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Abstract 

Using data that enables us to distinguish between the different components of 

program participation (i.e., knowledge, application, and acceptance), we investigate the 

determinants of household behavior and program implementation in a social safety-net 

program that combines administrative and self-selection targeting methods.  High 

undercoverage of eligible households primarily reflects lack of knowledge and binding 

budget constraints in poor areas.  High leakage to ineligible households reflects the 

combination of their high levels of knowledge, application, and acceptance.  Lowering 

undercoverage will require greater program awareness among the poor living in nonpoor 

areas and this is likely to come at the expense of substantial leakage to the nonpoor unless 

improvements are made to the verification process.  Our results also suggest that in the 

presence of a budget constraint, the administrative selection process gives priority to the 

poorest households and those with children. 
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1.  Introduction 

The use of means testing for determining eligibility for social safety-net programs 

has become increasingly popular in developing countries concerned with improving 

program targeting performance (Coady, Grosh, and Hoddinott 2004a).  However, it is 

widely recognized in developed countries that means testing often has adverse 

implications for program participation by eligible households (Atkinson 1989; Moffit 

2003).  Indeed, the problem of low take-up levels also applies to universally available 

programs in developed countries (Currie 2004), reflecting the important role that self-

selection can play in program participation levels by different socioeconomic groups. 

In spite of the potential for trade-offs between program coverage of the eligible 

population and targeting performance, very little empirical evidence exists on the nature 

and magnitude of these trade-offs, especially for developing countries.  The present paper 

contributes to filling this gap by analyzing the determinants of participation in a 

prominent social safety-net program in Mexico that combines administrative targeting 

based on means testing with a strong element of self-selection by households.  The 

program in question is Oportunidades, which is a scaled-up version of the rural 

Programa Nacional de Educacion, Salud y Alimentacion (PROGRESA) program.  This 

program has become widely known in the economic literature because of the substantial 

resources devoted to its evaluation and the fact that it continues to act as a prototype for 

social safety-net reforms in other developing countries, especially in Latin America 

(Skoufias 2004). 

To a large extent, the paucity of evidence on the determinants of participation 

reflects the absence of sufficiently detailed survey data to support such an analysis.  

Blundell, Fry, and Walker (1988) examines participation by eligible households in a 

housing benefit program in the United Kingdom.  The analysis uses national household 

survey data containing information on receipt of program benefits combined with the 

simulation of program eligibility based on knowledge of program eligibility rules, which 

are applied to the socioeconomic information available in the survey.  In the context of 
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the same program, Duclos (1995) extends the concept of participation to allow for 

targeting errors made by program agents, which result in both “errors of omission” (i.e., 

undercoverage of eligible households that apply) and “errors of inclusion” (i.e., leakage 

to non-eligible households that apply).1  However, due to data deficiencies, both papers 

are unable to provide insights into the finer details of program participation since 

household knowledge of the program, the household’s decision to apply, and the program 

agent’s decision as regards eligibility are all subsumed within one binary participation 

variable.  In identifying specific policy prescriptions aimed at improving coverage and 

targeting performance, more detailed information on these different components of 

participation is particularly useful. 

We are aware of only two papers in the literature that empirically analyze the 

different components of program participation.  Heckman and Smith (2003) combine data 

from a number of different sources to investigate the sources of inequality of 

participation among different groups of eligible individuals for the Job Training 

Partnership Act in the United States.  However, data limitations resulted in both 

application and acceptance outcomes being combined into a single step.  The only paper 

we are aware of that undertakes a similar analysis for a developing country program is 

Micklewright, Coudouel, and Marnie (2004), which investigates the sources of inequality 

of participation among households for a social assistance program in Uzbekistan using 

nationally representative household survey data.  Under this program, the central 

government allocates funds to a group of community elders that has complete autonomy 

over the selection of program beneficiaries, subject only to very broad guidelines from 

the government.  Although the authors are able to separately distinguish between 

knowledge, application, and acceptance characteristics of households within one 

household data set, they are unable to match households to community groups and thus 

are unable to disentangle the relative importance of central and community budget 

                                                 
1 Duclos (1995) also highlights the potential for “analyst error” in determining eligibility in household 
surveys based on incomplete data.  See, also, Pudney, Hernandez, and Hancock (2002) for an analysis of 
pensioner take-up of means-tested income support in the United Kingdom. 
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allocations in the overall targeting performance of the program.  In addition, the absence 

of any explicit detailed rules for determining benefit levels means that they are unable to 

control for the level of benefits a household would receive if it participated.  These 

difficulties are further confounded by the fact that the survey used does not contain any 

comprehensive measure of household income. 

Rarely does one have access, either in developed or developing countries, to a 

data set that is designed specifically to investigate the different components of program 

participation.  In this paper, we use a unique data set that enables us to distinguish 

between the different components of participation (i.e., knowledge, application, and 

acceptance).  This detail allows us to analyze separately the determinants of household 

behavior and program implementation.  The specific tailoring of the questionnaire to the 

issue of targeting also means that many of the measurement problems encountered in 

earlier papers (e.g., in determining true eligibility or the expected level of benefits if 

selected as a beneficiary) are likely to be substantially reduced, even if not eliminated 

completely.  In addition, we are able to match these household data with program data 

disaggregated to the level of program offices, which allows us to capture differential 

patterns of participation across program office segments reflecting such things as varying 

resource and capacity constraints.  An added advantage is that our data allow us to 

construct a comprehensive measure of household consumption, which is widely 

perceived as a good proxy for household “permanent income.” 

In this paper, we are concerned with the determinants of program participation 

and the implications for the program’s targeting performance.  As Atkinson (1995) points 

out, how one undertakes an assessment of targeting performance and interprets the results 

should depend both on whether the objectives of the program are clear (e.g., the 

definition of the target group) and on how much agreement there is about these 

objectives.  With regard to the program under consideration, the targeting objectives are 

very clear in the sense that the target group is very precisely defined by a statistical 

proxy-means algorithm that attaches numerical weights to specific household 

socioeconomic characteristics in order to calculate a household score.  These scores are 
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then compared to a score cutoff to identify eligible households.  In the present paper, we 

use this separation of households into eligibles and non-eligibles as the basis of our 

analysis.  However, we recognize that although these classifications may be explicit and 

clear, they may or may not command wide support.  For example, as in much of the 

literature, one may consider economic welfare as the correct basis for targeting 

households in such programs so that a comprehensive evaluation of targeting 

performance requires an assessment of the “vertical efficiency” of the program’s 

targeting with reference to some comprehensive measure of household income.2  For the 

most part, in this paper we abstract from this issue and focus on the program’s definition 

of eligibility. 

The format of the paper is as follows.  In Section 2, we present a brief discussion 

of issues that arise in the application of means testing, followed by a description of the 

program and the targeting methods used.  Section 3 provides a data description.  In 

Section 4, we motivate and describe the methodology used to evaluate targeting and 

present the results from this analysis.  In Section 5, we set out a simple model that helps 

to motivate and structure our empirical investigation of the various components of 

participation.  We then use regression analysis to identify various factors that determine 

targeting outcomes, examining separately their effects on knowledge of the program, the 

household decision to apply for the program and the acceptance or rejection of applicants 

by the program office.  Finally, Section 6 provides some concluding remarks. 

                                                 
2 See Weisbrod (1970) for a discussion of vertical and horizontal targeting efficiency, and Coady and 
Skoufias (2004) for a formal interpretation of these within standard welfare theory. 
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2.  The Program and Targeting Methods3 

Program Description 

In August 1997, the Government of Mexico officially launched its flagship 

PROGRESA social safety-net program in rural areas.  The program was considered 

successful and in 2002 was expanded—under its new name, OPORTUNIDADES—to 

include small and medium urban localities.  The new urban program has continued to use 

a combination of geographic and proxy-means targeting methods to identify poor 

households.  However, the application of this previous approach to household targeting in 

rural areas, whereby a census of the socioeconomic characteristics of all households in 

participating localities was undertaken, was deemed too costly for urban areas where 

poverty rates are much lower.  It was therefore decided to introduce a strong element of 

self-selection by households. 

Targeting Methods 

In order to identify the poorest urban localities for the expanded program, the 

government used the 2000 national household income and expenditure survey 

(ENIGH2000) to develop a discriminant analysis model based on household income and 

other socioeconomic characteristics.  Once the model and coefficients were determined 

(see Appendix Table 6 for the variables used and their scores), the weights and cutoff 

score were applied to the 2000 national census (NC2000) to identify the poorest urban 

blocks where the program will be implemented (the variables included in the model are 

common to the NC2000). 

Once participating communities were identified, an information campaign was 

initiated at the municipal and community levels to inform people of the existence and 

objective of the program, the rules for program eligibility, and how to apply for the 

program.  A range of media was used, including TV and radio advertisements; the 
                                                 
3 See Grosh (1994) and Coady, Grosh, and Hoddinott (2004b?) for more detailed discussion of the design 
and implementation of different targeting methods. 
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distribution of flyers; placing posters in churches, schools, health clinics, and 

marketplaces; and loudspeaker announcements.  In principle, these were to be 

concentrated in the poorest blocks.  The population was informed that a program office 

would be located in or near their locality during the months of June-August 2002, which 

they should visit to apply for the program.  Decisions regarding the precise nature of the 

publicity campaign and its financing were decentralized to municipalities. 

When households turned up at the program module, they were asked to provide 

information on their address and on the specific socioeconomic characteristics that are 

used to calculate their score.  This information was entered immediately into a computer 

and the applicant informed whether or not they are deemed eligible at this stage.  Those 

found to be initially eligible were informed that they would be visited over the following 

weeks to verify the information given and were given a paper slip containing their 

identifier, name, address, and so on.  Program officials were then expected to visit the 

potential beneficiaries in their home and fill out a new questionnaire containing 

information on the same socioeconomic characteristics.  This information was then 

processed back at the module and the new eligibility status of the applicant determined. 

Applicants were told to return to the module to confirm their eligibility status and 

be incorporated if selected.  If incorporated, they signed a program registration form, 

received their electronic program card (or stamps if they do not have access to a bank), 

and also were given program literature explaining the objectives, design, and 

requirements of the program.  If an applicant did not return to the office, then they were 

not incorporated.  If the information regarding an applicants’ address was wrongly 

processed, and if they could not be located even after some investigative work, such 

households were also not incorporated.  In addition, because more poor households 

showed up than planned, the existence of a budget constraint meant that program places 

had to be rationed—e.g., based on a first-come, first-served basis, the proxy-means score 

or on other household characteristics observed by program officials.  All program offices 

were closed at the end of August 2002, and households received their first transfers in 

November 2002—see Appendix Table 7 for details on the transfer schedule. 
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3.  Data Description 

The data set used in this analysis is the baseline of the Urban Evaluation Survey 

of Oportunidades (2002), carried out between September and December, 2002, by the 

National Institute of Public Health (INSP).  Two surveys were collected:  (1) a census 

survey of all households in a random selection of blocks in participating localities 

(henceforth, CENSUS) and (2) a sample survey of a subset of these households 

(henceforth, SAMPLE).  The latter used a more detailed questionnaire and both surveys 

included the variables that were used to calculate the proxy-means score used as the basis 

of household participation. 

The CENSUS sample was selected by first choosing a random sample of eligible 

localities, e.g., localities where incorporation was planned for 2002 (INSP 2002).  From 

this sample of localities, all blocks with poor populations greater than 50 households 

were selected, for a total of 99 such blocks in the sample.  From the remaining blocks, a 

probability-weighted sample of 50 blocks was chosen with the inverse of their poor 

population as weights.  A CENSUS survey of all 20,859 households in these 149 blocks 

was carried out, containing information on the socioeconomic characteristics used to 

calculate the proxy-means score as well as some other information, including whether the 

household had been selected into the program. 

Using the CENSUS information, a discriminant score was calculated for each 

household, and households were classified into three groups:  Poor, Quasi-Poor (i.e., 

those just above the cutoff), and Non-Poor.  A stratified random SAMPLE of households, 

based both on these classifications and on self-reported beneficiary status, was chosen.  

In particular, all households that self-reported to be a beneficiary in the CENSUS data 

were selected to be interviewed in the SAMPLE data.  A random sample for each of the 
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three groups was selected for those households who reported they were not beneficiaries, 

i.e., for the Poor, Quasi-Poor, and Non-Poor nonbeneficiaries.4 

To evaluate overall targeting performance, we use the CENSUS survey of all 

households in the sample of localities.  To identify the various sources of this 

performance, we use the SAMPLE data, which gives information on households’ 

knowledge of the program, whether they apply, and if so, whether they are accepted. 

4.  Targeting Performance 

Targeting Outcomes 

To motivate our approach to evaluating the targeting performance of the program, 

we first present a very simple model to capture the components of the social welfare 

impact of a transfer program.  Social welfare is specified as a standard Bergson-

Samuelson function: 

 W[V1 (p,y 1), ....., Vh (p,yh),....., VH (p, yH)], 

where V(p,y) is the indirect utility function for households (denoted by superscript h), p is 

the vector of commodity prices faced by the household, and y is total household income 

defined through the household budget constraint as: 

 yh = w.lh + mh = p.xh, 

where w is a vector of factor prices, lh is the supply of factors by the household, mh is 

lump-sum transfers from the government to the household, and p.xh is total household 

expenditures on commodities.  Household indirect utility is assumed to be decreasing in 

commodity prices, increasing in factor prices, and increasing in lump-sum transfers.  A 

                                                 
4 For the purposes of this paper, we determine the weights used for the household observations in the 
SAMPLE data for each of the four household groups by merging the CENSUS data to the SAMPLE data 
and identifying the proportions of households in the SAMPLE data with information for each group.  Note 
that these weights then reflect both the probability of their selection as well as response rates. 
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transfer program can be characterized by a vector dm = {dmh}, where dmh > 0 for 

beneficiary households and dmh = 0 for nonbeneficiary households.  The social welfare 

impact of a transfer program is then5 

 
h

h h h
h hh h

W VdW dm dm
V m

β∂ ∂
= ≡

∂ ∂∑ ∑ , (1) 

where βh is the social valuation of extra lump-sum income to the household (i.e., the so-

called “welfare weight” of each household).  Multiplying and dividing the right-hand side 

of equation (1) by the program budget gives 

 
h

h h h h h
hh h h h

h

dmdW dm dm B
dm

β β θ λ= ≡ ≡∑ ∑ ∑ ∑∑
, (2) 

where θh is the share of the transfer budget going to each household.  Since λ increases 

with the share of transfers accruing to the lower-income households with relatively higher 

welfare weights, it can be interpreted as an index of the targeting performance of the 

program.  Note that if welfare weights are such that “poor’ and “non-poor” households 

have weights of unity and zero, respectively, and transfers are uniform, then the welfare 

impact of a program is simply the share of the beneficiary households that are poor times 

the budget. 

Consider now a reference program that has a target “poor” population and a 

budget sufficient to give a uniform unit transfer to each poor household.  Assume that 

poor households can be perfectly identified so that all beneficiaries are poor, i.e., λ = 1.  

Under equation (2), the welfare impact of this reference program is simply the number of 

poor households.  In practice, the welfare impact of a program can be smaller than for the 

reference program because targeting is imperfect and/or the budget is smaller, i.e., not all 

beneficiaries are poor and/or the potential coverage of the program is less than the size of 

                                                 
5 We abstract from the general equilibrium welfare effects arising from, for example, the efficiency and 
equity implications of having to finance the program.  See Coady and Harris (2004) for such an analysis. 
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the poor population.  Below we use these two indicators to evaluate the welfare impact of 

the program.  Note that increasing the welfare impact of the program to nearer that of the 

reference program requires either better targeting performance and/or a larger budget to 

increase potential coverage. 

Table 1 presents the results of our evaluation of targeting performance.  

Households are classified into three welfare groups based on the discriminant score 

constructed using the CENSUS data, i.e., as Poor, Quasi-Poor (i.e., just above the cutoff 

score), and Non-Poor.6  Under this classification scheme, 39 percent of households are 

found to be Poor; 19 percent, Quasi-Poor; and 42 percent, Non-Poor.  Using program 

administrative information that enables us to identify which of these households were 

actually incorporated into the program, we find that the total number of program 

beneficiaries in the treatment area is 4,728 households, out of a total population of 20,859 

households (i.e., 22.7 percent).  This compares with the 39 percent of households 

classified as Poor (i.e., 8,093/20,859).  Therefore, the potential coverage for the program, 

i.e., assuming zero leakage to non-poor households, is 58.4 percent of Poor households.  

In other words, even if the program was perfectly targeted, with all beneficiaries being 

classified as Poor, the undercoverage rate would still be 41.6 percent, so that this amount 

of the undercoverage of the program is really due to program size and not bad targeting. 

Table 1—Targeting performance of the program 

Census welfare category 
Census 

population 
Population 

share 
Program 

beneficiaries
Beneficiary 

share 
Targeting 

performance
Poor 8,093 0.388 3,678 0.778 2.005 
Quasi-Poor 3,906 0.187 738 0.156 0.834 
Non-Poor 8,860 0.425 312 0.066 0.155 

  Total 20,859 1,000 4,728 1.000 - 
Note:  The program participation rates for each welfare category are:  Poor = 45.4 percent, Quasi-

Poor = 18.9 percent, and Non-Poor = 3.5 percent. 
 
 

                                                 
6 We will use the tern non-poor (i.e., without capitals) to refer to both Quasi-Poor and Non-Poor 
households. 
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From Table 1 we can also see that only 3,678 Poor households (i.e., 45.4 percent) 

are beneficiaries, so that the total undercoverage rate is 54.6 percent.  Therefore, 76.2 

percent of the total undercoverage rate (i.e., 41.6 percentage points of the total 54.6 

percent undercoverage rate) is due to inadequate program size, with the remaining 23.8 

percent being due to imperfect targeting.  Therefore, the actual undercoverage rate is 30 

percent higher than the minimum that could be achieved with perfect targeting. 

Note also that much of the leakage accrues to those households immediately 

above the threshold for program eligibility (i.e., to Quasi-Poor households).  Around 19 

percent of Quasi-Poor households and 3.5 percent of Non-Poor households participate in 

the program, and these account for 15.6 percent and 6.6 percent of total program 

beneficiaries, respectively.  This pattern of leakage results in 77.8 percent of beneficiaries 

being classified as Poor households (i.e., 3,678/4,728).   

In order to further evaluate the above targeting performance, it is useful to divide 

the share of Poor households in total beneficiaries by their overall population share, e.g., 

by the head count.  Since their population share indicates what Poor households would 

receive under random selection (i.e., no targeting), this ratio represents how much more 

Poor households receive compared to this alternative.  From the final column, we see that 

Poor households receive around twice as much as they would without targeting, while 

Quasi-Poor and Non-Poor households receive 16.6 percent and 84.5 percent less than 

under this alternative.7 

Sources of Targeting Performance 

We now turn to an analysis of the factors behind the existing targeting errors.  To 

identify the sources of targeting performance, we use the SAMPLE data, appropriately 

weighted to reflect the sampling scheme and non-response patterns.  In this survey, 

                                                 
7 This targeting performance is impressive when compared to that of programs reviewed by Coady, Grosh, 
and Hoddinott (2004b) where the median targeting performance of programs in the Latin America and 
Caribbean (LAC) region was 1.56, i.e., the poor received 56 percent more than their population share.  The 
median performances of programs using means and proxy-means targeting methods were 1.55 and 1.50, 
respectively (see Coady and Parker 2004 for more details). 
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households were asked a series of questions aimed at determining if they knew about the 

program, if they knew where the program module was located, if they went to the module 

to apply for the program, and if they were selected as a beneficiary.  Each question was 

asked conditional on replying in the affirmative to the previous one. 

Within a given budget constraint, increasing the poverty impact of the program 

requires improving targeting performance.  This, in turn, requires understanding where in 

the process Poor households are lost to the program and non-poor households wrongly 

included.  Are Poor households excluded because they do not know about the program, 

because they know but do not apply, or because they apply and are wrongly rejected by 

the proxy-means test?  Table 2a presents information on how the different welfare 

classifications evolve through each of these stages.  Column 1 shows the percentage of 

households by classification that reports knowing about the program.  Note that a 

substantial 24 percent of Poor households in treatment areas report not even knowing 

about the program.  Of those who know, a very high 92 percent know where the office is 

located and, in turn, a high 92 percent of these actually go.  Of those that apply, 80 

percent are actually registered as beneficiaries, with the remaining 20 percent (wrongly) 

excluded from the program. 

Table 2a—Sequence of undercoverage and leakage (conditional on previous answer) 

Census welfare category Know Know where Go 
Accepted 
(survey) 

Accepted 
(program) 

Poor 0.690 0.901 0.892 0.799 0.928 
Quasi-Poor 0.583 0.832 0.779 0.589 0.587 
Non-Poor 0.399 0.740 0.658 0.595 0.347 
Notes:  The numbers in the table are based on the 9,817 treatment households (out of the 10,527 sampled 

households in treatment areas) that completed the survey questionnaire.  Before adjusting for this 
attrition, the expansion factors for these treatment households were approximately 1.061, 1.671, 
1.703, and 4.515 for beneficiary, poor nonbeneficiary, quasi-poor nonbeneficiary, and non-poor 
nonbeneficiary households, respectively (all based on the census reported beneficiary status).  After 
adjusting for attrition, these weights increased to 1.116, 1.801, 1.819, and 5.004, respectively. 

 
Table 2b translates these numbers in Table 2a into the percentage of Poor 

households lost at each stage.  For example, the percentage of the Poor lost due to 

deciding not to go to register is given by the percentage who know (76 percent) times the 
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percentage of those who know where to go (0.925) times (1 - the percentage of those who 

know where to go to register), i.e., approximately 0.059.  The final column indicates that 

51 out of every 100 poor households are not registered as beneficiaries.  The first column 

tells us that 24 of these (i.e., over 50 percent) are excluded at the very first stage, i.e., by 

the fact that they do not even know about the program.  The next two columns tell us that 

nearly 12 of these (around 27 percent) know but either do not find out where to go, or do 

but decide not to go.  The penultimate column tells us that 11 of these (nearly 20 percent) 

go but were wrongly rejected by the program.  Thus, although there is undercoverage at 

all stages, it is at the very first stage (i.e., program knowledge) that most Poor households 

are lost to the program.  Decreasing undercoverage will then require substantial 

improvements in knowledge of the program among Poor households. 

Table 2b—Sequence of undercoverage and leakage 

Census welfare category Don’t know 
Don’t know 

where Don’t go Not accepted Accepted 
Poor 0.310 0.069 0.067 0.111 0.443 
Quasi-Poor 0.417 0.098 0.107 0.155 0.223 
Non-Poor 0.600 0.104 0.101 0.079 0.116 
Notes:  Each row gives the percentage of each classification category excluded at different stages of the 

process.  For example, 31 out of every 100 poor households excluded are excluded due to not 
knowing about the program.  The numbers in the table are based on the 9,817 treatment households 
that completed the survey questionnaire expanded using the appropriate expansion factors. 

 
Tables 2a and 2b also provide information on the source of leakage to non-poor 

households.  Although less Quasi-Poor and Non-Poor households know about the 

program, still a substantial proportion in each group (i.e., 61 percent and 41 percent, 

respectively) is aware of the program.  Furthermore, a very high percentage of those non-

poor households who know actually apply (80 percent and 68 percent, respectively) and a 

high percentage of those applying are actually accepted (53 percent and 32 percent for 

quasi poor and non-poor households, respectively).  The fact that so many of the non-

poor households who know about the program actually apply suggests that one of the 

main advantages expected from the use of self-selection, i.e., not having to devote 

program resources to collecting and processing information on these households, does not 
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materialize.  But perhaps more problematic is that the benefits from using a proxy-means 

test are reduced since a significant percentage of the non-poor applying are actually 

accepted as beneficiaries.  Note that a higher percentage of the Quasi-Poor are accepted 

when applying, relative to the case for Non-Poor households, consistent with officials 

being less able to distinguish the former from Poor households when implementing the 

targeting mechanism. 

Improving the poverty impact of the program thus requires substantially 

increasing the poor’s knowledge of the program.  However, this raises the important 

concern that any attempt to decrease undercoverage by improving knowledge may come 

at the expense of increased leakage, which is currently relatively low. 

5.  The Determinants of Participation 

The preceding analysis shows that a large fraction of eligible Poor households do 

not become beneficiaries, whereas a large percentage of ineligible non-poor households 

do, in fact, become beneficiaries.  Using multivariate regression analysis, below we now 

examine which factors appear to be more important at the different stages of the process 

as well as their net impact on targeting outcomes.  We start by presenting an economic 

model of program participation, which helps to structure our empirical analysis, motivate 

our model specification, and guide our interpretation of the empirical results.  We then 

present the results from our empirical analysis. 

An Economic Model of Take-up 

The model of take-up presented here draws heavily on the work of Pudney, 

Hernandez, and Hancock (2002).8  Consider a household deciding whether or not to 

apply for the program.  Let V0[y; X, U] be the utility a household achieves from pre-

transfer “original income,” y (think of this as being adjusted for needs, e.g., household 
                                                 
8 See, also, Moffit (1983), Cowell (1986), Blundell, Fry, and Walker (1988), Atkinson (1989), and Duclos 
(1995) for related discussions. 
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per capita or per adult equivalent income), and X and U are observed and unobserved 

household socioeconomic characteristics, respectively.  The utility reached in the event of 

receiving program benefits is then given by the transformed utility function 

V1[y + B(W) – C(y, Z); X, U], where B is the level of transfers a household would receive 

if deemed eligible for the program, W is the set of household characteristics determining 

the level of benefits, C is the cash equivalent of the costs incurred by households in 

attempting to gain access to the program, and Z is the set of characteristics determining 

these costs. 

For example, W will include some measure of income for a directly means-tested 

program or household socioeconomic characteristics for a proxy-means tested program.  

C is the cash equivalent of the total utility cost associated with program take-up so that Z 

is intended to capture a range of physical, psychological, sociological, and informational 

factors.  In general, the functional form of V1 should capture such things as the fixed costs 

of attempting to access the program, the perceived uncertainty associated with the 

selection process, as well as the ongoing costs associated with receiving the benefits.  In 

this model, then, inequality in participation is seen as arising from variation in the 

benefits and costs of participation across households. 

A household will take-up the program if V1 > V0.  Since V is monotonic and 

continuous in y, this is equivalent to 

 yVVB −> − ][ 0
1

1 , (3) 

where V1
-1 [V0] is the post-transfer utility function inverted with respect to total income, 

i.e., the total amount of income a household with utility given by V1 would need to reach 

pre-transfer utility V0.  Since take-up involves households incurring costs, we expect the 

right-hand side of equation (3) to be positive.  The right-hand side of (3) thus captures a 

household’s monetary valuation of take-up costs and can be interpreted as an equivalent 

variation.  Note that if V0 and V1 are functionally identical, then the take-up condition 

becomes B > C. 
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Following Moffit (1983), we can specify the right-hand side of equation (3) as 

 uZeyUXUXyVV +− =− α],);,;([ 0
1

1 , (4) 

so that the take-up condition becomes 

 ln B > Zα + u, 

where u are unobserved characteristics affecting take-up costs.  The conditional take-up 

probability can then be written as 

 
)ln(]lnPr[),|Pr(

σ
αα ZBFZBuZBionParticipat −

=−<=
, 

where σ2 = Var(u) and F is the distribution function of the random variable u/σ.  This 

equation amounts to a standard binary response model of discrete choice, with ln B and Z 

as explanatory variables.  The coefficients of these explanatory variables are 1/σ and -

α/σ, respectively, so that α can be estimated as minus their ratio.9 

The above model interprets take-up, and its associated costs, very broadly to 

encompass household knowledge about the program, the household decision to apply 

conditional on knowledge, and the program official’s decision to classify a household as 

eligible.  Costs encompass both the associated economic costs (e.g., of finding out about 

the program, applying for the program, and meeting any program participation 

requirements) but also the broader psychological and social costs associated with 

applying for and receiving state support.  Since the nature and magnitude of these costs 

are likely to differ across the various stages of participation, so, too, will the estimated 

coefficients on household socioeconomic characteristics.  Because of this, the net effect 

of any socioeconomic characteristic on the single binary participation outcome may be 

                                                 
9 Note that take-up costs can be estimated by substituting estimates of α into equation (4).  See Blundell, 
Fry, and Walker (1988) for an example.  Pudney, Hernandez, and Hancock (2002) highlights the need to 
allow for self-selection into the program when estimating these costs. 
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difficult to anticipate a priori or interpret ex ante.  The household data set we use in this 

paper allows us to overcome this deficiency since it was purposely designed to be able to 

identify eligible households as well as to identify the outcomes from the different 

components generating the participation outcome.  By matching these data with program 

data disaggregated at the program office level, we are also able to better distinguish 

between household-level and program-level determinants of outcomes. 

Specification of Regression Equations 

We now discuss some of the factors identified in the literature that can be 

expected to affect the various stages of the participation outcome, with special reference 

to the program under consideration in this paper and its design.  We examine those 

affecting the knowledge, application, and acceptance outcomes in turn. 

Determinants of Knowledge of the Program 

It is likely that a household’s level of education affects its ability or propensity to 

acquire, process, and act on program information, e.g., individuals who have higher 

education levels may be more likely to find out and process details about the program.  

Furthermore, individuals who are more “connected” to the community or have experience 

as beneficiaries of other programs may also be able to process program information more 

efficiently.  Language spoken may also be important; to the extent most program 

information is in Spanish, speaking a native indigenous language may reduce the 

probability of finding out about the program.  Given the focus of the program on 

children, households with children may be more likely to hear of the program, especially 

those with children regularly attending school.  Finally, it is likely that an important 

factor is the intensity with which advertising was carried out within each community. 

In the regression analysis, we include indicators of household education and 

language spoken.  With respect to previous program participation and involvement in the 

community, we employ two variables, one variable measuring whether anyone in the 
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household is a beneficiary in any other social program, and another measuring whether 

household members participate in any community organization.10 

With respect to advertising, we unfortunately do not have data on variables such 

as expenditures on advertising by block or municipality.  However, since the advertising 

strategy involved concentrating on the poorest blocks, we include a block-level variable 

indicating the percentage of the block in which the household is located that is classified 

as poor.  We expect advertising to be greatest in the poorest blocks.  Given the range of 

media used in disseminating information on the program, we also include binary 

variables indicating whether a household has a television or radio.  In addition, in order to 

pick up unobserved poverty-related characteristics that are likely to influence knowledge, 

we also include per capita household consumption as an explanatory variable—we 

include quintile dummies to allow for non-linearities. 

Determinants of Application 

The model presented above is particularly relevant for the analysis of household 

decisions to apply or not for the program, conditional on knowledge of the program.  A 

household takes into account expected benefits and costs of applying for the program.  

Expected benefits of the program are a function of the probability of receiving benefits, 

conditional on applying, weighted by the amount of benefits received if deemed eligible.  

We calculate potential benefits (i.e., the maximum benefits that a family could receive if 

it were to become a beneficiary) by applying the schedule set out in Appendix Table 7 to 

the SAMPLE data and include its log in our regression analysis. 

With regard to the expected costs of enrolling in the program, an important 

component relates to costs associated with traveling to the office.  We use distance from 

the nearest office to proxy the costs of applying, i.e., we expect households located 

                                                 
10 These are admittedly crude measures, and particularly that related to program participation may be 
endogenous, e.g., program beneficiaries are not permitted to participate in programs such as Liconsa (a 
targeted subsidized milk program).  For this reason, we explored specifications with and without these 
variables.  In general, the effects of other variables do not change with respect to the inclusion of these last 
two variables. 
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farther from the office to be less likely to apply for the program.  We also include 

indicators of demographic structure; in particular, we expect that having small children or 

a disabled individual in the household may increase the costs of going to the office.  It is 

also often suggested that younger households (e.g., as captured by the age of the head of 

household) have fewer inhibitions against receiving social assistance.  Finally, we include 

whether the household has a vehicle, which could reduce time spent getting to the office.  

Since the private value attached to transfers is likely to be a decreasing function of 

income, we also include per capita household consumption as an explanatory variable. 

Determinants of Acceptance 

One expects that the score attained by the household, based on the socioeconomic 

characteristics reported at the office, will have a dominant effect on whether an applicant 

household gets accepted into the program.  In fact, in the absence of measurement error 

and information constraints, one expects a household’s score to fully determine its 

participation conditional on application.  However, because of measurement error, it is 

unlikely that the proxy-means score we calculate based on our CENSUS data will exactly 

correspond to that calculated by program officials based on information reported at the 

office and subsequently verified.  Since we expect a non-linear relationship between 

acceptance and the score, we use a set of binary variables indicating the classification of a 

household as extremely poor, moderately poor, Quasi-Poor, or Non-Poor. 

One expects some variation across blocks in acceptance patterns reflecting the 

rigor with which household-reported information was (or could be) verified by program 

officials.  In addition, in informal conversations, program officials indicated that since 

more households turned up than expected (i.e., compared to the predicted poverty rates), 

the existence of a budget constraint meant that many potentially eligible households were 

not considered for incorporation into the program and therefore the information they 

provided was not verified.  While specific information on the extent to which budgets 

were binding across blocks was not available, we were able to construct a variable to 

proxy for this factor, namely, the percentage of households classified as eligible at the 
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program module whose socioeconomic conditions were subsequently verified by 

program officials.  Since we expect this percentage to be positively correlated with 

budget availability, we also expect it to be positively correlated with a household’s 

probability of being accepted, conditional on applying. 

Finally, for all of our empirical models, with respect to the block-level variables 

proposed (e.g., distance to office and percentage of Poor in the block), these may be 

correlated with other unobserved block- or community-level variables.  Obviously the 

inclusion of block-level fixed effects means that we cannot simultaneously include block-

level continuous explanatory variables.  We thus first include, in turn, state fixed effects 

and then community fixed effects in our regressions that also include block-level 

continuous variables.  Note that a block is quite a small entity, so that significant 

relationships of block-level variables in this context are thus considered to be quite 

robust.  Also, in a final set of regressions, we control for block-level fixed effects and 

interact our block-level variables with consumption quintile dummies.  This specification 

helps to determine whether the effects of the block-level variables vary by poverty status.  

By including block-level fixed effects in these specifications, we completely control for 

all unobserved block-level variables that might be correlated with our variables of 

interest. 

The regression that we estimate is the following: 

 hcbhhh uXXEU εδβλα +++++= , 

where Ui is a binary variable indicating whether a household is a beneficiary or not, Eh 

represents the classification of eligibility of household h, Xh represents household 

observed characteristics described above, and Xb represents a set of block-level and 

module-level characteristics.  The model also includes community fixed effects, uc, that 

sweep out any community characteristics which may be correlated with whether 

households are beneficiaries or not.  hε  corresponds to an error component that reflects 

all remaining unobserved characteristics of the model. 
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Controlling for block-level fixed effects and interacting block-level variables with 

consumption quintile dummies, the regression becomes 

 hbbhbhhh uXEXXEU εφδλα ++++Β++= , 

where ub is a block-level fixed effect, the other variables are as defined as above, and the 

main coefficient of interest to us will be φ, which tells us whether the effect of the block-

level variable is different for different consumption quintiles.  Similar regressions are 

carried out for the probability of knowing about the program, the probability that one 

applies for benefits (conditional on knowledge), and the probability that one becomes a 

beneficiary (conditional on applying).  Our regression analysis is carried out separately 

for eligible and non-eligible households.  Appendix Table 8 presents descriptive statistics 

of our explanatory variables for eligible and non-eligible households. 

Results 

We look separately at the population of eligibles and non-eligibles, as defined by 

the proxy-means score.  In all regression specifications, we include variables capturing 

head-of-household characteristics, household-level characteristics, and block-level 

characteristics.  As discussed in the last section, we experimented with different 

specifications, including the level of aggregation for area fixed effects.  The detailed 

results from these specifications are presented in Appendix Tables 9-10 for both the 

eligible and non-eligible populations separately.  Our results are generally quite robust to 

these various specifications, so in the text we concentrate on the specification with block-

level variables and community fixed effects.  The results below also come from ordinary 

least squares regressions on the binary variables; although the estimated coefficients are 

not efficient, they are consistent.  Since the results were very similar to those from logit 

regressions, we present these because they are somewhat easier to directly interpret in the 

presence of fixed effects. 
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Table 3 presents the results for eligible households.  The final column presents the 

results for the (unconditional) participation outcome.  The first three columns present the 

results for the various sequential components of the participation outcome, i.e., 

knowledge, application conditional on knowledge, and acceptance conditional on 

application.  We start by looking at the block-level variables.  The significantly positive 

coefficient on the percentage of households verified by the program office in the 

acceptance equation is consistent with the existence of a budget constraint.  The fact that 

the positive effect of this variable on participation arises solely through the acceptance 

decision reinforces our interpretation. 

The proportion of poor households in the block is significantly positively 

associated with participation.  In other words, eligible households not participating in the 

program are more likely to live in blocks with lower poverty rates.  This, of course, is 

consistent with the program information strategy, which concentrated on the poorest 

blocks.  But this positive effect of the block poverty rates hides very different effects on 

knowledge and acceptance.  Living in a relatively poor block substantially increases the 

probability that a household will know about the program, but also decreases the 

probability of being accepted conditional on applying.  The latter effect is again 

consistent with the budget constraint being tighter in the poorest blocks where many 

households can be expected to present themselves at the program office. 

As expected, greater distance to the office is negatively associated with the 

overall participation probability, consistent with this capturing higher travel costs or 

remoteness.  However, the insignificant coefficients on distance in the knowledge, 

application, and acceptance regressions mean that we are unable to attribute this distance 

effect across these components with much confidence. 

Using the census proxy-means score, we separate eligible (i.e., Poor) households 

into two groups, the extreme and moderate poor.  The positive significant coefficient on 

the “extreme poor” dummy variable indicates that those eligible households classified as 

extremely poor based on the proxy-means score have a higher probability of  
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Table 3—The determinants of program participation and their component parts, eligible 
households in treatment group 

 Knowledge 

Application 
(conditional on 

knowledge) 

Acceptance 
(conditional on 

applying) 
Overall 

participation 
 CFE CFE CFE CFE 
Household head characteristics     
  Age 0.00086 0.00142 -0.00134 0.00081 
 [0.00072] [0.00065]** [0.00081]* [0.00080] 
  Gender (1 = male) -0.03462 0.02877 0.02634 0.00164 
 [0.02515] [0.02165] [0.02705] [0.02796] 
  Indigenous (1 = indigenous) -0.01007 -0.01402 0.01813 -0.00355 
 [0.00790] [0.00711]** [0.00934]* [0.00879] 
  Years of schooling -0.00093 -0.00095 0.00041 -0.00208 
 [0.00076] [0.00069] [0.00086] [0.00085]** 
  Disabled 0.07558 0.01103 0.01645 -0.00931 
 [0.04347]* [0.03973] [0.04855] [0.04833] 
  Female household or spouse working in 2001 0.00782 0.01973 0.02179 0.01928 
 [0.01447] [0.01213] [0.01534] [0.01609] 
  Male household or spouse working in 2001 0.05916 0.00559 0.01371 0.0617 
 [0.02431]** [0.02159] [0.02663] [0.02702]** 
Household characteristics     
  Vehicle in household 0.03406 0.14164 -0.03574 0.13449 
 [0.04640] [0.04642]*** [0.06197] [0.05158]*** 
  Television in household 0.0467 -0.0235 0.02634 0.03887 
 [0.01560]*** [0.01334]* [0.01646] [0.01735]** 
  Radio in household -0.00701 0.00793 -0.02346 -0.01616 
 [0.01306] [0.01123] [0.01394]* [0.01451] 
  Children aged 0-5 0.00667 -0.01465 -0.01042 -0.00853 
 [0.00830] [0.00718]** [0.00892] [0.00922] 
  Children aged 6-11 0.02308 0.00264 0.02168 0.04896 
 [0.00650]*** [0.00546] [0.00682]*** [0.00722]*** 
  Children aged 12-17 0.0133 0.00865 -0.00618 0.01916 
 [0.00798]* [0.00683] [0.00850] [0.00888]** 
Potential benefits     
  Log of potential transfer 0.00419 -0.01767 -0.00247 -0.0045 
 [0.01243] [0.01111] [0.01383] [0.01382] 
Welfare indicators     
  Extreme poverty 0.02278 0.03453 0.05361 0.0936 
 [0.01425] [0.01226]*** [0.01521]*** [0.01584]*** 
  Consumption Q1 0.12054 0.0736 0.05671 0.20067 
 [0.02534]*** [0.02397]*** [0.02976]* [0.02817]*** 
  Consumption Q2 0.1207 0.06247 0.00648 0.14367 
 [0.02389]*** [0.02307]*** [0.02868] [0.02656]*** 
  Consumption Q3 0.1119 0.02746 0.01624 0.10971 
 [0.02395]*** [0.02333] [0.02906] [0.02662]*** 
  Consumption Q4 0.08382 0.01446 -0.00263 0.06113 
 [0.02465]*** [0.02457] [0.03036] [0.02740]** 
Block-level variables     
  Distance to module -0.00076 0.00621 -0.00451 -0.01881 
 [0.00715] [0.00705] [0.00872] [0.00795]** 
  Percent poor households in block 0.51 0.00385 -0.19548 0.24745 
 [0.07311]*** [0.06659] [0.08210]** [0.08128]*** 
  Percent verified poor in module 0.44704 0.51125 4.70335 2.96214 
 [1.14395] [1.12450] [1.31841]*** [1.27166]** 
   (continued)    
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Table 3 (continued)     

 Knowledge 

Application 
(conditional on 

knowledge) 

Acceptance 
(conditional on 

applying) 
Overall 

participation 
 CFE CFE CFE CFE 
Other     
  Participates in community organization 0.00782 0.01973 0.02179 0.0032 
 [0.01447] [0.01213] [0.01534] [0.01742] 
  Receives other social program 0.05916 0.00559 0.01371 0.10506 
 [0.02431]** [0.02159] [0.02663] [0.01554]*** 

Constant -0.35098 0.16657 -3.65603 -2.79748 
 [1.12000] [1.10074] [1.29444]*** [1.24503]** 
Number of observations 4,565 3,005 3,207 4,565 
R-squared 0.06 0.03 0.04 0.11 

Notes:  Standard errors in brackets.  * significant at 10 percent; ** significant at 5 percent; *** significant 
at 1 percent.  Regressions include controls for other household characteristics, including:  if 
household has dirt floor, a dummy indicating if there is a refrigerator and gas stove, and home 
ownership, as well as the number of men and women by age groups (18-39, 40-59, and 60 or older).  
SFE, CFE, and BFE denote the inclusion of state-level, community-level, and block-level fixed 
effects, respectively.  Beneficiary is defined according to administrative records from 
Oportunidades. 

 
participation, and this effect comes through both higher probabilities of application and 

acceptance.  In the absence of measurement error or a budget constraint, one would not 

expect the acceptance probability to differ across moderate and extreme poor households.  

However, the presence of a budget constraint will require program agents to, explicitly or 

implicitly, ration program access among eligible households.  A higher probability of 

acceptance for the extreme poor would therefore be consistent with the rationing process 

favoring these households, e.g., either because program agents attach priority to 

households based on the magnitude of the proxy-means score obtained by the household 

or because program places are filled on a first-come, first-serve basis and the extreme 

poor are quicker to apply, on average. 

Of course, some of this result could in principle be due to measurement error, 

since our classification of households into eligible and non-eligible households is based 

on CENSUS data variables, which may not exactly correspond to the variables reported 

to program officials at program offices.  The existence of such measurement in our 

proxy-means variable means that we may be classifying some households wrongly as 

eligibles when they are, in fact, ineligible based on office data.  One expects that, for a 
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given margin of error, such misclassification is more likely around the eligible-ineligible 

cutoff score.  The positive coefficient in the application regression is more difficult to 

interpret, but would be consistent with households having knowledge of the scoring 

equation. 

We also separate households into groups according to the consumption quintile 

into which they fall—the first quintile being the poorest.  Conditional on proxy-means 

scores, the poorest households as measured by consumption (Q1) exhibit a substantially 

higher probability of program participation.  Poverty is strongly positively associated 

with knowledge of the program.  Households falling in the two lowest consumption 

quintiles are also more likely to apply for the program, consistent both with these 

perceiving a higher probability of acceptance or attaching a greater value to additional 

income.  In addition, conditional on their score, households falling within the poorest 

consumption quintile have a higher probability of being accepted.  One possible 

interpretation of this is that program officials may be compensating for the fact that the 

proxy-means algorithm is an imperfect indicator of economic welfare, especially since 

acceptance requires a prior visit by the program agent to households during which they 

will presumably observe other correlates of poverty status not included in the algorithm.  

Or it may be that the poorest households are the first to apply and beneficiary status is 

determined on a first-come, first-serve basis. 

Contrary to our expectations, the coefficient on the logarithm of potential per-

capita transfers is insignificant overall and in each of the component parts of 

participation.  Controlling for potential transfers, households with more preschool 

children have a lower probability of participating, although this is insignificant.  But the 

corresponding coefficient in the application equation is significantly negative, which 

could reflect physical difficulties associated with getting to the program office to apply.  

This is a potentially worrying outcome given the priority attached to small children by the 

program.  Households with school-aged children are more likely to participate, reflecting 

both a higher probability of knowing about the program and a higher probability of 

acceptance conditional on applying, the former finding may reflect the advertising 
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strategy of targeting information posters at schools.  Program agents may also be giving 

priority to households with school-aged children when rationing program places. 

With respect to other household characteristics, having a vehicle in the household 

increases the probability of participation, reflecting a higher probability of applying 

conditional on knowledge.  This is consistent with possession of a car decreasing the cost 

of getting to the program office to apply.  Having a car does not affect the probability of 

knowing about the program or being accepted conditional on applying.  Having a 

television also increases the participation probability, reflecting a positive and significant 

effect on the probability of knowing about the program.  The former is consistent with 

our hypothesis that having a television, and thus hearing advertisements about the 

program, makes it more likely that one will find out about the program. 

The insignificant coefficient on the household being classified as indigenous (i.e., 

the household head speaking an indigenous language) masks a statistically insignificant 

negative effect on knowledge of the program, a significant negative effect on the 

probability of applying for the program, but a significant positive effect on the probability 

of being accepted conditional on applying.  Therefore, although speaking an indigenous 

language does appear to have adverse implications for the probability of the indigenous 

population finding out and applying for the program, the positive relationship with 

acceptance suggests that program officials may give some priority to indigenous 

households that do show up. 

Although the coefficient associated with household participation in community 

organizations is positive, it is statistically insignificant.  Program participation is also 

positively correlated with a household’s history of participation in other social programs, 

reflecting greater knowledge of the program.  This highlights the importance of being 

networked into groups that can facilitate information diffusion on the existence of 

programs. 

Table 4 reports the results from the same regressions as above, but for the sample 

of non-eligible households.  Interestingly, unlike for eligible households, the coefficient  
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Table 4—The determinants of program participation and their component parts, non-
eligible households in treatment group 

 Knowledge 

Application 
(conditional on 

knowledge) 

Acceptance 
(conditional on 

applying) 
Overall 

participation 
 CFE CFE CFE CFE 
Household head characteristics     
  Age 0.00002 -0.00033 0.00158 0.00051 
 [0.00089] [0.00128] [0.00155] [0.00071] 
  Gender (1 = male) -0.01226 0.0233 0.04697 0.05465 
 [0.03230] [0.04369] [0.05462] [0.02609]** 
  Indigenous (1 = indigenous) 0.01108 -0.01332 0.0028 0.00289 
 [0.00925] [0.01412] [0.01834] [0.00747] 
  Years of schooling -0.00052 -0.00176 -0.00107 -0.00083 
 [0.00081] [0.00122] [0.00150] [0.00065] 
  Disabled -0.00503 0.10673 0.06585 0.01544 
 [0.05083] [0.07480] [0.10038] [0.04106] 
  Female household or spouse working in 2001 0.03594 0.00623 0.03418 0.00163 
 [0.01662]** [0.02368] [0.02975] [0.01342] 
  Male household or spouse working in 2001 -0.00446 -0.04983 -0.05624 -0.05933 
 [0.02999] [0.04210] [0.05196] [0.02422]** 
Household characteristics     
  Vehicle in household 0.09682 0.19625 0.08149 0.04033 
 [0.02558]*** [0.05013]*** [0.07367] [0.02067]* 
  Television in household -0.04483 -0.0042 -0.07897 -0.03435 
 [0.02653]* [0.03392] [0.04092]* [0.02143] 
  Radio in household -0.03617 -0.05155 -0.024 -0.04122 
 [0.01718]** [0.02342]** [0.02845] [0.01388]*** 
  Children aged 0-5 0.0269 0.0384 0.07324 0.03787 
 [0.01319]** [0.01825]** [0.02306]*** [0.01065]*** 
  Children aged 6-11 0.02743 0.00128 -0.01074 -0.00829 
 [0.00995]*** [0.01411] [0.01778] [0.00804] 
  Children aged 12-17 0.01978 -0.00149 -0.03312 -0.01092 
 [0.01076]* [0.01470] [0.01841]* [0.00869] 
Potential benefits     
  Log of potential transfer 0.00496 0.04099 0.03513 0.02241 
 [0.01436] [0.02083]** [0.02584] [0.01160]* 
Welfare indicators     
  Extreme poverty 0.03196 0.04365 -0.02001 0.06859 
 [0.01701]* [0.02309]* [0.02875] [0.01374]*** 
  Consumption Q1 0.0983 0.26482 0.2162 0.1999 
 [0.03240]*** [0.04220]*** [0.05237]*** [0.02617]*** 
  Consumption Q2 0.09849 0.20785 0.07366 0.10705 
 [0.02612]*** [0.03539]*** [0.04474]* [0.02110]*** 
  Consumption Q3 0.06398 0.12124 0.04661 0.0594 
 [0.02264]*** [0.03270]*** [0.04209] [0.01828]*** 
  Consumption Q4 0.04655 0.08937 0.06536 0.04853 
 [0.02008]** [0.03138]*** [0.04064] [0.01622]*** 
Block-level variables     
  Distance to module -0.02876 0.01713 -0.01026 -0.01858 
 [0.00693]*** [0.01243] [0.01497] [0.00560]** 
  Percent poor households in block 0.79131 0.15899 -0.1222 0.37352 
 [0.08119]*** [0.12072] [0.14935] [0.06558]*** 
  Percent verified poor in module -0.20666 0.02549 3.06084 0.65144 
 [1.26093] [1.71628] [2.02702] [1.01855] 
   (continued)    
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Table 4 (continued)     

 Knowledge 

Application 
(conditional on 

knowledge) 

Acceptance 
(conditional on 

applying) 
Overall 

participation 
 CFE CFE CFE CFE 
Other     
  Participates in community organization 0.08283 0.06936 0.00974 0.03472 
 [0.01839]*** [0.02533]*** [0.03197] [0.01486]** 
  Receives other social program 0.09949 0.0345 0.01336 0.06306 
 [0.01760]*** [0.02367] [0.02895] [0.01422]*** 

Constant 1.41372 0.02957 -2.54427 -0.63144 
 [1.22304] [1.67620] [1.98448] [0.98794] 
Number of observations 3,775 1,604 1,390 3,775 
R-squared 0.1 0.11 0.07 0.11 

Notes:  Standard errors in brackets.  * significant at 10 percent; ** significant at 5 percent; *** significant 
at 1 percent.  SFE = State fixed effects.  CFE = Community fixed effects.  BFE = Block fixed 
effects.  Beneficiary is defined according to administrative records from Oportunidades. 

 
on the percentage of households verified by the program module while positive (and 

smaller in magnitude) is never significant.  In other words, the existence of budget 

constraints has apparently no role to play in explaining leakage, which is to be expected.  

Living in a poor block increases the probability that a non-eligible household will 

participate and this effect is clearly coming through the positive effect on household 

knowledge of the program.  In other words, non-eligible households participating in the 

program are more likely to live in blocks with high poverty rates.  While greater distance 

to the program module does appear to act as a deterrent to participation by non-eligible 

households, this effect appears to come through the associated lower probability of 

knowing about the program rather than through the application or acceptance decisions.  

This effect may therefore be capturing remoteness being associated with less exposure to 

program advertising. 

Unlike the eligible population, higher potential benefits are associated with a 

higher probability of participation by non-eligible households and the relevant coefficient 

is robust and positive over all specifications.  As expected, the positive effect of benefit 

levels on the participation decision comes solely through increasing the probability that 

an ineligible household will apply.  In other words, ineligible households who would 

receive higher benefits if accepted are more likely to apply for the program. 
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We find that households classified as Quasi-Poor based on their test score have a 

higher probability of participation compared to Non-Poor households.  This suggests that 

leakage is higher for households just on the wrong side of the cutoff score.  This effect 

appears to come through this group having both a higher probability of being aware of 

the program and applying.  Of course, some of this effect may also reflect measurement 

error in our proxy-means variable, as discussed earlier.  Controlling for proxy-means 

scores, the probability of participating decreases substantially with household per capita 

consumption, reflecting the fact that these households have higher probabilities of 

knowing, applying, and being accepted.  The poorest households are thus more likely to 

find out about the existence of social safety net programs.  Their higher probability of 

applying, conditional on knowledge, is consistent with these households perceiving a 

higher probability of being accepted as well as attaching a higher value to transfers.  The 

large and significantly positive coefficient for the poorest consumption quintile in the 

acceptance equation is consistent with program agents using their own judgment 

regarding poverty to override the proxy-means score when is it clearly inconsistent with 

their own observations.  But, again, some of this effect could reflect the fact that 

consumption is correlated with measurement error in our proxy-means variable. 

Non-eligible households with preschool children are also more likely to 

participate, reflecting a higher probability of program awareness.  Preschool children also 

increase both the probability of applying and the probability of being accepted—in other 

words, leakage is positively correlated with a household having a preschooler.  The 

probability of knowing about the program also increases with the number of primary 

school age children.  Households with children of secondary school age also have a 

higher probability of knowing about the program, although they also have a lower 

probability of being accepted conditional on applying. 

Program participation is also positively correlated with household participation in 

community organizations as well as with household participation in other social 

programs.  As expected, in both cases this reflects a greater probability of knowing about 

the program and of applying conditional on knowledge. 
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Finally, in Table 5 we focus on how the effects of some of our policy variables 

may vary with poverty status, as measured by consumption, in block fixed-effects 

models.  The empirical advantage of this specification is that it allows us to control for 

block-level fixed effects while still allowing us to compare whether the block-level 

variables are greater for poor versus non-poor households. 

Table 5—Determinants of knowing, applying, and receiving benefits from Oportunidades 
(consumption quintiles and block-level variable interactions) 

 Knowledge 

Application 
(conditional on 

knowledge) 

Acceptance 
(conditional on 

applying) 
Participation 

(unconditional) 
Distance to module     
  Distance to module*Q1 -0.00808 -0.00917 -0.01444 -0.01395 
 [0.00435]* [0.00529]* [0.00684]** [0.00429]*** 
  Distance to module*Q2 -0.00524 -0.01118 -0.01404 -0.0125 
 [0.00426] [0.00523]** [0.00681]** [0.00419]*** 
  Distance to module*Q3 -0.00482 -0.0067 -0.01224 -0.00617 
 [0.00435] [0.00533] [0.00694]* [0.00428] 
  Distance to module*Q4 -0.00878 -0.00932 -0.00569 -0.00537 
 [0.00437]** [0.00544]* [0.00716] [0.00430] 
Percent of poor households in block     
  Percent poor households in block*Q1 -0.00237 -0.03935 -0.02263 0.28601 
 [0.09293] [0.11701] [0.14574] [0.09146]*** 
  Percent poor households in block*Q2 -0.0576 -0.04557 0.07488 0.24848 
 [0.08905] [0.11591] [0.14618] [0.08767]*** 
  Percent poor households in block*Q3 0.04648 -0.01432 0.17918 0.25303 
 [0.08502] [0.11648] [0.14711] [0.08361]*** 
  Percent poor households in block*Q4 0.13508 -0.13605 0.07718 0.20602 
 [0.08382] [0.12331] [0.15621] [0.08251]** 
Potential per capita transfer     
  Potential per capita transfer*Q1 0.01626 0.0404 0.00307 0.03836 
 [0.02202] [0.02608] [0.03364] [0.02165]* 
  Potential per capita transfer*Q2 0.04343 0.03463 0.01195 0.04696 
 [0.02168]** [0.02645] [0.03414] [0.02133]** 
  Potential per capita transfer*Q3 0.01143 0.02283 0.00467 0.02844 
 [0.02162] [0.02684] [0.03512] [0.02128] 
  Potential per capita transfer*Q4 -0.00842 0.04253 -0.01944 -0.00322 
 [0.02173] [0.02823] [0.03693] [0.02138] 
Constant 0.33412 0.54621 0.45151 0.12029 
 [0.08971]*** [0.11865]*** [0.15801]*** [0.08826] 
Observations 8,188 4,545 4,517 8,195 
R-squared 0.06 0.1 0.09 0.15 
Number of blocks 127 124 124 127 

Notes:  Standard errors in brackets.  * significant at 10 percent; ** significant at 5 percent; *** significant 
at 1 percent.  Regressions include all the controls for block-level fixed effects, household head 
characteristics, household characteristics, potential benefits, and welfare included in the previous 
regressions. 
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Table 5 reports only the results of interactions with consumption quintiles (with 

those in the highest consumption quintile as base) for the participation regression and 

each of its component parts.  The results show important differences in effects by poverty 

status.  Looking first at potential transfers, the results show that potential transfers have a 

higher effect in determining who becomes a beneficiary for the poorest two quintiles, 

consistent with these households attaching a greater value to extra income. 

Turning to block-level variables, distance from the module has a larger absolute 

negative effect on the probability of becoming a beneficiary, conditional on eligibility, 

for the poorest two quintiles.  This is due to these households being less likely to find out 

about the program, less likely to apply, and less likely to receive benefits conditional on 

applying.  The last effect would also be consistent with these households being more 

likely to turn up late at the program office or program agents being less likely to bother to 

travel long distances to verify their reported information.  Or the cost of applying may 

increase nonlinearly with distance.  With respect to the interactions between the 

percentage of poor households on the block and poverty status, in general the interactions 

of households’ consumption with the percentage of poor households on the block is 

positive for the lowest consumption groups.  This is suggestive that, for the poorest 

households, living in a high poverty area has a greater positive effect on becoming a 

program beneficiary than for the less poor.  However, the insignificant coefficients on the 

various components of participation mean that we cannot determine with much 

confidence which route this effect takes. 

6.  Summary and Conclusions 

Although there is substantial information regarding the existence of non-take-up 

by eligible households of means-tested transfers, there is relatively little evidence on the 

different sources of this non-take-up and the determinants of household and program 

agent behavior.  In this paper, we contribute to filling this gap by evaluating the targeting 

performance of Mexico’s Opportunidades program, which combines administrative 
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targeting based on proxy-means testing with a strong element of self-selection on the part 

of households.  Our data allow us to distinguish between the various components 

determining household participation in the program:  household knowledge of the 

program, the household decision to apply, and the program agent’s decision to accept.  

By matching this data with program-level data disaggregated to the program-office level, 

we are also able to control for various program-level factors influencing targeting 

outcomes, e.g., varying budget and administrative constraints. 

Our results indicate that there is substantial undercoverage of poor households, 

with only 45 percent of eligible poor households receiving the program.  However, our 

analysis of the source of undercoverage highlighted the concern that although knowledge 

was substantially lower among non-poor households, a high proportion of those who 

knew actually applied and, even more surprisingly, a high percentage of those applying 

were accepted.  Given that improving knowledge among poor households may 

simultaneously improve knowledge among the non-poor, it is necessary to look for ways 

for decreasing applications by these households (to avoid the costs of collecting and 

processing their information) and also to improve the application of the proxy-means test 

(to avoid excessive leakage). 

The results from our regression analysis suggest that improving targeting requires 

increasing the awareness of poor households living in non-poor blocks.  In addition, we 

find evidence that the existence of a budget constraint, especially in poorer blocks, was 

an important source of undercoverage, especially for more remotely located poor 

households.  But our results also suggest that the administrative selection process may be 

giving priority (implicitly of explicitly) to very poor households wrongly classified as 

non-poor, households with school-aged children, or households classified as extremely 

poor based on the proxy means score. 

Increasing program awareness among the poor in non-poor blocks is also likely to 

lead to improved awareness among the non-poor.  Given their high propensities to apply 

and be accepted, this has important implications for program resources devoted to 

processing this information and for program leakage.  It is therefore important to improve 
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procedures for processing and verifying reported information on household 

socioeconomic characteristics.  There are a number of reasons why the proxy-means 

score may not succeed in eliminating households classified as non-poor by the proxy-

means algorithm.  One possibility is that program agents may override the proxy-means 

classification where is it substantially at odds with their “observed” poverty status of the 

household.  While this may not necessarily be a bad thing, it does suggest that the ability 

of the proxy-means score to accurately identify poor households needs to be evaluated.  

Alternatively, households may simply be reporting false information at program offices 

to improve their chances of being accepted.  This then raises the issue of the rigor of the 

verification process, which needs to be evaluated further. 
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Appendix Tables 

Table 6—Variables and weights used to estimate discriminant score 
(Poor, x > = 0.69; Quasi-Poor, 0.69< = x > = 0.12; Non-Poor, x < = 0.12) 

Variables (x) Definition Coefficient associated 
   
HACINA Number of people / Number of rooms in the house 0.139*HACINA 
DEPEND Total number of people in the household 0.176*DEPEND 
SEXO The head of the household is a woman -0.02*SEXOJ 
SS Does not have access/right to medical service 0.475 
NINOS Total number or children < 11 years 0.255*NINOS 
ESC* Years of education of the household head 

(0 = never went to school or didn’t reach any level) 
(1 = primary education, first grade). 

If (ESCJ1=1), mpESC=0.380 
If (ESCJ2=1), mpESC=0.201 
If (ESCJ1=0 & ESCJ2=0), mpESC=0 

EDAD Age of the head of the household 0.005*EDADJ 
BAO BAO11 = does not have bath 

BAO12 = have bath but without water 
If (BAO11=1), mpBAO=0.415 
If (BAO12=1), mpESC=0.22 
If (BAO11=0 & BAO12=0), mpBAO=0 

PISO Floor is not paved (1/0) 0.475  
ESTGAS Do not have gas heating system (1/0) 0.761 
REFRI Do not have a refrigerator (1/0) 0.507 
LAVA Do not have washing machine (1/0) 0.127 
VEHI Do no have vehicle (no car nor truck) 0.159 
RURURB House in rural area 0.653 
REG Region (19 regions) Reg 1,2,3= -0.516 ; Reg 4= -0.051 

Reg 5= -0.328;  Reg 6= -0.352 
Reg 7= -0.657;  Reg 8&9= -0.391 
Reg 10&17= -0.293;  Reg 11= -0.511 
Reg 12= -0.66;    Reg 13= -0.376 
Reg 14= -0.413;  Reg 15= -0.143 
Reg 16&19= -0.07;  Remaining= 0 

CONS Constant -1.579 
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Table 7—Transfer levels, by grade and gender (pesos per month, 2002) 
 Boys Girls 
Primary School   
  Grade 3 100 100 
  Grade 4 115 115 
  Grade 5 150 150 
  Grade 6 200 200 
Middle School   
  Grade 7 290 310 
  Grade 8 310 340 
  Grade 9 325 375 
High School   
  Grade 10 490 565 
  Grade 11 525 600 
  Grade 12 555 635 
Notes:  Education transfers are conditional on 85 percent school attendance.  There is a cap on the amount 

households can receive in education grants:  1,680 pesos if the household has children attending 
high school, 915 otherwise.  Households also receive a monthly “food transfer” of 150 pesos, 
conditional on regular attendance at health centers. 
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Table 8—Descriptive statistics 
Eligible Non-eligible 

Incorporated Non-incorporated Incorporated Non-incorporated
Variable N Mean N Mean N Mean N Mean 

Household head characteristics         
  Age 3,048 39.19 2,289 40.18 939 41.50 3,434 41.88 
  Sex 3,060 0.76 2,305 0.76 939 0.75 3,440 0.79 
  Indigenous 3,077 0.24 2,326 0.21 941 0.17 3,472 0.17 
  Years of schooling 3,060 5.45 2,304 6.01 939 6.46 3,440 7.91 
  Disabled 3,077 0.98 2,687 0.98 941 0.98 3,822 0.98 
Household characteristics         
  Vehicle in household 3,077 0.99 2,687 0.98 941 0.98 3,822 0.89 
  Television in household 3,077 0.76 2,687 0.66 941 0.84 3,822 0.83 
  Radio in household 3,077 0.61 2,687 0.54 941 0.66 3,822 0.68 
  House ownership 3,077 0.73 2,687 0.58 941 0.70 3,822 0.64 
  Dirt floor 3,077 0.59 2,687 0.40 941 0.31 3,822 0.14 
  Refrigerator 3,077 0.77 2,687 0.73 941 0.47 3,822 0.41 
  Gas stove 3,077 0.33 2,687 0.36 941 0.15 3,822 0.18 
  Children aged 0-5 3,077 0.96 2,327 0.95 941 0.53 3,472 0.42 
  Children aged 6-11 3,077 1.33 2,327 1.01 941 0.72 3,472 0.65 
  Children aged 12-17 3,077 0.75 2,327 0.65 941 0.69 3,472 0.63 
  Women aged 18-39 3,077 0.87 2,327 0.89 941 0.82 3,472 0.86 
  Women aged 50-59 3,077 0.26 2,327 0.25 941 0.33 3,472 0.36 
  Women aged 60 or older 3,077 0.10 2,327 0.13 941 0.13 3,472 0.12 
  Men aged 18-39 3,077 0.73 2,327 0.74 941 0.69 3,472 0.77 
  Men aged 50-59 3,077 0.23 2,327 0.24 941 0.27 3,472 0.33 
  Men aged 60 or older 3,077 0.09 2,327 0.11 941 0.11 3,472 0.11 
Eligible benefit         
  Log of potential transfer 3,077 4.46 2,327 4.47 941 4.68 3,472 4.65 
Welfare indicators         
  Extreme poor 3,077 0.59 2,278 0.38     
  Moderate poor 3,077 0.41 2,278 0.62     
  Quasi-poor     941 0.68 3,405 0.50 
  Consumption Q1 3,077 0.34 2,327 0.21 941 0.17 3,472 0.07 
  Consumption Q2 3,077 0.26 2,327 0.23 941 0.22 3,472 0.12 
  Consumption Q3 3,077 0.19 2,327 0.22 941 0.22 3,472 0.19 
  Consumption Q4 3,077 0.13 2,327 0.19 941 0.23 3,472 0.26 
Block-level variables         
  Distance to Module 2,592 4.10 2,315 4.47 761 3.55 3,358 3.88 
  Percent poor households in block 3,077 0.51 2,687 0.46 941 0.44 3,822 0.35 
  Percent verified poor in module 2,592 0.97 2,315 0.97 761 0.97 3,358 0.96 
Other variables         
  Participates in CO organization 3,077 0.22 2,687 0.16 941 0.24 3,822 0.19 
  Receives other benefits 3,077 0.34 2,687 0.23 941 0.31 3,822 0.21 



 37

Table 9—Determinants of program participation (eligible households) 
 SFE SFE SFE CFE BFE 
Household head characteristics      
  Age -0.0009 0.00008 0.00031 0.00081 0.00096 
 [0.00047]* [0.00075] [0.00080] [0.00080] [0.00075] 
  Gender (1 = male) 0.01464 0.02504 0.03534 0.00164 -0.0132 
 [0.01562] [0.01882] [0.02013]* [0.02796] [0.02628] 
  Indigenous (1 = indigenous) -0.00819 -0.0059 -0.00289 -0.00355 -0.00722 
 [0.00797] [0.00790] [0.00884] [0.00879] [0.00779] 
  Years of schooling -0.00117 -0.00119 -0.00176 -0.00208 -0.00138 
 [0.00081] [0.00081] [0.00086]** [0.00085]** [0.00079]* 
  Disabled -0.01092 -0.00921 -0.01081 -0.00931 -0.00999 
 [0.04776] [0.04752] [0.04904] [0.04833] [0.04635] 
  Female household or spouse working in 2001    0.01928 0.01113 
    [0.01609] [0.01493] 
  Male household or spouse working in 2001    0.0617 0.06369 
    [0.02702]** [0.02541]** 
Household characteristics      
  Vehicle in household 0.09379 0.1055 0.13332 0.13449 0.11805 
 [0.05092]* [0.05061]** [0.05221]** [0.05158]*** [0.04956]** 
  Television in household 0.05059 0.04453 0.04196 0.03887 0.03996 
 [0.01632]*** [0.01636]*** [0.01734]** [0.01735]** [0.01621]** 
  Radio in household -0.02335 -0.02679 -0.02018 -0.01616 -0.02636 
 [0.01370]* [0.01362]** [0.01463] [0.01451] [0.01338]** 
  Children aged 0-5  -0.01126 -0.0064 -0.00853 -0.0097 
  [0.00861] [0.00931] [0.00922] [0.00846] 
  Children aged 6-11  0.05837 0.05343 0.04896 0.05561 
  [0.00669]*** [0.00724]*** [0.00722]*** [0.00662]*** 
  Children aged 12-17  0.01818 0.01909 0.01916 0.02131 
  [0.00836]** [0.00897]** [0.00888]** [0.00820]*** 
Potential benefits      
  Log of potential transfer 0.01444 -0.00527 -0.00117 -0.0045 -0.00672 
 [0.01034] [0.01318] [0.01398] [0.01382] [0.01288] 
Welfare indicators      
  Extreme poverty 0.13045 0.09694 0.09675 0.0936 0.08259 
 [0.01420]*** [0.01477]*** [0.01600]*** [0.01584]*** [0.01461]*** 
  Consumption Q1 0.23495 0.20321 0.21624 0.20067 0.19373 
 [0.02432]*** [0.02613]*** [0.02822]*** [0.02817]*** [0.02595]*** 
  Consumption Q2 0.18147 0.15602 0.15693 0.14367 0.15435 
 [0.02423]*** [0.02482]*** [0.02686]*** [0.02656]*** [0.02438]*** 
  Consumption Q3 0.12127 0.10377 0.11947 0.10971 0.10911 
 [0.02462]*** [0.02478]*** [0.02695]*** [0.02662]*** [0.02421]*** 
  Consumption Q4 0.0714 0.06622 0.07331 0.06113 0.05812 
 [0.02560]*** [0.02549]*** [0.02779]*** [0.02740]** [0.02481]** 
Block-level variables      
  Distance to module   0.00037 -0.01881  
   [0.00048] [0.00795]**  
  Percent poor households in block   0.15266 0.24745  
   [0.05483]*** [0.08128]***  
  Percent verified poor in module   1.00623 2.96214  
   [0.28996]*** [1.27166]**  
Other      
  Participates in community organization    0.0032 -0.00908 
    [0.01742] [0.01640] 
  Receives other social program    0.10506 0.08867 
    [0.01554]*** [0.01473]*** 
Constant 0.11214 0.15649 -0.9472 -2.79748 0.11597 
 [0.09087] [0.10522] [0.29931]*** [1.24503]** [0.10390] 
Observations 5,294 5,294 4,565 4,565 5,294 
R-squared 0.07 0.09 0.1 0.11 0.09 

Notes:  Standard errors in brackets.  * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent.  Regressions 
include controls for other household characteristics including:  if household has dirt floor, a dummy indicating if there is a 
refrigerator and gas stove, and home ownership, as well as the number of men and women by age groups (18-39, 40-59, and 
60 or older).  SFE, CFE, and BFE denote the inclusion of state-level, community-level, and block-level fixed effects, 
respectively.  Beneficiary is defined according to administrative records from Oportunidades. 
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Table 10—Determinants of program participation (non-eligible households) 
 SFE SFE SFE CFE BFE 
Household head characteristics      
  Age 0.00031 0.00074 0.00105 0.00051 0.00064 
 [0.00044] [0.00069] [0.00071] [0.00071] [0.00069] 
  Gender (1 = male) -0.01632 0.00818 0.00615 0.05465 0.04996 
 [0.01451] [0.01802] [0.01865] [0.02609]** [0.02506]** 
  Indigenous (1 = indigenous) -0.00048 -0.00086 0.00053 0.00289 -0.00066 
 [0.00704] [0.00702] [0.00760] [0.00747] [0.00684] 
  Years of schooling -0.00071 -0.00086 -0.00069 -0.00083 -0.00085 
 [0.00065] [0.00065] [0.00066] [0.00065] [0.00064] 
  Disabled -0.00334 -0.00041 0.01138 0.01544 0.01639 
 [0.04089] [0.04085] [0.04204] [0.04106] [0.03955] 
  Female household or spouse working in 2001    0.00163 -0.007 
    [0.01342] [0.01282] 
  Male household or spouse working in 2001    -0.05933 -0.04957 
    [0.02422]** [0.02333]** 
Household characteristics      
  Vehicle in household 0.06405 0.05368 0.0461 0.04033 0.04831 
 [0.02098]*** [0.02109]** [0.02095]** [0.02067]* [0.02063]** 
  Television in household -0.04878 -0.03871 -0.02947 -0.03435 -0.04536 
 [0.02077]** [0.02080]* [0.02160] [0.02143] [0.02050]** 
  Radio in household -0.04206 -0.03554 -0.03998 -0.04122 -0.033 
 [0.01353]*** [0.01354]*** [0.01414]*** [0.01388]*** [0.01318]** 
  Children aged 0-5  0.04003 0.04376 0.03787 0.03231 
  [0.01053]*** [0.01085]*** [0.01065]*** [0.01027]*** 
  Children aged 6-11  -0.00264 -0.00654 -0.00829 0.00132 
  [0.00776] [0.00816] [0.00804] [0.00758] 
  Children aged 12-17  -0.01171 -0.01726 -0.01092 -0.00554 
  [0.00843] [0.00880]** [0.00869] [0.00827] 
Potential benefits      
  Log of potential transfer 0.00661 0.02621 0.0263 0.02241 0.02195 
 [0.00866] [0.01133]** [0.01179]** [0.01160]* [0.01105]** 
Welfare indicators      
  Extreme poverty 0.06985 0.07162 0.06652 0.06859 0.05968 
 [0.01290]*** [0.01319]*** [0.01390]*** [0.01374]*** [0.01304]*** 
  Consumption Q1 0.19376 0.21196 0.2106 0.1999 0.18477 
 [0.02340]*** [0.02533]*** [0.02616]*** [0.02617]*** [0.02530]*** 
  Consumption Q2 0.12469 0.13564 0.12477 0.10705 0.10596 
 [0.01934]*** [0.02040]*** [0.02126]*** [0.02110]*** [0.02021]*** 
  Consumption Q3 0.08137 0.08998 0.07237 0.0594 0.07463 
 [0.01709]*** [0.01767]*** [0.01845]*** [0.01828]*** [0.01740]*** 
  Consumption Q4 0.05117 0.05888 0.0541 0.04853 0.04918 
 [0.01566]*** [0.01589]*** [0.01646]*** [0.01622]*** [0.01556]*** 
Block-level variables      
  Distance to module   -0.00067 -0.01858  
   [0.00050] [0.00560]***  
  Percent poor households in block   0.29939 0.37352  
   [0.04647]*** [0.06558]***  
  Percent verified poor in module   0.26154 0.65144  
   [0.19697] [1.01855]  
Other      
  Participates in community organization    0.03472 0.03424 
    [0.01486]** [0.01457]** 
  Receives other social program    0.06306 0.05414 
    [0.01422]*** [0.01396]*** 
Constant 0.07861 -0.0132 -0.3711 -0.63144 0.01666 
 [0.07081] [0.08458] [0.20936]* [0.98794] [0.08378] 
Observations 4,315 4,315 3,775 3,775 4,315 
R-squared 0.07 0.08 0.1 0.11 0.07 

Notes:  Standard errors in brackets.  * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent.  Regressions 
include controls for other household characteristics including:  if household has dirt floor, a dummy indicating if there is a 
refrigerator and gas stove, and home ownership, as well as the number of men and women by age groups (18-39, 40-59, and 
60 or older).  SFE, CFE, and BFE denote the inclusion of state-level, community-level, and block-level fixed effects, 
respectively.  Beneficiary is defined according to administrative records from Oportunidades. 
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