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ABSTRACT

Early childhood nutrition is thought to be an important input into subsequent

academic achievement.  This paper investigates the nutrition-learning nexus using a

unique longitudinal data set, which follows a large sample of Philippine children from

birth until the end of their primary education.  We find that malnourished children

perform more poorly in school, even after correcting for the effects of unobserved

heterogeneity both across and within households.  Part of the advantage that well-

nourished children enjoy arises from the fact that they enter school earlier and thus have

more time to learn.  The rest of their advantage appears to stem from greater learning

productivity per year of schooling rather than from greater learning effort in the form of

homework time, school attendance, and so forth.  Despite these findings, our analysis

suggests that the relationship between nutrition and learning is not likely to be of

overriding importance either for nutrition policy or in accounting for economic growth.
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1.  INTRODUCTION

Economists have long had a keen interest in the relationship between income and

nutrition.  One strand of research focuses on how income influences food consumption

and, consequently, nutritional status (Behrman and Deolalikar 1987; Bouis and Haddad

1992; Subramanian and Deaton 1996).  A second strand of research reverses the direction

of causation, examining how nutritional status affects income via labor productivity

(Leibenstein 1957; Stiglitz 1976; Gersovitz 1983; Strauss 1986).  More broadly, this

literature asks whether inadequate nutrition has constrained economic growth, historically

in developed countries (Fogel 1994) and currently in developing countries (Dasgupta

1993).

In this paper, we consider a different route through which nutritional status affects

income.  Rather than investigate whether malnutrition among adults diminishes physical

effort, we consider whether malnutrition among young children impedes their acquisition

of academic skills.  The possibility of a strong connection between nutrition and learning

is of growing importance.  As a result of technological progress, labor productivity more

than ever depends on academic skills (see Bartel and Lichtenberg 1987).  Recent

empirical findings confirm a positive relationship between wages and academic

achievement, as measured by test scores, in both developed (Murnane, Willett, and Levy

1995; Neal and Johnson 1996) and developing (Boissiere, Knight and Sabot 1985;
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Glewwe 1996) countries.  Based on these findings, if malnutrition does indeed hamper

school performance, then economic growth and improved nutrition are mutually

reinforcing, supporting Fogel’s general thesis.

In recent years, policymakers have increasingly promoted early childhood nutrition

programs as a way to raise living standards in developing countries (World Bank 1993;

Young 1996), as well as among the U.S. poor (GAO 1992).  Proponents of such programs

argue that improved diet, particularly in the crucial first years of life, enhances intellectual

development and, ultimately, academic success (see Brown and Pollitt 1996).  Their view

is that, in addition to having direct health benefits, early childhood nutrition programs

could also be an instrument of education policy.  Yet, the evidence in support of this view

is surprisingly sparse (Behrman 1996).

Behind this lack of evidence is a paucity of good data, specifically data that allow

one to address the problem of spurious correlation between nutritional status and

academic achievement (conditional on other academic inputs).  Such correlation could

arise from parental behavior; for example, parental allocations of nutritional inputs may

respond to unobserved variation in learning efficiency (e.g., child ability or motivation)

both across and within households.  In principle, the problem could be addressed using

data generated from an experiment in which treatment and control groups of infants are

randomly selected from a malnourished population.  The treatment group is provided an

improved diet during the first few years of life and a decade or so later both groups are

given school achievement tests.  One could then estimate the relationship between
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 Note that this procedure would only identify the reduced form effect of nutrition on achievement.  To1

estimate the structural relationship (see below), one would still have to control for all other academic inputs,
which might also have to be explicitly randomized across children.

 The INCAP study in Guatemala probably comes closest to such an experiment, at least in terms of2

length of follow-up.  Pollitt et al. (1993) find significant effects of early childhood supplementary feeding on
various measures of cognitive skills in adolescence.  The experiment has two drawbacks, however: (1) it
compares only two distinct nutritional interventions, each in only two villages, without a pure control group;
and (2) the nutritional supplements were provided in a central feeding station, so that take-up was voluntary.
Thus, within each of the four villages, participation in the treatment group was not random.  For a general
critique of the ability of experiments to produce clear-cut results, see Heckman and Smith (1995).

academic achievement and indicators of early childhood nutrition, such as height, using

treatment status as an instrumental variable for the latter.   But because of the ethical and1

practical issues raised by this “ideal” experiment, it has yet to be carried out and perhaps

never will be.2

We estimate the impact of nutrition on learning using nonexperimental data

collected in Cebu, Philippines, over a period of twelve years.  A large sample of children

were surveyed shortly before their birth and up through primary school, providing

information on early childhood nutrition and subsequent school performance, as

measured by achievement tests.  Achievement test scores and other information are also

available for the younger siblings of the original children.  Our study is thus the first to

combine longitudinal information on children with data on their siblings to investigate the

nutrition-learning nexus.

Though we will argue shortly that no nonexperimental study can hope to replicate

the ideal experiment described above, we believe that our analysis makes considerable

progress in sorting out the casual relationship between nutrition and learning.  In

particular, we find that better early childhood nutrition raises academic achievement.  Our
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analysis also illuminates the pathways through which nutritional status affects learning in

a developing country.  Part of the advantage that well-nourished children enjoy arises

from the fact that they enter school earlier and thus have more time to learn.  The rest of

their advantage stems from greater learning productivity per year of schooling.  We find

little evidence that nutritional status influences learning effort in the form of school

attendance, homework, and so forth.

Before turning to these results in Section 4, we lay out a framework for estimation

in Section 2 and describe our data in Section 3.  We discuss the economic significance of

our findings in Section 4 and conclude in Section 5.

2.  EMPIRICAL STRATEGY

AN ACHIEVEMENT PRODUCTION FUNCTION

Our main interest lies in the achievement production function, which relates early

childhood nutrition and other academic inputs to a child’s scholastic output as measured

by a score on an achievement test.  This production function answers the ceteris paribus

question of how early childhood nutrition influences subsequent academic achievement. 

It is distinct from the “reduced form” relationship between achievement and nutrition,

which does not control for other academic inputs, in that it is far more generalizable to

other environments; in particular, the reduced form effect of nutrition on achievement

may vary across environments because parents may differ in how they adjust other

academic inputs in response to malnutrition.
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 A criticism of this approach, discussed further below, is that height-for-age reflects more than just a3

child’s cumulative nutritional history, because it also captures the effects of illness and other environmental
and genetic influences.

 In contrast to this cumulative achievement production function, Hanushek (1986) advocates a value-4

added specification in which lagged achievement is included on the right hand side of equation (1) and only
incremental inputs are considered.  The problem with such a specification in the present context is that the
incremental effect of nutrition on the achievement gain between any one or two grades would be smaller than
the cumulative effect considered in equation (1) and therefore harder to detect.

(1)

The academic input on which we focus is the nutritional history of the child in the

early years of life.  However, as a practical matter, measuring cumulative nutrition inputs

is extremely difficult, and a simple alternative is to use the child’s height-for-age as a

summary statistic for the nutritional history up to that age.3

To highlight our informational assumptions, we divide a child’s life into three

periods.  Period 0 consists of (approximately) the first two years of life, which is thought

to be the most crucial stage of postnatal development (see Cravioto and Arrieta 1986;

Dobbing 1984; Levitsky and Stropp 1995).  Period 1 is from two years to the minimum

age of primary school enrollment, and Period 2 is the primary school period.  A linear

achievement production function is given by

where A  is the academic achievement of child k (realized in period 2), H  is height-for-2k            1k

age in period 1, which is taken to represent the child’s nutritional history up until the end

of that time period, and Z  is a vector of other inputs that influence academic2k

performance.4
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 McCall (1979) summarizes the view prior to 1980: "after nearly one-half century of data collection5

and analysis, the results unequivocally show that scores on instruments of infant mental performance during
the first 18 months of life do not predict later IQ to any practical extent (p. 707)."  Recently, psychologists have
developed new tests of infant mental capacity that show at least a weak correlation with intelligence in later
life (Siegel 1989).  Nonetheless, it would seem safe to assume that parents in developing countries cannot
detect their children’s mental acuity, and make nutritional allocations accordingly, prior to age two.

Achievement also depends on the child’s learning efficiency or “endowment,”

which represents factors, such as ability and motivation, that are out of parents’ control. 

We decompose the learning endowment into a component 0 that is common among

siblings i and j, and a component ,  that is child specific.  The common component isk

assumed to be known to parents prior to the birth of any one of their children, but a given

child’s ,  is not known until some time after his or her birth.  Note also that any elementk

of Z  that is common across siblings, such as those reflecting “home environment,” will2k

be impounded in 0.

With this stochastic specification, we are ready to consider the problem of spurious

correlation between nutritional status and achievement.  The most general economic

model of human capital investment (see, e.g., Rosenzweig and Wolpin 1988) implies that

H  and Z  are functions of, among other things, 0 and all the , ’s that have been1k  2k           k

“realized” up to that point; this leads to simultaneity bias in equation (1).  On the other

hand, the ,  of a child who has not yet been born is unknown and thus cannot influencek

parental behavior.  We further argue that parents are unlikely to know child k’s learning

endowment in period 0, when they make the nutritional investments for that child that are

reflected in H , so that E[H , ] = 0.  This informational assumption is consistent with0k    0k k

the conclusions of the psychology literature on child intelligence.5
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 Behrman and Lavy (1994) also use a sibling differences procedure to study the nutrition-learning6

nexus in Ghana, but they do not have longitudinal data to deal with the endogeneity problems that remain.  In
their U.S. study of preschool cognitive skills, Rosenzweig and Wolpin (1994) use data on siblings as well and
also control for the correlation between child-specific unobservables and prenatal inputs, which are the focus
of their analysis, but they find no evidence of  bias from the latter source.

(2)

Suppose now that we have a sample of sibling pairs, with information on academic

achievement, academic inputs, and height-for-age.  By differencing equation (1) across

siblings i (older) and j (younger), we can purge 0 to eliminate part of the correlation

between the error term and the inputs.  This procedure yields 

where , and so forth.  Differencing also has the advantage of purging

any unobserved inputs that are constant across siblings; for example, in our sample nearly

all sibling pairs attend the same school, so that school quality is one such common input. 

Still, we are left with an endogeneity problem because, in general, E[)H ), ] … 0; once1k k

a child’s ability or motivation for learning is realized by parents, it may influence their

allocations of nutritional inputs.  A natural solution to this problem is to use H , the0i

nutritional status of the older child in his first two years of life, as an instrument for

)H .   Under our informational assumptions, this instrument is uncorrelated with both ,1k             i
6

and , .  As for the endogeneity of  the other academic inputs, Z , we return to this issue inj             2k

Section 4.

There is another reason to adopt this instrumental variable strategy.  If period 0

nutrition, as reflected by H , is crucial for a child’s cognitive development, but0k
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 Such would not be the case if there were significant catch-up growth after age two, the possibility of7

which is still an unresolved issue in the nutrition literature (Martorell, Khan, and Schroeder 1994).

subsequent nutrition is less important or, in the extreme case, unimportant, then equation

(2) could lead to an underestimate of the true impact of nutrition on achievement.  In the

extreme case, we can view H  as a noisy indicator of early childhood nutrition, and this1k

“measurement error” in the nutrition indicator would lead to attenuation bias in equation

(2).  Of course, the best way of determining the true impact of period 0 nutrition would be

to replace )H  by )H  in equation (2), but, unfortunately, in our data set,1k  0k

anthropometric measurements in early childhood (prior to age two) are available only for

the older sibling.  Nevertheless, our instrumental variables strategy corrects for the

measurement error bias, provided that child physical growth after age two is uncorrelated

with H .0i
7

A criticism of our basic identifying assumption, E[H ), ] = 0, is that H  and ,0i k      0i  i

may be correlated for physiological reasons.  For example, pre- or postnatal health shocks

may influence both the physical and mental development of the child.  It is also

conceivable that there is a genetic correlation between physical stature and innate ability,

though we know of no research that supports this.  Assuming that all other relevant

academic inputs are indeed controlled for, an iron-clad identification strategy when

E[H ), ] … 0, is to search for a “natural” experiment, such as an income or price shock0i k

(or a combination of shocks), that leads to differences between siblings in height-for-age. 

However, finding in any data set a shock that is (1) of sufficient magnitude and
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 The classic example of such a natural experiment is the stunting caused by famine during the Second8

World War in Holland (Stein et al. 1975), but to be useful in practice exposure to the famine must vary
exogenously across the sample.  An intensive feeding program (not necessarily randomly assigned) that
happens to be phased in or out after the younger sibling is born would also suffice provided, again, that its
coverage varied in the sample.

 The condition that the shock differentially affect the siblings’ stature would not be necessary if9

equation (1) is estimated directly, i.e., without differencing across siblings.  However, the problem is then to
find price or income variables that are correlated with child height, but do not reflect unobservable household
or geographic characteristics that directly influence achievement, such as school quality.

 Yet another identification strategy would be to use household or mother characteristics (including10

prenatal inputs) realized prior to the birth of the older sibling as instruments.  We investigated many such
variables but found them to be very weakly correlated with sibling height differences in our sample.

persistence to affect a child’s stature (2) sufficiently variable across households, and

(3) sufficiently transitory not to affect the sibling’s stature would be nothing short of

miraculous.   So, there does not seem to be any hope of replicating the ideal experiment8,9

laid out in the introduction with a natural experiment.   Despite our inability to correct10

for the potential bias due to physiological shocks, we can plausibly sign its direction. 

Since poor health is likely to impair both a child’s physical growth and mental

development, it will induce a positive correlation between H  and , , leading to an0i  i

overestimate of " .  Thus, in the presence of important physiological shocks, our estimateH

of "  may be viewed as an upper bound on the impact of nutrition on achievement.H

DELAYED ENROLLMENT AND SELECTION BIAS

An important feature of our data is delayed primary school enrollment; many

children enter school after the minimum age at which they are allowed to enroll.  This

phenomenon is not unique to the Philippines, but has been noted in other low income
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 In our sample of sibling pairs, it is only the younger sibling who could conceivably not be in school11

because of delayed enrollment.

(3)

countries (see Glewwe and Jacoby 1995).  The implications of delayed enrollment for the

estimation of achievement production functions are twofold.  First, delaying enrollment

may improve learning productivity because, ceteris paribus, an older child is better

prepared for school.  Indeed, one of the reasons parents might delay enrolling their

children is to make up for an initial lack of school readiness (Glewwe and Jacoby 1995). 

Thus, the age of enrollment should appear as one element of the vector Z  in equation2k

(1).  Second, an inherent, yet little noticed, feature of scholastic achievement data is that

only children who have already entered school (or, more generally, a particular grade) are

tested.  Yet, children who delay enrollment and thus are not tested may differ

systematically from those who enroll on time.  This implies that delayed enrollment can

lead to selection bias in the achievement production function.

To deal with this selection bias, we must first specify the equation for delayed

enrollment for the younger sibling j.   Let D  denote the number of months after the11
j

minimum age of school enrollment before child j actually enrolls.  Ignoring factors other

than nutritional status for the moment, a linearized dynamic decision rule for D  can bej

written as 



E[)A2k|child j enrolled] ' "H)H1k % "N
Z)Z2k % E[),k|Dj <Tj]

' "H)H1k % "N
Z)Z2k % E[),k*$,o,j % $,c,i % $00<Tj & $HoH1j & $HcH1i]

' "H)H1k % "N
Z)Z2k % E[),k*vj<Tj & $̃HoH1j| & $̃HcH1i]

.

E–$,o,j% $,c,i % $00 /Tj,H1j,H1iœ

),k

),k

11

(4)

The coefficient subscripts o and c indicate own and sibling cross-effects of early

childhood nutrition and the learning endowment on child j’s delay decision.  Now let Tj

be child j’s current age, measured as the number of months since reaching the minimum

age of enrollment.  The selection bias correction is derived as follows:

The last line of equation (4) requires explanation.  Since H  and H  are correlated with , ,1j  1i    j

,  and 0, single equation methods will not produce consistent estimates of the parametersi

of the selection rule.  But here we are interested only in correcting for selection bias, not

in recovering the structural parameters of the selection rule.  Following Chamberlain

(1980), we therefore assume that  is a linear function of

the conditioning variables, and use this assumption to decompose the terms involving , ,j

,  and 0, in the second line of equation (4).  The error term <  is still correlated with ,i              j

but not (by construction) with the regressors in the selection rule.  Given a joint

distribution for  and < , we can replace the conditional expectation in the last line ofj

equation (4) by its estimate (e.g., an inverse Mills’ ratio), with the age of the younger

sibling j (T ) serving to identify the selection bias. j
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 The survey was jointly conducted by the Office of Population Studies at the University of San Carlos,12

Philippines, the Nutrition Center of the Philippines, and the Carolina Population Center of the University of
North Carolina (Chapel Hill).

3. DATA AND SAMPLE

THE CEBU LONGITUDINAL HEALTH AND NUTRITION SURVEY

Our data come from the Cebu Longitudinal Health and Nutrition Survey (CLHNS),

which was carried out in the Metropolitan Cebu area on the island of Cebu, Philippines.  12

Metro Cebu includes Cebu City, the second largest city in the Philippines, and several

surrounding urban and rural communities.  The CLHNS tracks a sample of 3,289 children

born between May 1, 1983, and April 30, 1984, in 33 randomly selected barangays

(districts).  The interviews began before birth, when the mothers were seven months

pregnant.  Detailed health and nutrition data, including anthropometric measurements of

both the mother and the child, were gathered every two months for the first two years of

the child’s life, along with household and community-level information.  Follow-up

surveys were conducted in 1991-92, when these “index” children (to distinguish them

from their younger siblings) were about eight years old, and in 1994-95, when they were

about 11 years old.  Both follow-up surveys collected anthropometric data, and in our

empirical analysis, we use the height-for-age Z-score taken closest to the time of the

school enrollment decision.  For index children, this is the 1991-92 Z-score and for

younger siblings, the 1994-95 Z-score.
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 Eighty-three percent of the 3,085 children originally interviewed in 1983 were still in the sample by13

age two.  Attrition was mainly due to permanent migration out of the Metro Cebu area and death.  About 72
percent of the original children were resurveyed in the 1991-92 follow-up, and the sample declined only
slightly for the 1994-95 follow-up.  See Appendix Table 6 for details.

The 1994-95 follow-up survey gathered detailed information on schools, academic

inputs, and student achievement.  English reading comprehension and mathematics tests

were developed for the survey based on the official primary school curriculum.  We use

the sum of the math and English scores in our analysis.  This follow-up survey also

provides a detailed schooling history of each index child and, if in school in 1994-95, his

or her younger sibling.  Information includes the year the child first enrolled in school,

grade repetition by grade, and current grade (or last grade attended if no longer enrolled). 

Finally, exhaustive information was collected on current academic inputs for each child,

including time allocation on school days. 

Our analysis focuses on sibling pairs of school age.  Of the 2,192 index children

still in the sample in 1994-95,  1,239 have a younger sibling of school age; that is, who13

are at least six and a half years old by June 1994, the start of the 1994-95 school year.  Of

these sibling pairs, 1,149 of the younger siblings were enrolled in school by June 1994

and the remaining 90 had not yet enrolled.  After dropping observations with missing

data, we are left with a sample of 1,016 enrolled sibling pairs for the production function

estimation.
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DESCRIPTION OF KEY VARIABLES

Table 1 describes schooling outcomes for our sample in 1994–95.  Virtually all

index children had enrolled in primary school by age 11 (the nine who did not were

dropped from the sample).  Younger siblings born in 1984–1986 had enrollment rates

upward of 95 percent, while only about three-quarters of those born in 1987 had enrolled

by the 1994–95 school year.

Table 1—School enrollment, repetition, and grades completed

Index Children Younger Siblings

Year born 1983 1984 1984 1985 1986 1987

Number of children 917 322 98 481 443 217

Percent ever enrolled in first grade 100 100 95.9 97.1 95.3 76.5

Delayed enrollment:

     Percent ever delayed 21.2 11.2 19.1 21.6 18.5 0

     Number of years delayed (mean  1.3 1.3 1.3 1.3 1.2 --
     for those who delayed)

Grade repetition:

     Percent ever repeat any grade 29.3 18.9 23.5 15.2 8.4 2.3

     Percent ever repeat first grade 21.2 13.4 20.4 13.9 8.4 2.3

     Number of grades repeated          1.3 1.2 1.2 1.1 1.0 1.0
     (mean for those who repeated)

     Current grade in school (mean) 4.2 3.6 3.3 2.5 1.7 1.1

     Percent dropped out 5.3 4.4 2.0 4.4 2.9 4.6

Notes: The number of children and enrollment figures are based on a sample of 1,239 sibling pairs for
which the index child could be matched to a younger sibling of school age.  They exclude 9 pairs
for which the index child never enrolled in school.  The remaining figures are conditional on
school enrollment (90 younger siblings were not enrolled).  The data refer to the 1994-95 school
year.
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At the time the children in our sample began to enter school, six and a half was the

minimum age of school enrollment in Cebu.  A child can be said to have delayed

enrollment if he is seven and a half years of age or older when he enters first grade.  Table

1 shows that about 19 percent of index children enter school late (usually waiting until

the next academic year to enroll), but delays are much more common among those born

in 1983 than among those born in 1984.  This greater tendency to delay is due to the fact

that the 1983 births occurred later in the calendar year than the 1984 births and hence

these children were relatively younger when they had their first opportunity to enroll (in

the Philippines the school year begins in late June); presumably, their parents viewed

them as less “ready” for school.

Table 1 also indicates that grade repetition is pervasive in Cebu, with 27 percent of

the index children repeating at least one grade.  Repetition is more common among

children born in 1983 than in 1984, probably for the same reason that delays are more

common; children born in 1983 were less ready for school and hence those who did not

delay their enrollment were more likely to repeat.  First grade is by far the most frequently

repeated, and most children repeat only once.  Although repetition appears to decline for

later cohorts of younger siblings, this trend is spurious.  Later cohorts are more likely to

be in grade one for the first time, and thus have not had the opportunity to repeat.  Table 1

also shows that dropping out of primary school is a rare phenomenon, with only about 4

percent of the sample having left school.
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 In a preliminary analysis, we also included variables reflecting birth order (a dummy variable for14

whether the child was first born as well as the prior birth interval in months), but these never attained statistical
significance and thus were subsequently dropped.

Finally, a word about the nutritional status of the sample, which is quite low

despite the fact that Cebu is not desperately poor.  Almost half of the children in the

sample are currently stunted, i.e., their height-for-age is at least two standard deviations

below the mean for a healthy U.S. population.

4. EMPIRICAL RESULTS

ACHIEVEMENT PRODUCTION FUNCTION

The central results of this paper are presented in Table 2.  Besides the sex and

height-for-age Z-score of the child at the time of school enrollment,  the achievement14

production function includes the age of enrollment, time spent in school, and time not in

school; these variables sum to give current age, which is potential time in school.  Time

in school is distinguished by grade (first and second versus third through sixth) and by

whether it is spent repeating (either first or second) grades, since the marginal impact of a

repeated grade may be different than a nonrepeated grade.  Time not in school is the sum

of school break time and, for children no longer in school, time since the child dropped

out.  This variable is included to capture learning depreciation.  School characteristics are

assumed to affect achievement as well, but drop out of the sibling differences  
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Table 2—Achievement production function

Sibling differences

Mean
(Standard GLS OLS 2SLS 2SLS
Deviation)

a b b

Height-for-age Z-score -1.98 1.336* 0.310 8.891* 4.979*
(0.95) (0.457) (0.664) (2.826) (2.156)

Child is female 0.48   5 .284* 6.050* 3.735* 4.831*
(0.50) (0.748) (0.941) (1.210) (1.109)

Age enrolled (months) 85.45 0.204* 0.345* 0.555 0.634*
(6.62) (0.064) (0.102) (0.345) (0.322)

Months in 1  to 2  grade 18.55 0.269* 0.167 1.053* 1.374*st  nd

(non-repeated) (3.52) (0.120) (0.149) (0.454) (0.526)

Months in 3  to 6  grade 14.68 1.133* 1.033* 1.105* 1.202*rd  th

(12.54) (0.038) (0.088) (0.256) (0.237)

Months repeated in 1  and 2  grade 2.01 -0.302* -0.211 0.102 -0.342st  nd

(5.01) (0.080) (0.110) (0.593) (0.544)

Months not in school 6.56 0.219* 0.326* -0.699 -0.272
(4.83) (0.097) (0.135) (1.005) (0.950)

Mother’s years of schooling 6.89 1.575* -- -- --
(3.26) (0.167)

Mills’ ratio -- -- -- -- -24.724*
(8.39)

Overidentification test: -- -- -- 0.724 0.392

 p-value

Notes: Standard errors in parentheses (asterisks denote statistical significance at the 0.05 level).  All regressions
include a constant and are based on a sample of 1016 sibling pairs.  Mean achievement test score is 25.5 (25.5).

Household random effects specification also includes a full set of school dummy variables.a

All variables endogenous except sex (and Mills’ ratio).  Excluded instruments: height-for-age of older sibling at 0,b

12 and 24 months, months of birth-dummy variables for both siblings, sibling difference in age tested, interaction
terms between sibling difference in age tested and the three height-for-age variables, and the proportion of children
repeating grades in the barangay where the older child was born interacted with the sex and age difference variables.
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 All but 47 of the sibling pairs attend the same school.  To check whether these cases would affect15

our results, we estimated a regression analogous to those in Table 4 below for school “quality” as measured
by the school average of the sixth grade National Education Achievement Test.  A test of whether school
quality responds to child nutrition status has a p-value of 0.48.  Hence, ignoring school quality differences
among these 47 sibling pairs should not bias our estimate of the height-for-age coefficient in the production
function (see the discussion of Table 4).

specifications (equation [2]) because almost all sibling pairs attend the same primary

school.15

To assess the endogeneity and selection issues, we examine a series of estimators

of the achievement production function.  Column two reports a household random effects

(GLS) specification of equation (1).  In addition to the variables mentioned above, this

specification includes a set of school dummy variables to fully capture variation in school

characteristics, as well as mother’s years of schooling to soak up some of the

heterogeneity in home environment.  The coefficient on height-for-age is positive and

significantly different from zero as well as from the less restrictive fixed effects estimate

(p-value = 0.033).  Also, the random effects specification as a whole is strongly rejected

in favor of fixed effects (p-value = 0.000).  Indeed, were it not for the inclusion of the

school dummies and mother’s schooling in column two, the height-for-age coefficient

would be much larger (2.822, with a standard error of 0.464) and would differ very

significantly from its fixed effects counterpart (p-value = 0.000).  

Next we examine the sibling difference specification, equation (2).  Except for the

addition of a constant term, the ordinary least squares (OLS) estimates in column three

are identical to household fixed effects, given two siblings per household in our sample. 

Notice that the height-for-age coefficient is small and insignificant, just as Behrman and
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 Although parents conceivably could have known the older sibling’s learning ability prior to his16

second year of life and made nutritional allocations accordingly, such behavior does not seem to be important
for our estimates since we cannot reject the overidentifying restrictions as reported in Table 2.  (Note that if
parents did know the older sibling’s learning ability prior to age two, our model would still be identified
because height-for-age at birth surely could not reflect this knowledge).  One important caveat, however, is that
the statistical  power of this test is unlikely to be high.

 We assume that the birth-spacing of the siblings is uncorrelated with differences in their learning17

endowment, which would be the case if the learning endowment of the older sibling is not observed until after
the younger sibling is conceived.  Note that in three studies of birth weight production functions (Rosenzweig
1986; and Rosenzweig and Wolpin 1988 and 1995), birth-spacing is taken to be endogenous.  Parents are
assumed to observe the health endowment of the older child immediately after birth, and thus prior to the
couple’s next conception.  Nevertheless, our reading of the evidence from these studies is that the endogeneity
bias in the production function is, in general, not statistically important.

Lavy (1994) find in Ghana, using a similar specification.  Other curious findings in

column three are the insignificant impact of months in the first two grades, the almost

significant but negative effect of months repeated in these grades, and the significantly

positive effect of months out of school.  These estimates could reflect endogeneity bias,

which we now address using instrumental variables.

As discussed in Section 2, we use data on the older sibling’s height-for-age in the

first two years of life, specifically the Z-score at birth, at one year, and at two years as

instruments.   To deal with the other endogenous variables, additional instruments16

include month of birth dummies for both siblings, the sibling age difference, and

interactions of this age difference and the sex difference with the barangay level average

grade repetition rate.   Using month dummies exploits the “natural experiment” created17

by the minimum primary school enrollment age.  In particular, parents whose children are

slightly younger than this age cutoff (6.5 years) are “forced” to delay enrollment when
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 Assuming that the 2SLS estimate  is consistent, the asymptotic bias of the OLS sibling18

difference estimator in the presence of measurement error in height-for-age is , where
r is the “reliability coefficient” (ratio of true variance to total variance) and D is the sibling correlation in
height-for-age Z-scores, which equals 0.50 in our sample.

they otherwise would choose not to do so.  The full set of instrumental variables easily

passes an overidentification test in Table 2.

Column four of Table 2 reports our first set of two-stage least squares (2SLS)

estimates of the production function.  The coefficient on height-for-age is many times

larger than the OLS estimate, and the difference between the two is significant

(p-value = 0.002).  What is behind this large bias in the OLS estimate?  Recall that

height-for-age at the time of school enrollment may be an error-ridden measure of early

childhood nutritional status, which is what might really matter for academic performance. 

How large would such measurement error have to be to account for the entire OLS-2SLS

discrepancy in the height-for-age coefficient?  Assuming white noise measurement error,

a rough calculation (that ignores other covariates) indicates that 52 percent of the total

variance in height-for-age Z-scores would have to be noise.   Remarkably, a regression18

(for the index children) of height-for-age in 1991 on height-for-age at age two, age, and

sex produces an R of only 0.49, which leaves just the right amount of noise to explain the2 

discrepancy.  Note also that the other strange findings in column three are reversed after

correction for endogeneity, though the estimates do become quite imprecise.
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 A different source of selection bias arises from excluding those households in which the mother had19

only one child at the time of interview.  This selectivity is not a problem for our sibling difference estimates
if, as assumed above, birth-spacing is uncorrelated with sibling differences in learning endowments.

 Probits used to obtain the Mills’ ratio are available upon request.  Month and year of birth dummies20

and height-for-age of the younger siblings are all highly significant determinants of nonenrollment.  Standard
errors in Table 2 and below are not adjusted parametrically, but we instead report Huber/White standard errors
as a nonparametric approximation to the appropriate adjustment.

Lastly, we correct for selection bias due to delayed school enrollment of the

younger siblings.   Column five includes the Mills’ ratio, under the assumption of jointly19

normal errors.   Not only is the Mills’ ratio significant at the five percent level, but the20

height-for-age coefficient estimate falls to almost half of its magnitude in column three,

though it remains significant.  Evidently, selection into the sample depends in part upon

nutritional status.  Selection bias appears to be important despite the fact that fewer than a

hundred sibling pairs are dropped from a sample of over 1,200.  Note also that the age of

enrollment attracts a positive and statistically significant coefficient in column five. 

Thus, conditional on nutritional status, children do appear to benefit by delaying their

entry into school.

Summing up then, our preferred estimate in column five implies that a one standard

deviation increase in height raises the achievement test score by 5.0 (2.2) points, which is

one-fifth of the 25.5 point standard deviation of the test score.  This direct effect of

nutrition on learning productivity per year of school is equivalent to spending about four

extra months in school.  But there may also be indirect effects of nutrition on

achievement, which we turn to next.
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INDIRECT IMPACT OF NUTRITION: AGE OF ENROLLMENT AND GRADE
REPETITION

The height-for-age coefficient estimate in Table 2 may not fully capture the impact

of nutrition on school performance if nutritional status also influences time spent in

school.  To assess this indirect effect, we present age of enrollment and first grade

repetition regressions in Table 3 using the same econometric procedure as in column five

of Table 2.  Before getting to the results, there are two caveats to mention in interpreting

these regressions.  First, if the decision rule for delayed school enrollment (and grade

repetition) takes the form of equation (3), and this equation is differenced across siblings,

then the coefficient on )H , $  - $ , reflects both the own and sibling cross effects of1k  Ho  Hc 

nutritional status; the two effects are not separately identified.  In the calculations below,

we assume that the cross effects are negligible, which is probably a reasonable

assumption given the nature of these inputs.  Second, we assume that the child who

delays enrollment by one year (or repeats a grade) will ultimately complete one less

grade; because we do not observe final grade attainment for the vast majority of our

sample, we cannot tell if children who delay enrollment actually leave school later.  If the

child who delays enrollment or repeats makes up the lost year by leaving school when he

is one year older, then our estimate of the indirect effect of nutrition on ultimate

achievement will be overstated (though, in this case, there will be a another cost, namely

the earnings forgone by postponing entry into the labor force by a year).

With these caveats in mind, turn to the 2SLS estimates in Table 3.  The age of

enrollment regression indicates that a one standard deviation increase in height leads
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 Failure to account for the discrete nature of the age of enrollment—namely, that children can only21

enroll at 12 month intervals—does not appear to be a problem.  When we estimate a fixed effects Poisson count
model (Hausman, Hall, and Griliches 1984) for the number of years enrollment was delayed (without
controlling for selection bias or endogeneity, which cannot be done with this estimator), we obtain a height-for-
age effect quite similar to the corresponding OLS (sibling differences) estimator.

parents to enroll their child in school nearly two months earlier (Glewwe and Jacoby

[1995] find a three-month enrollment age response in Ghana).   This effect is statistically21

significant, yet the most important determinant of enrollment age, in terms of explained

variance, is month of birth.  Children born in the later months of a year are far more likely

to have delayed enrollment by a year; this finding supports the instrumental variables

strategy used in Table 2.

For the first grade repetition regression, we use a slightly smaller sample of sibling

pairs, those in which the younger sibling is old enough to have had the opportunity to

complete first grade.  We consider only repetition of first grade because only about half of

the younger siblings are old enough to have had the opportunity to repeat second grade. 

In any case, most repetition occurs at first grade, so this is not a significant loss of

information.  The estimates are based on a linear probability model, since no discrete

choice estimator can simultaneously handle selection bias, fixed effects and endogenous

covariates.  We also control separately for age enrolled and nutritional status, using

month of birth dummies as instruments for the former.  The results show that

malnourished children are more likely to repeat first grade, though the effect falls barely

short of significance at the five percent level.  However, conditional on nutritional status,

children who delay their enrollment into primary school are significantly less likely to
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 The standard error (in parentheses) is calculated by the delta method and ignores any covariance22

between the estimated parameters from the different regressions.

repeat, which is consistent with the positive impact of age of enrollment in the

achievement production function.  The overall effect (direct effect plus the indirect effect

through age of enrollment) of a one standard deviation increase in height is to reduce the

probability of repeating first grade by around 10 percent.

We can combine the results in Tables 2 and 3 to calculate the indirect effect of an

improvement in child nutritional status on achievement.  Such an improvement will affect

the age of enrollment, nonrepeating time spent in school, time spent repeating grades, and

time not in school.  Since the coefficients on the latter two variables are far from

significant in the achievement production function, we can ignore these effects.  Hence, a

one standard deviation increase in height translates into an improvement of 2.2 (1.4)

points on the achievement test through the indirect effect, compared to the direct effect of

5 points.   The total effect (7.2 points) of a one standard deviation increase in height is22

equivalent to six months of school attendance.

OTHER ACADEMIC INPUTS

The production function in Table 2 is quite parsimonious given the richness of our

data on academic inputs.  However, including more inputs into the production function is 

problematic because it is hard to find instrumental variables that are correlated with

sibling differences in inputs (though we do find some for the time in school variables
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Table 3—Nutritional status, age of enrollment, and grade repetition: Sibling
differences-2SLS estimates

Age enrolled Grade repetition

Height-for-age -1.786* -0.117a

(0.893) (0.061)

Child is female -0.599 -0.027
(0.384) (0.025)

Age enrolled (months) -- -0.0122*b

(0.0053)

Mills’ ratio -1.809* -0.005
(0.637) (0.028)

Month of birth effects (p-value) 0.000 --

Overidentification tests (p-value) 0.807 0.874c

Number of sibling pairs    1016 891
Notes: Standard errors in parentheses (asterisks denote statistical significance at the 0.05 level).  All

regressions include a constant.  
 Endogenous variable.  Excluded instruments: height-for-age of the older sibling at 0, 12 and 24 months.  a

 Endogenous variable.  Excluded instruments: differenced month of birth dummy variables. b

 Test has two degrees of freedom in column one and 12 degrees of freedom in column 2.c

considered in Table 2).  The question remains whether our estimate of the impact of

nutrition on achievement is biased due to important omitted inputs.  Such bias can go

either way, depending, in part, on whether parents compensate or reinforce sibling ability

differences in their allocation of academic inputs.

To assess the potential for misspecification, we test whether a set of observed but

omitted academic inputs respond to nutritional status.  If these inputs are not influenced
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 The input equations can be thought of as dynamic decision rules, analogous to equation (3) for23

delayed enrollment.  Once again, since the own effect of nutrition is not separately identified, the sign of the
coefficient cannot, strictly speaking, be used to infer anything about compensatory versus reinforcing behavior
unless the cross sibling effects are assumed to be zero.

by nutritional status, then no bias in the parameter of interest, namely the impact of

nutrition on achievement, will result from omitting them from the production function.  If

the inputs are influenced by nutritional status, then the sign of the correlation will at least

tell us something about the plausible direction of bias in the parameter of interest.  Table

4 reports five input regressions.  In all cases, we regress sibling differences in the input on

sibling differences in height-for-age, age, and sex, using the same econometric procedure

as in column five of Table 2.   The input regressions are jointly estimated by three-stage23

least squares (3SLS) to allow a test of the cross-equation restriction that all the

coefficients on height-for-age are zero.

Before reporting the result of this test, we discuss the input regression results

individually.  Reading frequency is a categorical variable.  About 17 (25) percent of the

index children (younger siblings) are read to regularly (weekly or more) by someone in

the household, 23 (30) percent are read to occasionally, and the rest are never read to. 

According to the estimates in the first column of Table 4, malnourished children do

appear to be read to more frequently, with the effect significant at the five percent level. 

As for homework, an activity which occupies the average child in our sample for less than

an hour each school day, we find no evidence that nutritional status affects the number of

hours spent doing homework (column two).  Nor does nutritional status significantly 



P2
(5) ' 10.4

27

Table 4—Nutritional status and academic inputs:  Sibling differences-3SLS
estimates

Reading Hours of Help with Percent days Years of
frequency homework homework absent preschool

Height-for-age -0.169* 0.043 0.008 0.0027 0.111a

(0.071) (0.052) (0.046) (0.0056) (0.060)

Child is female -0.102* 0.088* -0.091* -0.0138* 0.040
(0.035) (0.026) (0.022) (0.0028) (0.029)

Age child tested -0.233* 0.009 -0.034 0.0003 -0.078*
(years) (0.041) (0.030) (0.026) (0.0032) (0.034)

Mills’ ratio 0.343 -0.130 -0.199 -0.011 -0.023
(0.211) (0.154) (0.135) (0.017) (0.178)

Notes: Standard errors in parentheses (asterisks denote statistical significance at the 0.05 level).  All
equations include a constant term and are estimated on a sample of 974 sibling pairs.  Joint test of
height-for-age coefficient in all equations:   (p-value = 0.065).

Endogenous variable.  Excluded instruments:  height-for-age of the older sibling at birth, 12 months, anda

24 months.

influence whether the child receives assistance with homework from a parent, sibling, or

other household member (column three); 68 percent of the index children and 83 percent

of their younger siblings do receive such help.  Turn now to  school absenteeism, which is

very low in our sample.  Rather than rely on self-reported school attendance, actual

attendance records for at least one full semester were gathered at the schools for each

child (missing values for school attendance lower our overall sample to 974 sibling pairs). 

Our data indicate that only about 3.5 percent of days are missed, and the estimates in

column four show that absenteeism is unrelated to nutritional status.  Lastly, consider

preschool/kindergarten enrollment.  About 40 percent of index children and 45 percent of
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their younger siblings attended a preschool and/or a kindergarten for at least a year, and

usually for no more than two years.  The final column in Table 4 shows no significant

relationship between nutritional status and preschool enrollment.

Taking all five inputs together, we fail to reject the joint hypothesis that the

coefficients on height-for-age are zero at the five percent level, though we do reject at the

ten percent level (see notes to Table 4).  Based on this finding, it appears doubtful that

omitted inputs, at least the ones we have data on, seriously bias our estimate of the

height-for-age coefficient in the achievement production function.  If anything, the result

for reading frequency suggests that our estimate of this coefficient might be downward

biased, since parents may be compensating their malnourished children by spending more

time reading to them.

5.  IMPLICATIONS OF FINDINGS

It remains for us to assess the economic significance of the nutrition-learning

nexus.  It is one thing to say that better nutrition significantly improves school

performance, but quite another thing to say that this spillover effect should seriously enter

into a cost-benefit analysis of a nutrition intervention, as some nutritionists have argued. 

By the same token, though our results imply that economic growth and improved

nutrition are mutually reinforcing, they may not reinforce each other much.  In this

section, we use our production function estimates to gauge the impact on achievement of

alternative policy and economic growth scenarios.  Although we take into account both
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 Blau, Guilkey, and Popkin report first-differenced, lagged IV, estimates of a reduced form for child24

height over the 12 rounds of the bimonthly survey.  The average effect per round of a one percent increase in
the price of corn is to reduce height by .0023 centimeters.  To calculate the overall effect of the subsidy on
height at 24 months, we assume that reductions in the corn price have no effect in the first four months of life
when the child is not consuming solid foods.  We then use the estimates of the age-dependent impact of lagged
height on current height to cumulate the impact of the price subsidy.

the direct and indirect effects (through time in school), as discussed in the previous

section, it should be noted that only the former effect, being a structural parameter, is

generalizable across different environments.  Table 5 summarizes the results of this

analysis.

Consider first a policy of subsidizing the price of corn, a staple in Cebu.  Blau,

Guilkey, and Popkin (1996), using the original 12 rounds of the CLHNS survey, find a

statistically significant negative impact of higher corn prices on child height in the first

two years of life.  Based on their estimates, a 50 percent subsidy on the price of corn to

families with infants would increase child height at age two by less than a quarter

centimeter.   Assuming no change in growth trajectory after age two, this subsidy would24

improve test scores by the equivalent of just half a month of extra school.  Such a 

Table 5—Policy and economic growth scenarios

Scenario age Z-score equivalents)

Increase in Increase in achievement
height-for- (months in school

50 percent corn price subsidy 0.08 0.33 0.15 0.48

12 month intensive nutrition supplementation program 0.30 1.25 0.55 1.80

20 years of economic growth at 2.3 percent per annum 0.35 1.46 0.64 2.10

20 years of economic growth at 8 percent per annum 2.34 9.75 4.29 14.0
Notes: Direct effect is calculated using height-for-age coefficient estimate in column five of Table 2. 

Indirect effect calculation is described in Section 4 of the text.
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 The supplement provided “two-thirds of the energy requirement and all of the protein requirement”25

(Walker et al. 1991).  To get an idea of the cost of such a program, note that the supplements were delivered
weekly to each home during the year of the intervention.

negligible impact on achievement hardly provides additional justification for a subsidy

policy beyond those usually advanced.  Intensive nutritional supplementation would seem

to be a more sensible route toward meaningful achievement gains, so it is to such a policy

that we turn next. 

Though the track record of nutritional supplementation programs in developing

countries has been mixed (Beaton and Ghassemi 1982), one of the more optimistic

assessments comes from a randomized trial in Jamaica.  Malnourished infants averaging

18 months old who were given large milk-based supplements for a period of 12 months

showed a statistically significant improvement in height-for-age, averaging 0.3 of a

standard deviation, compared to an  unsupplemented control group (Walker et al. 1991).  25

If such a nutrition program had an equivalent impact on height in Cebu, and, once again,

there was no change in growth trajectory after the program ended, then supplemented

children would improve their test scores by the equivalent of less than two months in

school.  This small improvement would seem to belie the notion that intensive nutritional

supplementation can have large education spillovers, let alone that without such

intervention malnourished children would be “intellectually crippled” (Brown and Pollitt

1996).  On the other hand, perhaps nontrivial achievement gains can be achieved by

continuous and intensive supplementation over many years, but the net benefits of such a
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 Supplementation of specific micronutrients (e.g., iron) has also been advocated as a relatively26

inexpensive way of boosting academic achievement (see World Bank 1996), but our estimates cannot be used
to assess such interventions directly.

policy would have to be weighed against those of more direct approaches to enhancing

learning such as improving the quality of schools.26

Finally, consider the impact of economic growth on achievement.  From a cross-

country regression of average height of adolescents on per capita income and other

variables, Steckel (1995) estimates an income elasticity of height of around 3 percent. 

We can use this estimate in an admittedly crude calculation, which says that if per capita

income in the Philippines continues growing at its 1990–95 annual rate of 2.3 percent

over the next 20 years, then average height would increase by about a third of a standard

deviation.  As a consequence, achievement would improve by just over two months worth

of schooling.  If, on the other hand, we take the highly optimistic view that future

Philippine economic growth will emulate that of its southeast Asian neighbors, Indonesia

and Thailand, at around 8 percent per capita, then average height will approach (actually

exceed) U.S. levels in 20 years.  As a result, we estimate that students would make the

equivalent of a  grade and a half of academic progress, which is surely an upper bound on

the effect of economic growth over one generation on achievement (via nutrition).  Only

in the very long run, say over the 200 years of history considered by Fogel (1994), do our

estimates allow nutrition to powerfully influence academic achievement and thus for

economic growth and improved nutrition to substantially reinforce each other.
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 Currie and Thomas (1995) find positive effects of participation in the Head Start program on the27

academic performance of white children, but not black children.  However, since they find no significant effect
of program participation on height-for-age, the improvements in academic performance are unlikely to be the
result of the nutritional component of Head Start.

To summarize, although the impact of nutrition on achievement is positive and

statistically significant, our investigation suggests that it is small from a practical

standpoint.  This lack of economic significance is all the more telling if one views our

estimate of "  as an upper bound on the true structural impact (due to the presence ofH

important physiological shocks).  One qualification is that Cebu has an exceptionally high

primary school enrollment rate; in countries where nonenrollment is pervasive, better

nutrition might encourage entry into school and this extensive margin would have to be

taken into account on the benefit side of the calculation.  On the other hand, in a country

like the U.S., where the incidence of stunting is low even among the poor, the scope for

achievement gains through a nutrition-learning nexus is likely to be trivial.27

6.  CONCLUSION

In this paper, we have studied the relationship between early childhood nutrition

and subsequent academic achievement using a unique longitudinal data set, one that

follows a large sample of children in a low income country from birth to up until the end

of their primary education.  Several important empirical findings emerge from this

analysis.  First, heterogeneity in learning endowments, home environment, or parental

“tastes” for that matter, cannot fully explain why malnourished children perform
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relatively poorly in school.  The positive relationship between nutrition and achievement

persists even after controlling for these factors.  Our results thus support a causal link

between nutrition and academic success, though arguably a definitive answer to the

causality question is only possible from an ideal (and consequently improbable) empirical

experiment.  Second, height-for-age measured at or beyond the time of school enrollment

seems to be an extremely noisy indicator of early childhood nutritional status.  Thus, the

availability of anthropometric data in the first two years of life combined with data on

siblings proves to be extremely valuable.  Third, selection bias due to delayed enrollment,

which has up to now been ignored in the education production function literature, turns

out to be quite important.  Fourth, there does not seem to be a strong connection between

child nutrition and learning effort, such as homework time and school attendance. 

However, we do find evidence that the primary school enrollment of malnourished

children tends to be delayed, probably because they are deemed unready for school at the

minimum age of enrollment.  Lastly, our analysis suggests that the relationship between

nutrition and learning, though significant statistically, is not likely to be of overriding

importance either for nutrition policy or in accounting for economic growth.



APPENDIX

Table 6—Sample attrition and selection

Live Births in 33 Sample Barangays of Metro Cebu 3,289
     Of which:   Twin Births 27 (0.8 percent)
                          Refusals 97 (2.9 percent)
                          Missed by Survey (discovered later) 58 (1.8 percent)
                          Birth Interview Too Late 22 (0.7 percent)

Live Births in Metro Cebu with Birth Interview 3,085
     Of which:   Migrated Out of Metro Cebu by Age 2 318 (10.3 percent)
                         Child Died by Age 2 156 (5.1 percent)
                         Refusal (at later date) 50 (1.6 percent)

Still in Sample When Child is 2 Years Old 2,561
     Of which:   Migrated Out of Metro Cebu by Age 8 155 (6.1 percent)
                        Could Not find Child at Age 8 137 (5.3 percent)
                        Child Died by Age 8 38 (1.5 percent)

Still in Sample When Child is 8 Years Old 2,231
     Of which:   Migrated Out/Could Not Find 31 (1.4 percent)a

                         Child Died 8 (0.4 percent)

Still in Sample When Child is 11 Years Old 2,192
     Of which:   Never Enrolled in School 9 (0.4 percent)
                         Not Tested (e.g. refusal) 13 (0.6 percent)
                         Does Not Have Younger Sibling of School Age 931 (42.4 percent)

Sample with Younger Children of School Age 1,239
     Of which:   Younger Sibling Not in School                       90 (7.3 percent)

Sample of Sibling Pairs with Both Siblings in School 1,149
     Of which:   Missing 1991 Height Data for Older Sibling 13 (1.1 percent)
                        Missing 1983–86 Height Data for Older Sibling 92 (8.0 percent)
                        Missing Height Data for Younger Sibling 23 (2.0 percent)
                        Missing Test Score Variables 5 (0.4 percent)
                        Observations with Complete Data 1,016 (88.4 percent) 
This figure of 31 children lost between 8 years and 11 years is a net figure.  In fact, 77 childrena

interviewed in 1991–92 could not be located in 1994–95.  However 46 children in the 1983–86 sample
who were not found in 1991–92 were found in 1994–95.
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