

Influence of meteorological parameters on gamma radionuclides and major-ions of bulk deposition in Málaga (South of Spain) ¹C. DUEÑAS, ¹M.C. FERNÁNDEZ,¹E. GORDO, ²E. LIGER, ¹S. CAÑETE and ³M. PÉREZ

¹Department of Applied Physics I, Faculty of Sciences. ²Department of Applied Physics II, Faculty of Computer Engineering. ³Deparment of Radiology and Health Physics, Ophthalmology and OTL, Faculty of Medicine. **University of Málaga (SPAIN)**

INTRODUCTION. Gamma radionuclides and major-ion concentrations in bulk deposition samples were monthly measured in bulk deposition over a seven year period (January 2005- December 2013). Bulk deposition was dominated by Ca²⁺, Cl⁻, SO₄²⁻ and Na⁺ and the average pH was 6.4. Cl⁻ and SO₄²⁻ were the main anions while Ca²⁺ and Na⁺ were the main cations. The radiotracers present in all samples were ⁷Be, ²¹⁰Pb and ⁴⁰K appeared in 50% of the samples. The temporal variations of major-ions and radionuclides exhibit similar seasonal behaviour with low values in winter-autumn months and maximum values in spring-summer months. Furthermore, correlation analysis and principal component analysis method were also performed on individual bulk deposition to identify possible common sources of the major-ions and gamma radionuclides. The meteorological parameters that best correlated with gamma radionuclides and major ions in bulk deposition were number of intrusions and the amount of precipitation.

MATERIAL AND METHODS. Samples were routinely collected on a monthly basis using a steel tray $1m^2$ in area as a collecting system and polyethylene vessels of 25L capacity for rainwater samples reservoirs. Measurements by gamma spectrometry were performed to determine the ⁷Be , ²¹⁰Pb and ⁴⁰K activities of the samples using an intrinsic REGe detector. The samples were divided in two parts: (i) 50 mL were acidified with 0.3% HNO₃ and stored at 4°C for further Ca²⁺ Na⁺, Mg²⁺ and K⁺ analyses, which were carried out with ICP-OES (Optima, 7300-DV) (ii) 10 mL were stored at 4°C and anions NO₃⁻, SO₄⁻ and Cl⁻ were done in accordance with Dionex ICS-90 ion chromatography System .

RESULTS AND DISCUSSION

The results from specific activities (in Bq/L) of ⁷Be , ²¹⁰Pb and ⁴⁰K and major-ions in (µeq /L) were analyzed to derive the statistical estimates characterizing the distributions. *Table 1* and 2 provide: Number of cases (N), arithmetic mean (AM), geometric mean (GM), standard deviation (SD), standard error, maximum and minimum values, the coefficient of variation (CV) and Skewness(GI).

	7	210	7	40
	(Bq L	(Bq L		(Bq L
N of cases	107	107	107	47
Arit. Mean	2.6	0.41	7.3	0.23
Geo. Mean	2.2	0.36	6.0	0.18
Maximum	8.3	1.32	35.95	0.84
Minimum	0.6	0.05	1.3	0.02
Std. deviation	1.7	0.23	5.3	0.16
Std. error	0.17	0.02	0.5	0.023
Variation coeff.	64 %	55%	72.4	69 %
Skewness(GI)	4.9	5.8	11,4	4,8

Geo. mean	3.16E+02	1.54E+02	78.8E+01	1.46E+01	1.33E+02	8.40E+01	2.03E+02	6.3
Maximum	1.8E+03	7.01E+02	5.21E+02	1.68E+01	1.85E+03	5.50E+03	2.60E+03	8.7
Minimum	5.30E+01	2.70E+01	4.23E+01	1.28E+00	1.60E+01	2.20E+00	1.03E+01	4.5
Std deviation	3.70E+02	1.54E+02	8.97E+01	3.60E+01	2.99E+02	1.27E+02	3.93E+02	1.3
Variation C.	83.0%	75.0%	82.5%	123.0%	129.0%	92.0%	114.8%	18%
Skewness(GI)	4.96	4.74	6.57	6.30	10.4	4.10	9.5	0.23
Kurtosis	3.3	2.90	10.5	6.60	23.3	1.64	28.5	1.24

TABLE 2. The ion concentrations show higher dispersions around their mean values according to the standard deviations. Skewness calculations give positive values that indicate an asymmetric shape of the data distribution. The kurtosis values range from 0.63 to 13.64 indicate significant departures from normality.

Fig.2. Monthly variations of major-ions during the nine years period .

		CONTRACTOR CONTRACTOR CONTRACTOR		
	1	2	3	4
Ca	0.622	0.576	0.357	-0.141
Na	0.827	0.112	0.304	0.160
Mg	0.551	0.422	0.479	-0.004
K	0.092	0.089	-0.042	0.854
SO	0.881	0.100	0.085	-0.065
NO	0.773	0.436	0.155	0.038
Cl	0.903	0.111	-0.037	-0.024
Rainfall	-0.324	-0.696	0.158	0.063
Intrusions	0.420	0.516	0.398	-0.351
Humidity	-0.158	-0.840	0.031	-0.146
Temperature	0.397	0.660	0.097	-0.415
Wind	-0.069	0.609	0.165	0.346
7	0.028	-0.324	0.845	-0.070
210	0.263	0.329	0.713	0.029%
% Variance	44.870	12.491	9.149	8.382
% Cumulative	44.870	57.362	66.511	74.893

Figure 1.- Monthly variations of gamma radionuclides (⁷Be, ²¹⁰Pb and ⁴⁰K) concentrations in bulk deposition (Bq/^L) from January 2005 to December 2013. The lowest values were observed in autumn and winter and the highest values in spring and summer .

Table 3. Factor loadings matrix obtained from bulk deposition samples at our coastal site.

Conclusions. Principal component analysis was also performed to find possible sources of the major ions and gamma radionuclides. Four components that account 75% of the total variance were extracted. The first one represented acid and alkaline pollutants in bulk deposition. The second one may be linked to ion Ca^{2+} and meteorological parameters. The third one suggested the correlation between the gamma radionuclides in bulk deposition. The fourth one included potassium ion (K⁺), air temperature, intrusions and wind.

ACKNOWLEDGMENT

The authors wish to thank to Spanish Nuclear Safety Council (CSN) for financial support and to the Spanish Meteorological Agency (AEMET), for the provision of data used in this study.