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ABSTRACT: We explore theoretical foundations and issues in the em-
pirical estimation of conflict technologies. Such technologies are probabilistic
choice functions that depend on the military capacities of adversaries, where
the military capacities themselves depend on economic inputs via ordinary
production functions. Different classes of functional forms can be derived
stochastically or axiomatically. The additive form, in particular, (which in-
cludes both the logit and ratio functional forms) has both stochastic and
axiomatic foundations. Issues in the empirical estimation that we explore
include concerns with data, endogeneity, structural breaks, and model com-
parison.
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1 Introduction

Warfare is a costly economic activity that combines inputs as varied as those
employed in any ordinary economic activity. Modern warfare requires, for
example, many different types of labor: common soldiers, officers, tank and
airplane technicians, electronics specialists, skilled pilots, complex logistic
experts, nuclears scientists and engineers, spies and other specializations
that have no counterparts in the civilian economy. The weapons systems
and the means through which they are designed and manufactured can be
similarly either routine or highly specialized compared to ordinary produc-
tion. Labor, capital, and land – the three general factors of production –
are all employed in warfare. This is not just true of modern warfare. After
the agricultural revolution and the emergence of recognizable states, warfare
became a highly organized activity, with logistics, engineering, and hierar-
chies that often superseded anything comparable in civilian production. The
level of sophistication of ancient siege machinery, for instance, was highly
complex and in ways that were rarely similar in civilian projects (Landels,
1978).

Contrary to ordinary production in which the final outputs are typically
concrete and measurable, however, the final output of warfare is less clearly
definable. The weapons and manpower of militaries are themselves inputs
to what can be thought of as military capacity, but that in itself can only
be considered an intermediate input. In turn, the military capacities of
rivals, unlike the case of ordinary economic production in which inputs are
combined cooperatively, are combined adversarially. The ultimate, final
output of warfare in which military capacities are adversarially combined,
can be thought of as wins and losses, each one with a probability that
depends on the rivals’ military capacities.

With the building of military capacities following the rules of ordinary
economic production, it is how military capacities of adversaries translate
into probabilities of wins and losses that is the focus of this chapter. Hir-
shleifer (1989) was, to our knowledge, the first to call such functions tech-
nologies of conflict, and this is the term that we adopt in this chapter as
well. Technologies of conflict are examples of probabilistic choice functions
that were first examined in the case of individual choice by Luce (1959) and,
independently, by econometricians in the 1970s (e.g., McFadden, 1974). For
applications in games of not only warfare but also of any situation in which
inputs are combined adversarially – with applications from sports to lit-
igation and lobbying and rent-seeking – these functions have been called
contest or contest success functions.1 The theory of such functions is be-
coming mature. However, there is very little empirical research estimating

1For overviews of the theory of contests and conflict, see, respectively, Konrad (2009)
and Garfinkel and Skaperdas (2007).
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such functions in the case of warfare or, more generally, of contests.
In section 2 we first introduce some commonly employed functional forms

and then provide an overview of two different types of foundations: stochas-
tic and axiomatic. In section 3, we discuss some of the technical issues in
econometrically estimating technologies of conflict.

2 Functional forms and theoretical foundations

Our purpose in this section is to introduce and discuss the properties of
different functional forms of technologies of conflict and explore theoretical
foundations on which they might be based. The two main types of theoret-
ical foundations that we will consider are those we call stochastic and those
that are typically called axiomatic.Stochastic foundations are based on as-
sumptions about how performance in warfare – in the sense of probabilities
of winning and losing – might be a noisy function of military capacities. Ax-
iomatic foundations are derived from general properties (or, axioms) that
a technology of conflict might be expected to have and the implications of
combinations of such properties would be expected to have for functional
forms.

Consider two adversaries, labeled 1 and 2. Denote their choice of mili-
tary capacities as M1 and M2. We suppose that military capacities are the
outputs of production functions of different inputs. These production func-
tions can be the same for the adversaries or they can be different. Associated
with them are cost functions c1(M1) and c2(M2). Since in this section we are
solely concerned with how pairs of military capacities translate into proba-
bilities of wins and losses and not how military capacities might be chosen,
we will keep these cost and production functions in the background. For any
given combination of military capacities, each rival has a probability of win-
ning and a probability of losing. (The probability of an impasse or “draw”
is considered to be zero, but we do discuss the case when this assumption
does not hold below.) Denote the probability of party i = 1 winning as
p1(M1,M2) and the probability of party i = 2 winning as p2(M1,M2).

For the p′is to be probabilities, they need to take values between 0 and 1,
and add up to 1: p2(M1,M2) = 1− p1(M1,M2) ≥ 0. Moreover, we can expect
an increase in one party’s military capacity to increase that party’s winning
probability and reduce the winning probability of its opponent; that is, we
should have p1(M1,M2) be strictly increasing in M1 (when p1(M1,M2) < 1)
and strictly decreasing in M2 (when p1(M1,M2) > 0).

A class of technologies that has been widely examined takes the following
additive form:

p1(M1,M2) =

{
f(M1)

f(M1)+f(M2) if
∑2

i=1 f(Mi) > 0;
1
2 otherwise,

(1)
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where f(·) is a non-negative, strictly increasing function. This class has been
employed in a number of fields, including in the economics of advertising
(Schmalensee, 1972, 1978), sports economics (Szymanski, 2003), rent-seeking
(Tullock, 1980; Nitzan, 1994), as well as contests in general (Konrad, 2009).

One unique and appealing feature of the class of conflict technologies in
(1) is that it naturally extends to the case of conflict between more than two
parties. Thus, if there were n parties to the conflict, denoting the military
capacity of rival i by Mi, and the vector of gun choices by all other agents
j 6= i by M−i, the winning probability of i would be as follows:

pi (Mi,M−i) =

{
f(Mi)∑n
j=1 f(Mj)

if
∑n

j=1 f(Mj) > 0;
1
n otherwise.

(2)

The most commonly used functional form is the one in which f(Mi) =
Mµ
i ,2 where µ > 0 (and often, for technical reasons of existence of pure-

strategy Nash equilibrium, µ ≤ 1), so that

p1(M1,M2) =
Mµ

1

Mµ
1 +Mµ

2

=
(M1
M2

)µ

(M1
M2

)µ + 1
. (3)

This functional form, sometimes referred to as the “power” form or as the
“ratio” form, is that which was employed by Tullock (1980) and the ensuing
voluminous literature on rent-seeking. This is also the workhorse functional
form used in the economics of conflict. As Hirshleifer (1989) has noted, the
probability of winning in this case depends on the ratio of military capacities,
M1
M2
, of the two parties.
Another well-known functional form is the following “logit” specification,

in which f(Mi) = eµMi , where µ > 0, so that,

p1(M1,M2) =
eµM1

eµM1 + eµM2
=

1
1 + eµ(M2−M1)

. (4)

Again as Hirshleifer (1989) has noted and as is evident from the expression
following the second equal sign in (4), by this specification, the probability
of winning depends on the difference in guns between the two parties. As
we shall see, the general additive form as well as the two specific functional
forms have both stochastic and axiomatic foundations.

2.1 Stochastic foundations

The outcome of a particular battle or war can be thought of as a noisy
function of the two rivals’ military capacities. In particular, we can posit that
each rival’s “performance” on the battlefield, denoted by Yi, is a function

2A variation on this form is f(Mi) = Mµ
i + b where α = b > 0. Amegashie (2006)

examined the properties of this form.
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of military capacity and noise so that Yi = h(Mi, θi) where θi represents
a random variable and h(·, ·) is a function of the two variables. Then, the
probability of side 1 winning can be represented by the probability that its
performance is higher than that of its adversary so that:

p1(M1,M2) = prob[Y1 > Y2] = prob[h(M1, θ1) > h(M2, θ2)] (5)

From this stochastic perspective, each side’s probability of winning de-
pends not only on the military capacities of of both sides, but also on the
functional form of h(·, ·) and the distribution of the θi’s .

The most commonly used form of h(·, ·) is the linear form so that
h(Mi, θi) = Mi+θi. In that case, when the θi’s are independently identically
distributed according to the normal distribution, the resultant probabilities
of winning and losing for the two sides are described by the probit (see, e.g.,
Train, 2003; Albert and Chib, 1993),

p1(M1,M2) = Φ(M1 −M2), (6)

where Φ is the cumulative distribution function of the standard normal
distribution.

Most likely because there is no analytical functional form representing
the probit, it has not been used as much in the case of conflict games as for
(2) or its more general form in (1).

Still when h(Mi, θi) = Mi + θi but the θi’s are independently identically
distributed according to the extreme value distribution, the logit form is
obtained (McFadden, 1974) :

pi(Mi,M−i) =
eµMi∑n
j=1 e

µMj
. (7)

The cumulative distribution function of the (type I) extreme value distribu-
tion is

Gθi = exp(− exp(−z)),

which has been known as the double exponential distribution (Yellott, 1977;
Luce, 1977) or the log-Weibull distribution.

Motivated by the derivations of the probit and logit forms, Jia (2008b)
provides a stochastic interpretation of the ratio form (3) by assuming the
performance function h(·, ·) has the multiplicative form h(Mi, θi) = Miθi.
This result extends to the n-party conflict model:

pi(Mi,M−i) =
Mµ
i∑n

j=1M
µ
j

. (8)

Jia (2008b) shows that, for n > 2, the conflict model has the generalized
ratio form (8) if and only if the independent random shocks {θi}ni=1 have a
specific distribution, which is known as the Inverse Exponential Distribution.
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Specifically, a random variable belongs to the Inverse Exponential Dis-
tribution with Parameters α and µ, α, µ > 0 [IEXP(α, µ) for short] if and
only if its probability density function (p.d.f.) has the form:

g(z) = αµz−(µ+1) exp(−αz−µ)I[z>0], (9)

where I is the indicator function which is equal to 1 when z > 0 and
0 otherwise. Accordingly, the cumulative distribution function (c.d.f.) of
IEXP(α, µ) is

G(z) =
∫ z

0
h(s)ds = exp(−αz−µ).

For an IEXP(α, µ) distributed random variable, one can verify that neither
its expectation nor variance exist, and its mode is located at ( µα

µ+1)1/µ. When
α increases, its p.d.f. becomes flatter, and more and more mass is being
pushed to the right. The parameter µ plays an opposite role. When µ
decreases, the p.d.f. becomes flatter.

Jia (2008b) interprets the parameter µ in (7) and (8) as the “noise”
of the conflict. Common to all contestants, the parameter µ captures the
marginal increase in the probability of winning caused by a higher resources
expenditure. Conflicts with low µ can be regarded as poorly discriminating
or “noisy” conflicts. When µ converges to zero, the conflict outcome con-
verges to a random lottery with no dependence upon the military capacities
of the conflicting parties. Conflicts with high µ can be regarded as highly
discriminating; as µ approaches infinity, the conflict outcome is determined
by an all-pay auction (in which the side with the highest military capacity
wins with probability 1).

A lucid interpretation of the power µ, and an alternative derivation of
(8) from (9), has been given by Fu and Lu (2008). Fu and Lu notice that
when µ = α = 1, the corresponding conflict model has the conventional
Tullock form (Tullock, 1980) as shown in equation (8) where f(Mi) = Mi.

Now, consider µ independent draws3 from the distribution IEXP(1, 1)

and name them θ1, θ2, . . . , θµ, i.e., θi
i.i.d.∼ IEXP(1, 1), or Gθi(z) = exp(−z−1).

Taking the logarithmic transformation of these θi’s yields a new set of ran-
dom variables {ζi}ni=1, where ζi = ln θi. One can derive the distribution of ζi
and find its c.d.f. Gζi(z) = exp(− exp(−z)), which, as mentioned previously,
has been known as a “double exponential distribution”(Yellott, 1977; Luce,
1977) or type I extreme-value (maximum) distribution (McFadden, 1974).
The latter name reveals its property: Consider the maximum of these µ
random variables and denote it ζ(µ). Then for any z > 0, the cumulative

3Here, we assume µ is an integer.
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distribution function of the random variable ζ(µ) is given by

Pr(ζ(µ) < z) = Pr(ζi < z,∀1 ≤ i ≤ n) =
µ∏
i=1

Pr(ζi < z) =
µ∏
i=1

Gζi(z)

=
µ∏
i=1

exp(−αz−1) = exp(−µαz−1).

One can then show that ζ(µ) ∼ IEXP(α, µ). That is to say, a contest with
contest success function (8) can be viewed as follows. Each contestant i
competes against others by producing better performance. An Mi amount of
effort allows contestant i to have a number µ of independent attempts. Each
attempt allows the contestant to produce a performance with a random value

θ
i.i.d.∼ IEXP(1, 1). If the contest selects the highest realized performance as

a contestant i’s entry in the contest, then the corresponding contest success
function takes the form (8).

The stochastic approach developed in Jia (2008b) can be easily extended
to the general conflict model (2). As such the logit form (7) is isomorphic
to the ratio or power form (8) up to a logarithmic transformation. In ad-
dition, asymmetric functional form such can be rationalized by relaxing the
assumption that all the random variables θi’s are identically distributed.

Jia (2009) extends the stochastic approach further to allow for the possi-
bility of a draw (or, stalemate) in conflict, which corresponds to the situation
that no party can force a win. This is done by introducing a “threshold” c
into the performance comparing process. The intuition is simple. A draw
can arise if every performance comparison is decided by estimates of the
difference in the adversaries’ performances with error and is a draw if this
difference is smaller than a “threshold” value c > 0. Indeed, in most con-
flicts, the outcomes are not determined by each party’s performance, but
by measures of their performances, which is the process of estimating the
magnitude of all parties’ performances against some unit of measurement.
Adopting the assumptions that (1) adversaries’ performances are determined
by their military capacities and some random variables θi’s, and (2) the ran-
dom variables are independently and identically distributed with an inverse
exponential distribution, Jia derives the following functional forms

pi(Mi,M−i) =
f(Mi)

f(Mi) + c
∑

j 6=i f(Mj)
, c > 1, (10)

and
pi(Mi,M−i) =

f(Mi)
(n− 1)c+

∑n
j=1 f(Mj)

, c > 0. (11)

Again, by relaxing the i.i.d. assumption to require only independence,
one can easily obtain more general asymmetric forms.
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2.2 Axiomatic foundations

Luce (1959) first axiomatized probabilistic choice functions such as those in
(2) in relation to utility theory, while Skaperdas (1996) provides an axiom-
atization in relation to contests and conflict. Key to both axiomatizations
is an Independence of Irrelevant Alternatives property. In the context of
conflict, this property requires that the outcome of a battle between any
two parties depend only on military capacities of these two parties and not
on the military capacities of any third parties to the battle.

The particular ”ratio” form, where f(Mi) = Mµ
i , has the property

of homogeneity of degree zero in military capacities, or pi(tMi, tM−i) =
pi(Mi,M−i) for all t > 0. This is an analytically convenient property and
likely accounts for the popularity of this functional form in applications.

The ”logit” form, where f(Mi) = eµMi , can be derived under the prop-
erty that each adversary’s probability of winning is invariant to the ad-
dition of a constant D to the military capacity of each adversary (i.e.,
pi(Mi + D,M−i + D) = pi(Mi,M−i) for all D such that Mj + D > 0 for
all j).4 Though the logit form also has analytical advantages, it has been
not used as much as the power form shown in (3). The reason is that, for a
number of well-specified models, no pure-strategy Nash equilibrium exists.

Thus, both the “ratio” functional form in (3) and the “logit” form in (4)
can be derived axiomatically as well as stochastically.

The class in (1) and the specific forms in (3) and (4) have the property of
symmetry or anonymity, in the sense that if the military capacities of two ad-
versaries were switched, their probabilities of winning would switch as well.
Consequently when two adversaries have the same military capacities, they
have equal probabilities of winning and losing. There are circumstances,
however, in which one party might be favored over another even though
they might have the same levels of military capacity. An obvious setting
conducive to such an asymmetry is where one party is in a defensive posi-
tion vis a vis her opponent (see, for example, Grossman and Kim, 1995).
The defender typically, but not always, has the advantage. A simple way to
extend (1) to take account of such asymmetries is the following form:

p1(M1,M2) =
a1f(M1)

aif(M1) + a2f(M2).
(12)

where a1 and a2 are positive constants. Note that when the adversaries have
the same military capacities, M1 = M2, 1’s probability of winning equals
a1

a1+a2
and 2’s probability of winning is a2

a1+a2
. Consequently, when a1 > a2,

1 has an advantage, whereas when a1 < a2, 2 has the advantage. Clark and
Riis (1998) have axiomatized this asymmetric form for the case of the ratio

4Hirshleifer (1989) , Hirshleifer (1995) and Hirshleifer (2000) provide many insightful
discussions of technologies of conflict and comparisons of the functional forms in (3) and
(4).
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form (i.e., where f(M) = Mµ). Rai and Sarin (2009) have provided more
general axiomatizations of this that also allow for the function f(·) to be one
of many inputs and not just of military capacity (which we have assumed, in
general, to be of other inputs as well). Finally, Münster (2009) provided a
reinterpretation and extension of the axioms in Skaperdas (1996) and Clark
and Riis (1998) by allowing adversaries to be members of groups.

For functional forms that allow for the possibility of a draw, Blavatskyy
(2010) axiomatized the following extension:

p1(M1,M2) =
f1(M1)

1 + f1(M1) + f2(M2)
, (13)

where f1(·) and f2(·) are non-negative strictly increasing functions. Note
that this is essentially the 2-player asymmetric version of (11) derived
stochastically by Jia (2009).5 That is, “1” in the denominator of (13) does
not have any special significance because if we were to multiply its numer-
ator and denominator by any positive number we would get an equivalent
functional form. One way of thinking about (13) is to consider a third party,
say “Nature,” that has a constant military capacity, M ′, which is defined
by f(M ′) = 1 (where f(·) is non-negative and increasing). When Nature
“wins,” there is a draw. Blavatskyy (2010) has extended (13) to more than
2 adversaries but not in the straightforward way that (2) extends (1).

2.3 The difference form

The literature on contests has employed or derived some other functional
forms that have not been used in the peace and conflict literature. One such
class of functional forms is the ”difference” form:

p1(M1,M2) = α+ h1(M1)− h2(M2) (14)

where α ∈ (0, 1) and the functions h1(M1) and h2(M2) are suitably con-
strained so that p1(M1,M2) ∈ [0, 1]. Contest games under specific cases of
this class of functions have been explored by Baik (1998) and Che and Gale
(2000). Skaperdas and Vaidya (2010) have derived this class in a Bayesian
framework in which an audience (for example, a judge) makes a decision
based on ”evidence” produced by two contestants, with h1(M1) and h2(M2)
being probabilities. That is, the difference class of functions has been de-
rived for non-violent cases of conflict such as litigation, lobbying, and polit-
ical campaigning. Corchón and Dahm (2010) also derive a particular class
of the difference form (similar to that examined by Che and Gale (2000) in
an axiomatic setting in which the contest success functions is thought of as
a share instead of as a probability.

5Just define fi(Mi) ≡ 1
(n−1)c

f(Mi)
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The technologies of conflict we have reviewed in this section have been
derived mostly either axiomatically or stochastically. They are thus compa-
rable in terms of foundations to production functions and utility functions,
and the theoretical research in the area is rather mature. We next turn to
issues of empirically estimating such functions.

3 Some Issues in Empirical Estimation

There is only a small body of literature devoted to empirical estimates and
tests of conflict technologies. Perhaps one reason for that is limited data
on conflict and, in particular, on battles. Unlike sports economics and the
tournament literature in labor economics, conflict data are far less available
and are more difficult to obtain and construct. Moreover, since all conflict
technologies are nonlinear comparing different functional forms becomes a
difficult task. In this section, we review the few empirical studies on the
topic and discuss four main issues in empirical estimation.

3.1 Data and recent empirical estimates

Most empirical research on conflict is based on one of two main data sets.
They are the battalion-level data set (HERO)6 authored by the Institute
of Dupuy and the interstate and civil wars data set of the Correlates of
War (COW) project7. The data on battles are the most appropriate for
the type of conflict technologies we have discussed up to this point. The
HERO data on battles include all major battles that took place from 1600
to 1989. Dozens of aspects of each battle were evaluated and systemati-
cally coded by military historians on the basis of primary and secondary
sources; their judgements were then evaluated critically by members of the
U.S. government. Although the data have some peculiarities, they have
been used to predict battle outcomes (Dupuy, 1985), and this data set is
the only cross-temporal, large-sample, quantitative data set on individual
battles in existence. It is worth noting that the HERO data set considers
only battalion-level engagements, which were usually at most of one day in
length.

In principle, the data set provides information about quantitative and
qualitative aspects of the armies involved in each battle, such as personnel
strengths and numbers of artillery units, tanks, and close air support sorties.
The data set also contains information on experts’ assessments of qualita-
tive factors including initiative, morale, technology, logistics, intelligence,
and leadership. Features of the HERO data set that may be of concern
include the following. First, the data are all based on ex-post judgements.

6This data set is available at http://www.dupuyinstitute.org/dbases.htm.
7This data set is available at http://www.correlatesofwar.org/datasets.htm
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The military historians, of course, knew the outcome of the battles when
they made the codings. Thus, a legitimate concern is that these data are
contaminated with the bias of hindsight. For example, coders might be more
likely to infer that one side had superior morale because it won the battle.
However, given the mission of the HERO project was to build a complex
model of battle outcomes accounting for an array of material and intangible
factors, one would reasonably believe that measures had been take to avoid
such biases. Reiter and Stam (1998), moreover, present evidence that such
biases are not severe. They argue that if this bias were true, one would
observe extremely strong correlations between the determinants of victory
(morale, initiative, and so on) and outcomes, where in fact only few signifi-
cant relationships are found.

The second potential problem with the HERO data set is that, except
for personnel strengths, there are many missing observations on certain vari-
ables, especially for variables on heavy equipment (artillery, tanks) and sup-
port systems. This is of course partly due to their non-existence in the
relevant subperiods (such as the Thirty Years War between 1618 and 1648),
and partly due to missing information.

Third, as the main body of the data set, the World War II data include
only the ratio of combat powers rather than actual numbers. This feature
reduces the usefulness of the data set and also makes model comparison
more difficult. For instance, as showed in (4), in the logit form of CSFs
the probability of winning depends on the difference of military capacities
of the two parties. The logit model, therefore, cannot be estimated by the
HERO data. The same logic applies to the more general probit model too.
It is easy to show that the HERO data cannot be fitted to the probit model
either.

A number of scholars have used the HERO data set. For instance, Re-
iter and Stam (1998) show that political regimes play an important role
in determining battlefield success. Specifically, they argue that armies of
democratic states fight with higher military effectiveness on the battlefield
by showing statistically that the armies of democratic states tend to fight
with substantially better initiative, and superior leadership. By estimating
an ordered probit model, Reiter and Stam first identify six key indicators
of battlefield success, which are logistics, intelligence, technology, initiative,
leadership, and morale. They categorize the first three as the organizational
aspects of an army, and the latter three indicators as the soldiering factors
of the army. By further estimating a set of bivariate regressions models,
using a state’s level of democracy as an independent variable and these six
key indicators of battlefield success as the dependent variables, Reiter and
Stam claim that, on the one hand, relative democracy is not associated ei-
ther substantially or statistically with any of the organizational aspects of
battlefield success; on the other hand, the relationship between two of the
three soldiering factors (initiative and leadership) and democracy appears
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to be quite strong. Their results are summarized in the following Table 1.

Table 1: Relationship between Democracy and Indicators of Success ∗

Independent Variable
Dependent Variable

Logistics Intelligence Technology Initiative Leadership Morale

Democracy .016 .0028 .0059 .086 .093 .011
(1.42) (.16) (.66) (3.31) (3.33) (.56)

Constant -.0064 .039 -.044 -.16 -.31 -.00006
(-.09) (.45) (-.77) (-1.15) (-2.13) (.001)

Adjusted R2 .02 .001 .003 .11 .12 .01
Probability > F .16 .87 .51 .001 .001 .56

∗ Cell values are ordinary least squares estimates on 9-point scales. T -values are reported

in parentheses.

Rotte and Schmidt (2002) is a similar study aiming to identify the deter-
minants of battlefield success. Using the same data set, Rotte and Schmidt
find that, contrary to the emphasis on technology, the numerical superiority
has retained its crucial role for battlefield performance throughout history,
together with other human elements of warfare such as leadership, morale,
and surprise. Their conclusions come from the estimates of the parameters
of two probit models. The first one (Model 1) takes force ratio, posture,
surprise, leadership, training, morale, logistics, intelligence, and technology
as explanatory variables. And the second model (Model 2) replaces the
force ratio variable by the square of it, while keeping all the other variables
unchanged. They evaluate the marginal effect for every explanatory vari-
able, which is calculated as the difference in predicted probabilities for the
corresponding variable changing from 0 to 1 at the mean of the force ratio
(2.1641). Their results are summarized inTable 2.

3.2 Endogeneity

Among the problems of estimating conflict technologies, potential endogene-
ity calls for special attention. In an econometric model, a variable is said
to be endogenous when there is a correlation between the variable and the
error term. Generally, a loop of causality between the independent and
dependent variables of a model leads to endogeneity. As highlighted in the
political economy literature (e.g., see Miguel, Satyanath, and Sergenti, 2004)
and more generally, endogeneity generates inconsistent and biased estimates
of the unknown parameters, which adversely affects the explanatory power
of the model. (See Kennedy, 2008, for more detailed discussions). For our
purposes here, endogeneity mainly comes in three possible ways.
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Table 2: Marginal Effects of the Determinants of Attacker’s Battle Success

Marginal Effects Model 1 Model 2
Force ratio .0516 .0953

(4.01) (2.42)
Posture -.0153 -0255

(.28) (.46)
Surprise .1423 .1412

(2.76) (2.72)
Leadership .4530 .4630

(9.17) (9.32)
Training -.0181 .0046

(.27) (.07)
Morale .2683 .2607

(5.25) (5.02)
Logistics .2019 .1996

(2.53) (2.49)
Intelligence .2585 .2584

(3.39) (3.36)
Technology -.0616 -.0852

(.53) (.72)
a T-values are reported in parentheses.

One channel through which endogeneity affects conflict is through mea-
surement error. Estimating a conflict technology requires one to measure
the resources both parties have devoted to the conflict. However, measuring
such resources could be a very difficult task, if it is possible at all. The
main difficulty arises because some resources are unquantifiable. For ex-
ample, morale, intelligence, and logistics can be key factors in determining
battlefield success, but since these factors are difficult to quantify, they are
sometimes excluded from the data. To overcome this difficulty, researchers
propose to use various proxies to the real resources spent. For example, Col-
lier and Hoeffler (1998) suggest using casualties to approximate the resources
devoted to civil wars. Hwang (2009) proposes using personnel strengths as a
proxy of resources. All of these practices introduce measurement error and
hence a possible endogeneity problem.

Comparing conflict technologies to production functions provides an-
other perspective on the potential endogeneity problem involved. As we
discussed in the previous section, the military capacity of each adversary,
Mi, can be thought of as a production function F that employs m inputs,
(x1, x2, . . . , xm). Scholars from von Clausewitz (1990) to Dupuy (1990), have
identified military success or failure throughout history to involve factors
such as numbers, morale, technology, and logistics. These elements are typ-
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ically interpreted as initial conditions, which come to bear in the process
of fighting a battle, and which ultimately lead to its outcome: victory or
defeat. Although total military capacity cannot be directly observed, one
can regard it as a latent variable, and assume the actual outcome of the bat-
tle, victory or defeat, is determined as we have done in the previous section
by comparing the adversaries’ military capacities. However, even with an
observable military capacity, the estimation of the “production function” is
still questionable from a statistician’s perspective. For example, Marschak
and Andrews (1944) argue that in a simple “production function,”

M = F (x1, x2, . . . , xm), (15)

the independent variables x1, x2, . . . , xm are not “independent” because they
are not controlled by the firm owner who is a profit maximizer. That is to
say, the quantities x1, . . . , xm are determined endogenously by the profit-
maximizing choices of the firm, and therefore the economist is confronted
not only with the single equation (15) in which she may be interested; but
with a system of equations which consists of m profit-maximizing conditions.
This simultaneity problem generated by the relationship between produc-
tivity and input demand has been a major subject in the literature. Applied
researchers have spent much effort addressing the econometric problem this
simultaneity creates (e.g., see Levinsohn and Petrin, 2003; Olley and Pakes,
1996). Due to the similarity between the production functions and conflict
technologies, it is easy to see that conflict technologies also share the si-
multaneity problem, which introduces another source of endogeneity to our
models.

The third possible cause of endogeneity comes from the possibility that
the dependent variable, battle outcomes, may have some causal effect on the
explanatory variable such as resources invested in the battlefield. Battlefield
success is achieved through a series of strategic interactions. During this pe-
riod, each adversary keeps updating the information about its battlefield
situation, such as position and casualties. It then makes the corresponding
moves to reinforce its possibility of winning. Clearly, then, both adversaries’
total resources invested in the battlefield could be affected by the contem-
porary combat result. To be more specific, there are two potential channels
through which this feedback effect could operate. (1) One party has gained
overwhelming advantage so as to secure the final success of the combat. In
this case, the leading party may pull back in effort and resources (manpower,
artillery power, and so on) in the final stage of a combat or even in the final
stage of an entire warfare. (2) One party has fought so poorly that it loses
any hope of achieving a final success. In such a case, it is also likely that this
party will give up in the following campaigns. This effect can also explain
one of the common beliefs of many military experts: when an adversary
suffers more than a 50% casualty rate, it is generally unable to keep fighting
and should retreat from the battlefield. In both cases, the contemporaneous

14



combat results affect the current and future resources devoted to the bat-
tlefields, which suggests a reciprocal causal relationship may exist, thereby
giving rise to a possible endogeneity problem. This problem need not be
present when we consider the larger environment of a battle, whereby the
adversaries just enter into battle with the aim of winning. The possible
adjustments to inputs in response to expected wins or losses would be more
likely to occur in smaller battles, or sub-battles. That is, endogeneity is less
likely to be a problem in larger battles and more likely in smaller ones.

Unless the endogeneity among economic variables is adequately ad-
dressed, establishing a convincing causal relationship is difficult. Endo-
geneity often leads to biased estimates of parameters of interest and false
policy implications. In order to remove the endogeneity problem from es-
timates of conflict technologies, researchers are advised to do two things:
(1) USe instrumental variables (IV) to alleviate the potential measurement
error problem and (2) carefully scrutinize the data and remove observations
which could be possibly affected by the feedback effect.

Generally speaking, an instrumental variable is one that does not itself
belong in the explanatory equation and is correlated with the endogenous
explanatory variables, conditional on the other explanatory variables. For-
mal definitions of instrumental variables, using counterfactuals and graphical
criteria, are given in Pearl (2000). Heckman (2008) also gives a thorough
discussion about the relationship between instrumental variables method
and causality in econometrics. As a rule of thumb, there are two main
requirements for using an IV:

1. The instrument must be correlated with the endogenous explanatory
variables, conditional on the other explanatory variables.

2. The instrument cannot be correlated with the error term in the ex-
planatory equation, that is, the instrument cannot suffer from the
same problem as the original predicting variable.

The second treatment, data cleansing, requires the researchers to identify
the potential feedback effect between the error terms and the explanatory
variables. In the current context, any conflict observation involving strategic
interactions between two rivalry parties should be removed from the data
set.

3.3 Structural Breaks

Since military technology has been changing over time it is important to
take account of those changes. Dupuy (1990) and Dupuy and Dupuy (1993)
provide an overview of the basic technological developments and changes
in warfare since the beginning of the 17th century. These two papers pro-
vide guidelines to divide the era of modern warfare into several subperi-
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ods based on their technological characteristics. For example, Rotte and
Schmidt (2002) propose that there should be seven distinct periods of preva-
lent combat technology since 1600 AD with major consequences for tactical
doctrine, organization, and other key variables (1600-1700, 1701-1779, 1780-
1849, 1850-1889, 1890-1929, 1930-1960,1961-present).

There are other ways to divide the modern history of warfare into subpe-
riods. For example, Snickersbee (2006) divides the era of warfare since 1600
AD into two subperiods: The gunpowder era (1600-1800) and the industrial
period (1800 to the present). According to Snickersbee (2006), the gunpow-
der era “sees a renewal of centralization, the final defeat of the threat from
the steppes, the obsolescence of fortifications, and a major innovation as
cannon are placed on ships to provide the basis of colonial trading empires
not based on migration.” The industrial period differs from the gunpowder
era in the sense that it “sees the employment of various forms of mechanical
power to warfare that places overwhelming force at the disposal of industri-
alized powers. This makes warfare a case of either mass slaughter of soldiers
and civilians, or a matter of local resistance.”

Identifying the structural breaks in the modern history of warfare ap-
pears a somewhat subjective exercise. If the timing of the breaks is un-
known, special treatment may be needed to identify the breaks. Although
treatments like CUSUMS and Hansen tests are available in the economet-
rics literature (see, e.g., Greene, 2008), they are known to suffer from lack
of power and generally work for only linear regressions models. Given that
conflict technologies are highly non-linear, one needs to develop new econo-
metric tools to identify the unknown structural breaks in the conflicts data.
To our best knowledge, such studies on conflict technologies are missing.

3.4 Model Specification

As discussed in the previous section, there a number of classes of functional
forms for conflict technologies. The most well-known are the generalized
ratio model (3), the logit model (4), and the probit model (6). From an
econometric perspective, as already explicated in section 2.1, the main dif-
ference among these three models lies in the assumptions regarding the dis-
tributions of the error terms. It is therefore natural to wonder which model
best captures the characteristics of a particular conflict and gives the most
accurate predictions.

The effort to choose among these three models in areas other than conflict
research has been frustrated by the fact that despite that the three models
have quite different theoretical consequences, they are practically indistin-
guishable with data in other areas of research in which the three functional
forms have been estimated. For instance, Burke and Zinnes (1965) compared
a probit model (T ) and a logit model (L) and claim:

16



Unfortunately, the nature of the solutions makes it very dif-
ficult to design an experiment for deciding between the the-
ories. . . For the Gulliksen-Tukey (1958), Guilford (1954), and
Thurstone (1959) data, the T predictions are considerably better
than the L predictions.

Yet Hohle (1966) found that

(a) neither model provided uniformly satisfactory representa-
tions for the data, and (b) (for) all six sets of data were more
accurately represented by Model II (L) than by Model I (T ).

In a comprehensive survey, Batchelder (1983) concluded that, achieving
any reasonable power in testing between the models statistically, it would
require an unrealistic amount of data . Stern (1990) used the Gamma dis-
tribution to approximate the probit and logit models and compares their
performances against the game results from the 1986 National League base-
ball season. He also finds it is disturbing to see so little difference between
these two models.

This problem arises because of two reasons. Firstly, all three models
are highly nonlinear, and yet a commonly accepted goodness-of-fit measure
is unavailable to achieve a convincing conclusion. Secondly, the generalized
ratio and the logit models are isomorphic up to a logarithmic transformation,
hence are nested together. Classical econometric theory fails to deal with
these two problems.

One possible remedy is provided by Bayesian Econometrics. In contrast
to Classical methods, the Bayesian approach treats any two candidate mod-
els as hypotheses. Rather than artificially designing some goodness-of-fit
statistic, Bayesians choose a natural criterion, the Bayes factor, to compare
alternative models. The Bayes factor for model A1 versus model A2 can be
defined as

B12 =
Pr(y|A1)
Pr(y|A2)

,

where
Pr(y|Ai) =

∫
Θi

Pr(θi|Ai) Pr(y|θi, Ai)dθi

is the probability of observing y, given that model Ai is correst, or the
marginal likelihood of model i, i = 1, 2. Pr(θi|Ai) represents the prior
information about the parameters of interest θi given the candidate model
Ai, and Pr(y|θi, Ai) represents the data generating process (see Kass and
Raftery, 1995).

The interpretation of the Bayes factor is given by Jeffreys (1961, Ap-
pendix B), and Kass and Raftery (1995). Jeffreys (1961) suggests the fol-
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lowing criterion as the “order of magnitude” interpretation of B12:

1 < B12 < ∞, evidence supports A1,

10−1/2 < B12 ≤ 1, very slight evidence against A1,

10−1 < B12 ≤ 10−1/2, slight evidence against A1,
10−2 < B12 ≤ 10−1, strong evidence against A1,
0 < B12 ≤ 10−2, decisive evidence against A1.

The key step in the Bayesian model comparison is computing a good ap-
proximation to the marginal likelihoods. For our nonlinear regression models
(generalized ratio, logit, probit), the main difficulty is that the marginal like-
lihood functions cannot be expressed directly as some posterior moments,
and consequently the computation cannot be interpreted directly as a spe-
cial case of the simulation-consistent approximation of posterior moments.
Fortunately, there are computational methods specifically tailored to over-
come this kind of problem. These methods, though widely used in Bayesian
econometrics, have not appeared in the conflict literature. A brief introduc-
tion of these powerful tools may be informative to some interested readers.
In the Appendix we compute the marginal likelihoods of probit and logit
models.

The idea of the Bayesian model comparison is quite intuitive. It is a
simulation-based approach that is computationally intensive which is be-
coming easier and less-time consuming. Jia (2008a) uses this approach to
compare the generalized ratio, the logit, and the probit forms of contest
success functions using NBA data. He shows that the probit form is most
favored by the NBA data. The same method could be applied to conflict
data.

Furthermore, Jia (2010) proposes an alternative classical method to com-
pare the generalized ratio and the logit functional forms. In Corollary 2 of
his paper, he derives the following unified model

pi(Mi,M−i) =
exp

[
αγ

1−γ

(
η + β

γMi

)1−γ
]

∑n
j=1 exp

[
αγ

1−γ

(
η + β

γMj

)1−γ
] , (16)

which takes both the generalized ratio and the logit forms as limiting cases.
For instance, if η = 0, β = γ−γ/(1−γ), and γ = 0, (16) becomes the logit
form; if η = 0, β = γ−γ/(1−γ), and γ = 1, (16) becomes the generalized ratio
model.

This result suggests that instead of statistically comparing the goodness-
of-fit measures of the generalized ratio and the logit forms, one can estimate
the unified model (16) and conclude which form better captures the data by
examining the parameter γ: if γ is close to 1, the ratio form fits the data
better; if γ is close to 0, the difference form is more plausible for the conflict.
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Hwang (2009) applies a similar treatment to the HERO data, and concludes
that the generalized ratio form of conflict models fit the data of seventeenth
century European wars.

4 Concluding Remarks

Warfare and other forms of conflict are typically uncertain but the outcome
does depend on the resources expending by adversaries. We have considered
conflict technologies to be probabilistic choice functions that depend on the
military capacities of adversaries, with the military capacities themselves
depending on economic inputs via ordinary production functions. We have
examined both the theoretical foundations of technologies of conflict and
various issues in estimating them empirically.

Different classes of functional forms can be derived either stochastically
or axiomatically. The additive form, in particular, (which includes both the
logit and ratio specific functional forms) has both stochastic and axiomatic
foundations. We have explored the various problems in empirically estimat-
ing technologies of conflict. They include concerns with data, endogeneity,
structural breaks, and model comparison. Whereas research on theoretical
foundations is rather mature, there is not much empirical research on the
topic and that is clearly a promising area for future research.

A Appendix

A.1 Evaluating the Marginal Likelihood in the Probit Model

The method of evaluating the marginal likelihood of probit model starts
with the conditional probability formula:

Pr(β|y,A) =
Pr(β|A) Pr(y|β,A)

Pr(y|A)
, (17)

where A represents the specified model, and Pr(β|A) and Pr(β|y,A) are
the prior of parameters of interest β before observing the data y and the
posterior of β after y being observed, respectively. The other two terms in
(17), Pr(y|β,A) and Pr(y|A), are the likelihood (or, data generating process)
and the marginal likelihood of data y.

For computational convenience, after taking a logarithmic transforma-
tion on both sides, (17) can be rearranged as

ln Pr(y|A) = ln Pr(β|A) + ln Pr(y|β,A)− ln Pr(β|y,A). (18)

Evaluating the marginal likelihood of a model A is now equivalent to eval-
uating the right-hand-side of (18). Since the prior is preassigned, and the
likelihood functions Pr(y|β,A) is known to be a density function of a normal
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distribution, the left-hand-side of (18) then boils down to evaluate the pos-
terior ln[Pr(β|y,A)]. If the posterior can be easily determined by choosing
an appropriate prior, which is called a conjugate prior, one can easily gen-
erate draws from all three functions in the left-hand-side of (18) and assess
them numerically. This is exactly the method we treat the probit model.

To be specific, assume in a probit model A, the observables are repre-
sented as a T×K matrix of covariates X = [x1, . . . , xT ]′ and a corresponding
set of T binary outcomes y, with

Pr(yt = 0|xt, A) = 1− Φ(β′xt) = Φ(−β′xt),
Pr(yt = 1|xt, A) = Φ(β′xt).

In a conflict context, the matrix X includes all factors that determine the
outcome of the conflict, and the observation yt represents the outcome of
conflict t, with yt = 1 being a preassigned party achieves a victory in conflict
t, and yt = 0 otherwise. If we introduce a latent variables ỹt = β′xt + εt,
εt ∼ N (0, 1), then the first outcome, yt = 0, corresponds to ỹt ≤ 0 and the
second to ỹt > 0. Let I be an index function with

I(ỹt) =
{

1 if ỹt ≥ 0,
0 otherwise.

It is clear that I(ỹt) and yt should be identical. Denote the conditionally
conjugate prior distribution by β|X,A ∼ N (β,H−1), a normal distribution
with mean β = 0K×1 and covariance matrix H−1 = c× IK×K , where IK×K
is the identity matrix of order K and c is any preassigned positive constant8.
The reasons for using a proper, but a rather flat, prior are the following: (1)
a proper prior guarantees that the posterior is also proper, which ensures
the convergence of the marginal likelihood; and (2) the flat p.d.f indicates
that the prior is of very poor precision, which avoids the potential critique
of choosing a specific informative prior.

After some manipulation, one can show that the posterior

β|ỹ, I, A ∼ N (β,H−1),

is normally distributed with mean and covariance matrix

H = H +X ′X,

β = H
−1(Hβ +X ′ỹ).

In addition, in the distribution of ỹ|I, β,X,A, the elements ỹt, known as
probits, are independent. These conditional posterior distributions are the

8The constant c should be relatively large (e.g., greater than 1000). This specification
corresponds to a rather noninformative prior.
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basis for a simple Gibbs sampling algorithm, which was first proposed in
Albert and Chib (1993).

One can now follow Chib (1995) and extract the marginal likelihood from
the Gibbs output after the posterior simulator has been constructed.

Because Expression (18) always holds, one can evaluate the log-marginal
likelihood, the right-hand-side of (18), at a certain point β∗. Given the Gibbs
sampling output {β(l)}Ll=1, where L is the number of iterations, let β∗ be
the simulated posterior mean, i.e.,

β∗ =
1
L

L∑
l=1

β(l).

Equation (18) can now be expressed as

ln Pr(y|A) = ln Pr(β∗|A) + ln Pr(y|β∗, A)− ln Pr(β∗|y,A).

For the probit model under consideration, the first term on the right-hand-
side, Pr(β∗|A) = φ(β∗|β,H−1), is a normal density of the prior, the second
term is a log-likelihood function evaluated at β∗. The last term, under some
regularity conditions, can be approximated by

P̂r(β∗|y,A) = L−1
L∑
l=1

φ(β∗|β(l), H
−1).

By the ergodic theorem (see, e.g., Tierney, 1994), when L becomes suffi-
ciently large, P̂r(β∗|y,A) converges to Pr(β∗|y,A) almost surely. Therefore,
by the Slusky theorem, ln[P̂r(β∗|y,A)]

a.s.→ ln[Pr(β∗|y,A)]. Putting all three
pieces together, the approximated marginal likelihood of the probit model
can be computed.

A.2 Evaluating the Marginal Likelihood in the Logit Model

The logit model differs from the proit model by its likelihood function. In
particular, the likelihood of logit model is given by

Pr(y|β,A) =
T∏
t=1

Pr(yt|β,X,A) =
T∏
t=1

[
exp(β′xt)

1 + exp(β′xt)
]yt [

1
1 + exp(β′xt)

]1−yt ,

where T is the number of observations. For such a likelihood function,
a conjugate prior doesn’t exist, which means the posterior β|y,A has no
closed analytical form. Therefore, one cannot directly apply Equation (18)
to evaluate the marginal likelihood of a logit model, an alternative route
need to be taken.
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Again by Bayes theorem, one has

Pr(y|A) =
∫

ΘA

Pr(β|A) Pr(y|β,A)dβ, (19)

so evaluating the marginal likelihood, or the let-hand-side of (19), is identi-
cal to numerically assessing the integral on the right-hand-side. A method
known as the “density ratio approximation method,” which is proposed by
Gelfand and Dey (1994), can be used to serve our purpose.

To be more specific, we again assign β|A ∼ N (β,H−1) as the prior for
comparison purpose. The “density ratio approximation method” requires
random samples from the posterior distribution Pr(β|y,A). Because this
posterior has no analytical representation, directly sampling from it is almost
impossible. Fortunately, statisticians propose a sampling scheme, which
has been called the Metropolis-Hasting sampling procedure, to overcome
this difficulty9. Generally speaking, the Metropolis-Hastings algorithm is
a Markov chain Monte Carlo method for obtaining a sequence of random
samples from a probability distribution for which direct sampling is difficult.
This sequence can be used to approximate the distribution (i.e., to generate
a histogram), or to compute an integral (such as an expected value).

Notice although the posterior distribution cannot be analytically identi-
fied, Bayes theorem indicates that:

Pr(β|y,A) ∝ Pr(β|A) Pr(y|β,A).

That is to say, if one makes many draws from the prior Pr(β|A) and the
likelihood Pr(y|β,A), the shape of the posterior distribution can be de-
termined by the products of these draws. But in order to identify the
posterior distribution, a normalization factor, which guarantees the prob-
abilities sum up to one, is often extremely difficult to compute. A major
virtue of the Metropolis-Hastings algorithm is its ability to generate a sam-
ple without knowing this constant of proportionality. Notice the draws from
a Metropolis-Hasting sampling are serially correlated, since each draw de-
pends on the previous draw. This serial correlation needs to be considered
when using these draws. That is why one should calculate the mean of all
the simulations after many iterations of the Metropolis-Hasting procedure
and call it a single draw from the posterior Pr(β|y,A)10. With this draw
in hand, one can then proceed with another draw from the Gibbs sampling.
In other words, a Metropolis-Hasting sampling procedure needs to be em-
bedded into each Gibbs sampling iterations. In particular, for numerically
evaluating the marginal likelihood function of a logit model, all the posterior
simulates have to be recorded.

9Chib and Greenberg (1995) provide an excellent description of the Metropolis-Hasting
algorithm as well as an explanation of why it works.

10For a more detailed discussion, see Train (2003).
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Given the output of a posterior simulator, β(l) ∼ Pr(β|y,A), evaluations
of the prior density Pr(β|A) and data density Pr(y|β(l), A), one can follow
Geweke (1999) and approximate (19) by

L−1
L∑
l=1

Pr(β(l))
Pr(y|β(l), A) Pr(β(l)|A)

a.s.→ [f(y|A)]−1, (20)

where L is the number of iterations. Obviously, the term Pr(β(l)|A) is the
prior, which can be evaluated in a density function of a normal distribution,
and

Pr(y|β(l), A)
T∏
t=1

[
exp(β(l)′xt)

1 + exp(β(l)′xt)
]yt [

1
1 + exp(β(l)′xt)

]1−yt (21)

can be computed to machine accuracy rapidly. The only term left unknown
on the left-hand-side of (20) is Pr(β(l)), a p.d.f. constructed from the pos-
terior simulator output. By theorem 8.1.2 of Geweke (2005), it can be
constructed as follows:

P̂r(x, α) =
(2π)−K/2|Σ(L)|−1/2

1− α
exp[−1

2
(x− µ(L))′Σ−1

(L)(x− µ
(L))]I

X
(L)
α

(x),

(22)
where µ(L) and Σ(L) are sample mean and variance respectively, α is a

predetermined number between 0 and 1, and X
(L)
α is the truncated highest

density region of size 1− α.
Putting together all three pieces, the prior Pr(β(l)|A), the likelihood (21),

and (22), the marginal likelihood of the logit model can then be evaluated
numerically. In particular, one can choose α = 5% and L = 1000.
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