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Eliminating negative end-use or appliance consumption estimates and 

incorporating direct metering information into the process of generating 

these estimates; these are two important aspects of conditional demand 

analysis (COA) that will be the focus of this paper. In both cases a 

Bayesian approach seems a natural way of proceeding. What needs to be 

investigated is whether it is also a viable and effective approach. 

COA is designed to disaggregate total energy demand into specific end-use 

components. For example the household demand for electricity or gas could 

be disaggregated into demands associated with the different appliances held 

by the household. Naturally each of these components of total demand should 

be positive. However, existing COA -studies prOVide numerous examples where 

these natural restrictions are violated. Notably, in a study of residential 

electricity demand the results of Aigner, Sorooshian and Kerwin (1984) 

included many negative load estimates prompting the comment: 

"While our results show well defined load shapes for many 

appliances, the load levels often seem questionable", Aigner et al. 

(1984, p. 97). 

Also in a recent COA study of residential electricity deman.d, Fiebig, 

Bartels and Aigner (1991) used the infrequent occurence (but not 

elimination) of negative estimates as one measure of the success of their 

estimators. 

COA relies on heterogeneous household appliance portfolios; essentially 

end-use demands are estimated by comparing total demand of households with 

.and without a particular appliance. Unfortunately it is sometimes the case 

that there are high saturation appliances or there is a "bundling" of 

certain types of appliances each of which gives rise to multicollinearity 

problems. It is also possible that weak data can arise because of large 

disturbance variances and/or relatively small sample sizes. Consequently 

negative estimates in COA studies can often occur because data are weak or 

uninformative. One response to this problem is to exploit available prior 

information; in this case the non-negativity of the end-use demands. We 

demonstrate how a Bayesian approach can provide a complete solution, 

guaranteeing nonnegative estimates of the end-use consumptions. Geweke 
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(986) has argued forcefully in favour of the Bayesian approach to the 

problem� of inequality constrained linear regression. He contends that it: 

n... leads to practical methods for exact inference that are impossible 

to treat using a sampling-theoretic approach", Geweke (1986, p.128). 

One procedure that provides accurate estimates of end-use consumptions and 

automatically overcomes the nonnegativity problem is to abandon the CDA 

approach and to attach meters to individual end-uses enabling the directr 
\..., 

measurement of the associated consumption. While this is a conceptually 

straightforward method it is unfortunately not practical because the cost 

associated with extensive direct metering would be prohibitive. Moreover it 

ignores the information that is provided by CDA studies using data that is 
C 
i� often readily available. The compromise situation where some direct 

metering information is available and is combined with the CDA information 

seems to be the appropriate way to proceed. 

c 
Typically direct metering information will be available for only a subset of 

end-uses and/or a small number of households. A natural way to utilize 

these data is to view it as prior information on the specific appliance 

I consumptions and proceed in a Bayesian framework. Such an approach has been 
C 

taken by Hsiao, Mountain and Ho (1990) who present three alternative 

Bayesian methods that share the following general characteristics: 

(i) Priors are specified as being multivariate normal. 

(ii)� Parameters of the priors are "estimated" on the basis of c 
independent direct metering information where the direct metering is assumed 

to come from some previous sample or from a sample of customers that is 

different from that used in the CDA. 

OH)� The posterior distributions of the parameters of interest are c 
characterized solely by the posterior mean. An initial assumption of a 

known disturbance covariance matrix enables explicit representation of these 

posterior means as matrix weighted averages of sample and prior information. 

c 
Differences in their three methods relate to the generality of the prior 

distributions chosen. The preferred, and most general method, allows for a 

structure where the end-use consumptions are themselves related to certain 

demographic characteristics.le 
I 
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Caves, Herriges, Train and Windle (1987) have also used a Bayesian framework 

to combine prior information with a CDA model. Here though the prior 

information is obtained from engineering simulation models. Like Hsiao et 

al. (1990) they rely on a prior specification that is multivariate normal 

and the posterior mean is calculated directly as a matrix weighted average 

of the prior information, provided by engineering data, and the sample 

information provided by CDA. Apart from the source of the prior 

information, their analysis differs from Hsiao et al. (1990) in two 

other important respects. They explicitly recognize the form of the 

approximations being made to generate the reported point estimates. 

Specifically the posterior mean is actually that of the distribution that is 

suggested to approximate the actual posterior distribution. Secondly, the 

importance of the nonnegativity issue is recognized. As an extension to 

their main analysis, Caves et al. (1987) admit the inappropriateness of 

their prior distribution and briefly comment on the use of a truncated 

normal prior. 
) 

There are several important aspects that differentiate our approach from the 

previous Bayesian analyses of Hsiao et al. (1990) and Caves et al. (1987). 

In particular: 

(i) Unlike Caves et al. the nonnegativity issue is addressed directly 

by initially incorporating this restriction into our basic specification of 

the model. 

(H) Allowance is made for different forms and sources of direct 

metering information. In particular, we explicitly address the situation of . ) 

having partial direct metering for the same time period and group of 

households as is to be used for the CDA. The analysis is usefully viewed as 

a three stage process starting with relatively diffuse priors which are then 

updated by two sources of data corresponding to direct metering and CDA. 

(IH) The underlying data processes associated with the direct metering 

information and the CDA data are taken to be elliptical and hence are both 

more general than the assumption of normality. 

(Iv) A more complete description and analysis of the posterior 

distribution than simply the calculation of posterior means is provided and 

no recourse is made to approximations. 

(v) The analysis is extended to prediction on the basis of a complete 
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characterization of the predictive density. 

consumptions 

designed to 

the problem. 

is related toInevitably the attraction of these methods to practitioners 

Our application involves the estimation of electrical appliance 

for a sample of Australian households. This application is 

illustrate the viability of a full Bayesian analysis of 

computational matters. 

problem. 

We pay particular attention to this aspect of the 

11 Conditional demand analysis and direct metering 

c 
The CDA model 

The basic CDA model can be written as 

(: 

c 

c 

(2.1) 

k 

YI = \' UEC 0 + vL IJ IJ 1 
J=1 

where 

for some period of timeY1 = energy consumption by household 

(possibly a year, month, day or hour), 

o = an indicator of ownership of appliance j by household i; 0
IJ 11 

is unity for all to represent end-uses such as lighting that are held by 

all households, 

UEC = unit of energy consumption of appliance j by household i, 
IJ 

V = a random disturbance. 
1 

c 

c 

Both YI and 0 are observed; the former coming from billing records and the
IJ 

latter from household surveys. It is the end-use energy consumptions 

(UEC ) that are typically not observed and need to be determined. Treating
IJ 

the UEC as constant over households, as, in say Caves et al. (1987),
IJ 

implies that (2.1) becomes a regression on a set of appliance dummy 

variables. The estimated coefficients of these dummy variables would then 

be interpreted as estimated UEC s. 
J 

'e 

A more general specification allows the end-use consumptions to vary across 

households by making them depend on a variety of household characteristics. 

Assuming these relationships are linear we obtain a general CDA model which 
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we write in matrix form as 

(2.2) Y = Zq,+ Dr + u 
c c c c� 

= X(3+ u� 
c c 

where y and u are N xl vectors and Z and Dare N xp and N xk matrices of 
c c c c c c c 

regressors with union X. D is the matrix of observations on the set of k 
c c 

appliance dummies while Z contains the set of explanatory variables that 
c 

determine household appliance utilization. 

Following the basic CDA model specification we assume that appliance 

ownership is exogenous. This is somewhat contentious because it is quite 

reasonable to argue that some of the factors affecting appliance utilization 

also affect decisions to acquire appliances. However, in the short run 

appliance stocks are fixed and existing evidence suggests that the bias from 

ignoring possible endogeneity may be qualitatively small; see Sebold and 

Parris (1989). 

There are several reasons for dividing the regressors of (2.2) into two 

groups. Importantly it highlights the parameters of most interest, namely 

the elements of r. By carefully defining the individual columns of Z a 
c 

useful interpretation is provided for r. Because of (2.1) the columns of Z 
c 

will be in the form of interactions of demographic variables with appliance 

dummies. Consider a particular interaction. The appliance dummy is 

multiplied by the associated demographic variable which is defined in terms 

of deviations from its mean where the mean is calculated over those 

households possessing the appliance in question. The jth element of r can 

now be interpreted as the energy consumption of the jth appliance for the 

"average household" possessing that appliance. 

This interpretation highlights the fact that r should clearly never be 

negative. Such prior information is important and should be incorporated 

into the estimation of CDA models such as (2.2). 

Notice that in moving from (2.1l to (2.2) the disturbance terms have been 

differentiated. Typically one would expect a heteroskedastic u . In 
c 

particular it is likely that disturbance variances would be related to 
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appliance holdings. 

Direct metering 

CDA provides an indirect method of estimating end-use energy consumption. 

An alternative method of estimating these is to meter specific appliances 

directly. For example in Australia households can opt for an off-peak hot 

water system that is charged at a lower than normal rate. Because of its 

differentiated price, this end-use needs to be metered separately. 

Alternatively limited direct metering programs have also been conducted as 

part of the load research programs of utilities. In the U.S.A. there have 

been several examples of such programs; see Sebold and Parris (1989) for a 

summary. 

Direct metering information may have been collected independently of the CDA 

data for a different set of households or for a different time period. 

Alternatively it could have been collected in conjunction with the CDA data. 

Because of the costs involved in metering individual appliances, the typical 

situation will be one where there is limited direct metering information 

covering only a subset of appliances and a sample of households probably 

smaller than that available for CDA analysis. Moreover, Bartels and Fiebig 

(1990) argue that if one has the opportunity to choose where to place 

meters then it is preferable in terms of the precision gains for 

estimation to spread the meters over a number of appliances rather than to 

concentrate on a particular appliance. 

Following Fiebig et al. (1991) and Hsiao et al. (1990), the direct metering 

information will be combined with CDA to provide improved estimates of 

end-use consumptions. The only restriction to be imposed on the direct 

metering information is that its sampling process should have the same 

structure as the CDA model of (2.2) with the same coefficients, but possibly 

different covariance structure. Specifically write the sampling process for 

the N direct metering observations as 
d 

(2.3) y =Z~+Dr+u 
d d d d 

-xt3+u 
d d 

where y and u are N xl vectors and Z and Dare N xp and N xk matrices of 
d d d d d d d 
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regressors with union X. Notice that in order to validate use of the 
d 

models in (2.2) and (2.3) we require that X is weakly exogenous 

inference on {3; see Engle et al. (1983). 

CDA 

for 

In the case where both sources of information pertain to the same sample of 

households for the same period, some care needs to be taken in specifying 

(2.2). In particular the availability of direct metering of appliance j for 

household i implies that y will refer to total consumption net of the 
le 

direct metering consumption. In addition, the ith rows of Z and 0 will be 
c e 

modified so as to indicate the absence of appliance j. This avoids using 

the same information twice. 

~ .../ i 

III Bayesian conditional demand analysis 

Three Bayesian CDA models are developed that differ in the specification of 

the stochastic component of the model. Each one has distinctive features 

that make them attractive potential models. In practice this provides a 

selection of alternatives that should cover a wide range of applications. 

\ 
I 

The common preci.si.on modeL 

As already explained, there are two distinct sources of data information 

pertaining to our problem and we use the same regression models for both, 

differing only in the covariance structure. The common precision (CP) model 

entails the stacking of these data as represented by (2.2) and (2.3) to 

yield: 

, 
j 

(3.1) y
• 

= X {3
• 

+ u• 
) 

where y' = (y' y'), X' = (X' X') and u' = (u' u'). The stochastic 
• de. de. d e 

structure on u is taken to be multivariate elliptical (or ellipsoidal).
• 

Provided symmetry around zero is a reasonable assumption, this provides 

considerable flexibility. In particular, we assume 
) 

(3.2) (u 1 6 ) = 1 y 1-1/2 6 N/2 g (6 u 'y-1 u ) 
P •• s • ••••• 

where 6 is a positive scalar precision parameter assumed to be common to :J• 
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both types of data. g (.) is a known nonnegative function such that 
s 

(N-2ll2 ( )r g r is integrable in rover IR. N = N + N and V is a known NxN 
s + des 

positive definite symmetric (PDS) matrix. By choosing different functional 

forms of g (.) a large class of distributions can be covered: normal, 
s 

Student t. Pearson type 11 etc. See Kelker (1970). Dickey and Chen (1985) 

and Johnson (1987) for details. 

Apart from the possible dependencies allowed for by the assumption of an 

elliptical distribution for u. the CP model can accommodate a range of 
s 

correlation and heteroskedastic structures through the specification of V. 
s 

However the constraint is that V must be known or that we are willing to 
s 

condition on particular choices for the parameters that describe it. At the 

cost of increasing computational ~omplexity. V can be made to depend on 
s 

unknown parameters as well as on X. For example this would be required for 
s 

a more formal treatment of heteroskedasticity as in Bauwens and Lubrano 

(1991). 

The CP model is now completed by assuming a prior density on the parameters 

(t:f. 0). For the precision parameter we shall specify the usual improper 
s� 

prior structure:� 

1(3.3) p(t:f.o ) = p(o ) p(t:f) ex 0- p(t:f) 
s • s 

where functional independence between t:f and the precision parameter is 

assumed. Such a reference prior is shown by Osiewalski and Steel (1992) to 

result in exactly the same posterior and predictive results for any choice 

of g (.) in (3.2). The analysis is then fuHy robust with respect to any
•

departures from normality in the entire class of multivariate elliptical 

data densities. These results hold irrespective of the specification of 

p(l3) in (3.3). 

In this framework it follows directly that the marginal posterior for 13 is 

given by: 

(3.4) 
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• • • • • • • • 

where m = k + p, fr(x Iv, JA" H) denotes an r-variate Student t density with
• 

v > 0 degrees of freedom, location vector JA, e II( and PDS rxr precision 

matrix H, and where we use the hyperparameters 

(3.5) {3 = (X 'V- 1X f1x 'V-1y 
,

• • I •• •• , 
J 

Iand 

2
(3.6) s = (y - X (3 )' V- 1 (y - X {3 )/(N - ml. 

Specifying a conventional (unrestricted uniform) noninformative prior for 

{3 means that the posterior for {3 given in (3.4) is a multivariate Student t 

density. However the prior on (3 should reflect the nonnegativity of the 

direct appliance consumptions in '1 which is firmly based on their technical 

interpretation. Assuming the prior mass is spread evenly over the positive 

orthant leads to a prior given by 

(3.7) p({3,c5 ) cc c5-1 I ('1) 
• B + 

where I 
+ 
('1) = 1 if '1 e IRk

+ 
and 0 elsewhere. In this case the posterior for 

{3 is a multivariate Student t density truncated to the positive orthant for 

'1. It may be the case that prior information is available on the other 

elements of {3, say on the basis of economic theory. However, for the .), 

present discussion such extensions will not be pursued and a restricted 

uniform prior on (3 will be maintained. 

Often one is interested in conducting conditional predictions of the total 

load for households with certain characteristics and certain appliance 

holdings. The CDA sampling model is extended to incorporate, say, Nr 

observations to be forecasted, denoted by y, conditional on an N xm design
r r 

)matrix X . 
r 

Equations (3.1l and (3.2) are modified to yield 

(3.8) 

and 

Ive 1-112 1 e(3.9) p(ue Ic5 ) = c5 T/2 l(c5 ue'Ve
- u ) 

•• B • •••• B 
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X
e ewith T = N + N /' = (y' y') , = (X ' X ') u , = (u' u ') and ther'. • r'. • r'. • r 

TxT PDS matrix ye is defined as
• 

The function g:Ll should again satisfy the appropriate integrability 

condition and is linked to g (.) in a way which does not depend on the
• 

parameters (~, 0 ); see for example Kelker (970) or Dickey and Chen (985).• 

Integrating out o. with the prior (3.7) and conditioning on ~, y. and X 

leads to 
s 

(3.10) Y y.ly + (X 
r. s. r 

N _____ y-l) 

(y _X~)'y-l(y -X~) r.• 
s ss. s 

with Y = y - Y y-ly. We subsequently weigh (3.10) by the posteriorr.• r rs. sf 
density of ~ given all available sample information in order to obtain the 

post-sample predictive density: 

(3.11) 

A more detailed analysis is provided in Osiewalski and Steel (992). 

Specifying a noninformative prior for ~ implies that the predictive density 

given in (3.11) is a multivariate Student t while it becomes a Student t 

conditional on '1 when '1 is restricted to be nonnegative. The more general 

case can be examined by Monte Carlo integration, drawing directly from the 

posterior of ~ (Le. direct sampling) and evaluating (3.10) at each value 

drawn for~. The latter is required for (marginal) density plots and 

quantiles of Yr given X and the observed sample, and could be useful in r 
practice for moments of order three and higher. However, the first two 
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moments of Ye can easily be computed analytically from 

posterior moments of f3 if they exist, say E(f31 y, X)
• •

using for N > I 

only 

and 

the first 

Yar(f31 Y.
• 

two 

X),
• 

-'" 

(3.12) = Y y-Iy + 
e. •• 

(X
e 

- Y y-IX) E(f31 y , X ),
e... •• 

and if N > 2 

(3.13) Yar(y IY, Xe 
)e.. =_1_(N 

N - 2 
- m)s2 

• 
+ tr(X 'y-IX ) Yar(f3ly. X) + 

•• • •• 

(X 
e 

Y y-IX ) Yar(f3ly , X ) (X
Cs.. •• e 

- Y y-IX )'.
Cs •• 

Appendix I briefly indicates how (3.13) was obtained. 
) 

The 2-stage independent modeL 

The most attractive feature of the CP model is that analytical results for 

posterior and predictive analyses are available. However this comes at the 

expense of the potentially restrictive assumption of assuming a common 

precision parameter for both the CDA and direct metering data. The 2-stage 

independent (2SI) model relaxes this assumption. 

) 
! 

Basically, the idea is to conduct a sequential Bayesian analysis in which 

both types of sample information will in turn update our beliefs about the 

parameter of interest f3. Precision parameters are allowed to be different 

for each type of sample information. This generalization comes at the 

expense of having to assume the independence of uc and ud' Correlation 

between these disturbances was permitted in the CP model albeit within the 

constraint of a known Y
• 

independence will be relaxed 

unrelated regression equation 

dependence. 

matrix. Nevertheless the assumption of 

in our third model that utilizes a seemingly 

(SURE) framework to model the potential 

) 

In treating the CDA and direct metering data separately it needs to be ) 
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• • 

• • 

• •• •• 

recognized that individually these data may not relate directly to all 

regression coefficients. Zero columns occur in (2.2) if say one or more 

appliances are fully metered while they occur in (2.3) when direct metering 

information is not available for the full set of k appliances under study. 

Thus, full-rank versions of (2.2) and (2.3) are written as follows: 

(3.14) 
Ye = X (3 + U 

e e e 

and 

(3.15) + UYd = Xd (3 d d 

where for i = C. di X = (ZI DI) is the N x(k + p ) design matrix of full 
1 I 1 I •column rank obtained by taking the nonzero columns of X. Similarly (3 is a 

• • 1 1 
(k 1 + PI) dimensional subvector of the m regression coefficients in (3. 

Again a multivariate elliptical assumption is made for the stochastic 

structure on both u and u so that 
c d 

(3.16) p( u 10 ) = IV ,-1/2 0 N{2 (0 U 'V-1u ) = c,d
1 1 1 1 gill 1 1 

where 0 are positive scalar preCISion parameters. gl(') is a known 
1 

nonnegative function such that r(NI -21/2 gl(r) is integrable in rover IR+' 

V is a known N xN PDS matrix and u and u are assumed to be independent.
I lie d 

The prior density on the parameters «(3.0 ,0 ) is assumed to be 
c d 

-1 -1
(3.17) p«(3.0 .0 ) ex 0 0 I (r).

c d e d + 

Although the ordering in this sequential Bayesian analysis is not well 

determined. given the independence between both sampling models. it seems 

natural to use the direct metering information in a first stage as in Hsiao 

et al. (1990). In any case. the results will not be influenced by the 

particular ordering chosen. Combining (3.17) with (3.15) and (3.16) then 

gives the following first-stage posterior for (3: 

(3.18) 
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• • 

• • 

where md = kd+ Pd and where we use the hyperparameters 

"'. = (X·,y-1 x·f1X·,y-1(3.19) ~d d d d d dYd 

and 
..... .....·2 -1(3.20) s = (y - X ~ )' y (y - X ~ )/(N - m ).

d d d d d d d d d d 

Note that the prior information on ~ is multiplied by the Student kernel in 

(3.18), which reflects the information contained in the directly metered 
•sample about a subset of~. Conditionally upon this subset ~d' the other 

elements of ~ are not affected by the sample information. The integrating 

constant K would be unity without the prior information on the sign of the 
d 

7, in which case the truncated Student in (3.18) would become a regular
1 

Student t density. Of course, (3.18) is only a proper posterior density for 
• 

~ , whereas the other elements of ~ retain their improper priors.
d 

The beliefs about ~ summarized in (3.18) are posterior to the first stage, .; 
and it shall now be used as prior input for the second stage, namely the CDA 

analysis. As 0 has not yet been a parameter of the sampling process, its 
c 

prior independence of ~ is retained, and the second-stage prior is given by: 
, 

) ! 

./ 
I 

(3.21l 

1 md .... .-2... -1 •• 
Q( 0- I (7) f (Q I N - m ~ s x'Y X ).

c + .,.,d d d' d' d d d d 

CDA data will then update the prior in (3.21) into a second-stage posterior 

of ~, given by 

.... .-2... ) 
-1· 

(3.22) p(~ Iy , X ) ~ , S X' Y X )xc c c c c 

where mc' ~: and s:2 are defined as in (3.18) - (3.20) with subscripts d 

replaced by c. The information from prior, first-stage sample and 

second-stage sample is clearly distinguishable in (3.22), which is a 2-0 

) 
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• • 

poly-t density in common elements [see e.g. Dreze (1977)] truncated to the 

positive orthant for "{. It is assumed that the union of (3 and (3 is the 
c d 

entire (3 vector, since other elements could just be deleted from (3 in both 
•sampling models. The intersection of both (3 vectors is typically 

non-empty, implying that certain appliances are directly metered for only 

part of the households in the CDA data set (i.e. partial direct metering) or 

that Ye and yd come from different (but related) samples with overlapping 

appliance holdings. Those elements of (3 for which no direct metering 

information is gathered will have a truncated Student t posterior density, 

but conditional upon the other elements. Thus, the marginal posterior 

densities of all elements of (3 will be influenced by the direct metering 

information, even if the latter only applies to one or a few appliances. 

The Student kernel in the first-stage posterior (3.18) is well-defined if 

N > m,
d d.A. .A.1 

(y - X (3 )' V- (y - X (3 ) > 0, and 
d dd d d dd 

X·'V- 1X· is PDS. 
d d d 

However, formally these conditions are not required if our interest focuses 

on the second-stage posterior in (3.22). Drawings from the latter will be 

conducted as in Bauwens and Richard (1982) and truncation will be performed 

by a simple rejection approach. Apart from this truncation, (3.22) is a 

well-defined 2-0 poly-t density on the m-dimensional vector (3 if for i = 

c,d: 

N>m 

(y - X·~·)' V- 1 (y - X·~·) > 0, 
1 1111 11 

X 'V-IX is positive semi-definite symmetric (PSDS), and 
1 1 1 

X 'V-IX + X 'V-IX is PDS, 
c c c d d d 

where the latter condition implies that every element of (3 should appear in 

either (3 or (3. Posterior moments of (3 will exist at least up to order p < 
c d 

N - m. 

If our interest is in predicting the load of one particular directly metered 

appliance, the direct metering model in (3.15) and (3.16) should be used. If 
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is implicitly assumed 

is dominated by cS V-I. 
e e 

associated with that type of aggregate measurement is used and it 
-1

that cS V , the spread of the direct metering process,
d d 

its counterpart for the CDA process. 

on the other hand conditional predictions of the total load for households 

with certain characteristics and certain appliance holdings is required then 

it seems more relevant to use the CDA model in (3.14) and (3.16). Thus the 

precision 

The CDA sampling 

forecasted to yield 

model is extended to incorporate the N 
f 

observations to be 

(3.23) 

and 

(3.24) 

with Ne = N + N, ye, = (y , 
e e f e e 

NexNe PDS matrix Ve is defined 
e e e 

[~:, 
V 

l-V
e ef = e 

V 
f 

f,)
Y , 

e 

as 

Xe, 
e = (X ' 

e 
Xf ,), 

e 
ue, 

e = (u ' 
e 

uf , ) 
e 

and the 

;j 

Conditions on gee) 
e 

are as they were for ge(. ).
• ~) 

As before cS 
e 

is integrated out and we condition on f3, y , X• • 
and X

f 

e 
to yield 

(3.25) p(/ If3. 
e 

X
f 

, 
e 

y, X ) 
• • = p(llf3, X

e 
, Ye 

) 
e e 

N 
f f (yr IN, 

-1 
X

r 
- V V-1X= V V Y +

• e e re e e e re e e 

N 
e -1 ) 

(y - X {3)'V- 1 (y - X f3) 
Vr . e 

e e e e e 

)f3, 

j 

) 

with V = V - V V-I V. We weigh (3.25) by the posterior density of {3
f.e f re e ef 

given all available sample information, Le. the second-stage posterior 

given by (3.22), in order to obtain the post-sample predictive density: 
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(3.26) 

Clearly, those elements of {3 that are not truncated and only appear in the 

CDA sample can be integrated out analytically in (3.26), given the rest of 

{3. Only if there is no direct metering and we do not impose the 

non-negativity constraints on r, do we obtain a fUlly analytical solution to 

(3.26) in a Student t form. For the more general case Monte Carlo 

integration is required in order to determine (marginall density plots and 

quantiles of l given X
f 

and the observed sample, and could be useful in 
e e 

practice for moments of order three and higher. 

However, as with the CP model the first two moments of y: can easily be 

computed analytically from only the first two posterior moments of (3 if they 

exist, using for N > 1 
e 

f -1(3.27) E(ll X , y , X ) = V V Y + Xf
- V V-IX) E({3ly , X ), 

e e s 8 fe e e e fe e e s s 

and if N > 2 
e 

(3.28) Var(llX f
, y , X ) = __1_ ((N - m )s·2 + 

e e S s N-2 e e e 
e 

tr ( X• 'V-1·X) Var ({3• Iy , X ) + 
e e e e. s . 

[E({3 Iy , X ) - {3 
~. 

e s 8 e 

VeEven for the homoskedastic sampling model obtained by taking to be an 
c 

identity matrix in (3.24), the uncertainty about {3 will introduce 

heteroskedasticity into the predictive density through the last term in 
e

(3.28). In this special case the error vector u is said to have a 
e 

multivariate spherical distribution; see Kelker (1970). 
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, 'I� 

The 2-stage SURE modeL 

./'In the 2SI model, disturbances associated with the direct metering data are� 

assumed to be independent of those disturbances associated with the CDA� 

data. This is potentially restrictive· especially in the situation where� 

some households appear in both the CDA and direct metering samples. Write� 

u in terms of two subvectors: u referring to directly metered households� 
e eO� 

in the CDA sample and u referring to the remaining households in the CDA� 
en� 

sample. The 2-stage SURE (2SS) model allows for correlation between u and� 
eO� 

U but requires the independence of u with u and u. For the directly�
d en eO d� 

metered households the CDA and direct metering models will form a� 

two-equation SURE model. Because of the structure of our models the� 

correlation is between observations on the same household and hence� 

represents the presence of common household unobservables.� 

As in the 2SI model, the approach is to conduct a sequential Bayesian� 

analysis. Here though, the first stage analysis is a CDA model for the� 

households for which there is no direct metering data. This then provides� 

the prior for a SURE second stage involving the directly metered households� 

for which there are both CDA and direct metering observations.� 

The partitioning of the data between the first and second stages of the 2SS� 

model suggests an alternative form of the 2SI model. Rather than using the� 

direct metering data as the first stage followed by the CDA data, the� 

alternative 2SI model partitions the data between stages according to� 

whether the household was directly metered or not. Just as in the 2SS, the� 

first stage analysis is a CDA model for the households with no direct� 

metering data. The second stage then utilizes the CDA and direct metering� 

observations available for the directly metered households, but not in a� 

SURE model. Because the 2SI model resulting from the 2SS partitioning� 

requires a common precision parameter for the direct metering and CDA data� 

of the metered households, it is unlikely to be preferred in applications to� 

either our 2SS or original 2SI models.� 

Using now familiar notation the first stage model is represented by 

(3.29) y =x (3 +u 
er. en en en 

18 

)1 
I 



• • 

• • 

and u is assumed to be multivariate elliptical with location zero and 
en 

scale matrix given by o-I V . X· is a N xm design matrix of full column 
• en en en en en 

rank and {3 is a conformable subvector of (3.
en 

With the prior density assumed to be 

(3.30) p({3,o ) QC 0- 1 I (r), 
en en + 

the first-stage posterior for {3 has exactly the same form as the 

corresponding first-stage posterior for the 2S1 model. As such the 

expressions given in (3.18) - (3.20) are appropriate after replacing the 

subscript "d" by "en". 

For the second stage 

(3.30 y =X {3+u =X {3 +u 
cD cD cD cD eD eD 

and 

(3.32) Y =X{3+u =X{3 +u. 
d d d dd d 

It is not possible to retain the generality of elliptical distributions in 

this SURE framework. Consequently U = (u u) is assumed to be 
D cD d 

distributed as a multivariate normal with mean zero and covariance matrix 

1:~V. 1: is a 2x2 PDS covariance matrix that incorporates the potential
D 

correlation between u and u while V is a known N xN PDS covariance 
cD d D d d 

matrix that is common for u and u . 
cD d 

A Jeffrey's prior for 1: is assumed which in our 2-equation SURE is given by 

(3.33) p(1:) 11: 1-3
/2QC 

Let Y = (y y ) and X = (X X) then the posterior for 1: is given by 
D cD d D eD d 

(3.34) p(1: I(3, Y , X ) = f (1: 1U 'V-1U , N ) 
D D IW D D D d 

where f IW(') is an inverted Wishart density and 
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• • U = y - x (f3 (3) = Y (X X)o o 0 0 eO d 

The marginal posterior for f3 can be written as 

(3.35) p(f31 y , X ) QC 
•• 

I ('1) 
+ 

m •
f en(f3 IN 

• en en 
A. • 2... 

- m ,f3 ,s ­ X ' 
en en en en 

V-I 
en 

•
X )x

en 

•The last factor in (3.35) can be written as a Student density in f3 given 
• • eO 

f3, times a 2-1 poly-t density in f3; see Dreze and Morales (1976). Thus,
d d 

(3.35) will generally be the product of a truncated conditional 2-0 poly-t 

density and a truncated marginal 3-1 poly t density. In the case of 

complete direct metering we have a 2-0 poly-t density times a 2-1 poly-t 

density both truncated. For each of these cases the properties of (3.35) 

will need to be investigated by means of Monte Carlo integration. 

Prediction involves extending the first stage model representing households 

that were not directly metered. Conceptually it is identical to the 

procedure outlined for prediction in the 2S1 model. With N observations to 
f 

be forecasted, equations (3.23) to (3.26) are appropriate after 

systematically replacing subscript 'c' by 'cn'. Because of the form of the 

posterior for f3 given in (3.35), evaluation of the 2SS post-sample 

predictive density will need to be done numerically. 

IV An application to Australian electrical appliance .loads 

Data and initiaL results 

Data for this study were compiled as part of the Domestic End-Use Study 

(DES) conducted over a period of 15 months in 1986-87 in the state of New 

South Wales (NSW), Australia, under the auspices of an industry committee 

representing all the relevant authorities in NSW. The same data set was 

used by Fiebig et al. (1991) to study variations in household appliance 

loads over the day. Here we concentrate on monthly electricity consumption 

and in particular on the differences between end-use consumptions on 

weekdays versus weekends. For the purposes of illustration our attention is 

) 

) 
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confined to July I the winter month of peak demand. 

Table 1 provides a brief description and some relevant summary statistics of 

the variables used in the analysis. The sample consists of 174 households 

located in the Sydney area. Direct metering observations are available for 

2 appliances: HWPK, 21 observations; and HWOP, 87 observations. In the case 

of HWOP all households within the sample that possess this particular 

end-use have been metered. 

Notice that the workday consumption has lower mean and variance than weekend 

consumption. Our analysis is designed to make similar comparisons between 

the end-use consumptions rather than their totals and to identify the source 

of the differences in total consumption levels. 

For three of the end-uses the UEC's of (2.0 are assumed to vary with 

household characteristics. In particular the UEC's of HWPK and HWOP are 

assumed to be linearly related to PEOPLE while that of HEAT is assumed to be 

a linear function of SIZE. This implies inclusion of the following 

interaction variables into our CDA specification: SIZE-HEAT, PEOPLE-HWPK and 

PEOPLE-HWOP. PEOPLE, SIZE, INCOME, INCMSG and MJROTH are also included in 

the specification: they can be thought of as interactions with the INTERCEPT 

which is interpreted as the consumption for the average household of all 

common end-uses such as lighting, washing machines, etc. This 

interpretation derives from the measurement of all demographic variables in 

terms of deviations from the mean. The UEC's of all other appliances are 

taken to be constant over households. 

Complete specifications of the regression models are provided in Table 2 

where initial OLS regression estimates are given. Incorporating the 

available metering information requires separating the direct metering 

consumptions from total consumptions. The first set of results represent 

the estimated version of equation (2.2) which has as its dependent variable 

total consumption net of direct metering. Because HWOP is totally metered 

this dummy and the associated interaction do not appear in this equation. 

The second set of results are for the estimated version of equation (2.3) 

where direct metering consumptions are regressed on the two HWPK and HWOP 

dummies and the associated interactions. 
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These models and their associated estimates are provided for the purposes of 

illustration and to highlight a number of deficiencies that need to be 

addressed. Available direct metering information is not fully utilized as 

the commonality of coefficients in (2.2) and (2.3) has been ignored. There 

is nothing here to ensure the non-negativity of the estimated end-use 

consumptions (see FREEZ and POOLPUMP) nor will conventional confidence 

intervals for positive estimated end-uses necessarily have positive lower 

limits (see FRIGAUT, DRYER and MWAVE, and to a lesser extent DSH), Our 

proposed Bayesian models provide a framework for resolving these problems. 

Furthermore, heteroskedasticity in the disturbances will be accounted for 

within this framework. 

Bayesian results 

The choice between the alternative Bayesian models will depend primarily on 

how appropriate their different stochastic structures are for the particular 

problem being investigated. Disturbances associated with the CDA data for 

non-metered households are expected to be independent of all other 

disturbances. Moreover, using directly metered households only, simple 

correlations are small between the OLS residuals from the CDA and direct 

metering regressions; -0.046 for workday data and -0.006 for weekend data. 

This suggests that an assumption of independent disturbances may be 

satisfactory for these data. Consequently the extra computational effort 

required for the 2SS model does not seem warranted and our attention will be 

confined to the CP and 2S1 models. 

Recall that with the CP model any heteroskedasticity, which does seem to be 

a problem here, needs to be modelled in terms of a known V matrix.• 
Alternatively we must be willing to condition on any unknown parameters in 

V . A convenient and reasonable assumption to make here is that 
s 

heteroskedasticity is proportional to the household's appliance holdings. 

More appliances imply greater consumption and hence greater variability in 

electricity demand. Thus V is specified as a diagonal matrix with diagonal 
s 

elements proportional to the number of appliances held by the particular 

household. This parameterization of heteroskedasticity is retained for the 

2S1 model. However recall that the 2S1 specification involves relaxing the 

potentially restrictive assumption made in the CP model that there is a 
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common precision parameter for both the CDA and direct metering data. 

As mentioned previously an attractive feature of the CP model is the 

availability of analytical results for posterior and predictive analyses. 

For applied work this feature translates into computational convenience. In 

particular the CP model is readily accessible to the practitioner because 

the popular econometric software package SHAZAM, (see White (978) ), can be 

used for calculations. Unfortunately the capabilities of SHAZAM do not 

extend to the estimation of the 2SI model. Consequently, the reported CP 

results were generated by SHAZAM while the 2SI results were generated by a 

computer program for Monte Carlo integration described in the computational 

appendix. 

Table 3 reports posterior means and standard deviations for the CP and 2SI 

models. Results that do not incorporate the non-negativity constraint were 

also produced but for most coefficients the effect of truncation is minor. 

As an example consider 2SI estimation of the COOK parameter for workdays. 

Marginal posterior densities with and without truncation provided in Figure 

1 are unimodal, essentially symmetric and almost the same. One of the few 

cases where truncation is influential is illustrated in Figure 2 which 

provides the 2SI marginal posteriors with and without truncation for the 

MWAVE end-use on workdays. Even though the posterior mean without 

truncation is positive, the effect of truncation is dramatic producing a 

highly skewed marginal posterior density. A complete set of CP and 2SI 

results without truncation are available on request. 

Differences between CP and 2SI estimates of individual end-use demands are 

typically small. This is not surprising since there is little conflict of 

information for HWPK and PEOPLE-HWPK coefficients in the CDA and direct 

metering samples. This can be seen by comparing the corresponding OLS 

estimates given in Table 2. 

Taking the 2SI results as the basis of further discussion we first note that 

differences between the end-use demands of workdays and weekends are rarely 

large in magnitude. The most prominent differences are found in the HEAT 

and INTERCEPT demands. (Recall that the estimate associated with the 

INTERCEPT can be interpreted as electricity consumption of the average 
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household attributable to appliances with high penetrations such as 

lighting.) For non-discretionary appliances such as FREEZ. HWPK and HWOP 

this similarity in demands for the different daytypes is expected but for 

the other appliances where there is more scope for discretionary use it 

represents an interesting result. 

Although differences in the two sets of end-use demand estimates are not 

overly large the pattern of differences is striking. With the exception of 

HEAT and POOLPUMP, the latter being a minor exception, all workday end-use 

demands are less than the corresponding weekend demands. Also the 

variabilities of the workday estimates are uniformly lower. This replicates 

the previously identified relationship between the total demands. These 

features of the results are presumably indicative of differences in the 

daytypes such as the amount of time spent at home. 

A comparison of predictive densities for particular household types further 

illustrates the differences in daytypes. As an example consider a "typical" 

electric household. Possession of electric water heating (either peak or J 

off-peak) is taken to define electric households. Then amongst this 

sub-group of households an appliance portfolio was chosen to include the 

appliances with the four highest penetrations. Consequently our chosen 

household is characterized by HWOP=l, HEAT=l, DRYER=l, and COOK=l; in )1 

addition we set INTERCEPT=I, and PEOPLE, SIZE and SIZE-HEAT at the average 

values for those households with HWOP=l. All other demographic variables 

are set to the sample mean values of zero. , '-'C"
~L.., ~ 

~ 

< 

.) r"" 
(' ,:­

'I 

,.. 
, 

".l, 

·)1 

Figure 3 provides the predictive densities for the two daytypes (calculated 
r r 

with truncation. Both the workday and weekend day predictive densities are r(ct.,r;~'i 
./" ....... I 

symmetric but the former has a smaller expected value (39.65 compared with 

41.15) and a smaller standard deviation (11.94 compared with 13.20). What ) 

is also clear from both densities is that there is considerable dispersion 

in the predicted consumption of our typical electric household. 

Because our typical electric household includes end-use estimates that , ) 

individually were not overly affected by whether estimates were truncated or 

not, one would not expect substantial differences between the densities in 

Figure 3 and those calculated without truncation. A comparison of these 
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predictive densities confirmed this but it is noteworthy that the truncated 

densities were shifted to the left and they exhibited less dispersion. 

V Conclusion 

Estimates that fail to satisfy strongly held a priori restrictions are 

difficult to justify. Negative estimates of electricity end-use or 

appliance demand are a good example of this. Estimating these consumptions 

by direct metering methods solves the problem but at a large cost. 

Moreover. such methods ignore readily available information from billing 

records and appliance-holding surveys. We have demonstrated how these two 

aspects of estimating end-use demand can be readily integrated into a 

Bayesian framework. Our discussion has also targetted two potential 

extensions to the Bayesian models that have been developed. A richer class 

of heteroskedasticity or ,cpr:,relation between disturbances would require the 

-- -"/� v~ matrix to depend on"":ft"ke-'~n "parameters. This extension requires an added 

computational burden but little in the way of analytical development. The 

second extension involves the relaxation of the assumption that appliance 

ownership is exogenously determined. This represents a more challenging 

task that must be left for future work. 
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Appendix I: Derivation of (3.13) 

In order to calculate the marginal predictive variance in (3.13) we have 

used the well-known rule that: 

in which the first term involves the mean of the quadratic form 

Ea ((y - X t3)'V-
1 (y - X 13)) = (N - m)l + tr(X 'V-1X ) Var(t3l y , X ) 

,.. 11 11 11 11 11 11 11 11 11 11 11 

+ [ E(t3l y , X ) - ~ ]' X 'V- 1X [E(t3l y , X ) - 13 ]
11 11 11 11 11 11 11 11 11 

where 13 and s2 are defined as in (3.5) and (3.6L 
11 11 

Appendix 11: Computational Appendix 

The "MCI" (Monte Carlo Integration) program described in Bauwens and Richard 

(1982, Section 5) has been used for computing the Bayesian results. The 

main ingredient of the program is an algorithm (given in their paper) for 

generating random drawings of a 2-0 poly-t density (for the 2S1 model). 

Each drawing of 13 that falls in the region where I (1') = 1 is a drawing of 
+ 

the truncated density, see (3.22), and is used for computing the posterior 

expectation and covariance matrix of 13 (by simple averaging over a 

predetermined number M of drawings). Given these results and the required 

inputs, the predictive mean and variance can be computed by a few matrix 

operations, see (3.27) and (3.28l. The generated values 13(1) are also used 

to compute the predictive density (3.26). For a given value of l, the 
c 

right-hand side of (3.26) is approximated by: 

M-1 I: p(ll 
f y, X ) ,t3(l)' Xc'C 11 11 

1 

f
Le. the simple average of the conditional densities evaluated at y. To c 

f
plot the predictive density, this is done for a grid of values (33 forYc 
the reported plots), at the same time that the posterior moments and 

marginal densities of 13 are computed. 

The reported results were computed on a PC equipped with a 80486DX processor 

running at 33 Mhz. The program is written in FORTRAN 77 using the compiler 

of MICROSOFT (version 4.10). Basic results (such as reported in Table 3 for 

one day type, 2S1 model) can be obtained with high accuracy by requiring 
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10,000 drawings from the truncated posterior density. In our application, 

the rejection rate was about 16 to I, Le. 160,000 drawings from the 

untruncated density were generated, out of which 150,000 had to be 

discarded. The computing time for this is almost one hour. In order to get 

accurate graphs of marginal densities of elements of f3 (based on 33 points 

which can be used for interpolating the curves), we used 150,000 drawings: 

the computing time was therefore about IS hours (one night). For minimizing 

the computing time, it is essential to test for the positivity restrictions 

on the '1 coefficients in the best order; this can be determined by 

computing the untruncated posterior moments in a preliminary run. In order 

to appreciate the computing time of our application, recall that the 

density to be simulated is of dimension 19, hence 150,000 accepted drawings 

require 48 million uniform random numbers! 
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Table 1: Variable descriptions and summary statistics 
) 

StdVariables Max Min Mean 
Dev 

Appl iance indicators 
FREEZ = separate freezer 1 o .38 .49 
FRIGAUT = automatic defrost fridge 1 o .59 .49 
COOK = electric oven or hotplates 1 o .72 .45 
DSH = dishwasher 1 o .33 .47 
DRYER = clothes dryer 1 o .56 .50 
HEAT = electric main or secondary heating 1 o .84 .36 
HWPK = main tariff water heater 1 o · 18 .39 

)HWOP = offpeak tariff water heater 1 o .50 .50 
POOLPUMP = pool pump 1 o .31· 11 
MWAVE = microwave oven 1 o .39 .49 
MJROTH = other major appliance, e.g. spa 1 o .06 .23 

Demographic variables 
SIZE = area of home 37.5 4 15.64 8.14 
PEOPLE = number of household members 8 1 2.99 1. 63 
INCOME = annual before tax income ($10,000) 9.0 .45 3.38 2.43 
INCMSG = dummy variable for missing income 1 o .35· 14 

•Consumption variables 
Net consumption excluding metering: 

Workday 85.7 1.5 23.0 16.9 ) 

Weekend 94.0 1.424.5 17.9 
Metered consumption of HWOP: 

Workday 37.7 4.7 14.9 6.9 
Weekend 43.5 5.215.3 7.7 

Metered consumption of HWPK: 
Weekday 22.7 2.912.9 5.5 
Weekend 29.6 1.813.2 6.0 

• 
Of the 174 househo Ids In the sample, 21 have metered HWPK consumption 

and 87 have met ere d HW 0 P con sum p t Ion. Summary s tat 1 s t 1 c s 0 f the metered 

consumptlons were calculated over the metered subsamples while thoseof 

INCOME were calculated over households with Income Information. 

, ) 
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•Table 2: OLS regression est imatesc 

Explanatory 
variables 

c INTERCEPT 

FREEZ 

FRIGAUT 

c COOK� 

DSH� 

DRYER� 

HEAT� 

HWPK� 

HWOP� 

POOLPUMP� 

MWAVE� 

PEOPLE� 

S.IZE� 

INCOME� 

INCMSG 

MJROTH 

PEOPLE-HWOP 

SIZE-HEAT 

-2 
R 

Breusch-Pagan 

Studentized 

CDA us i ng net 
Di rect meteringconsumption 

Workday Weekend Wo r kday Weekend 
4.93 5.85 

(2.98) (3.36) 

-1.92 -1.59 
(2.20) (2.48) 

2. 11 2.01 
(2.08) (2.34) 

6.43 7.24 
(2.20) (2.48) 

4. 11 5.40 
(2.56) (2.88) 

2.97 4.06 
(2.40) (2.70) 

9.78­ 8.56 
(2.69) (3.03) 

8.32 7.44 11 .45 11.85 
(2.58) (2.91) ( 1 .38) ( 1 • 60 ) 

14.87 15.28 
( 0 .62 ) (0.72) 

-0.87 -2.40 
(3.29) (3.71) 

0.72 0.84 
(2.09) (2.35) 

3.05 2.94 
(0.71) (0.80) 

-0.40 -0.48 
(0.37) (0.41) 

0.67 0.90 
(0.48) (0.54) 

1. 83 4.59 
(3.19) (3.59) 

3.16 1. 66 
(4.36) (4.92) 

2.10 2.29 1. 81 1. 74 
(1.68) (1.90) (0.72) (0.84) 

2.32 2.36 
( 0 .42 ) (0.48 ) 

1. 06 1. 00 
(0.38) (0.42) 

0.51 0.44 0.25 0.20 

9.54 16.17 0.60 1. 78 

•• 5.59 8.35 0.34 0.77 
Br e us c h - Pagan 

• Numbers 1n brackets are standard errors • 

The 

Koenker 

tot a 1 a 

squared 

Sreusch-Pacan and Student1zed Sreusch-Pa&an (see 

(1981) ) test for heteroskedast1c1ty related to 

p p 1 1 a n c e ho 1 d 1 n cs. Bot h are as y m pto t 1 c all y Ch 1 ­

with one deCree of freedom. 
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Table 3: Bayesian •est imates ) 

Common 2-stage 
Explanatory Precision Independent 

variables Workday Weekend Workday Weekend 
) 

INTERCEPT 5.08 6.12 4.97 5.96 
(2.30) ( 2 • 59 ) (2.18) (2.41) 

FREEZ I .33 1. 63 1. 31 1. 56 
(1.10) (1.32) (1.06) (1.25) 

FRIGAUT 2.05 2.48 1. 98 2.30 
(1.40) (1.63) (1.34) (1.52) ) 

COOK 5.02 5.58 5.33 6.06 
(1.88) (2.08) (1.78) (1.97) 

DSH 3.34 4.09 3.18 3.90 
(2.15) (2.52) (1.98) ( 2 .30 ) 

DRYER 2.22 2.78 2.20 2.74 
(1.51) 

HEAT 9.09 
(1.83) 

7.87 
(1.48) 

9.37 
(1.75) 

8.20 
)1 

( 2 . 38) (2.67) (2.23) (2.46) 

HWPK 10.71 10.89 10.57 10.64 
(1.08) (1.24) (1.18) (1.35) 

HWOP 14.87 15.29 14.87 15.28 
( 0 . 58 ) (0.65) (0.62) (0.72) ) 

POOLPUMP 3.13 3.14 3.04 2.87 
(2.34) (2.42) (2.29) (2.27) 

MWAVE 1.97 2.32 1. 99 2.28 
(1.40) (1.65) (1.40) (1.58) 

PEOPLE 2.49 2.44 2.47 2.42 
( 0 • (5) (0.75) (0.61) (0.68) 

( -) 

SIZE -0.22 -0.26 -0.23 -0.27 
(0.32) (0.36) (0.30) (0.33) 

INCOME 0.48 0.70 0.48 0.70 
(0.47) (0.54) (0.46) (0.50) 

INCMSG 1.88 3.67 1. 69 3.50 
(2.71) (3.09) (2.71) (2.99) ) 

-~ 

MJROTH 1.43 -0. SO 0.92 -0.98 
(4.84) (5.50) (4.42) (4.90) 

PEOPLE-HWPK 2.10 2.10 2.13 2.18 
(0.60) (0.67) (0.64) (0.73) 

PEOPLE-HWOP 2.32 2.36 2.32 2.36 
(0.38) (0.43) ( 0 .42 ) (0.49) 

J 

SIZE-HEAT 0.90 0.87 0.91 0.89 
(0.33) (0.38) (0.32) (0.35) 

• 
Numbers I n brackets are standard deviations. 

, 
--) 

32 

) 



F
ig

. 
1: 

P
o

s
te

rio
r 

d
e

n
s
ity

 
o

f 
C

O
O

K
 

w
o

rk
d

a
y
 

d
a

ta
. 

251 

tru
n

ca
ted

 
n

o
t 

tn
n

c. 

0
.2

5
 

0
.2

0
 

" ,, \ \
0

.1
5

 
\ \ \ 

0
.1

0
 

\ \ , 
0

.0
5

 
""" " 

... 
0

.0
0

 
0

.5
0

 
2

.7
0

 
4

.9
0

 
7

.1
0

 
9

.3
0

 
1

1
.5

0
 

~

 

,
, 

l 
J

J 
(

,, 
,

; 
\

) 
,

i
l

, 



"
j

-
-

F
ig

. 
2: 

P
o

s
te

rio
r 

d
e

n
s
ity

 
o

f 
M

W
A

V
E

 
w

o
rk

d
a

y
 

d
a

ta
. 

251 

tru
n

ca
ted

 
n

o
t 

trune. 

0
.3

0
 

0
.2

4
 

;
'
 -

.... 
;
'

o.1sl 
,, 

/ 
'\ 

/ 
'\ 

/
0

.1
2

 t-
'\ 

/ 
\ 

/ 
\ 

/ 
/ 

'\,
0

.0
6

 t-
/ 

, 
/ 

~

 

" 
;
'
 "'" 

-
;
'
 

I 

0
.0

0
 

-5
.0

0
 

-2
.5

0
 

0
.0

0
 

2
.5

0
 

5
.0

0
 

7
.5

0
 

(
,

\ 
;

u 
u 

.
~
j

 

, 
/ 

(
) 

, 
/ 

~ 
-) 

l
) 

{t' 
/ 

I.
) 



F
ig

. 
3

: 
P

re
d

ic
tiv

e
 

d
e

n
s
ity

 
ty

p
ic

a
l 

h
o

u
se

h
o

ld
. 

tru
n

c
a

te
d

 

w
o

rk
d

a
y
 

w
e

e
k
e

n
d

 

0
.0

3
5

 

0
.0

2
8

 t-
/ 

/
/ 

/ 
"­

/ 
" 

0
.0

2
1

 I-
1// 

"" " " 
0

.0
1

4
 l-

"
f/ /

/ 

"" , 
0

0
0

0
7

 V
 

~

 

0
.0

0
0

 7 
2

0
3

3
4

6
5

9
7

2
 

<'
-.', 

( 
,

( 
L

) 
(

I 
(
)

\
j 

\. 
./ 

" 
J 

\. j 
l

) 
, 

) 




