
Towards a flexible deployment of multi-cloud
applications based on TOSCA and CAMP?

Jose Carrasco, Javier Cubo, and Ernesto Pimentel

Universidad de Málaga, Dept. Lengujes y Ciencias de la Computación, Spain
{josec,cubo,ernesto}@lcc.uma.es

Abstract. Cloud Computing platforms offer diverse services and capa-
bilities with own features. Hence, the provider services could be used by
end users to compose a heterogeneous context of multiple cloud platforms
in order to deploy their cloud applications made up of a set of modules,
according to the best capabilities of the cloud providers. However, this is
an ideal scenario, since the cloud platforms are being conducted in an iso-
lated way by presenting many interoperability and portability restrictions,
which complicate the integration of diverse provider services to achieve
an heterogeneous deployment of multi-cloud applications. In this ongoing
work, we present an approach based on model transformation to deploy
multi-cloud applications by reusing standardization efforts related to the
management and deployment of cloud applications. Specifically, using
mechanisms specified by both standards, TOSCA and CAMP, we propose
a methodology to describe the topology and distribution of modules
of a cloud application and to deploy the interconnected modules over
heterogeneous clouds. We illustrate our idea using a running example.

Keywords: Heterogeneous Cloud, Cloud application, Multi-deployment,
Model transformation, TOSCA, CAMP

1 Introduction
Cloud Computing is a new paradigm which has become increasingly popular in
the last years. It defines a model for enabling convenient and on-demand network
access to a shared pool of configurable computing resources that can be rapidly
provisioned [1]. In this model the providers expose these resources as several
services through a cloud platform classified in various levels (IaaS, PaaS, SaaS).
They can develop, deploy, and sell cloud applications globally without the need
of significant investments in IT infrastructure. The provided services are used
by the clients to deploy their applications and systems on concrete provides.
Hence, the users could select the services from several providers whose properties
and capabilities fit with the requirements of the multi-module cloud application,
achieving a flexible deployment context that fully adapts the deployment and
execution of the application. However, this is a complex task, since the cloud plat-
forms are being conducted in an isolated way by presenting many interoperability

? Work partially supported by projects TIN2012-35669, funded by Spanish Ministry
MINECO, FEDER; P11-TIC-7659 funded by Andalusian Gov; FP7-610531 SeaClouds
funded by EU; and Univ. Málaga, Campus Excelencia Int. Andalućıa Tech.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62901467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and portability restrictions and offering similar resources in a different manner.
Each provider defines its own API to the exposed services, its non-functional
requirements, QoS, add-ons and so on. As a result, cloud developers are often
locked in a specific set of services from a concrete cloud environment. Thus, it
is complicated to integrate heterogeneous provider services to achieve a multi-
deployment of a cloud application [2]. Currently, several organizations propose
different approaches to mitigate these issues through the homogenization and
normalization of the cloud application descriptions and management. Specifically,
there exist two OASIS standards which pretend to solve some of the problems
related with portability, automated deployment, interoperability and manage-
ment of cloud applications: TOSCA (Topology and Orchestration Specification
for Cloud Applications) [3] and CAMP (Cloud Application Management for
Platforms) [4]. Both standards specify a particular methodology to describe and
wrap the cloud application structure (components and relationships), and how
they must be orchestrated (by means of a plan) in a portable way to increase a
vendor-neutral ecosystem. Moreover, they describe the mechanisms which must
be implemented by the clouds to support standard-based application deployment
and management. Nevertheless, the standard efforts do not focus on getting
an heterogeneous multi-cloud solution, so distributing a complex application
over multiple cloud service providers is still a challenging task [5]. TOSCA and
CAMP are emergent standards and they do not have official implementations yet.
We can consider available approaches that support a large set of characteristics
defined by these standards, i.e., OpenTOSCA Environment [6] (for TOSCA) and
Brooklyn [7] (for CAMP).

However, these approaches have some disadvantages. On the one hand, al-
though TOSCA is a good option to represent the application topology and the
orchestration, the management of a possible TOSCA-compliant deployment (for
example, using OpenTOSCA) would be a complex task, since the topology and
the orchestration plan should be modified when some module of the application is
migrated to a different target provider. On the other hand, although the CAMP-
compliant solutions are not mainly focused on obtaining a multi-deployment, they
present an appropriate set of properties to obtain this goal following a unified API
which wraps the interface of the cloud providers (for example, Brooklyn which
uses jClouds [8]). Nevertheless, CAMP lacks of a topology specification, which is
crucial to maintain application model in case of monitoring and reconfiguration
actions need to be performed over the distribution of the application. In this
ongoing work, we discuss our proposal for combining the advantages of both
TOSCA and CAMP specifications and their respective approaches. The main
contributions of our idea are: (i) to define a flexible methodology to perform
heterogeneous deployment of multi-cloud applications, (ii) to analyse the archi-
tectural and technical concepts needed to combine both TOSCA and CAMP
specifications, (iii) to address vendor lock-in and portability issues, and (iv) to
comply with (and contribute to) major standards for cloud interoperability.

The rest of this paper is structured as follows. Section 2 exposes the motivation
and challenges of our approach. In Section 3, we present our proposal based on



the combination of TOSCA- and CAMP-compliant solutions to provide a flexible
multi-cloud deployment. In Section 4, we briefly discuss the advantages of our
work with respect to current cloud initiatives, and we present some future work.

2 Motivation and Challenges
In this section, we motivate our proposal presenting the challenges to be tackle
to deploy cloud applications over heterogenous cloud providers.

2.1 Motivating Example

To illustrate our work, we introduce an example related to an Online Retailing
Application, composed of four modules: a main Webpage to access the application,
two databases (one for the users and another one for the products’ stock), and a
payment module.

This application could be deployed as a whole on a provider in IaaS or PaaS
level, Google(https://cloud.google.com), Amazon (http://aws.amazon.com),
HP Cloud (http://www.hpcloud.com), etc. These Cloud providers offer a range
of different technologies each appropriate for particular types of applications.
So, users can access computing resources in a dynamic, flexible and scalable
manner to deploy the mentioned cloud-based application, where each computing
resources has its own capabilities, constraints, life cycle and specification (e.g.
pricing policies, Service Level Agreement (SLAs)). Also, the modules of the
application possess own features and requirement. In this sense, it would be
interesting to develop a methodology capable of selecting the provider services
whose specification fit with the application’s requirements and features in order
to compose the best heterogeneous deployment context for the distribution of
the modules. A large number of companies are trying to simplify the speed and
adoption of their products and services to the cloud. The main issue is the lack
of interoperability among different vendor approaches, which complicate the
deployment over several providers simultaneously.

2.2 Challenges

To perform the multi-deployment, our approach addresses these main challenges:

– Topology specification. An application is composed by several modules
and relationships, which is essential to maintain the knowledge about the
application structure, dependencies among modules and how they are related.
We pretend to specify the topology and distribution using a TOSCA-compliant
methodology, which allows the maintenance of the application model if some
redistribution is required.

– Unified interface of cloud providers. Currently, the application devel-
opers need to know the interface of the final cloud providers where their
applications will be deployed. Our approach proposes to solve this neces-
sity by unifying the features of the heterogeneous platforms by means of a
CAMP-compliant approach.

– Interoperability and portability issues. In an heterogeneous distribution
context, interoperability and portability problems occur. Using our proposal
based on the unified interface, the deployment will be in charge of solving

https://cloud.google.com
http://aws.amazon.com
http://www.hpcloud.com


these issues related to the heterogeneity of cloud providers, managing the
services needed by the application’s modules in an homogeneous manner.

– Scalability and elasticity resources. Our deployment process allows the
users to consider the scalability and elasticity advantages of cloud provider
in order to the best deployment scenario.

3 Proposal in a Nutshell
We present our proposal for the TOSCA- and CAMP-compliant multi-cloud
deployment.

3.1 Heterogeneous deployment using TOSCA and CAMP

As shown in Figure 1, our methodology consists of two phases well-defined. Ini-
tially, in the first step, we propose to specify the full application topology using
TOSCA methodology through the OpenTOSCA environment, specifically the
Winery tool (TOSCA-compliant), which allows the description of the applications
structure in an exhaustive and user-friendly graphic way. Moreover, we also
propose to enrich the TOSCA specification by including information about the
final providers where each component of the application will be deployed, with
the purpose of facilitating the orchestration according to the expected multi-cloud
distribution. In the second step, the application will be distributed over the target
clouds through the deployment mechanisms used by Brooklyn (CAMP-compliant).
In order to solve the connection between both specification, we propose a trans-
formation methodology to adapt the TOSCA-compliant specification defined to
the CAMP-compliant specification expected by Brooklyn.

Fig. 1: Overview of our TOSCA- and CAMP-compliant multi-deployment.

3.2 Phase 1: Topology description and orchestration
TOSCA allows the specification of a detailed application topology using an
XML-based file. We use TOSCA to obtain a full description of the applica-
tion modeling its components (application’s modules) and dependencies. Then,
TOSCA description is composed by several components which present types,
properties, requirements, capabilities, and relationships among them. Thus, modi-
fying, deleting or adding some components could provoke an error-prone task due
to the need of maintaining the consistency of the initial topology description. In
order to solve this problem, we propose to use the Winery tool [9], developed by



the OpenTOSCA Team. This tool allows the representation of the application’s
modules through forms and the composition of the topology in a graphical way
by means of the drag-and-drop technique. In Figure 2 is presented the topology
for our running example using Winery.

Fig. 2: TOSCA topology for the Online Retailing Application using Winery.
Although we have mentioned the TOSCA expressiveness, this standard does

not define in the topology any property to specify the target provider to de-
ploy the application’s modules. Instead, it defines an orchestration plan and the
implementation artifacts to specify the deployment operations. However, this
information does not appear into the topology description, so we need a methodol-
ogy which allows the clear specification of the final providers. Also, currently, the
definition and maintenance of an orchestration plan is a complex and error-prone
task.The plans have to fully define each necessary step to deploy and configure the
application taking into account all properties and requirements of the providers.
Morever, if the target cloud changes, the definition of the mentioned steps must
also change in order to reference to the services exposed by the new selected
cloud. Therefore, we propose an extension of the TOSCA topology to allow the
inclusion of the final providers which are needed to perform the multi-deployment
orchestration. In the following text we can see as the NodeTemplate defines a
new item to define the location where the node (representing the application’s
module) has to be deployed. To exemplify this extension, the next text models
the UserDBWebApp by specifying the cloud provider ‘AWS’ as location.

1 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
2 ...
3 <Properties>
4 XML fragment
5 </Properties>
6 <location provider= "xs:string">
7 ...
8 </NodeTemplate>

1 <NodeTemplate id="UserDBWebApp" name="User Web App"
2 type="ns3:UserDBWebApplication">
3 <Properties>
4 <ns3:UserDBWebApplicationProperties
5 ...



6 </ns3:UserDBWebApplicationProperties>
7 </Properties>
8 <location>aws-ec2:us-west-2</location>
9 </NodeTemplate>

Note that the location denition could be modeled like a property in the Node
Templates. This could be very usefull to avoid a large negotation of the consortium
to approve the standard extension and the providers could feel free to support
this feature implementing the necessary mechanisms in their platforms. However,
although the mentioned approach has several advantages, our goal goes beyond,
by defining an extension of the standard to ensure the performance of the
multi-deployment and allow the correct denition of the used providers.

3.3 Phase 2: Transformation model and deployment

The second phase of our proposal is in charge of distributing the application’s
modules over the different target providers. To tackle these issues, we build
this process using a CAMP-compliant environment to take advantage of the
homogeneity features aimed by the standard. Then, we use Brooklyn, which (in
the latest releases) allows the description of a YAML-based multi-deployment plan.
We have defined the topology using TOSCA in the first phase, since CAMP lacks
of a topology specification. Therefore, we need to unify the TOSCA-compliant
topology definition and the CAMP-compliant deployment mechanism. We propose
a model transformation to obtain a Brooklyn YAML plan from TOSCA topology
description, by means of two possible transformation processes. The first one
is based on an agnostic graph, as depicted in Figure 3. Taking advantage of
TOSCA topology definition (similar to a graph structure) we can generate an
intermediate graph containing all the details of the application’s modules and their
relationships. From this agnostic graph we can generate the final (orchestration)
plan deployment expected by several technologies, e.g., the CAMP-compliant used
in this work, Brooklyn. This task is performed following a set of transformation
patterns from the TOSCA-compliant to CAMP-compliant elements (see Table 1).
The second proposal is based in meta-model transformations to expose a formal
methodology, as shown in Figure 4. In this context, it is necessary to define the
meta-model of TOSCA-extended and the Brooklyn plan, together with the ATL
rules required to transform a concrete (topology) TOSCA model into a Brooklyn
YAML concrete plan.

4 Discussion and Conclusions
In this section, we mention some projects, initiatives and standards in the
same scope of our proposal, with the intention of briefly discussing about the
contributions of our approach, and finally, we present the future work.

There are several initiatives and standards that target services deployed on
the cloud using different approaches, with the consequence that software de-
velopers need to either use special APIs or programming models to code their
applications, or to model them using project-specific domain languages. The
Broker@Cloud project (http://www.broker-cloud.eu/) aims at helping enter-
prises to move to the cloud while enforcing quality control on the developed

http://www.broker-cloud.eu/


Table 1: Transformation pattern between TOSCA and Brooklyn (CAMP)

TOSCA YAML CAMP

JBoss brooklyn.entity.webapp.jboss.JBoss7Server
Apache Tomcat brooklyn.entity.webapp.tomcat.TomcatServer
Jetty Server brooklyn.entity.webapp.jetty.Jetty6Server
MongoDB Server brooklyn.entity.nosql.mongodb.MongoDB
Cassandra Data Base brooklyn.entity.nosql.cassandra.CassandraNode
MySQL Data Base brooklyn.entity.database.mysql.MySqlNode
Postgre brooklyn.entity.database.postgresql.PostgreSqlNode
Cluster brooklyn.entity.webapp.ControlledDynamicWebAppCluster

Fig. 3: Abstraction of the TOSCA topology us-
ing an agnostic graph.

Fig. 4: Meta-model transformation be-
tween TOSCA and Brooklyn.

services. The PaaSage project (http://www.paasage.eu/) also intends to match
application requirements against platform characteristics and make deployment
recommendations and dynamic mapping of components to the platform(s) se-
lected. The aim of the Cloud4SOA project (http://www.cloud4soa.eu/) is to
solve the semantic interoperability issues that exist in current cloud platforms and
infrastructures. The mOSAIC project (http://www.mosaic-cloud.eu/) allows
applications can be deployed on different IaaS using a sort of mOSAIC virtual
machine. The REMICS project (http://www.remics.eu/) focuses its work on
developing advanced model-driven methodology and tools for the reuse and
migration of legacy applications to interoperable Cloud services. Cloud standardi-
sation is one of the most active lines in Cloud research. Relevant associations like
IEEE or OASIS are working on standards in order to tackle the interoperability
and portability between Cloud platforms. The Guide for Cloud Portability and
Interoperability Profiles is among the active IEEE projects. TOSCA and CAMP
are two OASIS standard concentrating efforts in reducing the deployment and
management of cloud applications. These and other Cloud standards, such as
DMTF Cloud Infraestructure Management Interface, can be found in the Cloud
Standards Wiki (http://cloud-standards.org/). In the scope of commercial
solutions, we can find some new platforms and open source initiatives that are
working on providing flexibility to users allowing the IaaS selection, and in
some cases the migration over some specific PaaSes, such as the Cloud Foundry

http://www.paasage.eu/
http://www.cloud4soa.eu/
http://www.mosaic-cloud.eu/
http://www.remics.eu/
http://cloud-standards.org/


Core (http://core.cloudfoundry.org/), which defines a baseline of common
capabilities to promote Cloud portability across instances of Cloud Foundry.

A distinguish aspect of our approach is that we propose a flexible multi-cloud
deployment and management via orchestration and therefore it does not require
code modifications to existing services. Thus, we base on the two OASIS stan-
dards TOSCA and CAMP to represent the application topology and orchestrate
the distribution, and to deploy the modules of the application in multiple and
heterogeneous platforms, respectively. Indeed, TOSCA provides a powerful mod-
elling language to describe the structure of an application as a typed topology
graph, in a portable and vendor-agnostic way. Also, the use of TOSCA topology
templates (and of TOSCA node types) to represent an application topology
simplifies its management and fosters the reusability of cloud services. Moreover,
CAMP offers a unification in the interfaces of the cloud platforms which allows
the management of heterogeneous providers’s features in an homogeneous way.

Currently, we are formalising the two proposed model transformation options
presented in Section 3: (i) Abstraction of the TOSCA topology using an agnostic
graph, and (ii) Meta-model transformation schema between TOSCA-extended
and Brooklyn specifications. We also pretend to develop both processes, in
order to perform real deployment and management of several complex cloud
applications. As regards future work, we plan to analyse the orchestration plan
specified in the TOSCA specification (currently there is some research efforts
proposing a TOSCA YAML), with the intention of extending our proposal by
using this methodology and performing the necessary transformation between the
TOSCA YAML and the CAMP YAML, which in principle is out of the objectives
of our initial attempt to solve the multi-cloud deployment. Also, some monitoring
and reconfiguration mechanisms will be studied in order to address the possible
migrations of some application’s module when it is needed.

References

1. P. Mell, T. Grance: The NIST definition of cloud computing. NIST, http://csrc.
nist.gov/publications/nistpubs/800-145/SP800-145.pdf (2011)

2. D. Petcu, G. Macariu, S. Panica, and C. Craciun: Portable Cloud applications: From
theory to practice. Future Generation Computer Systems 29 (2013) 1417–1430

3. OASIS: TOSCA 1.0 (Topology and Orchestration Spec for Cloud Applications),
V1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (2012)

4. OASIS: CAMP 1.0 (Cloud Application Management for Platforms), V1.0. http:

//docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/ (2012)
5. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications

to the cloud: an approach based on application model enrichment. International
Journal of Cooperative Information Systems 20 (2011) 307–356

6. IAAS: OpenTOSCA. http://www.opentosca.org (2012)
7. CloudSoft: Brooklyn project. http://brooklyncentral.github.io/ (2012)
8. Apache: jClouds Project page. http://jclouds.apache.org/ (2014)
9. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery–a modeling tool for

tosca-based cloud applications. In: Service-Oriented Computing. Springer (2013)
700–704

http://core.cloudfoundry.org/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
http://www.opentosca.org
http://brooklyncentral.github.io/
http://jclouds.apache.org/

	Towards a flexible deployment of multi-cloud applications based on TOSCA and CAMP
	Authors

