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Equity–Linked Pension Schemes with Guarantees

J. Aase Nielsen1, Klaus Sandmann2 and Erik Schlögl3

Abstract:
This paper analyses the relationship between the level of a return guarantee in an equity–linked
pension scheme and the proportion of an investor’s contribution needed to finance this guarantee.
Three types of schemes are considered: investment guarantee, contribution guarantee and partici-
pation surplus. The evaluation of each scheme involves pricing an Asian option, for which relatively
tight upper and lower bounds can be calculated in a numerically efficient manner.
We find a negative (and for two contract specifications also concave) relationship between the par-
ticipation in the surplus return of the investment strategy and the guarantee level in terms of a
minimum rate of return. Furthermore, the introduction of a possibility of early termination of the
contract (e.g. due to the death of the investor) has no qualitative and very little quantitative impact
on this relationship.

Version: December 2009
Key words: Pension funds, forward risk adjusted measure, Asian option.
JEL Classification: G13, G23

1 Introduction

Over the past decade, defined–contribution (as opposed to defined–benefit) pension plans have
become increasingly important in many countries as a way to finance retirement. However, in such
plans most or all of the financial market risk typically is borne by the individual investors, who are
not in a position to be able to manage this risk. The present financial crisis has highlighted once
again that this might not be a socially desirable outcome.
On the other hand, the introduction of a guarantee on the return of a pension plan represents
a substantial risk for the managing financial institution. The main purpose of the present paper
is, firstly, to demonstrate an efficient numerical (semi-analytical) method for valuing equity–linked
pension schemes and, secondly, to discuss the qualitative properties of these contracts. We study
and compare the pricing (and thus, implicitly, the hedging) of three types of pension schemes with
guarantees. These are long term investment plans, in which the investor typically puts in periodic
payments of cash over a long period. A proportion of this is invested in an investment fund, while
the remainder serves to finance the return guarantee. The resulting equity–linked pension schemes
are closely related to equity–linked life insurance contracts, and the results presented here are also
applicable to the latter.
In this paper we want to analyze the effect of different guarantee constructions and in each situation
to develop possible admissible strategies for the writer of the contract. This is performed by
establishing the feasible combinations of a given minimum return guarantee and the fraction of the
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periodic premium payment set aside to hedge the guarantee.
The related literature focuses primarily on equity–linked life insurance contracts. Ekern and Persson
(1996) give an overview of different contract specifications. A first analysis within the context of the
arbitrage pricing theory is given by Brennan and Schwartz (1976). They consider the situation of an
equity–linked life insurance contract with one up–front premium and use a deterministic model for
the term structure of interest rates. Bacinello and Ortu (1994), as well as Nielsen and Sandmann
(1995, 1996) extend the analysis to include the case of a stochastic interest rate dynamics and
periodic premium payments by the insured.
We consider three contract specifications which differ in the type of the guarantee on the outcome of
a periodic investment strategy. Our main findings are as follows. For each of these contracts we find
a negative (and for two contract specifications also concave) relationship between the participation
in the surplus return of the investment strategy and the guarantee level in terms of a minimum
rate of return. This property is a consequence of the contract specification, namely the surplus
participation and the type of guarantee. It is independent of the financial and non-financial risk
involved. As financial risk we consider the price risk of the underlying investment fund and the
interest rate risk. As the non-financial risk we explicitly allow for early termination of the contract.
We find that the magnitude of the financial risk dominates largely the impact of the non-financial
risk. In addition we conclude that the set of feasible contracts changes very smoothly with respect to
changes of the non-financial risk. Furthermore, comparing the case allowing for early termination,
e.g. due to the death of the pension scheme investor,4 with the case involving only a fixed maturity,
we find that the two sets of feasible contracts with and without the possibility of early termination
are very similar. With respect to the three contract specifications we conclude that in the presence
of non-financial risk the “fair” price from the perspective of an underwriter deviates only little from
the hedging costs of the financial risks.

2 Investment Strategy and Guarantees

The central building block of an equity-linked pension scheme is the specification of an investment
strategy. Usually the investment occurs on a periodic basis. Furthermore, the size of the investment
amount stays either constant over time or is equal to a constant proportional fraction of the periodic
income or earnings by the investor. The periodic investment consists of purchasing shares of a risky
fund where the investor can choose among different fund styles. The different fund styles refer
to the riskiness of the fund. Purchasing periodically additional shares the investor increases the
number of shares and (eventually) builds up a wealth portfolio until the maturity of the investment
strategy. Due to the riskiness of the underlying fund, the portfolio value is stochastic. Furthermore,
the portfolio value is path–dependent since the number of shares added at each investment date
depends on the fund value at this time. This simplified picture at the starting point of our analysis
can be formalized as follows: Let tN = T be the maximum maturity of the investment strategy
and denote by T := {0 = t0 < t1 < · · · < tN−1}, with tN−1 < tN = T the set of investment
dates. Suppose that at each date ti ∈ T the investment amount is given by k(ti), i.e. the vector
(k(t0), . . . , k(tn)) is equal to the investment sequence until time tn ∈ T . To define the portfolio
and its value, let {S(t)}t∈[0,T ] be the stochastic process of the market value of the underlying fund.
With this notation the value of the portfolio at time t ∈]t0, tN ] is equal to

P (t, k) :=
min{n∗(t),N−1}∑

i=0

k(ti) ·
S(t)
S(ti)

(2.1)

with n∗(t) := max{j ∈ IIN0|tj < t}.
4Early exercise, i.e. early termination at the discretion of the investor, entails the valuation of American or

Bermudan option features. These are the topic of further research and will be considered in a separate, follow–up
paper.
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The ratio k(ti)
S(ti)

is equal to the number of additional shares which can be purchased at time ti ∈ T
by investing the amount k(ti).
The value of the portfolio is determined by specifying a periodic investment strategy. Assuming no
transaction costs or fees, under the absence of arbitrage the present value of the portfolio strategy
outcome must equal the present value of the portfolio investment sequence (k(t0), . . . , k(tn)). An
immediate consequence of this simple remark is that any additional guarantee on the outcome of
the periodic investment strategy implies additional cost or contributions by the investor. The size
of the additional cost obviously depends on the precise form of the guarantee.
In this paper we consider three different but closely related guarantee concepts. To define these dif-
ferent concepts assume for the moment that the terminal date of the contract is ex ante determined
as tn ∈ T . In other words, we restrict ourselves — at this stage of the paper — to the investment
situation and neglect any uncertainty about the terminal date of the contract.
Since any specification of a guarantee implies additional cost, define by (K(t0), . . . ,K(tn−1)) the
contribution sequence of the investor. The contribution of the investor consists of the investment
(the sequence k) plus the premium for the guarantee. Our objective is to characterize the re-
lationship between a given pension scheme in terms of its payoff including a guarantee and the
corresponding contribution sequence which is sufficient to generate this payoff. In case of a given
and certain maturity tn the relationship is based on the following definition

Definition 1 A random payoff Z(tn) at time tn is called admissible by the contribution sequence
(K(t0), . . . ,K(tn−1)) if there exists a self-financing portfolio strategy which generates the payoff
Z(tn) at time tn with initial costs equal to the discounted sum of the contribution, i.e.

n−1∑
i=0

K(ti) ·D(t0, ti),

where D(t0, ti) denotes the discount factor at time t0 with maturity ti.

In this sense the payoff P (tn, k) defined by equation (2.1) is admissible by the contribution sequence
(k(t0), . . . , k(tn−1)). The next step is to discuss different guarantee concepts. Suppose that the
contribution of the investor is given by a sequence (K(t0), . . . ,K(tn−1)). Introducing a guarantee
implies that the present value of the investment sequence (k(t0), . . . , k(tn−1)) must be less than
the present value of the contribution sequence, with the difference used to finance the guarantee.
We assume for simplicity that the connection between the investment amount and the contribution
amount at time ti is defined by

k(ti) := α ·K(ti),

where α ∈ [0, 1] is the investment fraction. In other words, both the investment amount and the
additional premium for the guarantee are supplied on a periodic basis. Furthermore, the premium
(1− α) ·K(ti) for the guarantee is proportional to the contribution and the proportionality factor
is assumed to be time–independent. Under these assumptions, the value of the investment strategy
at time tn is equal to

P (tn, α ·K) = α · P (tn,K) = α ·
n−1∑
i=0

K(ti) ·
S(tn)
S(ti)

.

The different guarantees are now defined with respect to a guaranteed rate of return g. In the first
case g is guaranteed with respect to the investment amount. In particular, this implies that the
minimum return is determined by α ·A(tn, g) with

A(tn, g) :=
n−1∑
i=0

K(ti) · exp {g · (tn − ti)} . (2.2)
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The payoff at time tn of the investment guarantee scheme (IG-scheme) is determined by

GIG(tn, α, g) := max {α · P (tn,K), α ·A(tn, g)} (2.3)
= α · P (tn,K) + α · [A(tn, g)− P (tn,K)]+ .

For any finite guaranteed rate of return g (i.e. any g > −∞) the IG-scheme is not admissible by
the contribution sequence (K(t0), . . . ,K(tn−1)) for α = 1. For finite g the investment fraction must
be less than one.
In the case of the IG-scheme, the guarantee refers to the investment amount. The payoff changes
if instead the guarantee rate refers to the contribution amount. The minimum guaranteed return
is now equal to A(tn, g) as defined in equation (2.2). The payoff of the contribution guaranteed
scheme (CG-scheme) is determined by

GCG(tn, α, g) := max {α · P (tn,K), A(tn, g)} (2.4)
= α · P (tn,K) + [A(tn, g)− α · P (tn,K)]+ .

The payoff of both schemes coincide in case of an investment fraction α equal to one, but are
not admissible in this case by the contribution sequence (K(t0), . . . ,K(tn−1)). Furthermore both
schemes are defined in a natural way as floors for the underlying investment payoff. Basically, the
payoff is characterized by a long position in the investment strategy plus an additional put option.
As a consequence of the periodic investment, the corresponding put options are closely related to
an Asian–type put option.
The definition of the third scheme looks different at first glance. In this case the construction
of the payoff is equal to a fixed guaranteed amount plus a participation in the surplus of the
investment payoff over the guaranteed amount. The guaranteed amount is again given by the sum
of the contributions compounded with a rate of return g, i.e. by the amount A(tn, g). Since the
investor additionally receives a surplus proportional to the positive difference between the return
of the periodic investment strategy and the guaranteed amount, this case is called the surplus
participation scheme, SP -scheme. The payoff of the SP -scheme is defined by:

GSP (tn, α, g) := A(tn, g) + α · [P (tn,K)−A(tn, g)]+ (2.5)
= α · P (tn,K) + (1− α) ·A(tn, g) + α · [A(tn, g)− P (tn,K)]+ .

Since the payoff of all three different schemes is a monotonic function of the corresponding invest-
ment share and the interest rate guarantee, a first implication with respect to the set of admissible
payoffs is given by the following Proposition.

Proposition 2.1 Suppose that the payoffs of the IG-scheme with parameters (αIG, gIG), the CG-
scheme with parameters (αCG, gCG) and the SP -scheme with parameters (αSP , gSP ) are admissible
by the same contribution sequence.

(i) In the case of identical interest rate guarantees, i.e.

gIG = gCG = gSP

the investment fraction of the IG-scheme is bounded from below by the investment fraction of
the CG-scheme, which is bounded from below by the one of the SP -scheme, i.e.

αIG ≥ αCG ≥ αSP .

(ii) In the case of identical investment fractions, i.e.

αIG = αCG = αSP

the interest rate guarantee of the IG-scheme is bounded from below by the interest rate guar-
antee of the CG-scheme, which is bounded from below by the one of the SP -scheme, i.e.

gIG ≥ gCG ≥ gSP .
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Proof: Consider first the payoff of the IG- and CG-scheme. In the case of an identical investment
fraction α ∈ [0, 1] and an identical guaranteed rate of return g, the payoff of the IG-scheme is
dominated by the one of the CG-scheme since

α · P (tn,K) + α · [A(tn, g)− P (tn,K)]+ ≤ α · P (tn,K) + [A(tn, g)− α · P (tn,K)]+ .

Given identical parameters, we therefore can conclude that under no-arbitrage the present value of
the generating self-financing strategy of the the CG-scheme is weakly bounded from below by the
present value of the self-financing strategy generating the payoff of the IG-scheme. Furthermore the
payoff of the CG-scheme is increasing in α and g. By assumption both payoffs must be admissible
by the same contribution sequence. As a consequence the guaranteed rate of return gCG of the
CG-scheme must be less than or equal to the guaranteed rate of return gIG of the IG-scheme if
the investment fractions are identical. Conversely, the investment fraction αCG of the CG-scheme
must less than or equal to the investment fraction αIG of the IG-scheme if the guaranteed rates of
return are identical.
To relate the CG- and the SP -scheme, as before the argument is based a pathwise inequality of the
payoffs. More precisely, for identical parameters the following inequality holds

α · P (tn,K) + [A(tn, g)− α · P (tn,K)]+

= α · P (tn,K) + [(1− α) ·A(tn, g) + α ·A(tn, g)− α · P (tn,K)]+

≤ α · P (tn,K) + (1− α) ·A(tn, g) + α · [A(tn, g)− P (tn,K)]+ .

In case of identical parameters the payoff of the CG-scheme is weakly dominated by the payoff of
the SP -scheme, thus the inequalities in the Proposition follow. 2

The inequalities in Proposition 2.1 are strict if in addition the support of the distribution of the
market value of the underlying fund is equal to IR+. Furthermore, the following result with respect
to the investment fraction is again a direct consequence of the monotonicity in the payoff structure
for all schemes:

Proposition 2.2 For a fixed contribution sequence consider the set of parameters (α, g) such that
the corresponding IG-scheme (CG-scheme, SP -scheme) is admissible. As a function of the guar-
anteed rate of return, the investment fraction α(g) is decreasing.

The guaranteed payment of all three schemes is determined by A(tn, g) as defined by equation (2.2).
As a function of the guaranteed rate of return g, the guaranteed payment converges to zero if the
rate approaches minus infinity. This limiting case reflects the situation without a guarantee. In
this sense all three schemes are generalizations of the pure investment situation. The investment
share of an admissible payoff in this case is equal to one. On the other hand, consider the case of an
investment share equal to zero. The situation for the IG-scheme is quite trivial since for α = 0 the
payoff is equal to zero (degenerate case). Thus the payoff is admissible by setting the contribution
sequence equal to zero. Obviously this is not the only solution satisfying Definition 1. Setting the
investment share α equal to zero implies that the payoff of the CG-Scheme and the SP -scheme are
both identical and equal to

A(tn, g) :=
n−1∑
i=0

K(ti) · exp {g · (tn − ti)} .

Furthermore the payoff of both schemes is deterministic. For α = 0 both schemes are identical to a
fixed interest rate contract with periodic investments. The payoff is admissible by the contribution
sequence (K(t0), . . . ,K(tn−1)) iff

D(t0, tn) ·

(
n−1∑
i=0

K(ti) · exp {g · (tn − ti)}

)
=

n−1∑
i=0

K(ti) ·D(t0, ti) (2.6)



3 INSURANCE AND FINANCIAL RISK 6

For a given contribution sequence (K(t0), . . . ,K(tn−1)) equation (2.6) defines the implied guaran-
teed rate of return such that the payoff is admissible. As a simple case consider identical contribu-
tions over time, i.e. K(ti) = K, ∀i = 0, . . . , n − 1. The condition on the guaranteed rate of return
can be simplified to(

n−1∑
i=0

exp {g · (tn − ti)}

)
= D(t0, tn)−1 ·

(
n−1∑
i=0

D(t0, ti)

)
. (2.7)

Since the sum of all zero coupon bonds is known as the annuity factor and by dividing by the long
term bond we get the forward value of the annuity factor, the solution g∗ of equation (2.7) can
be interpreted as the forward annuity yield. In the case of a flat initial term structure with time
independent yield y, i.e. D(t0, ti) = exp(−y · (ti − t0)} the forward annuity yield g∗ is equal to y.
As a conclusion we have the following result for the CG- and the SP -scheme:

Proposition 2.3 Consider a contribution sequence until time tn with constant contributions, i.e.
K(ti) = K,∀i = 0, . . . , n − 1. The investment fraction of an admissible payoff for the CG-scheme
(SP-scheme) is monotonically decreasing in the guaranteed rate of return g with

α(g) =

 > 0 if g < g∗

= 0 if g = g∗

< 0 if g > g∗
,

where g∗ is equal to the forward annuity yield, i.e. a solution to(
n−1∑
i=0

exp {g · (tn − ti)}

)
= D(t0, tn)−1 ·

(
n−1∑
i=0

D(t0, ti)

)
.

3 Insurance and Financial Risk

So far the contract specification is not yet complete. Unlike a pure financial contract, the termi-
nation date of the pension contract is potentially not equal to the maturity tN = T. Instead the
contract may terminate at any time ti ∈ T prior to tN , e.g. due to the death of the investor. The
final date tN = T is only the last possible date the contract matures. Further rules on the possibil-
ity of early termination may be related to different national legislation and each of them will have
an impact on the analysis of the contract situation. In our present context the termination date
of the contract is a random variable τ. The distribution of τ depends on the death– and survival
probability of the investor and in the simplest case is determined by this probability (but in general
may depend on other factors). In notation of the mortality distribution let us denote by πx(t) the
ex-ante density function of the early termination for an investor aged x at time t0. The ex-ante
early termination distribution is defined by:∫ t

t0

πx(u)du =: prob [ an investor aged x(at time t0) terminates the pension

contract within the period ]t0, t]]

1−
∫ t

t0

πx(u)du =: prob [ an investor aged x(at time t0) does not terminate

the pension contract prior t] .

As in the case of the mortality distribution, we assume that the data available to the policy under-
writer allows him to estimate these densities. More precisely, we assume that the policy issuer, at
time t0, knows the ex-ante probability density functions of early contract termination for an investor
aged x ∀x. Within the numerical analysis in Section 6 we will continue to specify the early exercise
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distribution by applying a Wang–Transformation to a Makeham distribution. For the moment, it
is sufficient to assume that the ex ante density is given.
The benefit side of the equity–linked pension contract is now determined by the termination time τ ,
which is determined by the termination distribution and the pension scheme chosen. More precisely
we define the an equity–linked pension contract as follows

Definition 2 Consider a contribution sequence (K(t0), . . . ,K(tN−1)) and denote by the index c ∈
{IG,CG, SP} the corresponding payoff-scheme as defined in Section 2. A contract with the following
payoffs is called an type c equity linked pension scheme with investment share α, guaranteed rate of
return g and ex-ante contribution sequence (K(t0), . . . ,K(tN−1)) if the following holds:

• If termination occurs prior to the maturity T at time τ ∈]0, T [, the investor receives at time
τ the payoff

Gc(τ, α, g) for c ∈ {IG,CG, SP},

and in this case the contribution sequence is equal to (K(t0), . . . ,K(tM )), where tM is the last
investment date before time τ, i.e

M := min{n∗(τ), N − 1}}.

• If the contract has not been terminated prior to T , the contract matures at time T with a
payoff defined by

Gc(T, α, g) for c ∈ {IG,CG, SP}.

and in this case the contribution sequence is (K(t0), . . . ,K(tN−1)).

In addition to the termination distribution, the equity–linked pension contract is influenced by two
types of financial risks. Since the benefit to the investor is a function of the value of the investment
portfolio, the dynamics of the underlying mutual fund are involved. In addition, the contract is
of long term and therefore the interest rate risk must be considered. These financial aspects are
included in the analysis by a complete and arbitrage–free model of the financial market. Let Q∗ be
the unique equivalent martingale measure, such that, with respect to a filtered probability space
(Ω, IF, Q∗, {IFt}), the discounted price processes of the mutual fund {S(t)}t and the discounted price
processes of all the zero coupon bonds {D(t, τ)}t∈[t0,τ ] with maturity τ ∈ IR≥0 are martingales:

S(t) = EQ∗

[
β−1
t,t̄ · S(t̄)

∣∣∣ IFt] ∀t̄ ≥ t,

D(t, τ) = EQ∗

[
β−1
t,t̄ ·D(t̄, τ)

∣∣∣ IFt] ∀t̄ ∈ [t, τ ],∀τ ≥ t̄, (3.1)

D(τ, τ) = 1 Q∗a.s.

In addition to the martingale property of the discounted price processes we assume enough regu-
larity, so that for each fixed τ ∈ IR>0 there exists a unique τ -forward risk adjusted measure Qτ

defined by
dQτ

dQ∗

∣∣∣∣
t

=
β−1
t0,t ·D(t, τ)

EQ∗
[
β−1
t0,t ·D(t, τ)|IFt0

] . (3.2)

The change of measure technique implies that the forward prices of the financial assets are martin-
gales under the appropriate forward risk adjusted measure, i.e.

S(t) = D(t, τ) · EQτ
[
S(τ)
D(τ.τ)

∣∣∣∣ IFt] ∀τ ≥ t ≥ t0, (3.3)

D(t, T ) = D(t, τ) · EQτ
[
D(τ, T )
D(τ, τ)

∣∣∣∣ IFt] ∀T ≥ τ ≥ t ≥ t0.

This is the usual and standard setup of a complete and arbitrage–free financial market model
including interest rate risk. At this point in the discussion we do not need to specify the volatility
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structure. The general results, with respect to the relationship between the investment share and
the rate of return guarantee do not depend on any more specific assumptions about the volatility
structure. Nevertheless, for the numerical analysis to be performed, we will assume a special
framework with deterministic volatilities. For further details concerning the financial market model
we refer to Geman, El Karoui and Rochet (1995). The following Proposition summarizes some useful
results with respect to the expected value of the underlying fund and the termination distribution.

Proposition 3.1 Consider a financial market model satisfying the relationships (3.1) to (3.3) and
a deterministic contribution sequence (K(t0), . . . ,K(tN−1)). For tN = T ≥ t > t0

EQt

n∗(t)∑
i=0

S(t)
S(ti)

∣∣∣∣∣∣ IFt0
 =

n∗(t)∑
i=0

D(t0, ti)
D(t0, t)

,

∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, ti)

 · πx(u)du +

(
N−1∑
i=0

K(ti) ·D(t0, ti)

)
·

(
1−

∫ T

t0

πx(u)du

)

=
N−1∑
i=0

(
K(ti) ·D(t0, ti) ·

(
1−

∫ ti

t0

πx(u)du
))

.

Proof: Denote by Q∗ the spot risk neutral measure associated with taking the continuously com-
pounded savings account,

βt,T = exp

{∫ T

t

r(s)ds

}
as the numeraire (where r(s) denotes the continuously compounded short rate of interest at time
s). The first expectation under the forward measure Qt is ∀i with ti ≤ t given by:

EQt

[
S(t)
S(ti)

∣∣∣∣ IFt0] =
1

D(t0, t)
· EQ∗

[
β−1
t0,t ·

S(t)
S(ti)

∣∣∣∣ IFt0]
=

1
D(t0, t)

· EQ∗

[
β−1
t0,ti ·

1
S(ti)

EQ∗
[
β−1
ti,t · S(t)

∣∣ IFti]∣∣∣∣ IFt0]
=

1
D(t0, t)

· EQ∗

[
β−1
t0,ti ·

S(ti)
S(ti)

∣∣∣∣ IFt0] =
D(t0, ti)
D(t0, t)

∀t ≥ ti ≥ t0

The second equality is justified by the following calculation:

∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, ti)

 · πx(u)du

=
N−1∑
j=0

∫ tj+1

tj

(
j∑
i=0

K(ti) ·D(t0, ti)

)
· πx(u)du

=
N−1∑
j=0

((
j∑
i=0

K(ti) ·D(t0, ti)

)
·
∫ tj+1

tj

πx(u)du

)

=
N−1∑
j=0

(
K(tj) ·D(t0, tj) ·

∫ T

tj

πx(u)du

)

=
N−1∑
j=0

(
K(tj) ·D(t0, tj) ·

(
1−

∫ tj

t0

πx(u)du− 1 +
∫ T

t0

πx(u)du

))
2
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4 The Set of on Average Admissible Pension Schemes

In Section 2 we introduced the notion of an admissible investment contract. This notion deviates
only in a minor way from the usual no-arbitrage pricing principle. Instead of the initial starting
costs we concentrate on periodic contributions. Even if the no-arbitrage price of a given random
payoff is unique, the set of admissible contribution sequences is not singleton. For option pricing
problems under the completeness assumption this is not the natural approach. Nevertheless the set-
up in case of an equity–linked pension contract is different. First, the contributions by the investor
occur in most applications periodically. Second, even under assumption of a complete financial
market, we have to consider a potentially incomplete market situation due to the possibility of
early termination of the contract. In general there exists no self-financing portfolio strategy which
replicates the payoff of the pension contract on a per-contract basis when one allows for early
termination due to an external source of risk.
As early termination is closely related to the life insurance risk we assume that the equivalence
principle can be applied with respect to this risk. That is, we assume that the risk related to early
termination can be diversified by the policy holder within the population of the investors.
Obviously, the financial risk cannot be diversified by this risk management technique. The assump-
tion of a complete market implies that any payoff at a given time t can be perfectly hedged by
a self-financing portfolio strategy on the financial market. Furthermore, the initial value of this
portfolio strategy is equal to the expected discounted payoff under the unique martingale measure.
Since the equity–linked pension scheme does not allow the separation of the payoff into a pure
financial and a pure insurance contract, we cannot apply these two principles separately. Therefore
the solution concept has to combine both risk management strategies. As Brennan and Schwartz
(1976), Bacinello and Ortu (1994) as well as Nielsen and Sandmann (1995, 1996), we assume that
the insurance risk and the financial risks are independent. With these remarks we are now ready
to extend the definition of an admissible payoff to the situation of a pension scheme.

Definition 3 Consider an equity–linked pension scheme of type c ∈ {IG,CG, SP} as defined by
Definition 2 and an investor at age x > 0.

• The type c-pension scheme with investment share α and guaranteed rate of return g is called
admissible on average for an investor aged x by a non-negative periodic contribution sequence
(K∗(t0), . . . ,K∗(tN )), if the contribution sequence is a solution to

N−1∑
i=0

K∗(ti) ·D(t0, ti) ·
(

1−
∫ ti

t0

πx(u)du
)

(4.1)

=
∫ tN

t0

D(t0, u) · EQu [Gc(u, α, g)|IF0] · πx(u) du

+D(t0, tN ) · EQtN [Gc(tN , α, g)|IF0] ·
(

1−
∫ tN

t0

πx(u)du
)
.

The contribution sequence (K∗(t0), . . . ,K∗(tN−1)) is called a fair premium of the type c-
pension scheme for the investor at age x.

• For a given contribution sequence (K(t0), . . . ,K(tN−1)) define

Ix,c(K(t0), . . . ,K(tN−1)) ⊂ IR2

as the set of tuples (α, g) such that the type c-pension scheme with investment share α and
guaranteed rate of return g is admissible on average for an investor aged x by the periodic
contribution sequence (K(t0), . . . ,K(tN−1)).

To derive the existence of a fair premium and furthermore to characterize the set

Ix,c(K(t0), . . . ,K(tN−1))
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for a given contribution, two extreme cases have to be considered. The first case is given for the
choice α = 0. This corresponds to a pension scheme with a deterministic payoff.
In case of an type IG-pension scheme with investment share equal to zero the situation is quite easy,
since the payoff is always equal to zero. Therefore the expected discounted benefit to the investor,
given by the right hand side of equation (4.1), is equal to zero. The condition on the fair premium
implies that the left hand side of equation (4.1) must be zero as well. If we restrict ourself to
non-negative contribution sequences the unique solution is given by the zero contribution sequence.
If instead negative contributions are permitted the set of solutions is no longer a singleton. The
left hand side of equation (4.1) can be interpreted as the termination adjusted weighted sum of the
contributions with weights determined by the discounted non-termination probability.

Proposition 4.1 The CG- or SP -pension scheme with investment share α = 0 and guaranteed
rate of return g∗ is on average admissible by the contribution sequence K(t0), . . . ,K(tN−1), i.e.

(0, g∗) ∈ Ix,c(K(t0), . . . ,K(tN−1)) for c ∈ {CG,SP}

if the guaranteed rate of return g∗ is the solution of

N−1∑
i=0

(
K(ti) ·D(t0, ti) ·

(
1−

∫ ti

t0

πx(u)du
))

=
∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, u) · exp{g · (u− ti)}

 · πx(u) du

+

(
N−1∑
i=0

K(ti) ·D(t0, tN ) · exp{g · (tN − ti)}

)
·
(

1−
∫ tN

t0

πx(u)du
)
.

If in particular the initial term structure is flat then the unique solution is independent of the
contribution sequence given by the yield y, i.e.

g∗ = y with D(t0, ti) = exp{−y · (ti − t0)}∀ti ∈ T .

If the contribution is constant over time the guaranteed rate of return g∗ satisfies

g∗ ∈ [fmin(t0), fmax(t0)] ,

where the minimum and maximum initial forward yield are defined by

exp{−fmin(t0) · (u− ti)} ≥
D(t0, u)
D(t0, ti)

∀T ≥ u > ti and ∀ti ∈ T

exp{−fmax(t0) · (u− ti)} ≤
D(t0, u)
D(t0, ti)

∀T ≥ u > ti and ∀ti ∈ T .

Proof: If the investment share is equal to zero the payoff of the CG- and the SP -scheme is deter-
ministic and in both cases equal to

GCG(u, 0, g) = GSP (u, 0, g) = A(u, g) :=
n∗(u)∑
i=0

K(ti) · exp{g · (u− ti)},

with n∗(u) = max{j ∈ IIN0|tj < u}. The expected discounted benefit for the investor is thus equal
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to ∫ T

t0

D(t0, u) ·A(u, g) · πx(u) du+D(t0, tN ) ·A(tN , g) ·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ T

t0

D(t0, u) ·

n∗(u)∑
i=0

K(ti) · exp{g · (u− ti)}

 · πx(u) du

+D(t0, tN ) ·

(
N−1∑
i=0

K(ti) · exp{g · (tN − ti)}

)
·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, u) · exp{g · (u− ti)}

 · πx(u) du

+

(
N−1∑
i=0

K(ti) ·D(t0, tN ) · exp{g · (tN − ti)}

)
·
(

1−
∫ tN

t0

πx(u)du
)
,

which is equal to the expected discounted contribution if the guaranteed rate of return g satisfies
the above condition. In the case of a flat term structure with yield y and by setting the guaranteed
rate of return g equal to the yield we have

D(t0, u) · exp{g · (u− ti)} = D(t0, ti) · exp{(g − y) · (u− ti)} = D(t0, ti).

In this particular case the expected discounted benefit can be simplified to∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, ti)

 · πx(u) du+

(
N−1∑
i=0

K(ti) ·D(t0, ti)

)
·
(

1−
∫ tN

t0

πx(u)du
)

=
N−1∑
i=0

(
K(ti) ·D(t0, ti) ·

(
1−

∫ ti

t0

πx(u)du
))

,

In the case of a constant contribution sequence but not necessarily flat term structure the following
inequalities are satisfied

D(t0, u) · exp{g · (u− ti)} = D(t0, ti) ·
D(t0, u)
D(t0, ti)

· exp{g · (u− ti)}{
< D(t0, ti)∀u if g < fmin
> D(t0, ti)∀u if g > fmax

.

For g < fmin the expected discounted benefit is less than the expected discounted contribution. On
the other hand g > fmax implies that the expected discounted benefit is larger than the expected
discounted contribution. Since the expected discounted benefit is a continuous function of the
guaranteed rate of return there exists a unique rate g ∈ [fmin, fmax] which implies equality. 2

Proposition 4.2 covers the situation without any guaranteed payments by the insurer.

Proposition 4.2 For c ∈ {IG,CG, SP} the c-pension scheme with investment share α = 1 and
contribution sequence K(t0), . . . ,K(tN−1) is admissible if and only if there exists no guarantee, i.e
guaranteed rate of return is equal to −∞

(1,−∞) ∈ Ix,c(K(t0), . . . ,K(tN−1))

Proof: For all three pension schemes the payoff in case of an investment share equal to one is
bounded from below by the portfolio value, i.e.

Gc(u, 1, g) ≥ P (u,K) =
min{n∗(u),N−1}∑

i=0

K(ti) ·
S(u)
S(ti)

∀g ∈ IR.
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Therefore the expected discounted benefit is bounded from below by∫ tN

t0

D(t0, u) · EQtu [Gc(u, 1, g)|IF0] · πx(u) du

+ D(t0, tN ) · EQtN [Gc(tN , 1, g)|IF0] ·
(

1−
∫ tN

t0

πx(u)du
)

≥
∫ tN

t0

D(t0, u) · EQtu

n∗(u)∑
i=0

K(ti) ·
S(u)
S(ti)

|IF0

 · πx(u) du

+ D(t0, tN ) · EQtN

[
N−1∑
i=0

K(ti) ·
S(tN )
S(ti)

|IF0

]
·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ tN

t0

D(t0, u) ·
n∗(u)∑
i=0

K(ti) ·
D(t0, ti)
D(t0, u)

· πx(u) du

+ D(t0, tN ) ·
N−1∑
i=0

K(ti) ·
D(t0, ti)
D(t0, tN )

·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ tN

t0

n∗(u)∑
i=0

K(ti) ·D(t0, ti) · πx(u) du+
N−1∑
i=0

K(ti) ·D(t0, ti) ·
(

1−
∫ tN

t0

πx(u)du
)

=
N−1∑
i=0

(
K(ti) ·D(t0, ti) ·

(
1−

∫ ti

t0

πx(u)du
))

.

where the equalities are consequences of Proposition 3.1. Since the payoff is an increasing function
of the guaranteed rate of return g the pension scheme is admissible if and only if no guaranteed
payment is contracted. 2

So far our discussion of the limiting cases implies that for a given contribution sequence K(t0), . . . ,
K(tN−1) the set of admissible contacts Ix,c(K(t0), . . . ,K(tN−1)) is not empty. For the remaining
part of the discussion consider a fixed contribution sequence. More precisely, we study the invest-
ment fraction α as a function of the guaranteed rate of return g such that (α(g), g) ∈ Ix,c(K). To
derive the functional relationship between these two contract parameters we have to reconsider the
definition of a fair premium. The fair premium concept requires equality between the expected
discounted contribution and the expected discounted benefit. The expected discounted contribu-
tion is a function of the contribution sequence, the discounting factors and the distribution of the
termination date. This part of the solution equation can be summarized by a term B1, which is
independent of the investment fraction and the guaranteed rate of return, i.e.

B1 :=
N−1∑
i=0

K(ti) ·D(t0, ti) ·
(

1−
∫ ti

t0

πx(u)du
)
. (4.2)

The expected discounted benefit of each pension scheme can be decomposed into three different
parts. The first part is equal to the expected discounted portfolio value. As already used earlier,
Proposition 3.1 implies that this part is equal to B1 as well, i.e.∫ tN

t0

D(t0, u) · EQtu [P (u,K)|IF0] · πx(u) du

+ D(t0, tN ) · EQtN [P (tN ,K)|IF0] ·
(

1−
∫ tN

t0

πx(u)du
)

=
N−1∑
i=0

K(ti) ·D(t0, ti) ·
(

1−
∫ ti

t0

πx(u)du
)

= B1.
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In the case of the SP -scheme the minimum payoff is equal to a convex combination of the portfolio
value and the sum of the contributions compounded at the rate g. Therefore the additional part in
this case equals the function B2(g) defined as

B2(g) :=
∫ tN

t0

D(t0, u) ·A(u, g) · πx(u) du+D(t0, tN ) ·A(tN , g) ·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ T

t0

n∗(u)∑
i=0

K(ti) ·D(t0, u) · exp{g · (u− ti)}

 · πx(u) du (4.3)

+

(
N−1∑
i=0

K(ti) ·D(t0, tN ) · exp{g · (tN − ti)}

)
·
(

1−
∫ tN

t0

πx(u)du
)
.

As a function of the guaranteed rate of return g the expected discounted payment B2(g) is non-
negative, strictly increasing and convex with

lim
g→−∞

B2(g) = 0 and lim
g→+∞

B2(g) = +∞. (4.4)

Furthermore, for g = g∗ as defined in Proposition 4.1 we have B2(g∗) = B1. The remaining part
of the expected discounted benefit is given by the put option with respect to the portfolio value.
Depending on the pension scheme chosen, this part is either a function of the guaranteed rate of
return g only or of g and the investment share α, and this function is defined by

R(α, g) :=
∫ tN

t0

D(t0, u) · EQtu
[
[A(u, g)− α · P (u,K)]+|IF0

]
· πx(u) du (4.5)

+D(t0, tN ) · EQtN
[
[A(tN , g)− α · P (tN ,K)]+ |IF0

]
·
(

1−
∫ tN

t0

πx(u)du
)
.

In case of the IG– or the SP–pension scheme, it is sufficient to consider R(1, g). As a function
of the guaranteed rate of return g the expected discounted option payoff is non-negative, strictly
increasing and convex with

lim
g→−∞

R(1, g) = 0 and lim
g→+∞

R(1, g) = +∞. (4.6)

Furthermore the growth and curvature of the function R(1, g) is bounded from above by the growth
and curvature of the expected discounted payment B2(g), i.e

0 <
∂R(1, g)
∂g

≤ ∂B2(g)
∂g

(4.7)

0 <
∂2R(1, g)
∂g2

≤ ∂2B2(g)
∂g2

. (4.8)
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Finally, the application of the put-call-parity implies ∀α ≥ 0

0 ≤ Rcall(α, g)

:=
∫ tN

t0

D(t0, u) · EQtu
[
[α · P (u,K)−A(u, g)]+|IF0

]
· πx(u) du

+ D(t0, tN ) · EQtN
[
[α · P (tN ,K)−A(tN , g)]+ |IF0

]
·
(

1−
∫ tN

t0

πx(u)du
)

=
∫ tN

t0

D(t0, u) · EQtu
[
[A(u, g)− α · P (u,K)]+|IF0

]
· πx(u) du

+ D(t0, tN ) · EQtN
[
[A(tN , g)− α · P (tN ,K)]+ |IF0

]
·
(

1−
∫ tN

t0

πx(u)du
)

+ α ·
(∫ tN

t0

D(t0, u) · EQtu [P (u,K)|IF0] · πx(u) du

+ D(t0, tN ) · EQtN [P (tN ,K)|IF0] ·
(

1−
∫ tN

t0

πx(u)du
))

−
∫ tN

t0

D(t0, u) ·A(u, g) · πx(u) du+D(t0, tN ) ·A(tN , g) ·
(

1−
∫ tN

t0

πx(u)du
)

= R(α, g) + α ·B1 −B2(g),

which yields ∀α ≥ 0

R(α, g) ≥ B2(g)− α ·B1 (4.9)
lim

g→+∞
R(α, g) + α ·B1 −B2(g) = lim

g→+∞
Rcall(α, g) = 0

With this notation the functional relationship between the investment fraction α and the guaranteed
rate of return g on the set of admissible contracts can be expressed as follows:

• In the case of the IG-pension scheme the function of the investment share on the set of
admissible contracts is uniquely determined by:

(αIG(g), g) ∈ Ix,IG(K(t0), . . . ,K(tN−1)) ⇔ αIG(g) :=
B1

B1 +R(1, g)
(4.10)

• In the case of the CG–pension the functional relationship is implicitly given as the solution
of the following non-linear problem

(αCG(g), g) ∈ Ix,CG(K(t0), . . . ,K(tN−1))
⇔ αCG(g) is a solution of B1 = αCG(g) ·B1 +R(αCG(g), g) (4.11)

• In the case of the SP -pension scheme the function of the investment share on the set of
admissible contracts is uniquely determined by:

(αSP (g), g) ∈ Ix,SP (K(t0), . . . ,K(tN−1))

⇔ αSP (g) :=
B1 −B2(g)

B1 −B2(g) +R(1, g)
(4.12)

For each pension scheme c ∈ {IG,CG, SP} we can now characterize the set of admissible contracts

Ix,c(K(t0), . . . ,K(tN−1)) ⊂ IR2.

The simplest situation is described by the IG-scheme. In this case the set of admissible contracts
satisfies the following property
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Theorem 4.3 Let (K(t0), . . . ,K(tN−1)) be a non-negative contribution sequence and consider an
investment fraction αIG(g) such that

(αIG(g), g) ∈ Ix,IG(K(t0), . . . ,K(tN−1)).

Then αIG(g) as a function of the guaranteed rate of return g is non-negative and strictly decreasing
with

lim
g→−∞

αIG(g) = 1.

Furthermore for g → +∞ the contract degenerates, i.e. the only admissible contract is determined
by the contribution sequence equal to zero.

Proof: Consider first the situation of a non-negative contribution with positive present value, i.e.
K(ti) > 0 for at least one investment date ti ∈ T . In this case B1 is greater than zero and the
statement is a direct consequence of the functional form of the investment fraction as defined by
equation (4.10) and the monotonicity and limit property for g → −∞ of R(1, g) as given by (4.6).
If instead g → +∞ the function αIG(g) converges to zero. This implies that the only admissible
pension scheme in this limit case is determined by the contribution sequence equal to zero. 2

By (4.12) the investment fraction of SP -pension scheme is explicitly determined and has the fol-
lowing properties:

Theorem 4.4 Let (K(t0), . . . ,K(tN−1)) be a non-negative contribution sequence and consider an
investment fraction αSP (g) such that

(αSP (g), g) ∈ Ix,SP (K(t0), . . . ,K(tN−1))

then αSP (g) as a function of the guaranteed rate of return g is non-negative, strictly decreasing and
concave with

αSP (g∗) = 0,
lim

g→−∞
αSP (g) = 1,

lim
g→+∞

αSP (g) = −∞,

where g∗ is defined as in Proposition 4.1.

Proof: By (4.12) the investment fraction is determined by

αSP (g) :=
B1 −B2(g)

B1 −B2(g) +R(1, g)
=
B1 −B2(g)
RCall(1, g)

,

where RCall(1, g) = B1 − B2(g) + R(1, g). In particular (4.9) implies that the denominator is
non-negative for all g. Furthermore R(1, g) and B2(g) are non-negative and increasing functions
of the guaranteed rate of return with B2(g) > B2(g∗) = B1 > 0 for g > g∗. These proper-
ties imply αSP (g∗) = 0 and furthermore the limit behavior of the investment share. Denote by
R′(1, g), R′′(1, g), B′2(g) and B′′2 (g) the first and second derivative with respect to the guaranteed
rate of return. After some simplification the first derivative of the investment fraction as a function
of g can be computed as

∂αSP (g)
∂g

= −R(1, g) ·B′2(g) + (B1 −B2(g)) ·R′(1, g)
R2
Call(1, g)

< −RCall(1, g) ·R′(1, g)
R2
Call(1, g)

< 0,

where the first inequality is an implication of equation (4.7) and the second of equation (4.9). Again
by straightforward differentiation the second derivative of the investment share as a function of the
guaranteed rate of return is given by

∂2αSP (g)
∂g2

= −R(1, g) ·B′′2 (g) + ((B1 −B2(g)) ·R′′(1, g)
R2
Call(1, g)

+2 · (R(1, g) ·B′2(g) + (B1 −B2(g)) ·R′(1, g)) · (R′(1, g)−B′2(g))
R3
Call(1, g)

.
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The first term is non-positive since B′′2 (g) ≥ R′′(1, g) and B1 − B2(g) + R(1, g) = Rcall(1, g) ≥ 0.
The second term is also non-positive since B′2(g) ≥ R′(1, g). Therefore the second derivative of the
investment fraction is non-positive which implies the concavity as a function of the guaranteed rate
of return. 2

The analysis of the CG–scheme is a little more complicated since the investment fraction is deter-
mined as the solution of a non-linear equation given by (4.11).

Theorem 4.5 Let (K(t0), . . . ,K(tN−1)) be a non-negative contribution sequence and consider an
investment fraction αCG(g) such that

(αCG(g), g) ∈ Ix,CG(K(t0), . . . ,K(tN−1)),

and let g∗ be the critical guaranteed rate of return defined in Proposition 4.1.

• There exist no admissible CG-pension contracts with a guaranteed rate of return g > g∗.

• For g ≤ g∗ the investment fraction αCG(g) as a function of the guaranteed rate of return g is
non-negative, strictly decreasing and concave with

αPS(g∗) = 0,
lim

g→−∞
αPS(g) = 1.

Proof: The investment fraction is characterized as the solution of equation (4.11), i.e.

B1 = αCG ·B1 +R(αCG, g) = B2(g) +RCall(αCG, g), (4.13)

where RCall(α, g) is defined in (4.9) as RCall(α, g) := α ·B1−B2(g)+R(α, g). Define the right hand
side of (4.13) as a function f(α, g). Since B2(g) is strictly increasing in g with B2(g∗) = B1 > 0
the investment fraction α∗ := αCG(g∗) must be a solution of

B1 = f(α∗, g∗) = α∗ ·B1 +R(α∗, g) = B2(g∗) +RCall(α∗, g)⇔ 0 = RCall(α∗, g),

which implies α∗ = 0. Furthermore since RCall(α, g) ∀g is non-negative and B2(g) > B2(g∗) for
g > g∗, there exists no admissible contract for g > g∗. The limit result is a consequence of

lim
g→−∞

f(α, g) = lim
g→−∞

(R(α, g) + α ·B1) = αB1,

which in conjunction with (4.13) implies that for g → −∞ the investment share of an admissible
contract must converge to one. The function f(α, g) is twice differentiable in both parameters with
fα, fg, fα,α, fg,g > 0 and cross derivative fα,g < 0. The solution α(g) such that c = f(α, g) must
satisfy

0 = fαdα+ fgdg ⇔
dα

dg
= − fg

fα
< 0,

Which implies that the solution α(g) is decreasing in the guaranteed rate of return g. Furthermore
the second total differential implies

0 = fα,α(dα)2 + 2 · fα,gdαdg + fg,g(dg)2

⇔ dα2

dg2
= − fg,g

fα,α
− 2 · fα,g

fα,α
· dα
dg

< 0

since f(α, g) is convex in both parameters and the cross derivative is negative. as a consequence
the investment share is a concave function of the guaranteed rate of return. 2

In the case of an investment contract, i.e. without the termination uncertainty of the pension
situation, the investment fractions of all three schemes are ordered in a monotonic fashion (see
Proposition 2.1). The same property holds in case of a pension contract with the possibility of
early termination.
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Proposition 4.6 Consider a non-negative contribution sequence (K(t0), . . . ,K(tN−1)) with posi-
tive present value and define g∗ as in Proposition 4.1. For all guaranteed rates of return g ≤ g∗

such that

(αIG(g), g) ∈ Ix,IG(K(t0), . . . ,K(tN−1))
(αCG(g), g) ∈ Ix,CG(K(t0), . . . ,K(tN−1))
(αSP (g), g) ∈ Ix,SP (K(t0), . . . ,K(tN−1))

the investment fractions of the admissible contracts are ordered by

αIG(g) ≥ αCG(g) ≥ αSP (g) ∀g ≤ g∗.

Proof: Let g ≤ g∗ be an arbitrary guaranteed rate of return and consider

(αCG(g), g) ∈ Ix,CG(K(t0), . . . ,K(tN−1)).

The investment fraction αCG(g) is therefore a solution of

B1 = αCG(g) ·B1 +R(αCG(g), g).

For α ∈ [0, 1] the expected discounted option term R(α, g) is decreasing, with R(α, g) ≥ R(1, g).
Therefore the right hand side of the above equation is bounded from below by

B1 = αCG(g) ·B1 +R(αCG(g), g) ≥ αCG(g) ·B1 +R(1, g)

⇔ αCG(g) ≤ B1

B1 +R(1, g)
= αIG(g) ∀g ≤ g∗.

To derive the upper bound consider again the put-call-parity relation RCall(α, g) = B1 − B2(g) +
R(α, g) as in equation (4.9). This implies that the expected discounted option part is bounded from
above for α ∈ [0, 1]

B1 = αCG(g) ·B1 +R(αCG(g), g)
= αCG(g) ·B1 +B2(g)− αCG ·B1 +RCall(αCG, g)
= B2(g) +RCall(αCG, g)
≤ B2(g) + αCG ·RCall(1, g)
= B2(g) + αCG · (B1 −B2(g) +R(1, g))

⇔ αCG(g) ≥ B1 −B2(g)
B1 −B2(g) +R(1, g)

= αSP (g) ∀g ≤ g∗.

2

5 Valuation of the Embedded Average Return Options

The computation of the set of admissible contracts (α, g) ∈ Ix,c(K(t0), . . . ,K(tN−1)) for c ∈
{IG,CG, SP} involves the computation of a sequence of option contracts which are related to
Asian–type put options. To evaluate these options, we will determine their upper and lower bounds,
extending the conditional technique independently introduced by Curran (1994) and Rogers and
Shi (1995). In contrast to these contributions, we also include interest rate risk. The put options in
our case are defined on the discrete average return instead of the average funds value. Therefore the
contract situation as well as the model assumptions differ from those investigated by Curran (1994)
and Rogers and Shi (1995). The lower bound of an Asian type put option is given by Curran as well
as by Rogers and Shi in the form of an integral equation which is solved by numerical integration.
Applying arguments from Nielsen and Sandmann (2002), we derive a closed form solution of the
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resulting integral equation for the lower bound and determine a closed form approximation of the
maximum error which is smaller than the one derived by Curran, Rogers and Shi.
To start the analysis we assume a general Gaussian framework of the financial market defined by
the stochastic processes of the underlying stock index and the term structure of interest rates, with
deterministic volatility functions. Thus the dynamics of the underlying stock index under the spot
risk–neutral measure5 Qβ are given by

dS(t)
S(t)

= r(t)dt+ σS(t)dWβ(t)

where r(t) is the continuously compounded short rate of interest, Wβ(t) is a d-dimensional vector–
valued Brownian motion, σS(t) is a deterministic, d-dimensional vector–valued function of t and
σS(t)dWβ(t) is to be understood as a sum product.
The interest rate dynamics are given by a Gauss/Markov Heath, Jarrow and Morton (1992) model,
i.e. the instantaneous forward rates satisfy

df(t, T ) = ψ(t, T )ψ∗(t, T )dt+ ψ(t, T )dWβ(t)

ψ∗(t, T ) =
∫ T

t

ψ(t, u)du

with ψ(·, ·) a deterministic, d-dimensional vector–valued function with components

ψi(t, T ) = σi(t)e−ai(T−t)

It follows that the zero coupon bond price dynamics are

dD(t, T ) = D(t, T )(r(t)dt− ψ∗(t, T )dWβ(t))

For simplicity of the exposition define n := n∗(τ) for a fixed time τ ∈]tn, tn+1] ⊆]t0, tN ]. If the
exercise of the pension contract occurs at time τ the option part of the payoff for all three schemes
is related to

[A(τ, g)− γ · P (τ,K)]+ =

[
n∑
i=0

K(ti) · exp {g · (τ − ti)} − γ ·
n∑
i=0

K(ti) ·
S(τ)
S(ti)

]+

where γ is either equal to 1 or α. The arbitrage–free price at time t0 of this average return Asian–type
option is given by

Put(t0, τ, γ, A(τ, g)) := D(t0, tj) · EQτ

[A(τ, g)− γ ·
n∑
i=0

K(ti) ·
S(τ)
S(ti)

]+
 , (5.1)

with τ ∈]tn, tn+1] ⊆]t0, tN ].
Consider now the solution of the stochastic differential equation for the quotient S(τ)/S(ti) under
the time τ forward measure Qτ (i.e. the equivalent martingale measure associated with taking the
zero coupon bond D(t, τ) as the numeraire). By definition of Qτ we have

S(τ) =
S(t0)
D(t0, τ)

exp
{∫ τ

t0

(σS(u) + ψ∗(u, τ))dWτ (u)− 1
2

∫ τ

t0

(σS(u) + ψ∗(u, τ))2du

}
5The spot risk–neutral measure is the equivalent martingale measure associated with taking the continuously

compounded savings account

β(t) = exp

{∫ t

t0

r(s)ds

}
as the numeraire.
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Furthermore, under the time ti forward measure Qti ,

S(ti) =
S(t0)

D(t0, ti)
exp

{∫ ti

t0

(σS(u) + ψ∗(u, ti))dWti(u)− 1
2

∫ ti

t0

(σS(u) + ψ∗(u, ti))2du

}
and by well–known change–of–numeraire results6

dWti(u) = dWτ (u) + (ψ∗(u, ti)− ψ∗(u, τ))du

Thus the solution of the stochastic process
(
S(τ)
S(ti)

)
for i = 0, . . . , n is equal to

S(τ)
S(ti)

= H(t0, ti, τ) · exp{Z(t0, ti, τ)}, (5.2)

where H(t0, ti, τ) is a deterministic function defined by

H(t0, ti, τ) (5.3)

:= D(t0,ti)
D(t0,τ) exp

−1
2

ti∫
t0

(ψ∗(u, ti)− ψ∗(u, τ))2du− 1
2

τ∫
ti

(σS(u) + ψ∗(u, τ))2
du


and Z(t0, ti, τ) is a normally distributed random variable with expectation equal to zero under Qτ .
Z(t0, ti, τ) is determined by

Z(t0, ti, τ) (5.4)

:=
∫ τ

ti

σS(u)dWτ (u) +
∫ τ

t0

ψ∗(u, τ)dWτ (u)−
∫ ti

t0

ψ∗(u, ti)dWτ (u).

Since the sum of the random variables, Z(t0, ti, τ) is normally distributed, a standardized normal
distributed variable Zτ is defined by

Zτ :=
1

Ωτ

n∑
i=0

Z(t0, ti, τ), (5.5)

where Ωτ is determined such that V arQτ [Zτ ] = 1. Under the conditional approach the lower bound
of the Asian type average return put option (5.1) is established through Jensen’s inequality as

D(t0, τ) · EQτ

EQτ
[A(τ, g)− γ ·

n∑
i=0

K(ti) ·
S(τ)
S(ti)

]+
∣∣∣∣∣∣Zτ

 (5.6)

≥ D(t0, τ) · EQτ

EQτ [A(τ, g)− γ ·
n∑
i=0

K(ti) ·
S(τ)
S(ti)

∣∣∣∣∣Zτ
]+


=: Putl(t0, τ, γ, A(τ, g)).

As a result of Jensen’s inequality and the Gaussian structure the inner conditional expectation can
be computed and is equal to

EQτ

[
A(τ, g)− γ ·

n∑
i=0

K(ti) ·
S(τ)
S(ti)

∣∣∣∣∣Zτ = z

]
(5.7)

= A(τ, g)− γ ·
n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{mτ (ti) · z +
1
2
· v2
τ (ti, ti)},

6See e.g. Geman, El Karoui and Rochet (1995).
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where

mτ (ti) := EQτ [Zτ · Z(t0, ti, τ)]
ν2
τ (ti, tk) := covQτ [Z(t0, ti, τ), Z(t0, tk, τ)|Zτ ] .

The solution of the conditional expectation (5.7) can be rewritten as in terms of a sum of convex
functions

fi(z) := K(ti) ·H(t0, ti, tj) · exp{mτ (ti) · z +
1
2
· ν2
τ (ti, ti)}

= K(ti) ·
D(t0, ti)
D(t0, τ)

· exp{mM,j(ti) · z −
1
2
·m2

τ (ti)}.

As a consequence the equation A(τ, g) − γ ·
∑M
i=0 fi(z) = 0 has infinitely many, zero, one or two

solutions which we may define as follows

Definition 4

• If A(τ, g)−
∑n
i=0 fi(z) < 0 ∀z, define z∗ = z∗∗ := 0,

• if A(τ, g) −
∑n
i=0 fi(z) ≥ 0 ∀z, which could only be the case if mτ (ti) = 0 ∀i, we define

z∗ := −∞ and z∗∗ :=∞,

• if A(τ, g) −
∑n
i=0 fi(z) = 0 has one solution and mτ (ti) ≮ 0 ∀i, we define z∗ := −∞ and

denote the solution by z∗∗,

• if A(τ, g) −
∑n
i=0 fi(z) = 0 has one solution and mτ (ti) ≯ 0 ∀i, we denote the solution by

z∗ and define z∗∗ :=∞,

• if A(τ, g)−
∑n
i=0 fi(z) = 0 has two solutions, we denote these by z∗ and z∗∗ and let z∗ < z∗∗.

With this notation and applying the same arguments as in Nielsen and Sandmann (2002) the lower
bound of the conditional approach is equal to

Putl(t0, τ, γ, A(τ, g)) (5.8)

= D(t0, τ) ·

[
A(τ, g) · EQτ

[
1{z≥z∗}

]
− γ ·

n∑
i=0

EQτ
[
fi(z)1{z≥z∗}

]
−A(τ, g) · EQτ

[
1{z≥z∗∗}

]
+ γ ·

n∑
i=0

EQτ
[
(fi(z)1{z≥z∗∗}

]]

=

[
D(t0, τ) ·A(τ, g) · Φ(−z∗)− γ ·

n∑
i=0

D(t0, ti) · Φ(−z∗ +mτ (ti))

−A(τ, g) ·D(t0, τ) · Φ(−z∗∗) + γ ·
n∑
i=0

D(t0, ti) · Φ(−z∗∗ +mτ (ti))

]
,

where Φ(·) denotes the cumulative standard normal distribution.
If ε(t0, τ, γ, A(τ, g)) is an upper bound to the error made by applying the conditioning method, then
an upper bound for the value of the average return put option is defined by

Putu(t0, τ, γ, A(τ, g)) := Putl(t0, τ, γ, A(τ, g)) + ε(t0, τ, γ, A(τ, g)).

The construction of an upper bound for this error is now based on the following observation. The
conditioning by Zτ is equivalent to the conditioning by the geometric average since the conditioning
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variable can be rewritten as

Zτ =
ln(G(τ))− EQτ [ln(G(τ))]

(VarQτ [ln(G(τ))])
1
2

, (5.9)

Gτ :=

(
n∏
i=0

K(ti) ·
S(τ)
S(ti)

) 1
n+1

.

Furthermore the arithmetic average is bounded from below by the the geometric average, which
implies that

G(τ) ≤ 1
n+ 1

·
n∑
i=0

K(ti) ·
S(τ)
S(ti)

.

As a consequence the error between the lower bound and the true value of the average return
put-option is restricted to the set{

Gτ ≤
A(τ, g)

γ · (n+ 1)

}
= {Zτ ≤ d}

where d is given by

d :=
ln
(
A(τ,g)
γ·(n+1)

)
− EQτ [ln(Gτ )]

(VarQτ [ln(Gτ )])
1
2

=
n+ 1
Ωτ

· ln

[
A(τ, g)

γ · (n+ 1) · (
∏n
i=0K(ti) ·H(t0, ti, τ))

1
n+1

]
.

Denoting by φ(·) the standard normal density function for Zτ a bound can therefore be expressed
as

0 ≤ EQτ

EQτ
[A(τ, g)− γ ·

n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

]+
∣∣∣∣∣∣Zτ


−

[
EQτ

[
A(τ, g)− γ ·

n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]]+


=

∫ d

−∞

EQτ
[A(τ, g)− γ ·

n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

]+
∣∣∣∣∣∣Zτ


−EQτ

[
A(τ, g)− γ ·

n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]+
φ(z)dz

≤ 1
2

∫ d

−∞

(
VarQτ

[
n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]) 1

2

φ(z)dz

=
1
2
· EQτ

(VarQτ

[
n∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]

1{Zτ<d}

) 1
2 (

1{Zτ<d}
) 1

2


≤ 1

2
·

(
EQτ

[
VarQτ

[
M∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]

1{Zτ<d}

]) 1
2

(
EQτ

[
1{Zτ<d}

]) 1
2 ,

where Hölder’s inequality has been applied in the last inequality. The bound on the forward7 pricing
7To calculate the bound on the error in the present value of the option, this must be discounted by multiplying

by D(t0, τ).
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error of the conditional approach is therefore given by

ε(t0, τ, γ, A(τ, g)) =
1
2
· Φ(d)

1
2 (5.10)

·

(
EQτ

[
VarQτ

[
M∑
i=0

K(ti) ·H(t0, ti, τ) · exp{Z(t0, ti, τ)}

∣∣∣∣∣Zτ
]

1{Zτ<d}

]) 1
2

To compute this, consider first the conditional variance term inside the expectation. To shorten
notation, define

qi := K(ti)H(t0, ti, τ)
Zi := Z(t0, ti, τ)

Then we can write

VarQτ

[
n∑
i=0

qie
Zi

∣∣∣∣∣Zτ
]

=
n∑
k=1

(
VarQτ

[
qke

Zk
∣∣Zτ ]+ 2CovQτ

[
qke

Zk ,

k−1∑
i=0

qie
Zi

∣∣∣∣∣Zτ
])

+ VarQτ
[
q0e

Z0
∣∣Zτ ] (5.11)

=
n∑
k=0

VarQτ
[
qke

Zk
∣∣Zτ ]+ 2

n∑
k=1

(
EQτ

[
qke

Zk

k−1∑
i=0

qie
Zi

∣∣∣∣∣Zτ
]
− EQτ

[
qke

Zk
∣∣Zτ ] k−1∑

i=0

EQτ
[
qie

Zi
∣∣Zτ ])

Note that Zk given Zτ is normally distributed with mean Zτθk,

θk :=
√

Var[Z(t0, tk, τ)]Corr[Z(t0, tk, τ), Zτ ]

and variance
σ2
k := (1− Corr[Z(t0, tk, τ), Zτ ]2)Var[Z(t0, tk, τ)]

Therefore

VarQτ
[
qke

Zk
∣∣Zτ ] = q2

k(eσ
2
k − 1)e2θkZτ+σ2

k

EQτ
[
qke

Zk
∣∣Zτ ] = qke

θkZτ+ 1
2σ

2
k

Similarly, Zk + Zi given Zτ is normally distributed with mean Zτθi,k,

θi,k :=
√

Var[Zk + Zi]Corr[Zk + Zi, Zτ ]

and variance
σ2
i,k := (1− Corr[Zk + Zi, Zτ ])2Var[Zk + Zi]

Therefore
EQτ [qkeZkqieZi |Zτ ] = qkqie

θi,kZτ+ 1
2σ

2
i,k

Thus the right hand side of (5.11) is a sum of terms of the type ceaZτ+b and we can calculate the
unconditional expectation in (5.10) as a sum of terms of the type

EQτ [ceaZτ+b1{Zτ<d}] = ce
1
2a

2+bΦ(d− a)
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6 Numerical Results and Conclusion

For the numerical analysis we have to specify the exercise distribution, the volatility functions of
the risky fund and the term structure of interest rates and as well as the contract situations of the
pension contracts. The numerical approximation of the Asian type average return put options is
valid for any deterministic specification of the volatility functions.
For our numerical examples, we specify the stock index volatility as

σS(t) =
(

0
0.25

)
∀ t

and the interest rate volatility function as

ψ(t, T ) =
(

0.15e−0.25(T−t)

0

)
∀ t

i.e. the instantaneous correlation between the two processes is set to zero. In addition, we assume
that the initial term structure is flat with an interest rate equal to 4% continuously compounded.
As discussed earlier, the distribution of contract termination times is closely related to the mortality
distribution. In fact one way to define the relationship between the termination distribution and
the mortality distribution is by using a Wang transformation. Another possibility to take care of
the difference between the termination and the mortality distribution is to adjust the mortality
table by increasing the age of the investor. As an example we use a mortality table adjusted with
the Makeham formula

lx = b · sx · gc
x

with (6.1)
s = 0.99949255
g = 0.99959845
c = 1.10291509
b = 1000401.71

which leads to∫ τi+∆τ

τi

πx(u)du =
lx+τi − lx+τi+∆τ

lx

=̂ the probability that a life-aged-x will survive τi years and die within
the following ∆τ years.

We consider the contract situation of an investor at the age of 30 years at the inception of the
contract. Instead of the Wang transformation we use the age adjustment, i.e. we increase the
present age of the investor by 15 years. Which implies x = 45 in our simulation. Since the death
probability of a life aged 30 is less than of a life aged 45, this results in an increase in the probability
of early termination of the contract. In addition to the pension situation we also consider the case of
the investment contract. In this case, by assumption the contract runs until the contract maturity
with probability 1. The comparison of the results for the pension and investment situation allows
us to discuss the impact of the possibility of early termination.
For the computation of the numerical results it is necessary to integrate the expected discounted
payoffs with respect to the termination distribution. To simplify this problem we assume that
the payments can only take place at the end of each investment period. This implies that early
termination of the contract can only occur at time τ ∈ T = {t0 < · · · < tn−1} and the contract
maturity is equal to T = tN . The maturity of the pension and investment contracts varies in yearly
steps up to 15 years with a periodic payment every second month. In case of the 15-year contract
this involves the computation of 90 = 15 · 6 average return put options to calculate the value of
the investment fraction for a fixed interest rate guarantee. To further simplify the computation we



6 NUMERICAL RESULTS AND CONCLUSION 24

20.00%

40.00%

60.00%

80.00%

100.00%

st
m
e
n
t 
Fr
ac
ti
o
n
  α

(g
)

‐40.00%

‐20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

‐1% ‐0.50% 0% 0.50% 1% 1.50% 2% 2.50% 3% 3.50% 4% 4.50% 5%

In
ve
st
m
e
n
t 
Fr
ac
ti
o
n
  α

(g
)

Guaranteed rate of return g

IG: upper bound IG: lower bound CG: lower bound CG: upper bound SP: lower bound SP: upper bound

Figure 6.1: Upper and lower bound for the investment fraction α(g) as a function of the guaranteed
rate of return g for an admissible pension scheme c ∈ {IG,CG, SP}, contract maturity T = 15
years, age x = 30 + (15) and bimonthly constant contribution.

assume a constant contribution of 100 at each investment date. In case of a constant contribution
the set of admissible contracts is independent of the the size of the contribution. In this particular
case the corresponding equations (see (4.10), (4.11), and (4.12)) are homogenous of degree one in
the constant contribution.
The central computation problem is to approximate the sequence of average return put options.
Setting the maturity of the contracts to 15 years and assuming bimonthly contributions the total
number of Asian–type options is 90. Since no closed form solution is available, we use the upper and
lower bounds derived by the conditioning method. In addition we have to solve a second fixed point
problem in the case of the contribution guaranteed scheme (CG-scheme). The results are given in
Figure 6.1 and Table 6.1. As a first conclusion, the approximations are quite well–behaved. Due to
the second approximation problem the differences between upper and lower bounds in case of the
CG-scheme are higher than for the other schemes. In particular for relatively high guaranteed rates
of return g the difference increases. In this case the solution involves the approximation of out–of–
the–money options. Although the absolute value of these options is small, the difference between
the upper and lower bound is large. This finding is in line with the results on the approximation
methods for Asian options as reported in Nielsen and Sandmann (2003). The behavior of the
average return option is similar to the one of a standard Asian–type option.
As expected, the investment fraction α(g) as a function of the guaranteed rate of return is decreasing
and in case of the CG- and SP -scheme concave. The functional form of the function in case of the
IG- scheme is not concave, since for g →∞ the investment fraction converges to zero from above.
Furthermore the graph is in line with the relative ranges of these investment fractions with respect
to the different schemes, i.e. the result is consistent with Proposition 4.6. For simplicity the initial
term structure was assumed to be flat with a 4% yield. Therefore in case of a guaranteed rate equal
to 4% the investment share of the CG– and the SP–scheme must be equal to zero. For higher
guaranteed rates the only admissible contract of the CG–scheme is defined by a zero contribution
sequence, whereas the SP–scheme implies a negative investment fraction in this case.
As reported in Table 6.1, the value of the investment fraction differs substantially across the different
schemes. The IG–scheme results in an investment fraction of around 78% if the guaranteed rate
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guaranteed pension scheme IG pension scheme CG pension scheme PS
rate of lower upper lower upper lower upper

return g αlowIG (g) αupIG(g) αlowCG(g) αupCG(g) αlowSP (g) αupPS(g)
-1.0% 80.15% 81.59% 66.61% 69.34% 56.28% 58.56%
-0.5% 79.05% 80.49% 63.62% 66.44% 52.57% 54.78%
0.0% 77.92% 79.34% 60.30% 63.21% 48.53% 50.66%
0.5% 76.74% 78.16% 56.57% 59.60% 44.13% 46.14%
1.0% 75.52% 76.92% 52.36% 55.54% 39.34% 41.20%
1.5% 74.26% 75.65% 47.55% 50.93% 34.12% 35.80%
2.0% 72.96% 74.33% 41.95% 45.63% 28.43% 29.88%
2.5% 71.62% 72.97% 35.25% 39.43% 22.22% 23.40%
3.0% 70.25% 71.57% 26.82% 31.90% 15.45% 16.31%

Table 6.1: Upper and lower bound for the investment fraction α(g) as a function of the guaranteed
rate of return g for an admissible pension scheme c ∈ {IG,CG, SP}, contract maturity T = 15
years, age x = 30 + (15) and bimonthly constant contribution.

of return is assumed to be 0%. For the same guaranteed rate the CG–scheme results in around
62% and the SP–scheme around 50%. To understand these differences, it is necessary to consider
the associated payoffs more closely. The total benefit of the different pension schemes can be
decomposed into two parts. The first part consists of the guaranteed amount the investor receives
at the termination of the contract. This amount is determined by the guaranteed rate of return g,
the termination date τ and in the case of the investment guaranteed scheme (IG) by the investment
fraction αIG(g). The second part is random and depends on the value of the investment portfolio
at the termination date. Therefore we call this the expected surplus benefit of the contract, as
opposed to the guaranteed benefit. Consider a fixed time tn ∈ T ∪{tN} and express these quantities
in terms of money at time tn. With respect to the definition of the three different pension schemes,
the guaranteed benefit GBc and the expected surplus benefit EsBc at time tn are defined by

GBIG(tn, g) := αIG(g) ·A(tn, g), (6.2)
EsBIG(tn, g) := αIG(g) · EQtn

[
[P (tn,K)−A(tn, g)]+

]
, (6.3)

GBCG(tn, g) := A(tn, g), (6.4)
EsBCG(tn, g) := EQtn

[
[αCG(g) · P (tn,K)−A(tn, g)]+

]
, (6.5)

GBSP (tn, g) := A(tn, g), (6.6)
EsBSP (tn, g) := αSP (g) · EQtn

[
[P (tn,K)−A(tn, g)]+

]
, (6.7)

where (αc, g) ∈ Ix,c(K(t0, ·,K(tN−1) refers to an admissible contract with maturity tN . Furthermore
A(tn, g) is defined by equation (3.2) and the expected surplus part is determined as the forward
value of the corresponding average rate option payoff. The difference between tn and tN can be
expressed as follows. At time t0 we consider an admissible contract (αc, g) with contract maturity
tN . For tn < tN the above values represent the guaranteed benefit (payment) and expected surplus
if the contract termination occurs prior to the maturity. For tn = tN these values are equal to the
guaranteed benefit and expected surplus at maturity. With respect to the above decomposition of
the expected payoff, the CG– and the SP–scheme yield the same guaranteed benefit. Furthermore,
the guaranteed benefit of these schemes is always larger than the one of the IG–scheme. The
difference between the guaranteed benefit amounts is quite large, as reported in Figure 6.2. In
other words, the IG–pension scheme is much more risky than the other two schemes.
Since the contribution sequence for all schemes is identical, and therefore also the present value
of these schemes, the size of the risky investment in the IG–scheme is higher than for the other
two schemes. Measured in terms of the expected surplus benefit, the IG–scheme must have a
much higher average (expected) surplus benefit. This is only a statement about the expected value.
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Figure 6.2: Guaranteed benefit GBc(T, g) at maturity as a function of the guaranteed rate of
return g for an admissible pension scheme c ∈ {IG,CG, SP}, contract maturity T = 15 years, age
x = 30 + (15) and bimonthly constant contribution K = 100.

Furthermore, as shown in Figure 6.3, the expected surplus benefits at maturity of the contract of
the CG– and SP–scheme are very similar. Since the present values of both contracts are identical
and the guaranteed parts are identical, the expected value of the benefit must also be identical.
Figure 6.4 reports this effect for the guaranteed benefit and Figure 6.5 for the expected surplus
benefit, if we consider possibility of early termination. Measured in terms of the expected value we
can see no difference between the CG– and the SP–scheme. This does not mean that both schemes
are equally risky. In fact the statement is only valid in terms of the expected payoffs. It would be
necessary to investigate the distribution of the payoffs for the different surplus benefits on the set
of admissible contracts. The conditioning method does not permit further conclusions at this point
on the relative financial risk inherent in the two schemes.
The decomposition of the scheme payoffs into guaranteed benefit and expected surplus benefit also
allows one to better understand the behaviour of the schemes with increasing times to maturity,
as illustrated in Figure 6.6. Holding α and the guaranteed return g constant, and for clarity of
exposition assuming a flat initial term structure of interest rates, there are two opposing effects as
the contract maturity is increased. As g necessarily is less than the risk–free rate of interest (in the
sense of Proposition 4.1), the gap between the present value of the guaranteed benefit A(tn) and
the present value of the investor’s contribution stream will widen as tn is increased. On the other
hand, the present value of the call option payoff (the expected surplus benefit) will increase, because
the present value of the “strike” A(tn) decreases (increasing the intrinsic value) and because the
longer time to maturity results in an increase to the time value of the option. Figure 6.6 indicates
that for the IG and CG schemes, the latter effect initially dominates, increasing the present value
of the payoff relative to the present value of the contribution stream, and consequently the “fair”
α must be lower for longer maturities, ceteris paribus. For the SP scheme, and at longer maturities
for the IG and CG schemes, the first effect dominates, as evidenced by increasing fair α in contract
maturity. That the first effect must be stronger in SP than IG is due to the fact that A(tn) is
weighted less (with α < 1) in IG than in SP. Furthermore, writing the surplus benefit in CG as

α[P (tn)− 1
α
A(tn)]+
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Figure 6.3: Upper and lower bounds on the expected surplus benefit at maturity EsBc(T, g) as a
function of the guaranteed rate of return g for an admissible pension scheme c ∈ {IG,CG, SP},
contract maturity T = 15 years, age x = 30 + (15) and bimonthly constant contribution K = 100.
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Figure 6.4: Guaranteed benefit GBc(t, g = 0%) at maturity as a function of the termination date
t for an admissible pension scheme c ∈ {IG,CG, SP}, contract maturity T = 15 years, age x =
30 + (15) and bimonthly constant contribution K = 100.
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Figure 6.5: Upper and lower bounds on the expected surplus benefit at maturity EsBc(t, g = 0%)
as a function of the termination date t for an admissible pension scheme c ∈ {IG,CG, SP}, contract
maturity T = 15 years, age x = 30 + (15) and bimonthly constant contribution K = 100.

we see that the second effect must be stronger in CG than in SP, as the intrinsic value of the
option increases more quickly when A(tn) decreases — relative to SP, the “strike” A(tn) is scaled
by 1/α > 1 in the CG payoff. Thus the behaviour of the schemes in increasing contract maturity
as exhibited in Figure 6.6 is plausible in terms of the payoff specifications and one would expect
this to hold independently of the particular choice of fixed contract and market parameters used
for this illustration.
Figure 6.6 suggests that the fair investment fraction tends to a limit as the contract maturity
approaches infinity. This is correct – since g is less than the risk–free rate of interest, A(tn)
decreases relative to the (forward) value of P (tn) as tn is increased, so that in forward terms the
moneyness of the option increases. In the limit the call option is exercised with probability one,
and thus the payoffs of the IG and CG schemes are identical. Similarly, because g is less than the
risk–free rate, the present value of A(tn) goes to zero as tn is increased, so for sufficiently large tn
the present value of the payoff of all three schemes is determined by the present value of αP (tn).
In the absence of the possibility of early termination, α converges to 1 as tn goes to infinity for all
three schemes (for numerical reasons, this is only evident in the upper and not in the lower bounds
plotted in Figure 6.7). Allowing for early termination, payoffs at earlier maturities are weighted
by the distribution of the termination date even when tn goes to infinity, and thus in this case the
limit of α will be different for each scheme.
With respect to the termination distribution, the pension situation can be considered as an average
over a set of investment contracts. The weights are determined by the termination distribution.
Figure 6.8 to 6.10 focus on the difference between the investment and the pension situation. As
an extreme case the investment situation does not allow for early termination. Apart from this
difference the investment situation coincides with the corresponding pension situation. We there-
fore can compare two different sets of contracts. First the set of admissible pension contracts
(αpensionc , g) ∈ Ipensionx,c (K(t0, ·,K(tN−1) and second the corresponding set of investment contracts
(αinvestc , g) ∈ Iinvestx,c (K(t0, ·,K(tN−1) given the the same contribution sequence.
As shown in Figures 6.8 to 6.10, the differences between the investment proportions of admissible
contract combinations as a function of the guaranteed rate of return are in all three cases very
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Figure 6.6: Upper and lower bound for the investment fraction α(g) as a function of the contract
maturity for an admissible pension scheme c ∈ {IG,CG, SP}, guaranteed rate of return g = 1%,
age x = 30 + (15) and biannual constant contribution.
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Figure 6.7: Upper and lower bound for the investment fraction α(g) as a function of the contract
maturity for an admissible investment–only (no early termination) scheme c ∈ {IG,CG, SP},
guaranteed rate of return g = −5%, age x = 30 + (15) and annual constant contribution. Low
guarantee and very long contract maturities chosen to illustrate limit behaviour.
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Figure 6.8: Investment Guarantee Scheme: Upper and lower bound for the investment fractions
αpension(g) and αinvest(g) as a function of the guaranteed rate of return g for an admissible pension
and investment schemes with contract maturity T = 15 years, age x = 30 + (15) and bimonthly
constant contribution.

small. In fact, this illustrates the robustness of the investment proportion with respect to early
termination. The termination distribution is assumed to be given by a Makeham formula. The
parameter situation implies that the probability of termination prior to the maturity of the contract
(T = 15 years) is around 12%. In other words, the long term average return option payoff has a
weight of at least 0.88. Furthermore, the option values are increasing in the termination date, i.e.
the contribution of the long term option dominates the options values with a shorter maturity.
Both effects imply that we should expect that the investment proportion of an investment contract
is no less than the corresponding investment proportion of the pension contract, but the difference
can only be large if the termination distribution is much more extreme than the one considered
here. These results strongly suggest that the diversification over a population is an effective risk
management technique for the risk of early termination even in the presence of additional financial
risk. The assumed independence between the exercise distribution and the financial risk is in this
regard a worst case situation. If we assume a correlation between these risks we have the additional
possibility to hedge part of the termination risk by using a trading strategy in the financial market.
As in the work by Moller (1998, 2001) the risk minimizing strategy is thus defined by averaging the
hedging strategies for each possible termination date, weighted by the termination distribution.
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Figure 6.9: Contribution Guarantee Scheme: Upper and lower bound for the investment fractions
αpension(g) and αinvest(g) as a function of the guaranteed rate of return g for admissible pension
and investment schemes with contract maturity T = 15 years, age x = 30 + (15) and bimonthly
constant contribution.
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Figure 6.10: Surplus Participation Scheme: Upper and lower bound for the investment fractions
αpension(g) and αinvest(g) as a function of the guaranteed rate of return g for admissible pension
and investment schemes with contract maturity T = 15 years, age x = 30 + (15) and bimonthly
constant contribution.
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