of higher correlation in base metals are consistent with the US results

also. For the precious metals, we �nd a more signi�cant role for the OI and DOI transition variables

and signi�cant time breaks in the correlation structure between mid-sample and 2006.

Brent, crude and heating oil correlations rise but reach lower peaks for Europe than for the US,

and transition e¤ects vary considerably.

5.3.2 US bonds

Conditional correlations between bond and commodity futures returns are generally low and nega-

tive (Figure 4 and Table 5f), and crisis e¤ects are less marked than for stocks. Meat and livestock,

food and �bre and precious metals all switch between regimes of correlations close to zero for

most of the sample. However, all base metals, energy and GSCI correlations transition on VIX,

indicating integration with wider �nancial market conditions, but high VIX levels generally switch

bond and commodity correlations to signi�cantly stronger negative correlation rather than positive

correlation, as for stocks. The exceptions are live hogs and pork bellies where higher VIX raise

correlation with bonds.

Time breaks again show up in the base metals series around the locations of the related breaks

in stock correlations, whereas oil correlations have sharp regime switches during the early to mid
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1990s which calm over the remaining sample.

Preferred models for sugar, silver and grains and oilseeds include OI or DOI as transition

variables. For sugar, soybean oil and silver, increasing long open interest predicts less negative

correlations, mirroring the position with stocks.

5.3.3 Crude oil

Energy is an important input into production processes including the production of other com-

modities so that higher energy costs raise commodity prices generally. Environmental policy has

more closely integrated markets for agricultural crops with energy. As well as a¤ecting biofuel

prices directly and raising input costs, there may be pass-through to food and �bre crops which

compete with biofuels for land and production capacity. Here we consider whether the futures

returns processes for crude oil and agricultural commodities are more closely integrated by looking

at the path of conditional correlation.

Figure 5 plots conditional correlation paths for WT crude oil futures returns with agricultural

and metal futures returns. Correlations (Table 5e) are clearly trending upwards for all agricultural

commodities apart from orange juice and sugar. Not surprisingly, the strongest increases occur

between crude oil and the grains and oilseeds group, which include biofuels. Soybean correlation

rises from levels near zero earlier in the sample to a peak around 0.5, soybean oil rises to 0.6

between 2007-09, and correlations for corn and wheat increase to 0.5 and 0.3 from very low bases.

Co¤ee and cotton crops also correlate more strongly with crude oil, stepping up during the crisis

to levels around 0.3-0.5, whereas sugar and orange juice stay �at. The VIX plays a role as a

transition variable in the cotton and two soybean models raising correlation. Likewise increases in

short against long open interest (lower DOI) raise correlation between oil futures and co¤ee and

corn. Time breaks appear again, indicating increasing conditional correlations from mid-sample for

grains and oilseeds and from �04-�05 for co¤ee and cotton.

Structural changes in correlation between crude oil and metal futures begin from around the

same time (lead and tin earlier). High correlation regimes are driven by high stock market volatility

for platinum, aluminium, copper, lead and nickel, whereas aluminium and zinc correlations increase

over time.

Common macroeconomics factors such as increasing (and then sharply decreasing) demand

from industrializing economies are likely to have driven these changes along with energy costs and

we cannot parcel out the e¤ect of crude oil prices from underlying drivers, but the sharp rises in
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grain, oilseed and food and �bre correlations support an argument for increasing pressure on food

production due to inelastic oil supply.

6 Conclusion

Unlike other recent examinations of commodity futures returns such as Büyükşahn et al. (2008)

and Chong and Mi¤re (2008), our results do not show weakening correlation between commodities

and conventional stock and bond returns. On the contrary, we present evidence favoring closer

commodity and �nancial market integration, consistent with Tang and Xiong (2009). We use

several di¤erent methods in estimating temporal variation in correlation that may partly explain

di¤erences in our result from those of earlier studies. First we extend the sample to cover the

latter part of 2008 and early 2009 and thus introduce a large amount of new variation to the

data. Second, we include a careful modelling of common and idiosyncratic factors in means and

variances, capturing relevant currency predictions, seasonal e¤ects in means, and exogenous factors

and common factors nonlinearities in both conditional means and variances. Third, we introduce

the DSTCC structure with its explicit treatment of expected stock volatility and �nancial traders�

open interest.

Commodity futures correlation dynamics with US stocks in the 1990-2009 period often exhibit

increases, typically rising towards 0.5 from levels close to zero in the 1990s. For most metals, and

some agriculturals these increases begin mid-sample. Such patterns are also evident in correlations

with stocks traded in European markets.

Also consistent across developed- country stock markets is the role of indicators of �nancial

market conditions in predicting the correlation state. Increases in the VIX index are linked to higher

commodity-stock correlation, at least from the middle of our sample. For the majority of DSTCC

models that use time and VIX as transition variables, this link is signi�cant from some point since

the late 1990s. Since VIX typically co-varies negatively with stocks, our results suggest that returns

to some commodity futures and stocks are now both decreasing in volatile markets, whereas in the

1990s they were largely unrelated. In models where changes in the percentage of non-commercial

traders open interest is relevant, we observe similar switches, but in the reverse direction to VIX,

so that higher-than-normal long OI foreshadows a decrease in the correlation between commodity

futures returns and stocks. One possible explanation is that hedge fund managers are timing

changes to their futures exposure to exploit hedging opportunities.

The increasing integration of energy and agricultural markets also shows up in estimated con-
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ditional correlations. By the end of the sample, correlations between crude oil and biofuel futures

returns rose strongly, and other grains, food and �bre commodities exhibited marked increases.
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Appendix: Data sources

Commodities Futures, Wednesday closing prices or previous Tuesday when Wednesday is unavail-
able, from Bloomberg:

Agriculture:

� Corn: Bloomberg tickers C 1-C 5 Comdty; exchange CBT; sample 1 January 1986-1 July
2009; active months Mar May Jul Dec; major trading countries China, Brazil.

� Soybeans: Bloomberg tickers S 1-S 6 Comdty; exchange CBT; sample 1 January 1986-1 July
2009; active months Jan Mar May Jul Aug Nov; major trading countries Brazil, Argentina,
China, India.

� Soybean oil: Bloomberg tickers BO1-BO8 Comdty; exchange CBT; sample 1 January 1986-1
July 2009; active months Jan Mar May Jul Aug Sep Oct Dec.

� Wheat: Bloomberg tickers W 1-W 5 Comdty; exchange CBT; sample 1 January 1986-1 July
2009; active months Mar May Jul Sep Dec; major trading countries Canada, EU, China,
India, Russia, Australia.

� Lean hogs: Bloomberg tickers LH1-LH6 Comdty; exchange CME; sample 7 May 1986-1 July
2009; active months Feb Apr Jun Jul Aug Oct Dec.

� Live cattle: Bloomberg tickers LC1-LC6 Comdty; exchange CME; sample 1 January 1986-1
July 2009; active months Feb Apr Jun Aug Oct Dec.

� Pork bellies: Bloomberg tickers PB1-PB5 Comdty; exchange CME; sample 1 January 1986-1
July 2009; active months Feb Mar May Jul Aug.

� Co¤ee: Bloomberg tickers KC1-KC5 Comdty; exchange CSCE; sample 1 January 1986-1 July
2009; active months Mar May Jul Sep Dec

� Cotton: Bloomberg tickers CT1-CT4 Comdty; exchange NYCE; sample 1 January 1986-1
July 2009; active months Mar May Jul Dec; major trading countries China, India, Pakistan

� Orange Juice: Bloomberg tickers JO1-JO6 Comdty, exchange NYCE; 15 January 1986-1 July
2009; active months Jan Mar May Jul Sep Nov; major trading countries Brazil, US.

� Sugar: Bloomberg tickers SE1-SE4 Comdty; exchange CSCE; sample 1 January 1986-1 July
2009; active months Mar May Jul Oct; major trading countries Brazil, EU, Thailand, Aus-
tralia.

Metals:

� Gold: Bloomberg tickers, GOLDS Comdty, GC1-GC5 Comdty; sample 1 January 1986-1
July 2009; exchange COMEX; Active months Mar May Jul Sep Dec; major trading countries
South Africa, Russia , Canada, Australia.

� Platinum: Bloomberg tickers, PLAT Comdty, PL1-PL3 Comdty; sample 28 May 1986-1 July
2009; exchange COMEX; Active months Jan Apr Jul Oct; major trading countries South
Africa, Russia
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� Silver: Bloomberg tickers, SILV Comdty, SI1-SI5 Comdty; sample 1 January 1986-1 July
2009; exchange COMEX; Active months Mar May Jul Sep Dec; major trading countries
Peru, Mexico, China, Chile.

� Aluminium: Bloomberg tickers LMAHDY Comdty, LMAHDS03 Comdty, LMAHDS15 Comdty
; exchange LME; sample 2 September 1987-1 July 2009; Active all 12 calendar months; major
trading countries China, Russia, Canada , Australia.

� Copper: Bloomberg tickers LMCADY Comdty, LMCADS03 Comdty, LMCADS15 Comdty
; exchange LME; sample 2 April 1986-1 July 2009; Active all 12 calendar months; major
trading countries Chile, Peru

� Nickel: Bloomberg tickers LMNIDY Comdty, LMNIDS03 Comdty, LMNIDS15 Comdty ;
exchange LME; sample 7 January 1987-1 July 2009; Active all 12 calendar months; major
trading countries Russia, Japan, Canada, Australia

� Lead: Bloomberg tickers LMPBDY Comdty, LMPBDS03 Comdty, LMPBDS15 Comdty ;
exchange LME; sample 7 January 1987-1 July 2009; Active all 12 calendar months; major
trading countries China

� Tin: Bloomberg tickers LMSNDY Comdty, LMSNDS03 Comdty, LMSNDS15 Comdty; ex-
change LME; sample 7 June 1989-1 July 2009; Active all 12 calendar months; major trading
countries China, Indonesia, Peru

� Zinc: Bloomberg tickers LMZSDY Comdty, LMZSDS03 Comdty, LMZSDS15 Comdty ; ex-
change LME; sample 4 January 1989-1 July 2009; Active all 12 calendar months; major
trading countries China, Australia, Canada

Energy:

� Brent oil; Bloomberg tickers, CO1-CO6 Comdty; sample 6 July 1988-1 July 2009; exchange
NYMEX; Active all 12 calendar months.

� Crude oil WTI; Bloomberg tickers, CL1-CL9 Comdty; sample 2 July 1986-1 July 2009; ex-
change NYMEX; Active all 12 calendar months; major trading countries, Saudi Arabia, USA,
Russia, Iran, Mexico.

� Heating oil; Bloomberg tickers, HO1-HO9 Comdty; sample 2 July 1986-1 July 2009; exchange
NYMEX; Active all 12 calendar months.

� Natural gas; Bloomberg tickers, NG1- NG10 Comdty; sample 4 April 1990-1 July 2009;
exchange NYMEX; Active all 12 calendar months; major trading countries, USA, Russia,
Canada.

Commodity Indices:

� CRB spot: Commodity Research Bureau Continuous commodity index; Bloomberg ticker
CRY Index; sample 1 January 1986-1 July 2009.

� CRB futures: Commodity Research Bureau Continuous commodity index; Bloomberg ticker
CRB CMDT Index; sample 1 January 1986-1 July 2009.

� GSCI: Standard and Poors GSCI spot total returns index; 2 April 1990-1 July 2009.
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Financials:

� Short rate: US Treasury Bill 3 month secondary market rate, Federal Reserve Board of
Governors: H15/H15/RIFLGFCM03_N.B, sample 1 January 1986-1 July 2009.

� Yield spread: Moody�s AAA Corporate Bond yield less short rate; Bloomberg ticker MOOD-
CAAA; sample 1 January 1986-1 July 2009.

� USA Stocks: S&P500 Composite returns index; Datastream mnemonic S&PCOMP(RI); sam-
ple 1 January 1986-1 July 2009.

� German Stocks: DAX 30 returns index (Euros); Bloomberg ticker DAX TR IDX; sample 1
January 1986-1 July 2009.

� UK Stocks: FTSE100 (BPD); Bloomberg ticker UKX TR IDX; sample 6 January 1988-1 July
2009.

� France Stocks: CAC 40 (Euro); Bloomberg ticker CAC TR IDX; sample 1 January 1986-1
July 2009.

� USA Bonds: JP Morgan US Govt Bond total returns; Datastream mnemonic JPMUSU$(RI);
sample 1 January 1986-1 July 2009.

� Volatility: CBOE VIX volatility index; Bloomberg ticker VIX Comdty; sample 1 January
1986-1 July 2009.

� USA exchange rate Index future DXY: US Dollar Index (average of US dollar exhange rate
with six major currencies); Bloomberg ticker DXY Curncy; sample 1 January 1986-1 July
2009.

� Exchange rates: Bloomberg tickers Argentina USDARS Curncy, Australia USDAUD Curncy,
Brazil USDBRL Curncy, Canada USDCAD Curncy, Chile USDCLP Curncy ChinaUSD
CNY Curncy, Colombia USDCOP Curncy, EU EURUSD Curncy, Ghana USDGHS Curncy,
Guatemala USDGTQ Curncy, India USDINR Curncy, Indonesia USDIDR Curncy, Iran US-
DIRR Curncy, Ivory Coast USDXOF Curncy, Mexico USDMXN Curncy; Peru USDPEN
Curncy, Russia USDRUB Curncy, Saudi Arabia USDSAR Curncy, South Africa USDZAR.

Open interest

� Commodity Futures Exchange Commission, per cent of open interest non-commercial long,
non-commercial short and non-commercial spread, all, mid and end month 15 May 1990
- 30 September 1992, then weekly 6 October 1992 - 30 June 2009, Contracts: Co¤ee C -
Co¤ee, Cocoa and Sugar Exchange, Copper - Commodity Exchange Inc.; Corn - Chicago
Board Of Trade; Cotton No. 2 - New York Cotton Exchange; Crude Oil, Light �Sweet� -
New York Mercantile Exchange; Gold - Commodity Exchange Inc.; Heating Oil No. 2, N.Y.
HARBOR - New York Mercantile Exchange; Lean hogs - Chicago Mercantile Exchange; Live
Cattle - Chicago Mercantile Exchange; Natural Gas - New York Mercantile Exchange; Frozn
concentrated Orange Juice - Citrus Association of NY Cotton Exchange; Platinum - New
York Mercantile Exchange; Silver - Commodity Exchange Inc.; Soybean Oil - Chicago Board
Of Trade; Soybeans - Chicago Board Of Trade; Wheat - Chicago Board Of Trade.
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Table 1: Summary statistics, 2 May 1990- 1 July 2009. 
 
Table reports summary statistics for weekly collateralized commodity futures returns, interest rates, spreads, stock and bond returns, VIX, commodity index returns and 
percentage of open interest in commodity futures contracts held long or short by non-commercial traders. Appendix lists all data sources and complete samples. Weekly 
returns are the log difference of Wednesday closing prices (or preceding Tuesday where Wednesday is missing) scaled by 100. Commodity futures returns are the average of 
weekly returns on a range of contracts from nearest to expiry to one year to maturity where complete data are available, collateralized by adding the 3-month Treasury Bill 
rate (adjusted to a weekly equivalent from annualized). For LME metals futures, we average returns to the 3 and 15 months to maturity contracts and collateralize.  
For open interest of non-commercial traders we repeat mid-month and end-month values to proxy for weekly observations from 2 May 1990 to 7 October 1992. After that 
date the CFTC reports every week on Tuesday positions.  
 
Collateralized commodity futures, annualized weekly returns, % 

 Grains and Oilseeds Livestock and Meat Food and Fibre 

 corn soybeans soybean 
oil wheat  lean  

hogs 
live 

cattle 
pork 

bellies   coffee cotton orange  
juice sugar 

mean -3.40 6.02 3.44 0.95  4.03 5.78 4.29   -1.99 -3.43 -6.62 3.80 
median -0.67 4.74 7.58 -5.89  7.13 8.80 -7.60   -4.95 0.62 0.33 10.99 
               
maximum 683.98 776.62 752.83 996.19  379.24 316.88 732.39   1620.30 688.49 917.94 715.93 
minimum -836.85 -795.25 -606.76 -893.19  -814.74 -641.65 -736.40   -1164.81 -732.61 -803.92 -1142.50 
               
std. dev. 23.03 22.00 21.78 24.45  17.81 10.54 29.60   34.90 22.58 26.87 27.78 
               
skewness -0.10 -0.20 0.02 0.33  -0.58 -0.85 0.18   0.42 -0.09 0.11 -0.46 
kurtosis 5.76 5.15 4.61 5.56  5.81 9.59 3.82   7.13 4.16 5.11 5.42 
Obs. 1001 1001 1001 1001  1001 1001 1001   1001 1001 1001 1001 
 Metals Energy 

 gold platinum silver aluminium copper lead nickel tin zinc  brent  
oil 

crude  
oil 

heating  
oil 

natural  
gas 

mean 8.41 -0.66 5.60 4.36 7.78 8.16 7.25 7.69 4.17  14.57 14.49 12.53 4.74 
median 4.82 13.58 4.81 4.87 11.81 4.39 3.62 9.31 5.10  20.38 22.18 17.05 6.87 
               
maximum 663.44 975.80 736.79 545.83 617.33 1136.27 1566.46 1389.91 644.08  1128.94 1149.23 1038.31 928.10 
minimum -688.66 -1190.74 -1025.40 -580.19 -841.17 -1059.23 -963.11 -1027.47 -965.83  -1575.44 -1215.34 -1216.40 -1061.89 
               
std. dev. 15.72 25.89 26.91 16.36 20.87 25.84 31.36 21.43 22.22  31.13 28.39 28.12 33.22 
               
skewness 0.01 -1.19 -0.38 -0.12 -0.50 -0.22 0.10 -0.15 -0.51  -0.51 -0.48 -0.35 -0.15 
kurtosis 7.98 10.12 6.09 6.20 7.40 9.24 7.80 15.72 7.64  8.01 6.85 6.77 4.03 
Obs. 1001 1001 1001 1001 1001 1001 1001 1001 1001  1001 1001 1001 1001 
 



 

Table 1 Continued 
 
Interest rates and total returns to indices, (annualized weekly data)   

 Interest rates Stock return indices Bonds Volatility Commodity indices USD 

 USA  
3-mth T bill 

USA  
yield 

spread 

USA 
S&P500 

Germany 
DAX 

UK 
FTSE100 

France 
CAC 

USA  
JPMorgan 

VIX 
(level) 

CRB 
spot 

CRB 
futures GSCI DXY 

mean 3.81 2.96 7.43 5.08 6.76 4.48 6.92 20.12 1.46 0.18 4.3 -0.8 
median 4.34 2.58 15.04 22.86 14.28 15.48 8.47 18.46 1.76 3.62 6.2 -1.2 
             
maximum 7.85 6.30 530.49 892.04 723.92 864.51 117.02 74.26 163.32 446.57 640.6 317.3 
minimum 0.00 0.13 -851.48 -791.65 -659.41 -769.41 -131.61 9.31 -352.95 -501.89 -815.8 -416.2 
             
std. dev. 0.25 1.42 16.59 22.92 17.03 21.74 4.61 8.45 7.09 13.00 21.5 8.5 
             
skewness 0.42 0.10 -0.09 0.11 -0.20 0.02 -0.46 2.06 -0.46 -0.46 -0.52 0.02 
kurtosis 7.13 1.84 4.16 5.11 5.15 4.61 5.42 10.19 5.42 5.42 5.86 6.48 
Obs. 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 
Percentage of open interest held by non-commercial traders (long and short)    

 Agriculture 

 corn soybeans soybean oil wheat live cattle coffee cotton orange juice 
 long short long short long short long short long short long short long short long short 
mean 18.3 10.7 20.3 11.7 23.8 10.8 26.4 14.2 22.3 13.8 21.8 15.5 18.0 19.8 26.1 17.6 
median 17.6 9.3 19.9 9.4 13.7 8.9 23.5 10.7 22.3 13.0 20.9 13.9 18.0 18.1 24.6 15.3 
                 
maximum 37.5 30.9 36.5 41.1 72.4 52.4 61.40 46.50 51.3 32.2 50.2 48.7 50.3 52.7 54.5 49.5 
minimum 1.9 0.6 4.1 1.5 0.7 0.9 5.4 1.5 4.6 1.8 6.0 1.1 1.1 1.1 1.4 1.3 
                 
std. dev. 7.4 6.8 7.8 7.5 22.2 7.8 11.9 9.8 7.9 5.9 8.4 9.6 10.5 12.9 12.1 10.2 

  Metals Energy  

 sugar gold platinum silver copper crude oil heating oil natural gas 
 long short long short long short long short long short long short long short long short 
mean 18.8 10.5 21.7 18.9 42.2 13.2 24.5 12.5 21.4 17.3 9.9 8.5 9.3 6.6 8.1 9.0 
median 19.1 8.2 21.2 17.6 44.9 11.3 23.2 12.0 19.2 15.4 8.9 8.3 8.8 5.9 8.0 6.8 
                 
maximum 44.3 36.3 55.7 49.8 77.0 54.1 56.9 44.9 61.6 45.6 24.3 21.2 26.3 20.8 24.8 44.9 
minimum 2.4 0.0 1.6 1.5 7.2 0.0 3.9 1.5 1.2 0.8 0.7 0.4 0.2 0.1 0.0 0.0 
                 
std. dev. 9.4 8.0 13.7 9.7 17.2 9.9 11.8 7.1 10.8 10.5 5.4 4.5 5.5 4.2 4.8 8.4 
  



 

 Table 2: Estimated coefficients of conditional mean equations. 
 
Table reports estimated coefficients and fit for preferred conditional mean equations for weekly commodity futures, stock, bond and commodity index returns. Appendix lists 
data sources and samples. For calculation of dependent variables see notes to Table 1. Returns are regressed on a constant, and  the  lagged interest-adjusted basis (the log 
difference between the average futures prices and current spot (or nearest futures) multiplied by 100 less the weekly T-bill rate), the lagged 3-month Treasury Bill secondary 
market rate, the lagged corporate bond spread (difference between Moodys  AAA Corporate bond yield and the T-bill rate), the lagged log change (x100)  in the DXY US 
dollar future contract price and lagged log changes (x100) of currencies of major trading countries of the commodity, as listed in Appendix. Seasonality and serial correlation 
are modelled by AR and MA terms selected using Ljung-Box Q statistics to 100 lags. All significant coefficients with p-values at 20% or less are marked in boldface. 
 
Collateralized commodity futures, conditional mean equations, estimated coefficients 

 Grains and oilseeds Meat and livestock  Food and fibre 
 corn soybeans soybean oil wheat lean hogs live cattle pork bellies coffee cotton orange juice sugar 

constant 0.704 1.072 1.002 1.013 -0.047 -0.115 0.005 0.409 -0.662 0.212 -0.016 
adj.basis(t-1) -0.012 0.021 -0.011 -0.217 -0.004 0.024 -0.006 -0.048 -0.005 0.021 -0.003 
bond spread(t-1) -0.181 -0.132 -0.164 -0.223 -0.011 0.031 0.039 0.027 0.063 -0.141 0.071 
t-bill(t-1) -0.044 -0.147 -0.111 -0.073 0.044 0.036 0.022 -0.076 0.108 -0.002 -0.030 
            
ar | lag  -0.08 6  0.10 17 0.06 2 0.07 2 -0.08 2 0.06 2 -0.05 1 -0.10 21 0.08 8 0.06 1 
ar | lag -0.08 24   0.06 5 -0.08 19 0.05 3 0.08 9 -0.05 4  -0.11 14 0.10 17 
ar | lag    0.09 13  0.10 4  -0.05 6    
ar | lag    -0.09 17  0.70 7  0.05 8    
ar | lag      0.12 29  0.08 10    
ar | lag        -0.08 22    
            
DXY(t-1)           0.249 
Mexico (t-1)        -0.167    
Canada (t-1)    0.189        
Australia (t-1)    -0.123  -0.07      
            
Adjusted R2 0.011 0.000 0.010 0.022 0.007 0.038 0.006 0.019 0.009 0.015 0.014 
Obs. 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 
 



 

Table 2 continued 
Collateralized commodity futures, conditional mean equations, estimated coefficients 
 Metals 

 gold platinum silver aluminium copper lead nickel tin zinc 
constant 0.845 2.031 1.544 0.633 1.399 1.871 0.831 1.375 1.139 
adj. basis(t-1) -0.040 -0.130 -0.001 0.016 0.014 -0.019 -0.011 0.0083 0.003 
bond spread(t-1) -0.112 -0.311 -0.223 -0.143 -0.241 -0.332 -0.132 -0.216 -0.209 
t-bill(t-1) -0.077 -0.220 -0.195 -0.042 -0.131 -0.182 -0.081 -0.152 -0.114 
          
ar | lag -0.06 2 -0.04 1 -0.08* 5 0.06 4 0.08 2 -0.12 2 -0.06 2 -0.07 1 -0.06 1 
ar | lag -0.10 4 -0.06 5   0.09 8 0.08 3 0.07 3 0.09 6 -0.04 3 0.05 4 
ar | lag -0.10 5 0.12 13   0.09 13 0.06 6 0.05 4  0.05 4 -0.08 7 
ar | lag 0.10 12 0.10 26  -0.13 21 -0.05 7 0.15 9  0.05 5 0.10 9 
ar | lag -0.09 24     0.09 9   -0.07 7 -0.08 12 
ar | lag      -0.06 16   0.07 8  
         0.10 9  
         0.16 10  
         -0.11 26  
            
DXY(t-1) -0.339     -0.121      
South Africa (t-1) 0.094           
Canada(t-1) -0.238       0.210   
Mexico (t-1)   -0.094       
Australia (t-1) -0.252   -0.150   -0.269  -0.244 
          
Adjusted R2 0.206 0.059 0.008 0.041 0.028 0.047 0.012 0.066 0.035 
Obs 1001 1001 1001 1001 1001 1001 1001 1001 1001 
 
  



 

Table 2 continued 
 
Collateralized commodity futures and commodity, stock  and bond indices, conditional mean equations, estimated coefficients  
 Energy GSCI CRB Stocks Bonds 

 Brent oil Crude oil Heating oil Natural 
gas GSCI spot CRB spot CRB futures US 

S&P500 
Germany 

DAX 
UK 

FTSE100 
France 

CAC 
US 

JPMorgan 
constant 1.127 0.756 0.488 -0.685 0.146 0.686 0.495 0.686 0.495 0.197 0.619 -0.207 
adj. basis(t-1) -0.075 -0.009 0.045 0.020         
bond spread(t-1) -0.194 -0.123 -0.086 0.064 -0.063 -0.114 -0.085 -0.114 -0.085 -0.042 -0.125 0.051 
t-bill(t-1) -0.085 -0.031 0.008 0.131 0.031 -0.083 -0.061 -0.083 -0.061 0.014 -0.041 0.048 
             
ar | lag -0.06 1 0.14 3 0.12 3 0.11 3 0.15 3 0.81 1 0.1 3 -0.12 7 -0.09 1 -0.09 7 -0.13 1 -0.09 25 
ar | lag 0.13 3 0.12 14 0.09 10 0.10 4   0.03 9 0.09 8      
ar | lag 0.11 14 0.07 26 0.15 14     -0.08 16 0.15 14      
ar | lag         0.08 17 -0.1 25      
ma       -0.58 1        
              
Canada (t-1)   -0.234 -0.191         
             
Adjusted R2 0.032 0.036 0.028 0.018 0.022 0.079 0.047 0.079 0.047 0.005 0.015 0.016 
Obs 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 
 
  



 

 
Table 3: Estimated coefficients of GARCH equations. 
 
Table reports estimated coefficients of preferred conditional variance equations estimated using residuals from mean equations described in Table 2. GARCH models include 
a constant, ARCH, GARCH and GJR terms, and where relevant, lagged interest-adjusted commodity basis, the lagged yield spread, the lagged 3-month Treasury Bill 
secondary market rate, the lagged log change (x100) in the DXY US dollar future contract price, lagged levels of the VIX volatility index, lagged OI (% of long open interest 
in the futures contract held by non-commercial traders) and DOI (proportional difference between net long and net short open interest held by non-commercial futures 
traders). All fitted values of the conditional variance are strictly positive. All coefficients except those marked with an asterisk are significant at 10%.  
 
Collateralized commodity futures, GARCH equations, estimated coefficients 

 Grains and oilseeds Meat and livestock  Food and fibre 
 corn soybeans soybean oil wheat lean hogs live cattle pork bellies coffee cotton orange juice sugar 

constant 2.528 1.060 2.540 0.356 0.164 0.139 -2.385 4.470 0.298 0.158 0.481 
adj.basis(t-1) -0.057 -0.063   -0.001 -0.006 0.068 -0.168 -0.027   
bond spread(t-1)    -0.065 -0.009  0.69 0.688    
t-bill(t-1)   -0.195 -0.022 -0.011  0.556     
DXY(t-1)    -0.273 -0.054  0.668   -0.304  
VIX(t-1)        -0.085  -0.006  
OI(t-1) 0.151 0.049 -0.195 -0.008  0.009   0.045   
DOI(t-1) -2.273 -1.108    -0.173  -3.868 -0.755  -0.466 
            
ARCH (1) 0.047* 0.065 0.114 -0.017* -0.052 -0.003* 0.051 0.180 0.093 -0.011 0.072 
ARCH (2) 0.115 0.108  0.165  0.149      
ARCH (3)  -0.096  -0.131        
GJR     0.067 0.149    0.035  
GARCH(1) 0.056* 0.832 0.681 1.006 1.001 0.871 0.839 0.772 0.856 0.991 -0.466 
GARCH(2) 0.060           
            
Mean h(t)            
1990-2000 18.9 19.0 19.6 18.4 17.8 8.3 33.2 36.6 19.0 27.4 26.0 
2001-2009 26.2 24.6 23.4 19.0 31.0 12.6 24.8 31.5 26.1 25.3 29.9 
 



 

Table 3 continued 
Collateralized commodity futures and commodity, stock  and bond indices, GARCH equations, estimated coefficients 
 Metals 

 gold platinum silver aluminium copper lead nickel tin zinc 
constant 0.150 -1.634 0.599 0.147 1.031 0.169 3.188 3.129 0.119 
adj.basis(t-1)      -0.010    
bond spread(t-1) -0.023 0.405   -0.105  -0.464 -0.203  
t-bill(t-1) -0.028    -0.094  -0.347 -0.325 -0.019 
DXY(t-1) -0.073 -0.343        
VIX(t-1) 0.009      0.057   
OI(t-1)          
DOI(t-1) -0.089  -0.833       
          
ARCH (1) 0.173 0.195 0.148 0.078 0.103 0.068 0.084 0.325 0.059 
ARCH (2) -0.080 0.086        
ARCH (3) 0.080         
ARCH (13)  0.223        
GJR -0.150 -0.165 -0.111 -0.030    -0.122 -0.029 
GARCH(1) 0.866 0.504 -0.882 0.907 0.852 0.918 0.828 0.579 0.953 
Mean h(t)          
1990-2000 10.6  22.0 14.7 16.1 17.8 25.9 14.7 15.8 
2001-2009 13.9  31.2 17.1 24.5 31.0 36.2 25.8 26.5 
 Energy GSCI CRB Stocks Bonds 

 Brent oil Crude oil Heating oil Natural 
gas GSCI spot CRB spot CRB futures US 

S&P500 
Germany 

DAX 
UK 

FTSE100 
France 

CAC 
US 

JPMorgan 
constant 1.540 1.103 -0.243* 0.196* 0.911 0.001 0.035 -0.893 -2.254 0.015* -3.63 0.004* 
adj.basis(t-1)             
bond spread(t-1)  -0.241  -0.090 -0.188    0.182  0.404  
t-bill(t-1) -0.288 -0.210   -0.134      0.419  
DXY(t-1)      -0.010     -0.407  
VIX(t-1) 0.127 0.085 0.051 0.029 0.040   0.125 0.264 0.033 0.196  
OI(t-1)   0.040          
DOI(t-1)             
             
ARCH (1) 0.138 0.098 0.098 0.100 0.138 -0.002* 0.074 -0.130 -0.008* -0.026 0.012* 0.081 
ARCH (2)    -0.066  0.092       
ARCH (3)      -0.093       
ARCH (4)      0.136       
ARCH (5)      -0.151       
GJR     -0.066 0.020  0.275 0.228 0.311 0.223 -0.073 
GARCH(1) 0.755 0.815 0.848 0.943 0.822 1.007 0.914 0.707 0.511 0.739 0.505 0.947 
Mean h(t)             
1990-2000 28.1 24.7 24.7 28.6 17.8 5.7 9.6 16.3 20.7 15.0 20.8 3.9 
2001-2009 33.1 30.9 30.4 37.1 24.5 6.2 15.5 19.0 25.1 19.3 22.1 5.2 



 

Table 4: Commodity futures and financial indices, unconditional correlations, 2 May 1990 – 1 
July 2009. 
 
Table shows sample unconditional correlation between weekly commodity futures returns and bond and stock returns. 
Correlations significant at the 10% level are bold. Appendix lists all data sources and samples. See notes to Table 1 for 
computation of returns series. 
 US Bonds S&P500 DAX FTSE100 CAC 
      
Corn -0.04 0.09 0.05 0.05 0.02 
Soybeans -0.03 0.12 0.09 0.09 0.06 
Soybean oil -0.04 0.15 0.11 0.12 0.09 
Wheat -0.04 0.08 0.05 0.05 0.03 
      
      
Live hogs -0.01 0.05 0.04 0.04 0.03 
Feeder cattle -0.04 0.12 0.10 0.12 0.10 
Pork bellies -0.01 0.01 0.00 0.00 -0.00 
      
      
Coffee  -0.08 0.09 0.13 0.10 0.09 
Cotton -0.06 0.12 0.10 0.10 0.08 
Orange Juice 0.02 0.07 0.03 0.06 0.06 
Sugar -0.07 0.02 0.03 0.00 0.15 
      
      
Gold -0.00 -0.03 -0.04 -0.05 -0.03 
Platinum -0.10 0.05 0.06 0.06 0.03 
Silver -0.06 0.10 0.10 0.12 0.08 
      
      
Aluminium  -0.15 0.15 0.14 0.13 0.13 
Copper -0.15 0.21 0.19 0.19 0.19 
Lead -0.12 0.14 0.13 0.13 0.11 
Nickel -0.14 0.22 0.17 0.18 0.17 
Tin  -0.10 0.21 0.17 0.19 0.18 
Zinc -0.14 0.17 0.20 0.19 0.18 
      
      
Brent oil -0.11 0.04 -0.01 0.04 -0.00 
WT crude oil -0.11 0.06 -0.00 0.07 0.01 
Heating oil -0.10 0.04 -0.02 0.04 -0.01 
Natural gas -0.02 0.04 0.01 0.06 0.05 
      
      
CRB futures -0.13 0.18 0.13 0.16 0.12 
CRB spot -0.13 0.14 0.10 0.09 0.09 
GSCI total returns -0.11 0.07 0.01 0.01 0.02 
      



 

Table 5: Preferred conditional correlation models, weekly commodity futures returns. 
Table reports estimated parameter values for preferred conditional correlation models of commodity futures returns with USA stock market returns (5a), USA bond index 
returns (5b), German stock market returns (5c), UK stock market returns (5d), French stock market returns (5e) and crude oil futures returns (5f). Correlation models are 
estimated using standardized residuals from GARCH equations as described in Table 3. We estimate the DSTCC models by maximum likelihood by iteratively 
concentrating the likelihood function over correlation and transition function parameters. The DSTCC process treats conditional correlation as a convex combination of (up 
to) four extreme values, P(11)-P(22), where the weights of the convex combination are given by up to two logistic transition functions dependent on transition variable si 

with location ci and transition speed  γi . When both transition variables are in their low state (si < ci ) conditional correlation tends to P(11), to P(22) when both are above 
the location threshold, and to P(12) or P(21) in intermediate locations. Values of P(ij) significant at 10% are in bold typeface. 
 

US Stocks 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds GSCI 

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton o.juice sugar corn soybeans soybean 

oil wheat  

transition 1 s1  VIX   VIX DOI  DOI VIX VIX VIX OI time 

transition 2 s2  time    time  time time   time  

low s1 - low s2 P(11) 0.051 0.077 0.031  0.061 -0.071 0.068 0.029 0.063 0.058 0.067 0.039 -0.031 
low s1 - high s2 P(12) 0.051 -0.13 0.031  0.061 0.296 0.068 0.51 -0.093 0.058 0.067 -0.284 -0.031 
high s1 - low s2 P(21) 0.051 0.321 0.031  0.602 0.038 0.068 -0.279 -0.091 0.379 0.574 -0.059 0.521 

high s1 - high s2 P(22) 0.051 0.162 0.031  0.602 -0.099 0.068 -0.18 0.493 0.379 0.574 0.226 0.521 
location 1 c1  17.32   36.04 -0.054  0.138 30.17 33.01 37.16 2.234 0.954 
location 2 c2  0.155    0.454  0.561 0.804   0.727  

transition speed 1 γ1  ∞   ∞ ∞  3.786 2.787 ∞ 4.688 ∞ ∞ 
transition speed 2 γ2  ∞    ∞  ∞ ∞   ∞  

               

  Precious Metals Base Metals Energy 

  gold plati-
num sliver alumin

-ium copper lead nickel tin zinc brent oil WT 
crude 

heating 
oil 

natural 
gas 

transition 1 s1  VIX VIX time time VIX time VIX time VIX VIX VIX  

transition 2 s2  time time   time  time      

low s1 - low s2 P(11) -0.047 -0.01 0.038 -0.015 0.046 0.087 -0.076 0.089 -0.02 -0.054 -0.057 -0.063 0.035 
low s1 - high s2 P(12) -0.047 -0.08 0.182 -0.015 0.046 -0.014 -0.076 0.036 -0.02 -0.054 -0.057 -0.063 0.035 
high s1 - low s2 P(21) -0.047 0.00 -0.147 0.257 0.24 -0.116 0.294 -0.009 0.243 0.426 0.358 0.431 0.035 

high s1 - high s2 P(22) -0.047 0.262 0.301 0.257 0.24 0.313 0.294 0.286 0.243 0.426 0.358 0.431 0.035 
location 1 c1  17.74 23.86 0.465 0.503 15.59 0.454 18.71 0.515 36.04 34.21 33.62  

location 2 c2  0.684 0.726   0.672  0.572      

transition speed 1 γ1  ∞ ∞ ∞ 12.55 ∞ 3.132 ∞ 17.32 ∞ ∞ ∞  

transition speed 2 γ2  80.17 ∞   4.56  70.84      

               



 

Table 5 Continued 
(b) 
 

DAX- German stocks 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds GSCI 

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton sugar o.juice corn soybeans soybean 

oil wheat  

transition 1 s1 VIX VIX VIX  VIX DOI OI OI VIX VIX VIX  time 

transition 2 s2 time time   time time time time time time time   

low s1 - low s2 P(11) 0.16 -0.01 0.46  0.08 0.12 0.02 0.02 0.09 0.09 0.05 0.03 -0.44 
low s1 - high s2 P(12) -0.06 -0.10 0.46  0.10 0.21 0.58 0.29 -0.98 0.03 0.04 0.03 -0.44 
high s1 - low s2 P(21) -0.06 0.11 -0.03  0.12 0.15 -0.11 -0.10 -0.07 -0.15 -0.52 0.03 0.05 

high s1 - high s2 P(22) 0.14 0.35 -0.03  0.63 -0.08 -0.55 0.05 0.32 0.46 0.57 0.03 0.05 
location 1 c1 13.70 17.48 11.34  27.49 -0.04 5.25 2.66 21.58 26.71 32.26  0.08 
location 2 c2 0.62 0.70   0.67 0.31 0.93 0.82 0.91 0.64 0.64   

transition speed 1 γ1 ∞ ∞ ∞  34.53 ∞ ∞ ∞ 5.24 ∞ 6.04  ∞ 
transition speed 2 γ2 ∞ ∞   25.71 ∞ ∞ ∞ ∞ ∞ ∞   

               

  Precious Metals Base Metals Energy 

  gold plati-
num sliver alumin

-ium copper lead nickel tin zinc brent oil WT 
crude 

heating 
oil 

natural 
gas 

transition 1 s1 DOI VIX DOI VIX VIX time VIX VIX time VIX OI VIX  

transition 2 s2 time time time time time  time time  time time time  

low s1 - low s2 P(11) -0.25 0.12 -0.01 -0.07 -0.01 -0.08 0.03 0.06 0.03 -0.13 -0.75 0.09 0.01 
low s1 - high s2 P(12) 0.24 0.05 -0.20 0.17 -0.03 -0.08 0.03 0.06 0.03 -0.02 0.15 -0.06 0.01 
high s1 - low s2 P(21) 0.10 -0.08 0.04 0.18 0.04 0.15 0.48 0.28 0.24 -0.77 0.12 -0.70 0.01 

high s1 - high s2 P(22) -0.14 0.26 0.28 0.47 0.35 0.15 0.48 0.28 0.24 0.11 -0.11 0.07 0.01 
location 1 c1 0.35 23.21 -0.17 34.80 15.11 0.56 29.65 28.18 0.47 20.34 0.88 17.75  
location 2 c2 0.53 0.76 0.78 0.47 0.58     0.04 0.04 0.04  

transition speed 1 γ1 148.53 ∞ ∞ 22.62 13.89 24.36 3.51 ∞ ∞ 500.00 173.90 ∞  
transition speed 2 γ2 4.45 ∞ ∞ ∞ 10.77     162.04 78.22 ∞  

               

 



 

Table 5 Continued 
(c) 
 

FTSE100-UK stocks 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds GSCI 

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton o.juice sugar corn soybeans soybean 

oil wheat  

transition 1 s1  VIX   VIX DOI OI VIX VIX time time VIX  

transition 2 s2  time   time time  time time   time  

low s1 - low s2 P(11) 0.03 -0.059 0.003  0.02 -0.07 0.09 -0.12 0.03 0.00 0.03 0.05 0.03 
low s1 - high s2 P(12) 0.03 -0.109 0.003  0.22 0.30 0.09 0.02 -0.07 0.00 0.03 -0.07 0.22 
high s1 - low s2 P(21) 0.03 0.126 0.003  0.14 -0.05 -0.11 -0.05 -0.13 0.22 0.26 -0.14 -0.17 

high s1 - high s2 P(22) 0.03 0.237 0.003  0.63 0.06 -0.11 0.65 0.40 0.22 0.26 0.27 0.45 
location 1 c1  17.32   27.21 -0.06 8.64 26.28 25.49 0.84 0.84 22.29 26.30 
location 2 c2  0.667   0.79 0.53  0.76 0.83   0.64 0.79 

transition speed 1 γ1  ∞   30.53 ∞ ∞ ∞ 14.54 ∞ ∞ ∞ ∞ 

transition speed 2 γ2  ∞   ∞ ∞  ∞ ∞   ∞ ∞ 

               

  Precious Metals Base Metals Energy 

  gold plati-
num sliver alumin

-ium copper lead nickel tin zinc brent oil WT 
crude 

heating 
oil 

natural 
gas 

transition 1 s1 time time OI VIX OI time VIX time time time time time  

transition 2 s2   time time time  time       

low s1 - low s2 P(11) -0.12 0.02 0.08 -0.03 0.03 -0.03 -0.03 0.01 -0.03 -0.01 0.00 -0.02 0.07 
low s1 - high s2 P(12) -0.12 0.02 0.35 0.25 0.30 -0.03 0.06 0.01 -0.03 -0.01 0.00 -0.02 0.07 
high s1 - low s2 P(21) -0.01 0.23 -0.12 -0.37 -0.53 0.25 -0.05 0.20 0.27 0.28 0.27 0.25 0.07 

high s1 - high s2 P(22) -0.01 0.23 0.14 0.24 0.21 0.25 0.34 0.20 0.27 0.28 0.27 0.25 0.07 
location 1 c1 0.38 0.84 5.04 27.95 12.60 0.83 15.74 0.55 0.53 0.79 0.79 0.79  

location 2 c2   0.75 0.49 0.55  0.57       

transition speed 1 γ1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞  

transition speed 2 γ2   ∞ ∞ ∞  17.18       

               

 



 

Table 5 Continued 
(d) 
 

CAC - France stocks 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds GSCI 

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton o.juice sugar corn soybeans soybean 

oil wheat  

transition 1 s1 VIX VIX   time DOI DOI OI VIX VIX VIX OI time 

transition 2 s2 time     time time time time time time time  

low s1 - low s2 P(11) -0.07 -0.05 -0.01  0.07 0.04 0.25 0.00 0.01 0.04 0.06 -0.01 -0.41 
low s1 - high s2 P(12) -0.01 -0.05 -0.01  0.07 0.26 0.08 0.61 -0.88 0.03 0.02 -0.24 -0.41 
high s1 - low s2 P(21) 0.32 0.14 -0.01  0.64 -0.02 -0.11 -0.13 -0.11 -0.21 -0.34 -0.10 0.07 

high s1 - high s2 P(22) -0.01 0.14 -0.01  0.64 -0.08 -0.06 -0.56 0.32 0.42 0.47 0.21 0.07 
location 1 c1 17.84 18.43   0.96 -0.05 0.18 5.31 22.37 26.71 29.39 2.07 0.08 
location 2 c2 0.36     0.47 0.35 0.94 0.91 0.64 0.57 0.73  

transition speed 1 γ1 ∞ ∞   ∞ 0.04 ∞ 75.93 5.75 ∞ 1.65 ∞ ∞ 
transition speed 2 γ2 25.08     0.26 ∞ ∞ ∞ ∞ ∞ ∞  

               

  Precious Metals Base Metals Energy 

  gold plati-
num sliver alumin

-ium copper lead nickel tin zinc brent oil WT 
crude 

heating 
oil 

natural 
gas 

transition 1 s1 DOI  OI VIX VIX time VIX VIX time time OI VIX  

transition 2 s2 time  time time time  time time   time time  

low s1 - low s2 P(11) -0.30 0.04 -0.02 -0.01 0.06 -0.10 0.04 0.11 -0.02 -0.46 -0.66 0.24 0.07 
low s1 - high s2 P(12) 0.20 0.04 0.31 0.18 -0.03 -0.10 -0.01 0.01 -0.02 -0.46 0.18 0.01 0.07 
high s1 - low s2 P(21) 0.12 0.04 0.04 -0.13 -0.03 0.15 -0.07 0.02 0.25 0.07 0.18 -0.67 0.07 

high s1 - high s2 P(22) -0.12 0.04 0.17 0.28 0.34 0.15 0.34 0.26 0.25 0.07 -0.10 0.08 0.07 
location 1 c1 0.36  0.30 15.72 14.49 0.59 15.60 18.73 0.49 0.04 0.84 20.13  

location 2 c2 0.50  0.71 0.47 0.53  0.53 0.55   0.04 0.04  

transition speed 1 γ1 ∞  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞  

transition speed 2 γ2 3.80  ∞ ∞ ∞  6.82 ∞   72.64 172.17  

               
 
  



 

Table 5 Continued 
(e) 
 

US Bonds 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds GSCI 

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton o.juice sugar corn soybeans soybean 

oil wheat  

transition 1 s1 VIX  VIX    VIX DOI DOI OI OI  VIX 

transition 2 s2 time       time time time time  time 

low s1 - low s2 P(11) 0.078 -0.041 -0.03  -0.084 -0.07 0.123 -0.042 -0.135 0.079 0.004 -0.053 -0.015 
low s1 - high s2 P(12) -0.153 -0.041 -0.03  -0.084 -0.07 0.123 -0.095 -0.04 0.028 -0.842 -0.053 0.027 
high s1 - low s2 P(21) -0.089 -0.041 0.186  -0.084 -0.07 -0.012 -0.24 0.283 0.055 0.112 -0.053 -0.457 

high s1 - high s2 P(22) 0.129 -0.041 0.186  -0.084 -0.07 -0.012 0.052 -0.092 -0.172 -0.139 -0.053 -0.111 
location 1 c1 23.65  29.17    17.44 0.167 0.18 2.533 -1.331  18.54 
location 2 c2 0.459       0.349 0.297 0.303 0.75  0.315 

transition speed 1 γ1 ∞  ∞    ∞ ∞ ∞ ∞ ∞  ∞ 
transition speed 2 γ2 ∞       ∞ ∞ ∞ ∞  ∞ 

               
  Precious Metals Base Metals Energy 

  gold plati-
num sliver alumin

-ium copper lead nickel tin zinc brent oil WT 
crude 

heating 
oil 

natural 
gas 

transition 1 s1   DOI VIX VIX VIX VIX VIX VIX VIX VIX VIX VIX 

transition 2 s2   time time  time time   time time time time 

low s1 - low s2 P(11) 0.012 -0.073 -0.225 -0.051 -0.041 0.079 -0.059 0.042 -0.056 -0.045 -0.059 -0.076 0.171 
low s1 - high s2 P(12) 0.012 -0.073 -0.198 -0.073 -0.041 -0.069 0.213 0.042 -0.056 2E-04 0.021 -0.003 -0.02 
high s1 - low s2 P(21) 0.012 -0.073 -0.129 -0.04 -0.279 -0.145 -0.24 -0.191 -0.226 -0.412 -0.432 -0.507 -0.488 

high s1 - high s2 P(22) 0.012 -0.073 0.042 -0.332 -0.279 -0.378 -0.276 -0.191 -0.226 -0.092 -0.107 -0.068 -0.041 
location 1 c1   -0.129 23.75 24.28 20.91 23.78 24.93 20.94 18.56 18.55 18.49 19.11 
location 2 c2   0.398 0.499  0.742 0.844   0.313 0.315 0.221 0.273 

transition speed 1 γ1   ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 6.343 
transition speed 2 γ2   ∞ ∞  ∞ ∞   ∞ ∞ ∞ ∞ 

               

 



 

Table 5 Continued 
(f) 
 

WT crude oil 
  Meat and Livestock  Food and Fibre  Grains and Oilseeds  

   live 
hogs 

live 
cattle 

pork 
bellies  coffee cotton o.juice sugar corn soybeans soybean 

oil wheat  

transition 1 s1  VIX   DOI VIX  CRDOI DOI VIX VIX OI  

transition 2 s2  time   time time  time time time time time  

low s1 - low s2 P(11) 0.05 0.09 0.00  -0.01 -0.13 0.06 0.09 0.00 0.00 -0.05 0.06  

low s1 - high s2 P(12) 0.05 0.03 0.00  0.49 0.33 0.06 0.07 0.51 0.14 0.25 -0.05  

high s1 - low s2 P(21) 0.05 -0.07 0.00  -0.07 0.09 0.06 -0.18 0.11 -0.06 -0.02 0.21  

high s1 - high s2 P(22) 0.05 0.38 0.00  0.28 0.33 0.06 0.30 0.13 0.50 0.63 0.30  

location 1 c1  22.31   0.27 19.64  0.36 0.07 17.75 18.51 2.70  

location 2 c2  0.77   0.76 0.75  0.31 0.91 0.69 0.76 0.51  

transition speed 1 γ1  ∞   ∞ ∞  ∞ ∞ ∞ 3.09 ∞  

transition speed 2 γ2  ∞   ∞ ∞  ∞ ∞ 6.47 ∞ ∞  
               

  Precious Metals Base Metals  

  gold plati-
num sliver  aluminium copper lead nickel tin zinc    

transition 1 s1  VIX DOI  time VIX VIX VIX VIX time    

transition 2 s2  time time   time time time time     

low s1 - low s2 P(11) -0.02 0.00 0.29  0.05 0.03 -0.10 -0.01 0.10 -0.02    

low s1 - high s2 P(12) -0.02 0.19 0.48  0.05 0.26 0.08 0.22 0.26 -0.02    

high s1 - low s2 P(21) -0.02 0.10 0.01  0.52 -0.06 -0.20 0.09 -0.16 0.24    

high s1 - high s2 P(22) -0.02 0.51 0.42  0.52 0.56 0.47 0.35 0.15 0.24    

location 1 c1  16.53 0.13  0.84 27.67 29.53 21.17 19.51 0.60    

location 2 c2  0.73 0.82   0.71 0.19 0.75 0.32     

transition speed 1 γ1  ∞ ∞  4.02 ∞ ∞ ∞ ∞ ∞    

transition speed 2 γ2  3.62 ∞   ∞ ∞ ∞ ∞     

               



 

Figure 1: Spot commodity price movements, 2 May 1990 – 1 July 2009 

 
Note: Figure graphs arithmetic averages of Wednesday closing prices for spot or nearest futures for crops (corn, wheat, sugar, soybeans, 
cotton, coffee & soy oil), meat & livestock (lean hogs, pork bellies, feeder cattle & live cattle), energy (WT crude oil, Brent oil, natural 
gas & heating oil), precious metals (gold, silver & platinum), base metals (aluminium, copper nickel, lead, zinc & tin). 2 May 1990 
=100. Data sources in Appendix. 
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Figure 2: Commodity and stock total returns index movements, 2 May 1990 – 1 July 2009 

 
Note: Figure graphs Wednesday closing values for commodity and stock total returns indices, 2 May 1990 =100. Data sources in 
Appendix. 
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Figure 3: Conditional correlations between commodity futures and US stock index returns 
 
Note: Figure graphs estimated conditional correlations between weekly US stock returns and commodity futures returns, 2 May 1990 - 1 July 2009. For returns computations see notes to Table 
1 and for conditional mean estimation see notes to Table 2. Fitted DSTCC-GARCH model parameters are listed in Table 5a.  Data sources in Appendix. 
 
 

   
 
 

   
  



 

 
Figure 4: Conditional correlations between commodity futures and US bond index returns 
 
Note: Figure graphs estimated conditional correlations between weekly US bond index total returns and commodity futures returns, 2 May 1990 - 1 July 2009. For returns computations see 
notes to Table 1 and for conditional mean estimation see notes to Table 2. Fitted DSTCC-GARCH model parameters are listed in Table 5e.  Data sources in Appendix. 
 

   
 
 

   



 

Figure 5: Conditional correlations between crude oil, agricultural and metal futures. 
Note: Figure graphs estimated conditional correlations between weekly WT crude oil futures returns and other commodity futures returns, 2 May 1990 - 1 July 2009. For returns computations 
see notes to Table 1 and for conditional mean estimation see notes to Table 2. Fitted DSTCC-GARCH model parameters are listed in Table 4f.  Data sources in Appendix. 
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