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1. Introduction 

This paper deals with the equilibrium existence in infinite horizon economies with 

a finite number oí agents and incomplete markets. It is in the line oí a recent literature 

beginning with Levine (1989) and going mainly through the successive versions oípapers by 

Hernandez and Santos (1991), Magill and Quinzii [(1994), first circulated in 1992], Levine 

and Zame (1992), Santos and Woodíord [(1993), previous version in 1992], Hernandez and 

Santos (1994). 

As is now very well known, in an incomplete market model that extends over an in­

finite time horizon, the first problem to solve is to define the individual budget sets so as 

to rule out Ponzi schemes while preserving incompleteness oí markets. Several suggestions 

have been made that provide not less than seven alternative definitions oí equilibrium. 

The different definitions share the property oí generalizing the usual one íor finite horizon 

economies with incomplete markets. The crucial difference between them is in the con­

dition which, added to the spot budget constraints, prevents the agents írom rolling over 

indefinitely their debts. 

A first type oí conditions limits explicitely or implicitely the possible amount oí debt 

hold in each date-event at the beginning oí the period (debt constraints) or at the end 

oí the period (borrowing limits). Such explicit restrictions may be personalized. Then, 

as asset prices, commodity prices, consumption plans and portíolio plans, the systems oí 

debt constraints or borrowing limits are components oí the equilibrium. But the explicit 

restrictions may also be endogenous, in the spirit oí what results írom an institutional debt 

regulation. This is the case íor the finitely effective debt constraints that prescribe in each 

node an almost finite-time debt-repayment. 

A second type oí conditions is more controversial. In a kind oí solvency requirement, 

adapted írom Hernandez and Santos (1991), the agents can be restricted not to hold debt 

in excess oí the present value oí their íuture savings or alternatively the agents cannot 

hold debt in the limito Present values are computed with respect to node prices that are 

not uniquely determined in the case oí incomplete markets and can differ among agents. 

This leads to a notion oí equilibrium with present value node prices where the node prices 

are components oí the equilibrium. An alternative condition, due to Magill and Quinzii 

(1994), requires an asymptotic evolution oí the present value oí net indebtedness oí the 

agents in each subtree oí the event-tree defining the stochastic structure oí the model. This 

condition, in the spirit oí the subgame perfection, leads to the MQ-equilibrium defined in 

this paper ; it also uses personalized node prices. 
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As we will see later, if the individual present value price is summable, each budget set 

with node prices coincides with one budget set with debt constraints. However, in general, 

the budget sets involved in different equilibrium definitions do not coincide. We will state 

in this paper several inclusions, some of them are strict. Hemandez and Santos (1994) 

establish that a budget set with debt constraints which is of interest, the finitely effective 

budget set, is the intersection of all budget sets relative to some admissible system of node 

prices and also the intersection of all associated Arrow-Debreu budget sets. In view of 

inclusions which will be proved in this paper, the finitely effective budget set coincides also 

with the intersection of aH M-Q budget sets and with the intersection of all budget sets 

with loose and consistent debt constraints. But, generally, it strict1y contains the budget 

sets associated with bounded debt constraints or with implicit borrowing limits. 

Our first result is an equilibrium existence result for what appears to be a weak 

equilibrium concept : an equilibrium with household specific loose and consistent debt 

constraints. ActuaHy, as Hernandez and Santos (1991), we restrict ourselves to the case 

of nominal assets that expire after one periodo In this context, we generalize a result 

that is well known for finite horizon economies with purely nominal assets and prove that 

. any asset price process that prevents arbitrage can be embedded in an equilibrium of 

the infinite horizon economy. Obviously, the existence of equilibrium for the case of one­

period numeraire assets foHows. ClassicaHy, in the proof of this result, we construct our 

;'equilibrium as the limit for convenient topologies of each component of some particular 

.' equilibrium of the truncated economies which are finite horizon economies with incomplete 

markets. 

Then, comparing the different approaches, our main result is the equivalence, under 

appropriate assumptions, of six apparently quite distinct notions of equilibrium which 

give in fact the same equilibrium allocations and prices. Added to the first theorem, the 

equivalence theorem establishes equilibrium existence results comparable with the ones of 

Magill and Quinzii (1994), Levine and Zame (1992), Hernandez and Santos (1994) for the 

case of one-period numeraire assets. Its main interest seems to lie in the fact that it justifies 

the controversial node price approach. Indeed, at equilibrium, as proved by Hemandez and 

Santos (1994), the agents are constrained by aH aclmissible systems ofnode prices but each 

agent uses a particular system of node prices to solve its optimization problem. With 

incomplete markets, without more assumptions, the particular systems of node prices rnay 

not coincide. Under special assumptions, Hernandez and Santos (1991) stated that the 

agents may agree about the choice of any same system of node prices. 

The paper is organized as follows. In the next section, we present more precisely 
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the model and we discuss different notions of equilibrium. In section 3, we state our 

existence result of equilibrium with debt constraints. In section 4, we compare the different 

definitions of equilibrium. Finally, sorne proofs are postponed in an appendix. 

2. The model and the definitions of equilibrium 

2.1. The model 

We consider an exchange economy with countably many periods t E {O, 1, ...}, and a 

finite number m of infinite-lived agents. The stochastic structure of the model is described 

by an infinite event-tree S, with a unique initial node denoted by Oat date Oand a finite 

branching number at each node of the tree. For every t, St denotes the set of nodes 

occuring at date t and st the set of nodes occuring before or during time period t. For 

any node s E St, s+ denotes the (finite) set of immediate successors of s at date (t + 1); 

the number of elements of s+ is denoted by b(s) and is called the branching number of the 

event-tree S at node s. If s E St, t > O, s- denotes the (unique) node that immediately 

precedes s at date (t - 1). We will also use the notation S+ (s) for the set of successors of 

.s and S( s) will denote the subtree starting at s. In particular, we have S( s) = S+ (s) U {s} 

and S = SeO). 

At every node in the event-tree S described aboye, a finite number L of commodities 

are available and 'consumers trade commodities on spot markets. As in Bewley (1972), we 

take the commodity space to be Roc ( S xL). Each consumer is classically described by a 

consumption set Xi e Roc(S xL), a preference relation ~i on Xi and a state-dependent 

initial endowment w i E Xi. On the other hand, at every node s, agents participate in a 

financial market. We assume that the set Js of financial instruments available at s is finite 

and that the only available financial assets are purely financial, one-period securities. Let 

ri (u) be the return in units of account that asset j E Js promises to pay at u E s+ and 

r(u) = (ri(u))iEJ,. The matrix of returns (b(s) rows, Js columns) Rs = (ri(u))uEs+, iEJ, 

describes the financial structure at s and R = II Rs denotes the financial structure of the 
sES 

economy. Finally, the economy is summarized by the list of data 

e= (S,R,(Xi,~i,wi)~l)' 

V\Te will make on e the fol1owing assumptions: 

For each agent i, 

el - Xi = Rt,(S xL). 
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C9 - ~i is a complete, convex, monotone, Mackey contin'Uo'Us preorder, s'Uch that for 

every'x E [0, 1[ and every x,i }-i xi one has 'xx i+(l-'x)x'i }-i xi. The preorder is monotone 

in the sense that for each xi E Xi and for each y E .et,(S xL), one has xi + y ~i xi. 

Convexity and Mackey continuity mean that for aH xi E Xi, the set {xi E Xilx i ~i xi} 
is convex and dosed in the Mackey topology r(.eoo(S x L),.e1(S xL)) (hence dosed in the 

weak topology o"(.eoo(S x L),t1(S xL))) and the set {xi E Xilx i }-i xi} is open in the 

.same Mackey topology. 

.04 - For all s, 18 is extremely desirable for agent i in the sense that for each xi E Xi and 

for each node s, one has xi +18 }-i xi. Obviou.sly, 18 is the direction defined by la(s',.e) = O 

if s' f. s, 18 (s,.e) = 1, for all.e =1, ... , L. 

Before introducing the next assumption, we will give some notations. We will denote 

by F, the set {xi E tt,(S x L)I Ilxilloo ~ 2112::'1 will oo }. We emphasize that this set 

contains aH feasible allocations. If D e S, we will also use the notation XD for the 

characteristic function of Di so if a i is a process on S, the element aiXD is defined by 

",This notation will be used for both the consumption and the portfolio plans. 

cs - There exist~ ¡3 E [0,1[ such that for each agent i, for every node s and for all 

xi E F, 
i i

X XS\S+(8) + 18 + ¡3X XS+(8) }-i xi. 

We will also assume that the financial markets verify: 

F - In each node s, there exists a non-risky asset j E J8 (i.e. ri(O") > O for each node 

O" E s+ J. There is no restrietion on the space of portfolios. At node s, it is equal to the 

whole space IR/·. 

On the consumption side, our assumptions are standard. As Bewley (1972), Magill 

and Quinzii (1994), Levine and Zame (1992), we restrict the consumers to positive bounded 

consumptions plans. Assumption C2 implies the assumption of commensurability made by 

Levine and Zame (1992). Together with C4, Assumption C3 implies that for each xi E Xi 

and for each y E ft,(S x L) satisfying y(s,f) f. O for some node s and every commodity 
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f.., one has xi + y ~i xi. This assumption of monotonicity is weaker than the strong 

monotonicity: for each xi E Xi and for each y E lt,(S x L) \ {O}, one has xi + y ~i xi. 

Continuity in the Mackey topology T(loo(S X L),l¡(S xL)) is the natural extension of 

the similar assumption made by Bewley (1972) to the case of an economy with time and 

uncertainty; it expresses the idea of the impatience of the agents. For a discussion of this 

assumption, see Bewley (1972), Brown and Lewis (1981), Mas-Colell and Zame (1991). 

The assumption C5 is a condition of unifonn impatience of the agents with respect 

to future consumption at each node. Similar assumptions can be found in Santos and 

Woodford (1993), Levine and Zame (1992), Hernandez and Santos (1994). C5 is satisfied 

if the preferences of agent i are represented by an additively separable utility function : 

ui(xi) = L p(s )<5:(s)vi(x i(s)) 
sES 

where p defines a probability on each ST, <5i E]O, 1[ is a discount factor and vi is a continu­

ous, increasing concave function on JR~ satisfying vi(O) = O. The assumption C5 reinforces 

the assumptions C3 and C4. Indeed, one has the following lemma : 

Lemma 1. [Magill and Quinzii (1994)} Under the assumptions C3 and C4, for every node� 

s, there exists f3s E [O, 1[ such that for each agent i, for all xi E P,� 

XiXS\S+(s) + l s + f3s xi XS+(s) ~i xi.� 

As to the financial strueture of the economy, the existence of an asset with positive 

returns is a classical assumption in an infinite horizon setting; it implies that the economy 

is ~'financially" connected enough. The second part of the assumption F emphasizes that 

there is no restriction on short-selling. 

2.2. Equilibrium with debt constraints 

At every s, the consumers face a commodity price p(s) E JRL (in view of the above 

assumptions, we can assume that p(s) E JR~) and an ass,et price q(s) E JR J•• Their 

financial constraint at s is detennined by the value at p(s) of their initial endowment and 

if s =1- O by the return paid by their preceding portfolio. Let zj( s) denote the number 

of units of the jth security purchased by i at s (if z}(s) > O) or sold (if zj(s) < O) and 

zi(s) = (zj(S))jEJ•. At node s, (xi(s),zi(s)) is the ith agent's consumption and portfolio 

vector at node s and xi = (xi(s))SES' zi = (zi(s))sES are the consumption and portfolio 

plans of í. 

If an asset price process q = (q(s))sES is to be embedded in an equilibrium price 

process (p,q) = (p(s),q(s))SES' it must preclude arbitrage. For every node s, let us 
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denote by ~lI the linear application lR,J· --+ IRb(s)+1 defined by ~sCz(s)) = ( -~:s)) z(s). 

The asset price q(s) is said arbitrage-free if there does not exist z(s) E IR}' such that 

~s(z(s)) > O. The asset price process q is said arbitrage-free iffor every s, q(s) is arbitrage 

free. The no-arbitrage condition has several consequences. The following result should be 

kept in núndj its easy proof will be given in the appendix. 

Lemma 2. 11 q is arbitrage-free, lor every node s, lor any vector Cmin E IRb(lI)+l, the set 

r = {<p E IRb(s)+I I <p E 1m~s and <p 2:: Cmin} is compacto 

However in an infinite horizon, taking a market system of commodity and asset price 

processes (p,q) as given, we cannot define the budget set of agent i as the set Bi(p,q) = 

As in the example given by Hernandez and Santos (1991), even if q is arbitrage-free, the· 

existence of Ponzi schemes prec1udes the existence of any optimal point in this kind of 

. seto So the literature has developed several additional constraints in order to prevent the 

consumers from rolling over their debts indefinitely. 

One of them is the notion of debt constraint introduced by Levine and Zame (1992) 

that limits in each node the amount of debts held by the agents at the beginning of the 

periodo 

Fonnally, a system 01 debt constraints for the agent i is a function Di : S --+] - 00, O]. 
The portfolio zi(s) E IR}' satisfies the debt constraint Di at (J E s+, if r( (J), zi(s) 2:: Di((J). 

If we assume for convenience that zi(O-) def 0, the debt constraint in node °will always 

be satisfied and the budget set Bi(p, q, Di) is now defined as follows : 

From this definition, it is evident that -Di(s) denotes the maximum amount of debt that 

i is allowed to hold at each s. 

Equivalently, it is possible to define as Santos and Woodford (1993), for each agent i, 

a system 01 borrowing limits Mi : S --+] - 00,0]. The portfolio zi(s) E IR}' satisfies the 

borrowing constraint Mi at s if q(s)· zi(s) 2:: Mi(s) and the budget set Bi(p,q,Mi) is 

6 



defined by : 

If we associate with a system of borrowing limits Mi the system of debt constraints : 

Di(s) = Mi(s) - pes) . wi(s), then Bi(p,q,Mi) e Bi(p,q,Di), which means that the 

borrowing limits are tighter than the associate debt constraints. The previous inclusion 

becomes an e<tuality when the associate debt constraints satisfy looseness, one of the two 

properties w(~ now define. 

Indeed, as Levine and Zame (1992), we will focus our attention on debt constraints 

that satisfy two conditions. The first one is a consistency condition : if the debt today is 

bearable, there exists a portfolio plan zi (s) that leads to a bearable debt in each state of 

tomorrow. At this stage, we have to notice that this notion depends on the commodity 

and asset price process (p, q). 

Deflnition 1. The system of debt constraints Di is (p,q)-consistent at node s if there 
.' J {Di(S) + p(s)· wi(s) - q(s)· zi(s) ~ O, 

exzsts ZI(S) E IR • such that , ,
" andforall(JEs+, r((J).z'(s)~D'((J). 

The system of debt constraints Di is said to be (p,q)-consistent if it is (p,q)-consistent at 

each node. 

The economic interpretation of the definition is explained by the fol1owing remark. 

Remark 1. For a node s #- O, an equivalent formulation of the previous definition is that 

for all zi(s-) E IR J.- such that r(s)· zi(s-) ~ Di(s), there exists a plan (xi(s),zi(s)) E 
p(s) . xi (S) + q(s) . Zi(s) $ p( s) . W i(s) + r (s) . Zi(S- ) 

IRi X IR J• such that , .{ and for all (J E s+, r((J). ZI(S) ~ D'((J). 

In other words, if the agent i arrives at node s with a debt r( s) . Zi(s -) satisfying the 

debt constraint in node s, there exists a consumption/income transfer plan at node s, 

(xi(s),zi(s)), such that zi(s) finances xi(s) and zi(s) satisfies the debt constraint in every 

node(JEs+. 

A very simple example of a (p, q)-consistent system of debt constraints can be found 

in the fol1owing proposition. 

Proposition 1. Let (xi,zi) E Bi(p,q),andfor every s, Di(s) = min(O,r(s).zi(s-)). Then 

Di is a (p, q)-consistent system of debt constraints. 

7 



Proof. First, since for all s, Di(s) ::; O, Di is a system of debt constraints. To prove 

consistency at node s, we will distinguish two cases. 

- If Di(s) = O, the portfolio zi(s) = 0lRJ. clearly satisfies� 
Di(s) + p(s). wi(s) - q(s) ..zi(s) ~~,
 

{� and for all u E s+, r(u). ZI(S) ~ D'(U). 

- If Di(s) < O, it means that Di(s) = r(s)· zi(s-). In this case, we define zi(s) = zi(s) 

and it follows from the spot constraint at node s, that 
Di(s) + pes) .wi(s) - q(s) ·zi(s) ~ O, 

{ and for all u E s+, r(u)· zi(s) ~ Di(u) = min(O,r(u)· zi(s)). O 

The second requirement is a looseness condition. If the debt today, financed by a 

portfolio plan zi (s) leads to a bearable debt in each state of tomorrow, then the debt 

today is bearable. 

Definition 2. The system 01 debt constraints Di is (p, q)-l~ose at node s illor every 

. portlolio zi(s) E IEe·, r(u)· zi(s) ~ Di(u) lor all u E s+ implies that p(s)· wi(s) + Di(s)­
i: q(s). zi(s)::; O 

: The system 01 debt constraints Di is (p, q)-loose il it is (p, q)-loose at every node. 

In particular, if Di is (p, q)-loose at node s then Di(s) ::; -p(s)· wi(s). The economic 

interpretation of Definition 2 is explained by the following remark. 

Remark 2. For a node s =1 O, an equivalent lormulation 01 the previous definition is that 
lor every plan (zi(s-),xi(s),zi(s)) E IR/.- x IR~ x IR]', 
p(s)· xi(s) + q(s). zi(s) ::; p(s)· wi(s) + r(s)· Zi(S-)}. . 

" ::} D'(S)::; r(s)· ZI(S-).
and lor all u E s+, r(u)· ZI(S) ~ D'(U). 

In other words, if the agent i arrives at node s, with a debt res) . zi(s-) and uses a 

consumption/income transfer plan (x i(s), zi( s)) such that zi( s) finances xi(s) and zi(s) 

satisfies the debt constraint in every node u E s+, then the debt r(s). zi(s-) satisfies the 

debt constraint at node s. 

A similar requirement can be found in Santos and Woodford (1993) who define as 

(p, q)-inessential a system of borrowing limits such that the associate system of debt con­

straints is (p, q)-loose. As an analogue of Remark 2, we have : a system of borrowing limits 

is (p, q)-inessential at s if and only if the borrowing constraint at s is satisfied whenever 

the borrowing constraint and the spot budget constraint can be jointly satisfied at every 
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u E s+. Then, as an immediate consequence, any finite number oí borrowing constraints 

may be omitted in the definition oí Bi(p, q, Mi). 

It is worthwhile to remark that ií a debt constraint is identically equal to zero, the 

system is consistent but in general not loose. In view oí a better understanding oí the 

properties oí debt constraints, we recall that the definition oí the budget set Bi(p, q, Di) 

involves both budget constraints and debt constraints. The íol1owing proposition will be 

proved in the appendix. 

Proposition 2. Let Di be a 3Y3tem 01 debt constraints. 11 q is arbitrage-free, 

(i) There exists tJi (p,q)-consistent stLch that Bi(p,q,iJi ) = Bi(p,q,Di ) and Di ~ iJi. 

(ii) Moreover, il Di is (p,q)-loose, then there exists iJi (p, q).loose and consistent StLch 

that Bi(p, q, iJi) = Bi(p, q, Di) and Di ~ iJi. 

The first part oí this proposition was stated by Levine and Zame (1992). The inter­

pretation is that the consistency is to be required since a (p, q)-consistent system oí debt 

constraints appears to be a good representative element in the set oí debt constraints that 

give the same budget seto Looseness (or inessentialness íor borrowing limits) seems to be 

the most stringent requirement lightened by the next two remarks. 

Remark 3. Let Mi be a system 01 borrowing limits. 11 the system 01 debt constraints 

Di, associated with Mi, is (p,q)-loose, then Bi(p,q,Di ) e Bi(p,q,Mi ) e Bi(p,q,Di ). JI 

moreover Di is (p,q)-consistent, then, lor every s, Mi(s) = min{q(s)· zi(s)\r(u). zi(s) ~ 

Di(u) Vu E s+}. 

Beíore Remark 4, let us first introduce a definition borrowed írom Levine and Zame 

(1992). 

Definition 3. Given p and q, the amotLnt d < O can be repaid by conStLmer i in finite time 

Irom node s il there exist zi and T stLch that 

q(s)· zi(s) ~ p(s)· wi(s) + d 

q{(1) . zi{(1) :5 p((1)' wi {(1) + r{(1) . zi{<1-), Y<1 E 5+(8) 
{ 

ZI(U) = Oií t(u) ~ tes) + T. 

Let D}(5, p, q) = inf{d < old can be repaid by constLmer i in finite time from node 5}. 
1110r every s, D}( 5, p, q) > -00, D}(p, q) will be called system 01 finitely effective debt 

constraints. 
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Remark 4. 1f the system of debt constraints Di is (p,q)-loose, then Di(s) ~ D}(s,p,q). 

Indeed, it is easily seen (by induction on T) that if the system of debt constraints Di 

is (p, q)-loose, then for every s, Di(s) ~ d whatever be d < Owhich can be repaid in finite 

time from node s. 

Moreover, iffor every s, D}(s,p, q) > -00, it is easily deduced from the existence of a non­

risky asset that D}(p, q) is (p, q)-loose. If q is arbitrage free, it follows from Proposition 

2 that D}(p, q) is also (p, q)-consistent. Hence when it is defined, the finitely effective 

system of debt constraints appears as the maximum of all possible systems of (p, q)-loose 

and consistent debt constraints. 

Analogously, Santos and Woodford (1993) define M}(s,p,q) (-1rw i(S) in their nota­

tions) as 

q(.O'). zi(O') ~ p(O'). wi(O') + r(O')· zi(O'-) VO' E 5+(s), }
M}(s,p,q) = inf q(s). zi(s){ ZI(O') = Oif t(O') ~ tes) +T for some T. 

Obviously D}(s,p, q) = M}(s,p, q) - p(s) . wi(s) and, in view of Remark 3, if, for every s, 

,M}(s,p,q) > -00, D}(p,q) and M}(p,q) define the same budget set ; moreover, for every 

".s, M}(s,p,q) = min{q(s). zi(s)lr(O'). zi(s) ~ D}(O',p,q) VO' E s+}. 

Final1y, assuming that no production or intertemporal storage is possible and that as­

sets are in zero net supply, it remains to associate equilibrium definitions with the previous 

definitions of budget sets. 

In the first one, adapted from Levine and Zame, the different systems of debt con­

straints are a component of the equilibrium. 

Definitioll 4. An equilibrium with debt constraints of the economy & = ((Xi, ~i,wi)~l' 

5, R) is an element (("xi, zi, Di)~l' (p, q)) satisfying : 

(i) For all i, (xi, zi) is optimal for each agent i in the budget set Ei(p, q, Di); 

(ii) For each i, Di is a (p, q)-loose and consistent system of debt constraints; 
m m 

(iii) Lxi ~ Lwi 
; 

i=l i=l 
m 

(iv) Lzi = O.� 
i=l� 

In the second one, adapted from Santos and Woodford who state the definition but 
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do not consider the equilibrium existence problem, household specific borrowing limits are 

also a component oí the equilibrium. 

Definition 5. An equilibrium with borrowing limits of the economy f = ((Xi, ~i, wi)~l' 

5, R) is o.n element (('xi,:zi, Mi)~l' (p, q)) so.tisfying conditions (iii), (iv) of the previous 

definition o.nd : 

i
(í) For 0.11 i, (xi,:zi) is optimo.lfor eo.ch o.gent i in the budget set Bi(p,q,M ). 

Ií we add the íol1owing requirement : 

(ii) For eo.ch i, Mi is o.n inessentio.l system of borrowing limits 

in view oí Proposition 2 and Remark 3, the equilibrium concepts defined in 4 and 5 become 

equivalent. 

In the third one, given the equilibrium price, the systems oí debt constraints are 

endogenously defined. 

Definition 6. A finitely effective equilibrium of the economy f = ((Xi, ~i, wi)~l' 5, R) is 

an element ((xi, :zi)~l , (p, q)) such that ((xi,:zi, D}(p, q) )~1 , (p, q)) is an equilibrium with 

debt c.onstraints of the economy f . 

.. Definition 6 is borrowed írom Levine and Zame. Given the previous observations and 

Theorem 3.3 in Hernandez and Santos (1994), it is easy to understand that it coincides 

with the equilibrium definition adopted by Hernandez and Santos (1994). 

The two íol1owing definitions, adapted írom Levine and Zame, Magill and Quinzii re­

spectively, replace an explicit definition oí the systems oí debt constraints (resp. borrowing 

limits) at equilibrium by the overal1 constraint that íor each consumer the real value oí 

the debt is uniíorrnly bounded írom below. More precisely, given p and q, let us define : 

Bí(p, q) = {(Xi, zi) E Bi(p, q) I~p(;)~:-) is uniíormly bounded below. } 

and note that B~(p,q) e Bí(p,q)· 

Definition 7. A bounded debt equilibrium (resp. an equilibrium with an implicit bor­

rowing limit) ofthe economy f = ((Xi,~i,wi)~1,5,R) is an element ((xi,:zi)~l,(P,q)) 
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satislying conditions (iii) and (iv) 01 Definition 4 and 

(i) For all i, (Xi, Zi) is optimallor agent i in the budget set Bl(p, q) (resp. B~(p, q)). 

2.3. Equilibriurn with present value node prices 

In the definition oí the individual budget sets, a second approach adapted írom Her­

nandez and Santos (1991) and Magill and Quinzii (1994) is to add to spot budget con­

straints a transversality condition on the debt contracted at each periodo First let us recall 

a classical consequence oí the no-arbitrage condition. For every s, ií q(s) is arbitrage-íree, 

there exists a vector As E .1R~~, As = (As(O'))D'ES+ such that q(s) = ¿D'ES+ As(O')r(O'). 

Here, we will use a more precise statement. 

Lernrna 3. {Schmachtenberg (1989)} and also {Hernandez and Santos (1991)]. 11 q is a 

no-arbitrage asset price process lor R, there exists A = (As)sES in .1R¡+, normalized by 

AO = 1, such that lor all s, we have Asq(s) = ¿D'Es+ AD'r(0'). A is not necessarily unique 

and, in the lollowing, A(q) will denote the collection 01 all such A. 11 A E A(q), As can be 

interpreted as the present value price 01 node S. 

The definition oí the individual budget sets is now based on (individualized) present 

value node prices. Given a market system oí commodity and price processes (p, q) and íor 

each i, a system oí present value node prices Ai = ( A~)) E A(q), we define the budget set 

oí the ith agent by 

L 
s·E ST 

q(s)· zi(s) :::; O 

Then the spot constraints at node s íor s E ST imply that 

L A~p(S)' Xi (s) + L A~q(S)' zi(s):::; L A~p(S)' wi(s). 
sEST SEST sEST 

In particular, ií 7r'i de! (A~p(s))sES E '-1(S xL), with' a slight abuse oí notations, one has 

Bi(p, q, Ai ) e {xi E X i l7r'i • xi :::; 7r'i . wi}. This last set is sometimes called Arrow-Debreu 

budget set oí agent i, íor present value prices 7r'i. 

Moreover the economic meaning oí the asymptotic condition is described by the íol­

lowing remark. 
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Remark 5. {Hernandez and Santos (1991)]. Let 7l"i def (.~~P(s))8ES. 117l"i E fl(S xL), 
the asymptotic condition is equivalent to : lor every s, 

.\~q(s). zi(s) ~ ¿ A~p(O'). (xi(O') - wi(O')) = 7l"i . ((xi - wi )XS+(8)). 
O'ES+(8) 

In other words, ií 7l"i E fl(S x L) then the definition oí the budget set Bi(p, q, Ai) involves 

both spot budget constraints and an infinity oí additional constraints which state that, at 

each node, the amount oí the debt contracted by consumer i should not exceed the present 

value oí bis íuture savings. 

With such a definition oí the individual budget sets, the definition oí equilibrium is 

the íol1owing : 

Definition 8. An equilibrium with present value node prices 01 the economy f = ((Xi, 

~i,wi)~I,S,R) is an element (('xi,zi,Xi)~I,(P,q)) satislying': 

(i) For all i, (xi, zi) is optimallor each agent i in the budget set Bi(p, q, Xi); 

(ii) For each i, Xi E A(q); 
m m 

(iii) Lxi $ Lwi;� 
i=l i=l� 

m 

(iv) ¿zi = o. 
i=l 

In the previous definition, we do not require the present value price 7l"i = (X:p(s ))8ES 

to belong to.e l (S xL) though this condition is an assumption oí Remark 5. In íaet, under 

the additionnal assumption C5, the condition 7l"i E f l (S xL) is useless (cí. Remark 8 in 

Section 4). 

Definition 8, adapted írom Hernandez and Santos (1991), does not actually coincide 

with the definition given by Magill and Quinzii (1994). In their definition oí the individual 

budget sets associated with a market system oí commodity and asset price processes (p, q), 

and íor each i a system oí individualized present value node prices .\i, Magill and Quinzii 

require írom an agent to be neither lender nor borrower at infinity. Moreover in the spirit 

oí the subgame perfeetion, they require this condition on every subtree oí the initial event­

tree. Outside oí equilibrium, it makes sense to prevent every agent írom being borrower 

at infinity but not necessarily lender at infinity. In view oí this remark, we define the 
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i 
i I alternative budget set : 

B).,Q(p,q,Ai 
) = {(X"Z') E B'(p,q) Vs E S }. 

This budget set is related to the previous one by the íollowing remark. 

Remark 6. Bi(p,q,),i) e BkQ(p,q,),i); moreover if1ri del (),~P(s))"ES E f1(S xL), one 

has also BkQ(p, q, ),i) e {xi E X i l1ri . xi ~ 1ri . w i }. 

This definition oí the budget sets leads to the corresponding concept oí equilibrium. 

Definition 9. A MQ-equilibrium with present value node priees of the eeonomy E = ((Xi, 

~i,wi)~l,S,R) is an element ((xi,zi,>:i)~l,(P,q)) satisfying: 

(i) For all i, (xi, zi) is optimal for eaeh agent i in the budget set BkQ(p, q, >:\. 
and eonditions (ii), (iii), (ivJ. of Definition 8. 

3. Existence of equilibria with debt constraints 

In this section, we prove that every asset price process that precludes arbitrage can 

be embedded in an equilibrium with debt constraints oí the economy E. From now and in 

the whole paper, an arbitrage-íree asset price process q will be assumed to be given. 

Theorem 1. Under the assumptions Cl to C4 and F and if q precludes arbitrage, there 

exists an equilibrium with debt eonstraints ((xi,zi,Di)~l,P,q) of the eeonomy E = ((Xi, 

~i, wi)~l' S, R) satisfying p(s) > O, for all s. Jf for every s, M\s) = Di(s) +p(s) .wi ( s), 
((xi, zi, Mi)~l ,p, q) is an equilibrium with borrowing limits of E 

Proof. First let us fix a particular ), E A(q). The main steps oí our prooí are as íollows. If 

T denotes a time horizon, the first step is to obtain a particular general equilibrium with 

incomplete markets oí the T-truncated economy E(T) with the same characteristics as E, 
in which agents are constrained to stop trading at date T. The second step is to construct 

the implicit debt constraints oí this T-truncated economy. The third step consists in 

establishing uniíorm bounds (in T) on the parameters oí equilibria. Thus, it is possible in 

a íourth step to take an appropriate limit oí these parameters. The fifth step is to prove 

that the system oí debt constraints obtained at the limit is loose and consistent, and the 

final step shows that this limit is an equilibrium íor the infinite horizon econorny. 
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Step 1. Let us fue a time horizon T. If pT E IR~T xL is the commodity price process, 

then the budget set of agent i in the truncated economy &(T) is classically defined by 
Bi,T(pT,q) = 

Zi(S) = O for all s rt ST-l } 
xi(s) =wi(s) for all s rt ST 
pT(s). xi(s) +q(s). zi(s) ~ pT(s). wi(s) +r(s). zi(s-) for all s E ST 

Even though the consumption-portfolio process of an agent be defined over the whole 

event-tree, a T-truncated economy is essentially a finite horizon economy with T +1 periods 

since the consumption-portfolio process of an agent is fueed alter date T. As it is classical, 

we wiIl not distinguish the finite dimensional vector pT and its natural embedding in the 

infinite dimensional space JR~XL defined by pT(s) =Oif s rt ST. The context will make it 

clear. 

With a slight abuse of notation, we recall that� 

xi(s) = wi(s) . if s rt ST }� 

Bi,T(pT,q) e 
{ 

xi E Xi L AspT(s). (xi(s) _ wi(s))::; O .� 

sEST� 

If we use the foHowing notation 7rT = (7rT(s))sES d..=.f (AspT(s))SES' the previous set can 

be equivalent1y rewritten as 

xi (s) =W i ( s) if s rt ST }
Bi,T("T) ~f { xi E Xi 

7rT . (xi - wi) ::; O 

and Bi,T(pT,q) e B i,T(7rT). 

According to Florenzano and Gourdel (1994), the finite-horizon economy &(T) has an 

equilibrium (xi,T,zi,T)~l,pT,q) satisfying: 

(i) x1,T is optimal in the budget set Bl,T(7fT) where 7fT(s) = AspT(s). 

(ii) For all i = 1, ... ,m, (xi,T,zi,T) is optimal for agent i in the budget set Bi,T(pT,q). 
m m 

(iii) ¿xi,T = ¿wi 
. 

i=1 i=1 
m 

(iv) ¿zi,T = O. 
i=l 

(v) pT E JR~TXL and for aH node s E ST, pT(s) #- O. 

With no loss of generality, we can assume that the price pT is normalized by 

2:s ST A.llpT (s) 111 = 1. Note that this normalization requires an adaptation of the port­E
folios that with an abuse of notation, we will still denote by zi,T. So, the claims (i) to (v) 

are still verified for this normalized equilibrium and we can add the additional one : 
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(vi) I17fTlll = 1 or equivalent1y 7fT·1 = 1 (with 1 E JRSxL defined by l(s,f) = 1). 

Step 2. As Levine and Zame (1992) pointed out, in the finite horizon mode1, it is 

possib1e to associate with the aboye equilibrium an implicit system of debt constraints. It 

can be defined by 

where the infimum is taken among al1 (xi, zi) be10nging to Bi,T(pT, q). The notion of 

implicit debt constraint means that 

We emphasize that this construction cou1d have been done for any price pT, not on1y 

for the equilibrium price. As a consequence of the no-arbitrage condition on q, the main 

resu1t at this step is the fol1owing proposition to be proved in the appendix : 

Proposition 3. Di,T is (pT,q)-loose and consistent. Moreover Di,T(s) = D}(s,pT,q) 

Vs E ST-l. 

Step 3. In tilis step, we will prove that the parameters ((xi,T(s),~s('zi,T(s)), 

Di,T(s))~l,pT(s)) of the T-horizon equilibrium are bounded in T. 
1­ sES 

• Bounds on xi,T(s, f). Since xi,T(s, R) ~ Oand l:~l xi,T(s, R) = l:~l wi(s,f) ::; M, 

where M = 1Il:;:1 will oo ' It fol1ows that O::; xi,T(s,f) ::; M, for al1 (s,R) ES x L and for 

each agent i. 

• Bounds on pT(s,f). First we recal1 that pT(s,f) ~ O, hence our normalization 

1 = ¿(s,l)ESTXL >'spT(s,f) 1eads to O::; pT(s,f)::; 1/>." for al1 (s,f) E S x L. 

• Bounds on ~,(zi,T(s)). We first prove by contraposition that the first component 

of ~s(zi,T(s)), which is equal to q(s)· zi,T(s), is bounded. If it is not true, there exists an 

agent i, a node s and a subsequence denoted by Tn such that Iq(s)· zi,Tn(s)l-+ +00 when 

Tn -+ +00. From condition (iv) in the definition of equilibrium, we can deduce the existence 
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oí an agent j such that q(s) . zi,Tn(s) -+ +00 when Tn -+ +00. The agent j is lender at 

node s. But íor Tn large enough, one has pTn(s) .18~ (1- ¡38)q(S)' zi,Tn(s) since 138 < 1. 

This implies that the consumption process ('xi,TnXS\S+(8) + 18 + ¡38yi,TnXS+(8») sustained 

by the portíolio process (zi,TnXS\S(8) + ¡38zi,Tn XS(8») is in the budget set Bi,Tn(pTn, q). 

Since by Lemma 1, it is preíerred by agent j to the consumption yi,Tn, this contradicts 

the definition oí equilibrium. 

By local non-satiation, one has for each agent i, for aH nodes s, for aH (1 E s+, 
r((1) . zi,T(s) = q((1) . zi,T((1) + pT((1) . (yi,T((1) - wi((1)). Hence, írom the bounds esta­

blished previously on yi,T((1), pT((1) and q((1) . zi,T((1), one deduces that r((1) . zi,T(s) is 

also bounded. This proves that ~8(zi,T(s)) is bounded. 

• Bounds on Di,T(s). First we recall that Di,T(s) ~ O. Let us define on S the system 

oí debt constraint Di,T by : 
T i 

Di,T() _7f . (W XS(8») ~ (A tr ) -T() i()s = = - L- - P (1 (1·W 
8 8A trES(8) A

Clearly, Di,T(s) = _pT(s) . wi(s) ií s E ST and Di,T(s) = Oií s ft STo We first prove that 

Di,T is (pT,q)-loose. Consider a node s E S. If s ft ST-l, looseness oí Di,T at node s 

foHows írom the no-arbitrage condition. If s E ST-l, let us consider a portíolio zi(s) E IR/­
such that íor aH node (1 E s+, r((1). zi(s) ~ Di,T((1). By definition oí Di,T, one has íor all 

node u E s+, Atrr(u) . zi(s) ~ _7fT . (wiXS(tr»). This implies that ¿trE8+ Atrr(u)· zi(s) ~ 

_7fT.(¿trE8+ WiXS(tr») = -7fT.(wiXS+(8»)' Since Asatisfies conditions oí Lemma 3, one thus 

gets A8q(s)· zi( s) ~ ._7fT . (WiXS+(8»)' We recall that S( s) = S+(s) U {s} and consequently 

A8q(S).zi(s) ~ _1iT .(wiXS(8»)+A8pT(s).wi(s), Le., Di,T(s)+pT(s).wi(s)-q(s).zi(s) ~ O. 

Hence Di,T is (pT, q)-loose at node s. 

Since Di,T is (pT, q)-loose, we can apply Propositions 2, 3 and Remark 4 to get the 

inequality Di,T ;::: Di,T. Moreover, it íollows írom the normalization oí 7fT that Di,T(s) ~ 
-M/A8. Hence, we deduce that íor all i, all nodes s, O~ Di,T(s);::: -M/A8. 

Step 4. Let ba(S x L) = (.eoo(S x L))'" denote the norm dual oí '-oo(S x L) consisting 

of bounded finitely additive set íunctions on S x L and let 11 . liba denotes the norm oí 

ba(S xL). For any T, the price 7fT can be viewed 'as an element oí (ba(S x L))+ such 

that 7fT . 1 = 117fT 11 ba = 1. Let (1( ba, '-00) denote the weak-star topology. We recall that 

according to Alaoglu's theorem, the unit ball oí ba is (1(ba,'-oo)-compact. 

In view oí the bounds established previously, we can apply Tychonov's Theorem to 

get the existence oí a directed set (8,~) such that the subnet ((yi,T
9
, (~8(zi,T9 (s)))8ES' 
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_i,T9 T9 ) T9 

D )f,;l'P converges for the product topology and (7f )se6 converges for the
Se6 

O'(ba,loo)-topology. Hence, we get the existence of an element ((xi,(<pi(s))ses,Di)f,;l'P) 

in the set (lR~XL x ILes lRb(s)+l x lR~) m X lR~XL and an e1ement 7f in (ba(S x L))+ such 

that 
9 9 9

((xi,T , (cps(zi,T (s))) ses' Di,T' )~l' pT ) --+ ((xi, (<pi( s) )ses, Di )~l' p) 

for the product topology and 

7fT
9 

--+ 7f for the O'(ba, loo) topology with 7f. 1 = 1. 

Let us remark that it follows from the bounds established in Step 3 that xi E Xi. Indeed, 

one has for all T and each i, O :$ xi,T(s, l) :$ M. Moreover, it follows from the same 

inequality that one can assume that xi,T' --+ xi in the weak topology O'(loo(S x L),ll(S x 

L)). 

Since for all node s, 1mcp s is a closed subset of lRb(s)+ 1 and since cp s('zi,T
9 
(s)) --+ <p i ( s), 

one deduces that <pi(s) E ImCPs. Le., for all i = 2, ... ,m, there exists some zi(s) E 

lRJ• such that CPs(zi,T
9 
(s)) --+ CPs(zi(s)). Using the Cass' trick, if we let zl = L:::2 zi, 

one deduces from the property (iv) of the finite horizon equilibrium that CPs(zl,T' (s)) --+ 

CPs(zl(s)). Note that zi,T' (s) does not necessarily converge to zi(s) since redundant assets 

may exist, in particular the subnet (zi,T
9 

(s)) se6 may be unbounded. 

Step 5. We want to prove that for each agent i, the system of debt constraint Di is 

~ (p, q)-loose and consistent . 

• Di is (p, q)-loose. Let us consider an agent i, a node s and a portfolio zi(s) E lRJ• 

such that r(O'). zi(s) ~ Di(O') for all O' E s+. 
-i . . 

We want to prove that D (s) + p(s). wl(s) - q(s)· ZI(S) :$ O. To this end, we will use 

the existence of a non risky asset at node s, denoted by e(s). Hence for all e > O, one 

has reO') . (zi(s) + ee(s)) > Di(O') for all O' E s+. Since there is a finite number of strict 

inequalities, there exists (j such that for all () ~ (j, one has r(0') . (zi(s) + ee(s)) > Di,T' (O') 
i 9 

for all O' E s+. Consequently, by (pT
9 

, q)-looseness of the implicit debt constraint D ,T , 

one has Di,T' (s) + pT' (s)· wi(s) - q(s)· (zi(s) + ee(s)) :$ O. At the limit when () goes to 

infinity, one gets Di (s) +p(s) .wi(s) - q(s) . (zi( s) +ee(s)) :$ O. It suffices to take the limit 

when e tends to Oof the previous inequality to end the proof. O 

• Di is (p, q)-consistent. Let us consider an agent i and a node s. We first recall 

that for aH (), the implicit debt constraint Di,T' is (pT
9 

, q)-consistent, hence there exists a 
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portfolio z i,T' (S) such that 

Di,T' (s) +pT' (S). Wi(S) - q(09)' Zi,T' (s) ~ o; 
{ for a1l u E s+, r(u)· zi,T' (s) ~ Di,T' (u). 

Note that the portfolio zi,T' (s) is defined without any reference to the portfolio zi,T' (s). 

The system can be equivalently rewritten as 

.T' (_Di'T' (s) - pT' (s)· Wi(09))
4>,,(ZI, (s)) ~ -i T' . 

(D' (u)) I1E,,+ 

Hence the net (4),, (zi,T' (s)))8Ee is bounded below. It fo1lows from Lemma 2 that with no 

10ss of generality, one can assume that 4>,,(zi,T' (s)) tends to 4>,,(zi(09)) for some portfolio 

zi(s) E IR/·. By passing to limit in the previous inequalities, we get 

Di(s) +p(09)· wi(s) - q(09)· zi(s). ~ O; 
{ for all u E s+, r(u)· zi(s) ~ D'(u). 

This completes the proof. o 

Step 6. It remains to prove that (('xi,zi,Di)~l'P) is an equilibrium with debt 

constraints of the economy &. 

It is trivial to verify that individual consumption and income transfer plans belong to 

the individual budget set at each node s, and that consumption plans and income transfer 

plans are socially feasible. 

• For each i, xi E Bi(p, q, D\ Indeed, by passing to limit in the spot constraints, one 

has for each node s, 

p(s) . x~ (s) +q(s)i . zi(s) = r(s) . zi (S-) +p(s) . wi ( S), 

{ r(s)· ZI(S-) ~ D (s). 

m m 

• Lxi = Lwi. 
i=l i=l 

m 

• Lzi = O. 
i=l 

• We want to prove that consumption xi is optimal in Bi(p, q, Di). To this end, the 

fol1owing claims will first prove that for al1 node s, p(s) > O. 
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9
We recal1 that xl ,T -. Xl for the weak topology, and al XSN -. al for the Mackey 

topology. Since the relation ~ 1 is Mackey continuous, there exists sorne N such that 

al XSN ~l Xl. By the same argurnent, there exists sorne 8 E e such that for all 8 ;::: 8, 
one has al XSN ~l xl ,T

9 
and we can suppose that Ti ;::: N. Hence by monotonicity, one 

9 
obtains for all 8 ;::: 8, al XST9 ~l xl ,T • Since al XST9 + wl XS\ST9 is in the finite horizon 

consumption set and preferred by agent 1 to the equilibrium consumption xl ,T 
9

, it follows 

frorn the property (i) of the finite horizon equilibriurn that 7fT
9 

• (al XST9 + wl XS\ST9 ) > 
9 9 9 T9 

7fT ·xl
,T • But 7fT • (a I XST9 +wIXS\sT9) =7f 'a I XST9 and by localnon-satiation, one 
~ l~ ~ - - ~obtains;r . x' = 7f . wl . Hence, there exists 8 such that for all 8 ;::: 8, 7f . al > 

7fT
9 

• al XST9 > 7fT
9 

• wl . At the limit when 8 goes to infinity, one gets 7r • al ;::: 7f. wl . O 

Since 7f E ba(S x L) and 7f ~ O, we can apply the Yosida-Hewitt theorern to get 

the existence of sorne 7fe E .et(S xL) such that 7f and ;re coincide on "finite" elernents of 

.eoo ( S xL). For any y E .e00 ( S xL) which has only a finite number of non-zero cornponents, 

one has ;re' Y = 7f . y. 

The proof is similar to the one of Clairn 1. Since al ~l Xl, there exists sorne integer 

-N, such that al XSN ~l Xl. Hence, we can apply the first clairn to get the following 
linequality : ;r. al XSN ;::: 7f. wl . By definition of 7fe, one deduces 7fe . al XSN ;::: 7f. W . This 

assertion together with the positivity of;re gives us 7fe . al ;::: ;r. wl . O 

lFirst, we recall that wl E int(.et,(S xL)), since 7f. 1 = 1, one deduces that 7f . w > O. 

Since al ~l Xl, by continuity of ~l, there exists sorne real nurnber a < 1 such that 

aa l ~l Xl. It follows frorn Clairn 2 that 7fe . (aal ) = a;re' al ;::: 7f. wl . Hence, one obtains 

;r . al > .!.;r. wl > ;r. wl . O 
e - O' 

· 4 - -1 < - 1elalm . 7r e • X _ 7r • W • 

T 9 T 9 T 9 T 9 T 9 l •Let us fix an integer N, one has 7f .(xl
, XSN) ~ 7f ·xl

, =7f ·w for al18. ThlS 
9 9 lcan be equivalently rewritten as EsESN AspT9 (s) . Xl ,T (s) ~ ;rT • w . Since there is only 

a finite nurnber of terms on the left side, one gets at the limit in 8, E,ESN Asp(s) .Xl (s) ~ 
l;r. wl . We have proved that for all N, ;re' (Xl XSN) ~ 7f. w . At the lirnit in N, one gets 
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Claim 5. pes) > Ofor each node s. 

Finally, it follows frorn Assumption C3, that xl +1, ~l xl. One can apply Clairn 3 to 
lget the following inequality : 7fe • (xl + 1,) > 7f. w . This assertion, together with Clairn 4� 

gives us 7fe •xl +7fe . 1, > 7f . w l 2:: 7fe •xl. Consequently, one obtains : 7fe • 1, =A,llplll > O� 
which establishes that p(s) > O. O� 

For each i, we will now prove by contraposition that xi is optirnal in Bi(p, q, Di) . 

. . ' ., . -i . 
Let us suppose that al ~I Xl and (a"zl) E B'(p,q,D) for sorne portfolio plan Zl.� 

By Mackey continuity of the preferences, there exists sorne real number a < 1 such that� 

aai ~i xi. We can use the same argument as in Clairn 1 of Step 6 to get the existence of� 

sorne integer N and sorne 8 E e such that for all e2:: 8, one has (aaiXsN) ~i xi,T'. Since� 

(ai, zi) E Bi(p, q, Di), we have in particular the following inequalities :� 

p(s)· ai(s) + q(s)i' zi(s) =5 p(s). wi(s) + res) . zi(s-) for aH s E SN;� 

{� r (s) . Z1 ( S-) ~ D (s) for aH s E S N +1 • 

-i -i .
We recall that a consequence of the (15, q)-looseness of D is that D (s) =5 -pes) .wl(s) 

for aH nodes s. This assertion together with p(s) > O and wi ( s) ~ O irnplies that p(s) .� 

wi(s) > Oand Di(s) < O. Since G' < 1, the last rernark together with the previous systern� 

of inequalities irnplies that� 

p(s)· (G'a~(s)) + q(s)i' (G'zi(s)) < p(s)· wi(s) + r(s)· (G'zi(s-)) for all s E SN; 

{ r (s) . (G' Z I ( S - )) > D (s) for all s E S N +1 . 

Since there is only a finite nurnber of striet inequalities, one deduces the existence of� 

an integer T > N such that for aH T ~ T, one has� 

pT(s) . (G'~i(s)) + q(~)T' (azi(s)) < pT(s) . wi(s) + r(s) . (G'zi(s-)) for all s E SN,� 
{� r(s)· (G'ZI(S-)) > D' (s) for all s E SN+l. 

With no loss of generality, we rnay suppose that T > Ti. But it follows frorn the� 

consistency of the irnplicit debt constraint Di,T that there exists sorne portfolio plan zi,T� 

such that zi,T is equal to zero frorn date T and zi,T and G'zi coincide on SN. By construc­�

tion, one has (G'aixsN,zi,T) E Bi,T(pT,q). Since for sorne T large enough, one also has� 

G'aixsN ~i xi,T, this contradicts the definition of the equilibriurn consurnption xi,T.� 
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The last assertion in Theorem 1 is a consequence of Remark 3. O 

At this stage, it may be asked what are the properties of the previous equilibrium� 

under the additional Assumption C5, formulated by Magill and Quinzii and used in their� 

existence result of an equilibrium with node prices. An answer is given in the following� 

resulto� 

Theorem 2. Let ((xi, zi, Di)~l ,p, q) be an equilibrium with debt constraints 01 the� 

economy &. Under Assumption C5, ((xi, zi )~1 ,p, q) is a jinitely effeetive equilibrium,� 

a bounded debt equilibrium and an equilibrium with an implicit borrowing limito� 

The proof is based on the following result to be proved in the appendix. 

Proposition 4. Given (p, q), let Di be a consistent and unilormely bounded below (in real� 

value) system 01 debt constraints. Then every amount 01 debt d, °> d > Di(so) can be� 

repaid by i in jinite time Irom node So- Consequently, one has Di(so) ~ D}(so,p,q).� 

Proof of Theorem 2. Let ((xi,zi,Di)~l,P,q) be an equilibrium with debt constraints 

of the economy &. We first prove that for each i : 

. In effect, let (xi,zi) E Bi(p,q) and for every s, Di(s) = min(O,r(s) .zi(s-)). The system� 

Di is (p, q)-consistent (cí. Proposition 1) and uniformly bounded below_ It follows from� 

Proposition 4 that D}(s,p,q) ~ Di(s) ~ r(s) .zi(s-)), which proves the second inclusion.� 

The looseness of Di together with Remark 4lead to Di(s) ~ D}(s,p,q) which implies the� 

last inclusion. The first inclusion was already observed.� 

Under Assumption C5, let us now consider a node s and an agent i. Let (x~, z~) be the� 

consumption/portfolio plan defined by (xiXS\s+(s) + 1" + (3xi xs+(,,) ,ZiXS\S(") + (3zi XS(s))'� 

Since by assumption C5, x~ ~i xi, one deduces that (x~,z~) f/: Bi(p,q,D
1 
). Since (x~,z~)
 

obviously satisfies the debt constraint in every node and the spot constraint in every� 

node s' =j:. s, it follows that the spot constraint in node s is not satisfied. This implies that� 

p(s).(xi(s)+l s)+q(s).(3zi(s) > p(s)·wi(s)+r(s).zi(s-). This inequality together with the� 

spot constraint satisfied by (xi, zi) at node s leads to p(s) ·1" +q(s)· ((3Zi(s)) > q(s)· zi(s).� 

One thus gets q(s) . zi(s) < IIp(s)lh/(l - (3). Since this inequality holds for all i, and� 

recalling that L:::l zi( s) =0, it follows that q(s) . zi( s) > -(m - 1) IIp( s) 11 JI(1 - (3) for all� 

nodes s, and all agents i. This proves that (xi, zi) E Bfx,(p, q) and ends the proof. O� 
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4. Debt constraints versus node prices 

Let us there emphasize that, as proved in Section 3, the existence oí an equilibrium 

with debt constraints, compatible with the given arbitrage-íree asset price process q, does 

not require Assumption C5. Under Assumption C5, such an equilibrium is a finitely 

effective and a bounded debt equilibrium. We will prove in tbis section that with the same 

additiona1 assumption, the same given arbitrage-íree asset price process can be embedded 

in an equilibrium with node prices. According to the role played by Assumption C5 in the 

existence oí an equilibrium with node prices (Assumption C5 was íormulated by Magill 

and Quinzii and is used in their existence result), the link between both approaches cannot 

be reduced to a simple equivalence. 

Actua1ly írom (individualized) node prices, it is easy to build (individualized) debt 

constraints; a more precise statement will be given in Proposition 5. Under the additional 

assumption C5, the converse construction is only shown to be possible at an equilibrium 

point. Theorem 4 and 5 will make it clear. Finally, our main result, Theorem 6, is to prove 

that six apparently quite distinct approaches in the definition oí equilibrium give in íact 

under the assumptions C1 - C5 and F the same equilibrium allocations and prices. 

Proposition 5. Assume that ..\i is a system of present value node prices, satisfying the 

conditions of Lemma 9, such that 7l'i def (..\~p(5)) sES E f. 1 (S xL). Then there exists a (p, q)­

loose and consistent system of debt constraints ti such that Bi(p, q, ..\i) = Bi(p, q, !Ji). 

Proof. Let us defin~ the system oí debt constraints Di by : íor each node 5, 

Since 7l'i E f.1(S xL), and since íor every node s, ..\~ > O, Di is well defined. We first 

prove that Di is (p, q)-loose. Indeed let us consider a node s and a portíolio zi(s) such that 

for every node u E s+, r(u)· zi(s) ~ Di(u). By definition oí Di, one has íor every node 

u E s+, ..\~r(u). zi(s) ~ _7l'i . (WiXS(CT»)' This implies that ECTE,,+ ..\~r(u)· zi(s) ~ _7l'i . 

(ECTE,,+ WiXS(CT») = _7l'i. (wiXS+(,,»)' Since ..\i satisfies. the conditions oí Lemma 3, one thus 

gets ..\~q(s) .zi(s) ~ _7l'i . (wixs+(,,»). We recall that S(s) = S+(s) U {s} and consequently 

..\~q(s)' zi(s) ~ _7l'i . (wiXS("») + ..\~p(5)· wi(s), Le., Di(s) +p(s)· wi(s) - q(s)· zi(s) ::; O. 

Hence Di is (p,q)-loose at each node s. 

Let us prove that Bi(p, q, ..\i) e Bi(p, q, Di). Indeed, let us consider (xi, zi) In 

B i (p, q, ..\i). It íollows írom the budget constraint in node s that ..\~ r( s) . zi(S -) ~ ..\ ~p( 5) . 
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(xi(s) - Wi(S)) + A~q(S) . Zi(S). This inequality together with the one of Remark 4 

leads to A~r(s). zi(s-) 2: ¿I7ES(s) A~p(O')' (xi(O') - wi(O')). Since xi 2: O, one obtains 
iA~r(S) . Zi(S-) 2: _7r . (wiXS(s»)' By definition of Di, the debt constraint in node s is 

satisfied and (xi, zi) E Bi(p, q, Di). 

Let us prove that conversely Bi(p,q,Di) e Bi(p,q,Ai). Indeed, let us consider (xi,zi) 

in Bi(p,q,Di). Since Di is (p,q)-loose, one has for aH node s, Di(s) + p(s) . wi(s)­
iq(s) . zi(s) ::::; O. This implies that A~q(S) . zi(s) 2: _7r . (wixs+(s») and 

i02: L A~q(S)' zi(s) 2: _7r . (WiXS\ST). 

s E ST� 
q(s)· zi(s) ::::; O� 

Since the term on the right side of the previous inequality tends to zero in the limit 

in T, one obtains (xi, zi) in Bi(p, q, Ai). 

Final1y, we can apply Proposition 2 to get the existence of a (p, q)-loose and consistent 

system of debt constraint iJi such that Bi(p, q, Di) = Bi(p, q, iJi). O 

The previous construction can be achieved for any price system (p, q). If we apply 

Proposition 5 to the equilibrium prices, we obtain the fol1owing resulto 

Theorem 3. Let ((xi, zi, >:i)~l ,p, q) be an equilibrium with present value node priees of 

the eeonomy [ = ((Xi, >.:;i, wi)~l' S, R). Jf for eaeh i, 7fi ~f (>::p(s)) sES E el (S xL), then 

there exists some debt eonstraints Di sueh that ((xi, zi, Di)~l ,p, q) is an equilibrium with 

debt eonstraints of the eeonomy [ . 

. Under the additional Assumption C5, conversely one also has: 

Theorem 4. Let ((xi, zi, D i )~l ,p, q) be an equilibrium with debt eonstraints of the 

eeonomy [= ((Xi,>.:;i,wi)~I,S,R). Under the assumptions Cl-C5 and F, there exists 

some present value node priees (>:i)~l sueh that ((xi,zi,>:i)~l,P,q) is an equilibrium 

with present value node priees of the eeonomy [. Moreover ((xi, zi, >:i)~l ,p, q) is also a 

MQ-equilibrium with present value node priees of the eeonomy f. 

Proof. Let us consider for any agent i, and for any time horizon T, the set B~(p,q) 

defined by 

p(s)· xi(s) +q(s)· zi(s) ::::; p(s)· wi(s) +r(s)· zi(s-) } 
'Vs E ST; . 

-r(s)· zi(s-) ::::; O 'Vs E ST+l' 
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As it is classical, we will not distinguish the finite dimensional set B~('p, q) and its natural 

embedding in the infinite dimensional space Roo(SxL)xTI"Es IR/' defined by (x(s), z(s)) = 

(wi(s),O) ií s ~ STo The context will make it clear. Note that the sets B~(p,q) are 

nonempty and convex and that B~(p, q) e B~+l (p, q), íor al.l T ~ 1. We can now define 

the two convex subsets oí Roo(S x L) defined by 

This set can be equivalently rewritten as 

Ai = {xi E Roo(S x L) 3(Jl,xi) E [0,1] x U B~(p,q) such that xi = JlXi + (1- Jl)X i }. 
T~l 

Claim 1. U i n Ai = 0. 

Let us consider a point xi in the intersection. First, we remark that it íollows írom 

the definition oí U i that xi is non-negative. Since xi E Ai, there exists sorne integer 

T, a point (xi, zi) E B~(p, q) and a real number oí [0,1] such that xi = JlXi + (1 ­
Jl)x i. We can associate the portíolio plan zi = JlZi + (1 - Jl )zi. We want to prove that 
.. . -i 

(Xl, Zl) E BI(p, q, D ). Clearly, the spot constraints are satisfied in every node. Moreover 

(xi,zi) satisfies the debt constraints Di in all nodes s ~ STo Since xi is non-negative, it 
-i ..

íollows írom the (p, q)-looseness oí the debt constraint D that (Xl, Zl) satisfies the debt 

constraints in all nodes. Hence (xi, zi) E Bi(p, q, Di) nUi, which contradicts the definition 

oí equilibrium with debt constraints. O 

The assumption C4 implies that xi + 1 E int(U i 
). Hence, we can apply the Hahn­

Banach theorem to get the existence oí sorne non-zero element pi in (Roo( S xL))+' = 
(ba(S x L))+ such that íor al1 (xi,yi) E Ai X Ui, one has pi. xi :5 pi. yi. Since xi E Ai , 

and since by local non-satiation xi E cl(Ui), one deduces that íor all (xi, yi) E Ai X U i , one 

has pi. xi :5 pi. xi :5 pi. yi. Since pi is in ba(S x L)+, we can app1y the Yosida-Hewitt 

theorem to get the existence oí sorne 1fi E Ri(S xL) such that pi and 1ri coincide on 

"finite" e1ements oí Roo(S xL). 

i i iWe first c1aim that a ~ xi => 1ri . a ~ pi . xi. Indeed, we recall that aiXSN -+ a íor 

the Mackey topology and consequently, there exists sorne integer N such that aiXsN ~i xi. 
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i� iIt follows that pi ·aiXSN ~ pi ·x . By definition of 7I"i, one deduces that 7I"i .aiXsN ~ pi ·x . 
iThis assertion together with the positivity of 7I"i leads to 7I"i • a ~ pi . xi. 

By local non satiation of the preferences, we deduce from the last claim that 7I"i • xi ~ 

pi . xi. This implies that 7I"i • xi = pi • xi by definition of 7I"i. 

We first prove that 7I"i • xi > O. Since (wi, O) E Ai, one deduces that pi • wi ::; 7I"i • xi. 

Recalling that pi is a non-zero element of (ba(S x L))+ and w i E int(ft,(S xL)), it follows 

that pi • w i > O and consequently 7I"i • xi > O. Let us now consider xi E Xi such that 

xi >-i xi. It follows from the continuity of the preferences that there exists sorne real 

number o < 1 such that ox i >- i xi. Hence we deduce from the previous results that 

1ri . (ox i) ~ 7I"i • xi. One thus gets 1r i . xi ~ ~1ri . xi > 7I"i • xi. O 

In particular,� we deduce from Assumption C4 and Claim 2 that 7I"i(8) > O, for every 

node 8. 

Let us now construct the node prices Xi corresponding to the present value prices 

7I"i. For any time horizon T, for all xi E B~(p,q) one has pi. xi::; 7I"i. xi. This implies 

that 7I"i • xiXST + pi . WiXS\ST ::; 7I"i • xi, and consequently 7I"i • XiXST ::; 7I"i • xi. We have 

proved that the obviously consistent system of inequalities defining B~(p, q) implies that 

L:sEST 7I"i(8)' Xi(8) ::; 7I"i. xi. Hence we can apply the non-homogeneous Farkas' lemma (cí. 

Rockafellar (1970), Theorem 22.3) to get the existence of sorne (A~,T)sEST, (¡..t~,T)sEST+l) E 
lR¡T X lR¡T+l such that : 

71" i ( 8) = A~' Tp(8) for all 8 in sT;� (1) 

A~,Tq(8) = 2: A~T r(0') for all 8 in ST-l; (2) 
uEs+ 

A~,Tq(8) = L ¡..t~Tr(O') for all 8 in ST;� 
uEs+� 

and 7I"i • xi ~	 L A~,Tp(8)' Wi(8).� 
sEST� 

Recalling that 7I"i (8) > Ofor all 8 ES, we deduce from (1) that the real number A~' T is 

positive and independent oí T. This allow the construetion of sorne Xi in lR¡+ satisfying 
. ~	 . ~ ~ 

71"1(8) = Asp(S) íor all 8 in S; moreover usmg (2), one also .has Asq(S) = L:uEs+ Aur(O') íor 
., .,� . ~ . '" ..

all 8 in S. Since 71"1. wl ::; 71"1. Xl, one deduces that B'(p, q, A ) e {Xl E XI 171"1 • Xl ::; 71"1. w l } e 
{xi E X i l7l"i • xi ::; 7I"i • xi}. Recalling that xi is optimal in the last set, it suffices to prove 

.. . -i� .. . -i 
that (x" Zl) E B'(p, q, A ) to get the optimality oí (x" Zl) in B'(p, q, A ). 
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In the proof of Theorem 2, we have established that if (xi, zi) is optimal in Bi(p, q, Di)� 

then, for all nodes s and all agents i one has q(s) .zi(s) > -(m-l)lIp(s)lld(l- (3) for aH� 

nodes s. These inequalities lead to� 

L X:q(s). zi(s) > -7~; L� 
s E ST S E ST� 

q(s)· zi(s):5 O q(s)· zi(s):5 O� 

Hence we deduce that 

~ ~ . m-l ~ -i m-l· 
O~ L..J A8 q(S)' z'(s) > - 1 _ f3 L..J A8 I1p(s)lIl = - 1 _ f3 71" ·lXsT· 

S E ST S E ST 
q(s)· zi(s):5 O 

Since 71'i is in .el (S xL), the right term tends to zero, when T goes to infinity. Hence one 

has (xi, zi) E Bi(p, q, X\ 
Moreover (xi, zi) is optimal in BkQ(p, q, X'). Indeed, it foHows from Remark 5 that 

. -i . -i . ... .. . '" . . 
BI(p,q,A) e BMQ(p,q,A) e {x' E X I 17l"'x':5 71"·w'} e {x' E X'17I'1' x':5 71".x'}. 

Recalling that xi is optimal in the largest set and that (xi, zi) E Bi(p, q, Xi), one gets the 

conclusion of the last assertion of Theorem 4. O 

Remark 7. It is worthwhile to note that the previous proof could be applied to the partic­�

ular equilibrium with debt constraints construeted in the proof of Theorem 1. This shows� 

that, given any A E A(q), there exists an equilibrium with node prices (and also a M-Q� 

equilibrium) in which the first consumer uses precisely A.� 

Theorem 5. Let (xi, zi, Xi)~l ,p, q) be a MQ-equilibrium with present value node prices 

ofthe economy E = (Xi, ~i,wi)i,;l,S,R). Under the assumptions CI-C5 and F, there ex­

ists some present value node prices (>. i)i,;l such that (xi, zi, >. i)i,;l' p, q) is an equilibrium 

with present value node prices of the economy E, satisfying for each i, ií'i def (>'~p(s)tes E 

.el(SxL). 

Proof. The proof of Theorem 5 is similar to the one of Theorem 4. Let us consider for 

any agent i, the two convex subsets of .eoo(S x L) defined by 

p(s) . (xi(s) - w i(s)) + q(s) . zi(s) :5 r( s) . zi(s-) 
Vs E Si 

Vs E S. 
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·� . -i . .
Since Xl is optimal in the budget set BMQ(p, q, >. ), it follows that UI n Al = 0; 

moreover the assumption C4 implies that xi +1 E int(Ui). As previously, we can apply 

the Hahn-Banach theorem to get the existence of some non-zero element pi in (.eoo(S x 

L))+ = (ba(S x ~))+ such that for all (xi,yi) E Ai X Ui, one has pi. xi :5 pi. yi. Since 

xi E BkQ(p, q, 'XI) e Ai, and since by local non-satiation xi E cl(Ui), one deduces that for 

all (xi,yi) E Ai X Ui, one has pi .xi :5 pi ·xi < pi .yi. Since pi is in ba(S x L)+, we can 

apply the Yosida-Hewitt theorem to get the existence of some *i E .et(S x L) such that 

pi and 7'I'i coincide on "finite" elements of .e00 ( S xL). 

As previously, we prove that xi is optimal for agent i in the set {xi E Xi I*i ·xi :5 *i .xi}. 

In particular, we deduce from Assumption C4 that *i(s) > O, for every node s. 

Let us now construct the node prices .xi corresponding to the present value prices 

*i. For any time horizon T, let us consider the set B~(p,q) defined as in the proof of 

Theorem 3. Since B~(p, q) is clearly a subset of Ai, it follows that *i . XiXST :5 *i . xi 

for all xi E B~(p, q). We have proved that the obviously consistent system of inequalities 

defining B~(p,q) implies that 2:"EsT *i(s) . xi(s) :5 *i . xi. As previously, there exists 

((.x~,T)"EST, (1l~,T)"EST+l) E lR~T X lR¡T+l such that : 

*i(S) = .x~,Tp(s) for all s in ST;� (3) 

.x~,Tq(s)=	 L .x~Tr(O')foral1sinST-l; (4) 
O'E,,+ 

.x~,T q(s) =� L Il~T r(0') for all s in ST;� 
O'E,,+� 

and *i .xi ~	 L .x~,Tp(s). wi(s).� 
"EST� 

Recalling that *i (s) > Ofor all s ES, we deduce from (3) that the real number .x~, T is 

positive and independent of T. This allow the construction of some .xi in 1R~+ satisfying 

*i(s) = .x~p(s) for al1 s in S; moreover using (4), one also has .x~q(s) = 2:O'E"+ .x~r(O') for 

all s in S. Since *i ·wi :5 *i ·xi, one deduces that Bi(p,q, .xi) e {xi E Xil*i ·xi :5 *i .wi } e 
{xi E Xil*i . xi :5 *i . xi}. Recal1ing that xi is optimal in the last set, it suffices to prove 

that (xi, zi) E Bi(p, q, .xi) to get the optimality of (xi, zi) in Bi(p, q, .xi). 

To this end, let us consider a node s and an agent í. Let (.i~, z~) be the consump­

tionjportfolio plan defined by (xiXS\s+(,,) + 1" + (ñiXS+(s), ZiXS\S(s) + {3zi XS(s»). Since 

by assumption C5, .i~ >-i xi, one deduces that (.i~, z~) fi. BkQ(p, q, 'Xi). Since (.i~, z~) 
obviously satisfies the Magill-Quinzii transversality condition in every node and the spot 

constraint in every node s' =/:- s, it fol1ows that the spot constraint in node s is not satisfied. 
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As previously, one gets 

~ X~q(s)' zi(s) > -7~; ~ X~llp(s)lh· 
s E Sr s E Sr 

q(s). zi(s) ~ O q(s)· zi(s) ~ O 

Hence we deduce that 

O~ L X~q(s)' zi(s) > -7-=-; ~ X~lIp(s)lh = -7-=-; *i ·1XST· 
S E Sr s E Sr 

q(s) . zi (s) ~ O 

Since *i is in f1(S xL), the right term tends to zero, when T goes to infinity. Hence one 
has (xi, zi) E Bi(p, q)i). O 

. delRemark 8. We emphasize that in Theorem 5, the "initial" present 'Value price 71"' ­

(X~P(s))SES does not necessarily belong to f1(S xL). 

Remark 8 allows us to summarize Theorems 2, 3, 4 and 5. Actually, we state an 

obvious equivalence resulto 

Theorem 6. Assume that the economy [ = ((Xi, >.;;i, Wi)f,;l' S, R) satisfies Assumptions 

Cl- C5 and Pi then lor any consumption/portlolio plan (xi, zi )f,;l' and lor any price p, the 

lollowing assertions are equivalent : 

(i) There exists some system 01 debt constraints Di such that ((xi,zi,Di)f,;l,P,q) ~s an 

equilibrium with debt constraints 01 [. 

(ii) ((xi,zi)f,;l,P,q) is afinitely effeetive equilibrium olthe economy [. 

(iii) ((xi, zi)f,;ll p, q) is a bounded debt equilibrium 01 [. 

(iv) ((xi, zi)f,;l ,p, q) is an equilibrium with an implicit borrowing limit 

(v) There exists some present value node prices Xi such that ((xi,zi,Xi)f,;l,P,q) ~s an 

equilibrium with present value node prices 01 [. 

(vi) There exists some present 'Value node prices ¡i such that ((xi, zi, ¡i)f,;l ,p, q) ~s a 

MQ-equilibrium with present 'Value node prices 01 [. 

The equivalence between (i), (ii), (iii) was proved by Levine and Zame (1992) ; Magill 

and Quinzii (1994) establish the equivalence between (iv) and (vi). 
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Appendix 

Proof of Lemma 2. 

It follows from the dosedness of 1m~ 8 that r is dosed. If r is unbounded, there 

exists sorne non-zero vector c.p in the asymptotic cone of r. Since this set is bounded 

below, one has c.p ~ O. Moreover, c.p is also in the asymptotic cone of 1m~8 which is a 

linear space. Finally, we have proved the existence of an element c.p > Oin the set 1m~ 8' 

which contradicts the no-arbitrage condition. o 

Proof of Proposition 2. 

To prove Proposition 2, we will first state a lemma. 

Lemma 4. Let D be a system of debt constraints. 1f q is arbitrage-free, 

(i) 1f D is not (p, q)-consistent, there ezists some system of debt constraints D' such 

that D' > D and Bi(p, q, D') = Bi(p, q, D). 

(ii) 1f D is (p, q)-loose and not (p, q)-consistent, there ezists some system of debt 

constraints D' such that D' > D, Bi(p, q, D') = Bi(p, q, D) and D' is (p, q)-loose. 

Proof. 

(i) Since D is not (p, q)-consistent, 1et s be a node such that D is not (p, q)-consistent 

at node s. Hence, for all portfolio z( s) E He· ,one has 

r(O")· z(s) ~ D(O") for al1 O" E s+ =* D(s) + p(s)· wi(s) - q(s)· z(s) < O. 

Let us define D'(s) = inf ~ where ~ is the set 

J d+p(s)'wi(s)_q(s)'z(s)~O; }
d E IR- 3z(s) E IR • 

{ r( 0") . z( s) ~ D(0") for all O" E s+. 

First, we remark that this set is non-empty since we can take d = O associated with 

z(s) = O. It follows that if D'(s) exists, then D'(s) ~ O. An equivalent formulation for ~ 

is ~ = {d E IR-Ir(d) =f 0} with 

The second set is then non-empty and it follows from Lemma 2 that it is compacto Hence 

we deduce that ~ is bounded below, and this proves the existence of D' (s). More­

over, ~ is dosed. Indeed, 1et d/J --+ d; for every ZI, there exists c.p/J E 1m~8 and c.p/J ~ 
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-dI! - p(s) 'Wi(S)) 
. With no loss of generality, one can assume 'PI! -+ 'P E Im~s and( ()D(u) O'Es+� 

-d - p(s) .Wi(S))� 
'P ?. () , so that d E A.�( D(u) O'Es+ 

Finally D'(s) =minA and for some z(s) E IR/', consequently one has 

D'(s) +p(s)· wi(s) - q(s)· z(s) ?. °> D(s) +p(s)· wi(s) - q(s)· z(s) 

which shows that D'(s) > D(s). We can now define D'(s') = D(s') for all s' :f:. s. By 

definition of D', D' is a system of debt constraints satisfying D < D'. 

Thus it only remains to show that the two systems of debt constraints give the same 

budget seto First we remark that it follows from the inequality between D and D' that 

Bi(p, q, D') e Bi(p, q, D). Conversely, let us take any consumption plan x in the budget 

set Bi(p, q, D) sustained by the portfolio plan Z. We want to prove that for each node s', 
one has r(s') . z(s'-) ?. D'(s'). Since D and D' differ in node s only, it suffices to prove 

that r(s)· z(s-) ?. D'(s). But it follows from the budget/debt constraints that 

r(s)· z(s-) +p(s) . (wi(s) - x(s)) - q(s)· z(s) ?. 0,� 
{� for all u E s+, r(u)· z(s)?. D(u). 

One deduces that 

r(s) . z(s-) +p(s) . wi(s) - q(s)· z(s) ?. 0,� 

{� for all u E s+, r(u) . z(s) ?. D(u). 

Hence r(s)· z(s-) E A, and by definition of D'(s), one obtains r(s)· z(s-) ?. D'(s). 

(ii) Let us define D' as above. Clearly, one has D' > D and Bi(p,q,D') = Bi(p,q,D). 

Since D and D' differ on node s only, D' is also (p,q)-loose in each node of D \ {s,s-}. 

By construction, D' is (p,q)-loose at S. If s :f:. 0, let us take z(s-) E IR/'- satisfying 

r(u)·z(s-)?. D'(u) for aH u E (8-)+. Since D' > D, one deduces that r(u)·z(s-)?. D(u) 
for all u E (s - )+. This assertion together with the (p, q)-looseness of D at node s - leads 

to D(s-) +p(s-) . wi(s-) - q(s-)· z(s-) ~ O. Since D and D' coincide at node s-, D' is 

also (p, q)-loose at node s- and consequently D' is (p, q)-loose. O 

(a) Proof of Assertion (i) of Proposition 2. 

Recall that the initial system of debt constraints is denoted by Di. 
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Let X be the set oí systems oí debt constraints defined by X = {D I Bi(p, q, D) = 

Bi(p,q,Di) and D 2:: Di}. We will consider the classical ordering on X, D ~ D' ií and 

only ií íor all s in S, one has D(s) ~ D'(s). We now claim that every totally ordered 

subset oí X has an upper bound. 

Indeed, let us consider a total1y ordered subset oí X, (D8)8E8' Since íor every node 

s, íor all 8, D8(s) ~ O, we can define D(s) by D(s) = sup{D8(s) I 8 E e}. Clearly D is 

a system oí debt constraints satisíying íor all 8, D 2:: D8 2:: Di. Consequently, one obtains 

Bi(p, q, D) e Bi(p, q, Di). Conversely, let us take any consumption plan x in the budget set 

Bi(p,q,Di) sustained by the portíolio plan z. We want to prove that r(s)· z(s-) 2:: D(s) 

íor every node s. Since íor all 8, one has Bi(p, q, D8) = Bi(p, q, Di), one obtains that 

r(s) . z(s-) 2:: D8(s) íor every node s. By taking the supremum in 8 E e, one gets the 

required inequality. Hence, D E X, and the set (D8)8E8 has an upper bound. 

We can apply Zorn's lemma to get the existence oí a maximal element Di in the set X. 

To end the prooí, since Di is in X, it remains to prove that Di js (p, q)-consistent. Indeed, 

ií Di, is not (p, q)-consistent, we can apply lemma 4 to get the existence oí a system oí 

debt constraints D' in X such that D' > Di. This contradicts the definition oí Di. O 

(b) Proof of Assertion (ii) 

The prooí oí Assertion (ii) is similar to the one oí Assertion (i). We replace the set X 

by the set X' = {D such that Bi(p, q, D) = Bi(p, q, Di), D 2:: Di and D is (p, q) -loose}. 

As beíore, one checks that every totally ordered subset oí X' has an upper bound and that 

a maximal element oí X' satisfies the condition oí Assertion (ii). O 

Proof of Proposition 3. 

Let us recall the definition oí Di,T j 

where the infimum is taken among all (xi, zi) belonging to Bi,T(pT, q). Note that Vs E ST, 
Di,T(s) = _pT(s) .wi(s) and Vs ~ ST, Di,T(s) = O. Exactly as in the prooí oí Proposition 

2, one deduces írom the no-arbitrage condition on q that Di,T(s) is actually a minimum. 

Then it is obvious that Di,T is (pT,q)-loose and consistent. 

The inequality Di,T(s) ~ D}(s,pT,q) íollows írom (pT,q)-looseness. On the other 

hand, it íollows írom the definition oí Di,T that Vs E ST, Di,T(s) 2:: D}(s,pT,q), which 

ends the prooí. O 
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Proof of Proposition 4. 

We first introduce sorne notations. We will denote by °the set [O, +oo[x [O, l]x]-oo, O[ 
and we will consider the real valued function 4> : ° --+ [0,1] defined by 4>(0, (3,,) = 

00t{I,,1 if o + (3, < O,
{ O if o + (3, ~ O. 

We will prove that (3i( s) is equal to zero except for a finite number of node s. Notice 

that (3i(s) = O implies that (3i(u) = O for all node u E s+. Since for all (0,(3,,) E 0, 

4>(o, (3,,) ::; (3, one deduces that (3i( s) ::; (3i( s-) for al1 node s E S(so). 

Let us now consider a node s such that (3i(s) > O. Since on 0, 4> is a decreasing 

function of , and recal1ing that our assumption gives the existence of sorne real number 

A (A ::; O) independant of s satisfying Di(s) ~ Allp(s)111' one deduces that (3i(s) ::; 

4>(p(s) . wi(s), (3i(s-), Allp(s) 111)' 
Moreover since wi E int(.et,(S xL)), there exists sorne real number mi independant 

of s satisfying p(s) . wi(s) ~ millp(s)111' Since on 0, 4> is a decreasing function of o, one 

deduces that 

i 
Since m (1-:- (31s0 )) < 0, there exists a time period T such that for al1 node s E S(so),

m+ 
one has T(S) ~ T(SO) + T :=} (3i(s) = O. 

We recall that the consistency of Di at node s imp1ies the existence of sorne portfolio 
. {Di(S) + p(s), wi(s) - q(s)· zi(s) ~ O, 

z 1 ( s) E IR/' satisfying . . 
and for al1 u E s+, r(u)· ZI(S) ~ D'(U). 

We can now construct the portfo1io (zi(s))ses(so) by zi(s) = (3i(s)zi(s). It follows 

froro the definition of (:zi(s ))ses(so) that it repays the debt d in finite time from node so. 

o 
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