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ABSTRACT 

This paper investigates the effects of wheat genetic diversity and land degradation on 

risk and agricultural productivity in less favored production environments of a developing 

agricultural economy. Drawing production data from household survey conducted in the 

highlands of Ethiopia, we estimate a stochastic production function to evaluate the effects of 

variety richness, land degradation, and their interaction on the mean and the variance of wheat 

yield. Ethiopia is a centre of diversity for durum wheat and farmers manage complex variety 

mixtures on multiple plots.  Econometric evidence shows that variety richness increases farm 

productivity. Variety richness also reduces yield variability but only for high levels of genetic 

diversity. Simulations with estimated parameters illustrate how planting more diverse durum 

wheat varieties on multiple plots contributes to improving farmer's welfare.  
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Farmer Management of Production Risk on Degraded Lands: The Role of 

Wheat Genetic Diversity in Tigray Region, Ethiopia 
 

Salvatore Di Falco,1 Jean-Paul Chavas,2  and Melinda Smale3 
 
 

1.  INTRODUCTION 

 
 

Coping with chronically low and variable yields of food crops is critical for the survival 

of farm households in dry environments of developing agricultural economies where agro-

climatic conditions are challenging, technological progress is slow, and market institutions are 

poorly developed. Often, use of improved seed is limited by poor adaptation to local conditions, 

while use of fertilizers is uneconomic, either because moisture cannot be controlled through 

irrigation, or transport and transactions costs are prohibitive. Land degradation, brought about 

through a prolonged interface between human-induced and natural factors, exacerbates low 

productivity.   

Managing risk exposure is an important preoccupation of agricultural households, 

particularly in such environments (Bromley and Chavas 1989, Paxson 1992, Fafchamps 1992, 

Deaton 1992, Fafchamps et al. 1998, Fafchamps and Pender 1997). Insurance mechanisms, 

whether formal or informal, often function imperfectly due to credit constraints, information 

asymmetries and commitment failures (Deaton 1990, Fafchamps 1992, Kurosaki and Fafchamps 

2002). Off-farm, non-covariant income may be restricted. Although farmers can accumulate grain 

and livestock as buffer stocks, drawing down farm assets to meet consumption needs has long-
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term consequences. Therefore, ex ante crop production decisions remains an important strategy 

for farm households (Just and Candler 1985, Fafchamps 1992, Chavas and Holt 1996).   

Tigray region in the northern Ethiopian highlands is an example. During the last 

millennia, at least 25 severe drought periods were recorded, and crop production in most areas of 

Tigray “never topped subsistence levels” (REST: 137). Ethiopia has one of the highest rates of 

soil nutrient depletion in Sub-Saharan Africa (Stoorvogel and Smaling 1990; Grepperud 1996; 

FAO 2001). Hurni (1993) estimated that 42 t/ha of soil were lost on the sloped cropland of 

Ethiopia each year. More than half of the area in the highlands of Tigray is highly degraded.  

Concerted efforts have been made to rehabilitate the environment in Tigray over the past decade, 

although it remains one of the harshest in Ethiopia (Gebremedhin 1998; Gebremedhin and 

Swinton 2003).  

Rainfall is sparse and unpredictable in Tigray, both over space and over time. Mean 

annual rainfall has been estimated at 650 mm or less over the past few decades (REST 1995; 

Pender and Gebremedhin 2004), and the coefficient of variation for yield in Tigray is four times 

the national level (REST 1995). Farms are characterized by highly varied micro-environments 

that differ in topography, soil type, rainfall, temperature and soil fertility, and this heterogeneity 

varies over relatively small distances (Bekele 1984; Hagos, Pender, and Gebreselassie 1999).  

To manage ex ante the risks of food production in the highlands of Tigray, farmers have 

little other than their land and labour—and their crop genetic resources embedded in crop seeds.  

Having crop varieties that respond differently to weather randomness ensures that "whatever the 

environmental conditions there will be plants of given functional types that thrive under those 

conditions" (Heal 2000). Moreover, when harshness is an important feature of the physical 

environment, then facilitation (rather than competition) may increase as interactions among 
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plants exhibit a greater reliance on positive synergies (Vandermeer 1989; Bertness and Callaway 

1994; Callaway 1995; Callaway and Walker 1997).   

Ethiopia is a recognized global center of genetic diversity for several crops, including 

durum wheat (Harlan 1992; Vavilov 1949; Pecetti et al. 1992), and the majority of durum wheat 

varieties grown in Ethiopia are farmers’ varieties, or “landraces.” Geneticists have argued that the 

genetic variation or heterogeneity found in landraces of durum wheat provides insurance against 

crop failures under adverse conditions (Tesemma and Bechere 1998: 324). Bechere et al. (1996) 

have reported a high amount of variation in morphogenetic traits and other breeding attributes, 

specifically in seed samples collected from Tigray and other northern regions.  Geneticists have 

ascribed the wide range of morphogenetic diversity in Ethiopia durum wheat to environmental 

factors, and to natural cross-fertilization from farmers’ practice of growing variety mixtures 

contiguously.  

Most households in the Tigray region remain far from roads, transport, and markets. 

Based on the survey data used in this paper, the average walking time to the nearest all-weather 

road is more than 2 hours, with 4 hours walking to the nearest bus service, and 3.5 hours to the 

nearest woreda town. Access to information is also difficult: at the time of the survey in 1998, 

only 15 percent of household heads had had formal schooling (only 6 percent had more than 2 

years of formal education), and only 7 percent had participated in a literacy campaign (Pender 

and Gebremedhin 2004).  

The econometric analysis presented in this paper illustrates how farmers use the richness 

of wheat varieties to enhance productivity and reduce yield variability on degraded land. This 

research relies on data drawn from a detailed survey of 135 wheat-growing households in the 

Tigray region, conducted in 1999.  A stochastic production function approach (Just and Pope 
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1978) is used to test the effects of variety richness, degraded lands, and their interaction on the 

mean and variance of durum wheat yield. The analysis relies on large variations in weather 

conditions across space to estimate production risk and evaluate the role of genetic diversity in 

risk management. To evaluate the effects on farmer welfare, the estimated parameters are used to 

simulate the insurance value of higher levels of variety richness in the presence of high levels of 

land degradation.  

 
2.  MODEL 

Consider a farm household involved in the production of farm output y. The farm 

technology is represented by the production function  

y = g(x, v),  

where y is output, x is a vector of controllable inputs (e.g., fertilizer, land, labour, biodiversity), v 

is vector of non-controllable inputs (e.g., weather conditions), and g(x, v) denotes the largest 

feasible output given x and v. Of particular interest here are the interactions between the inputs x 

(including variety diversity) and the random variables v (representing production uncertainty), 

with implications for risk management.  

Given our focus on subsistence farms, risk management decisions are made at the 

household level. In this context, the farm output y can be either consumed by the household or 

marketed: y = c1 + m, where c1 is the part of farm output consumed by the household, and m is 

the marketed surplus that can be marketed at price p1. The marketed surplus can be positive (m > 

0) when the farm household produces more that it consumes, or negative (m < 0) when the 

household produces less than it consumes. The household also consumes another good c2 that it 

can purchase at price p2. The household income is: p1 m + N(x), where p1 m is the income 

generated from the marketed surplus, and N(x) denotes the net income from other activities (net 
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of the cost of inputs x). Normalizing prices such that p2 = 1, the household budget constraint is: c2 

≤ p1 m + N(x). With m = y – c1 = g(x, v) – c1, and assuming that the budget constraint is binding, 

solving the budget constraint for c2 yields: c2 = N(x) + p1 [g(x, v) – c1]. Let U(c1, c2) be a von 

Neumann Morgenstern utility function representing household preferences under risk. Under the 

expected utility model, the household makes decisions about c1 and x so as to solve the 

optimization problem 

Max {EU(c1, N(x) + p1 [g(x, v) – c1])},  (1) 

where E is the expectation operator based on the subjective probability distribution of the 

uncertain variables (including production uncertainty v) facing the decision maker.  

 Following Pratt (1964), consider measuring the implicit cost of private risk bearing by 

the risk premium Ra, where Ra satisfies EU(c1, N(x) + p1 [g(x, v) – c1]) = U(c1, E[N(x) + p1 [g(x, 

v) – c1]] - Ra). The risk premium Ra is the sure amount of money the decision maker is willing to 

pay to eliminate risk exposure by replacing the random revenue N(x) + p1 [g(x, v) – c1] by its 

mean E[N(x) + p1 [g(x, v) – c1]]. By definition, the decision maker is averse to risk, neutral to 

risk, or risk-loving when Ra > 0, = 0, or < 0, corresponding respectively to ∂2U/∂c2
2 < 0, = 0, or > 

0 (Pratt 1964). The risk premium Ra depends in general on risk preferences and on the 

distribution of risk.    

Given ∂U/∂c2 > 0, the maximization problem in equation (1) implies that all production 

decisions are made so as to solve the following maximization problem 

Max {E[c1, N(x) + p1 g(x, v)] – Ra(x))}, (2) 

where E[c1, N(x) + p1 [g(x, v)] – Ra(x) is the “certainty equivalent” measured as the expected 

revenue minus the cost of private risk bearing (captured by the risk premium Ra(x)). 
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The variance of yields can contribute to the cost of private risk-bearing. Letting π = N(x) 

+ p1 [g(x, v)] and following Pratt (1964), the risk premium Ra can be approximated as 

Ra ≈ ½ ra M2  (3) 

where M2 = E[π - E(π)]2 is the variance of net revenue, and ra = -(∂2U/∂π2)/(∂U/∂π) is the Arrow-

Pratt coefficient of absolute risk aversion evaluated at E(π). Therefore, the certainty equivalent, 

CE = E(π) - Ra, can be expressed as 

CE ≈ E(π) - ½ ra M2   (4) 

 Risk-averse decision makers are adversely affected by risk, thus providing an incentive to 

reduce their risk exposure. To do so, farm households manage their production inputs in 

numerous ways. In dry, marginal environments of developing agricultural economies, ex ante 

risk management strategies involve planting decisions, such as sequential planting or multiple 

plots, crops and varieties. One hypothesis in the literature about on-farm crop genetic resources is 

that the genetic diversity of crop varieties enables farmers to better cope with production risk in 

marginal environments.  

Equation (3) provides a convenient way to investigate this and related hypotheses 

concerning the cost of bearing risk, wheat diversity and land degradation. As a complement to 

(3), the "absolute risk premium" Ra can be expressed in relative terms as Rr = Ra/E(π),   

where Rr is the "relative risk premium" measuring the risk premium as a proportion of expected 

return. Using (3), the relative risk premium can be approximated as 

Rr ≈ ½ ra M2/E(π).  (3') 

The risk premium depends on the risk preferences of the decision maker. We consider the 

case of farmers who exhibit constant relative risk aversion (CRRA), where the Arrow-Pratt 

relative risk aversion coefficient rr ≡ ra E(π) is constant with rr > 1. Following Pratt (1964), this 
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corresponds to the utility function U(c1, π) = a(c1) - b(c1) rr1π − , with b(c1) > 0. Assuming constant 

relative risk aversion is attractive for three reasons. First, CRRA with rr between 1 and 4 

represents typical forms of risk behaviour (e.g., Binswanger 1981; Gollier 2001). Second, CRRA 

allows for risk aversion, and implies decreasing absolute risk aversion (where the risk premium 

decreases with wealth; see Pratt (1964)). This is consistent with experimental evidence on 

farmers’ attitudes toward risk in Ethiopian highlands (Yesuf 2004). Third, assuming CRRA and 

constant returns to scale, and taking the cultivated area as given, maximizing expected utility of 

net income implies maximizing expected utility of net income per hectare.4  In this context, 

below, we will use equations (3), (3’) and (4) to simulate the effects of risk and alternative 

management strategies on farmer’s welfare.  

 

3.  BACKGROUND 

The dataset used in the analysis is from a farm survey conducted in 1999 in the highlands 

(more than 1500 meters above sea-level (masl)) of Tigray region of Ethiopia by researchers from 

Mekelle University, the International Food Policy Research Institute (IFPRI), and the 

International Livestock Research Institute (ILRI). The survey involved a stratified sampling of 

farm households, with the strata being chosen according to agricultural potential, market access, 

and population density (Pender et al. 1999).  In Tigray Region, peasant associations (PAs) were 

stratified by whether an irrigation project was present or not, and for those without irrigation, by 

distance to the woreda town (greater or less than 10 km). Three strata were defined, with 54 PAs 

randomly selected per strata. PAs closer to towns and in irrigated areas were selected with a 
                                                           
4 Let A denote farm size (measured by the area cultivated). Under constant return to scale, net revenue π > 0 is 
proportional to A: π = k A, where k > 0 is net income per hectare. Under CRRA with rr > 1, the expected utility is 
EU(c1, π) = a(c1) - b(c1) ( rr1A − ) E rr1k − , where b(c1) > 0. This shows that maximizing expected utility implies 
maximizing the expected utility of net income per hectare.  
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higher sampling fraction to assure adequate representation. Four PAs in the northern part of 

Tigray could not be studied due to the war with Eritrea. From each of the remaining PAs, two 

villages were randomly selected, and from each village, five households were randomly selected. 

A total of 50 PAs, 100 villages, and 500 households were then surveyed.  

Usable data were available for 96 villages, or kushets. Out of 96 villages, 63 were 

growing wheat and modern varieties represented only about 23 percent of wheat area. These 63 

villages are dispersed throughout the region of Tigray with the exception of the western part 

where no wheat producers are recorded in the sample. A total of 135 households grew wheat on 

236 different plots in the survey year analyzed here. After controlling for outliers and 

observations with missing values for relevant variables, 118 observations remained.  

Most of the population depends on mixed crop and livestock farming, and cereals are the 

most widely grown crops (85 percent of the cultivated land), including wheat, teff, barley, maize, 

finger millet, sorghum, and pearl millet. Oxen power is used for land preparation and threshing.   

The wheat varieties named by farmers include a large number of local types as well as 

modern types. Varieties were selected by farmers from local germplasm and those they have 

adapted from modern varieties (Abay 2002). Twenty-seven named local varieties were grown in 

50 kushets of Tigray during the survey period, and 10 modern wheat varieties, of which 9 could 

be traced to a known cultivar and pedigree history.  

In and of themselves, these modern bread wheats are diverse with respect to breeding 

history, and release dates.  They include 4 tall improved wheats, of which two originated in 

Kenya, in addition to a set of semi-dwarf wheats with ancestry from the International Center for 

Maize and Wheat Improvement (CIMMYT). CIMMYT ancestry entails complex genealogies 

with parental lines from international sources (Smale et al. 2002). The varieties with CIMMYT 
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ancestry that are grown in Tigray span three decades (1970s, 1980s, 1990s). In each decade, they 

include a variety from the leading CIMMYT cross of that time period.  Of the cultivars released 

during the early green revolution, most were selections from the ‘Mexipak’ cross.  The ‘Veery’ 

cross, which widened the gene pool of spring bread wheat through the 1BL/1RS wheat-rye 

(Secale cereale  L.) chromosomal translocation, was the leading cross among cultivars released 

during the 1980s. Cultivars selected from the Attila cross (cross made in 1984, first cultivar 

released from selection in 1995) are now of growing popularity.  

Most of the named local varieties are likely to be durum wheat because bread wheat is a 

more recent introduction. All improved varieties of wheat named are bread wheat, and many of 

the bread wheat varieties were brought in through government seed programs because they lodge 

less than the taller, improved durum wheat varieties of Ethiopia. The relationship between wheat 

variety names and genotype diversity has not been established conclusively in Tigray. Some 

researchers maintain that a variety is not named unless farmers recognize its distinctive 

phenological or agronomic features.  Others argue that different names may be given to varieties 

with the same genotypes, reflecting farmers’ use preferences.  Furthermore, varieties that differ in 

genotype may be given the same name. Evidence from research at University of Mekelle suggests 

that farmers deliberately enhance the existing diversity of their wheat cultivars, by selecting 

different types of plants for seed based on their differential response to environmental stresses—

in particular, lack of moisture. Rust diseases of wheat are not common, and pesticides are not 

applied (Abay 2002; Sefera, Adal, and Teshome 2002).   

Inspection of the data shows that six wheat varieties dominated the plots planted in wheat 

in Tigray from 1991 to 1998.  The landraces “white” and “black” are likely to be mixtures or 

landrace classes of durum wheat, differentiated by color and other characteristics but with 



 
 
 

 

10

considerable within-variety genetic heterogeneity. The landrace Shehan or Shelan appears to be 

widely grown in much of Tigray, with many farmers producing it continuously and replacing the 

seed frequently from other farmer sources (Sefera, Adal, and Teshome 2002). Pavon and Enkoy 

also appear to be extensively grown in Tigray, and for some time. Enkoy has been described as a 

“rusticated” Kenyan improved variety introduced in Ethiopia in 1979. Enkoy is tall in stature, and 

although preferred for bread consumption, is vulnerable to stripe rust and performs poorly on less 

fertile soils. As a consequence, farmers tended to grow it with fertilizer (Hailye, Verkuijl, 

Mwangi, Yallew 1998). 

 

4.  EMPIRICAL APPLICATION 

PRODUCTION FUNCTION ESTIMATION 

In general, equations (1) and (2) allow for both price uncertainty and production 

uncertainty. Here we focus on the case of production uncertainty as represented by the stochastic 

production function y = g(x, v), where weather conditions (v) are not known at planting time. We 

assume that the farmer has a subjective probability distribution about v. Just and Pope (1978) 

proposed to specify g(x, v) = f(x) + [h(x)]1/2 e(v),  where h(x) > 0 and e(v) is a random variable 

with mean zero and variance 1. In this context, the Just-Pope production function is 

y = f(x) + e(v) [h(x)]1/2.  (5) 

This implies that f(x) represents the mean production function, while h(x) is the variance 

of output: E(y) = f(x) and Var(y) = Var(e) h(x) = h(x). Given ∂Var(y)/∂x = ∂h/∂x, it follows that 

∂h/∂x > 0 identifies inputs x that are risk-increasing, while ∂h/∂x < 0 identifies inputs that are 

risk-decreasing. Note that e(v) [h(x)]1/2 behaves like an error term with mean zero and variance 
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h(x). This reflects the fact that the Just-Pope specification corresponds to a regression model with 

heteroscedastic error term.  

After choosing a parametric form for f(x) and h(x), the model can be consistently and 

efficiently estimated using maximum likelihood estimation. This provides consistent and 

asymptotically efficient estimates of the parameters, of the mean production fe(x), and of the 

variance he(x).   

The Just-Pope stochastic production function provides a convenient and flexible 

representation of the effects of inputs on means and variances. Widely applied, the approach has 

also been used in several previous studies that tested the effects of crop genetic diversity on 

productivity and yield variability (Smale et al. 1998; Widawsky and Rozelle 1998; Di Falco and 

Perrings 2005). We apply it to investigate the effects of variety diversity, land degradation, and 

their interaction on productivity and yield variability. The model and econometric approach 

enable us to explore the role of variety diversity in reducing the cost of risks borne by households 

farming degraded lands.  

VARIABLES 

Wheat yields are measured in kg per squared meter. Explanatory variables were 

constructed from the plot level data, which record the varieties of wheat grown, along with a set 

of cultivation and land management practices, input use and output in 1998.  Table 1 defines 

explanatory variables and Table 2 reports summary statistics.  
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Table 1--Variables list and definitions 
Labour Quantity of labour in person day    

Oxen Quantity of oxen power, in days  

Fertilizer Fertilizer applied (1=yes; 0=no)   

Improved seed Seed technology shift variable 
represented by use of improved varieties (1=yes; 
0=no)  
 

 

Variety richness 
 

Varieties richness index  
[(number of varieties)/ln(wheat area)] 

Land degradation Share of eroded land  

Degradation*variety richness interaction between variety richness  
and degradation 

Slope Share of land on steep slope  

Altitude Household altitude, masl  

Burning  Burning of crop residues (Yes=1; 0=No)  
Fragmentation Number of plots planted to wheat   

 
 
 
Table 1- Descriptive statistics 
 Variables Mean Std Deviation Min Max 

Labour 22.7 16.38 2.8 94 

Oxen 6.98 6.37 0 50 

Fertilizer 0.33 0.47 0 1 

Improved seeds 0.14 0.35 0 1 

Variety richness 0.46 0.23 0.26 1.2 

Land degradation 0.36 0.36 0 1 

Degradation*variety richness 0.16 0.18 0 0.82 

Altitude 2434 270 1840 2950 

Slope 0.086    

Burning 0.088 0.28 0 1 

Fragmentation 1.6 0.89 1 5 
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Conventional inputs are few in this wheat production system. Purchased input use on 

wheat plots consisted solely of fertilizer, but since only 25 of the 135 households applied it, a 

dummy variable was used to control for use.  Similarly a dummy variable was added for the 15 

farmers who burned crop residues. Labour and animal power is measured respectively in person 

days and oxen days. An intercept shift controls for differences in levels of yield between farmers’ 

varieties and improved varieties, as categories of genetic resources. Two physical characteristics 

of wheat production are included. Plot altitude, which is associated closely with temperature and 

micro-climates, ranges from 1840 to 2950 masl for farmers surveyed.  The dispersion or physical 

fragmentation of production is expressed by the number of plots planted to wheat. In the survey, 

farmers plant wheat on 1 to 5 plots.  

Land degradation is a complex process affecting productivity and management decisions. 

Farmers’ perception of the degree of degradation on plots was evaluated in the survey. 5 In our 

model, we used the share of wheat production on lands classified by the farmer as eroded as a 

proxy for land degradation. Other physical characteristics can also affect the productivity of the 

land. In our sample, about 10 percent of the plots cultivated by all farmers surveyed are on 

“steep” slopes, and 40 percent have shallow soils (Pender and Gebremedhin 2004). To control for 

the potential effect of slope and shallow soils on both productivity and risk, we incorporated the 

share of land under the category "steep slope" and the share of land with shallow soil into the 

analysis. However, the latter was found statistically not significant. As a result, it was not 

included in the model specification reported in Table 3.  

 

Table 2- Econometric results for mean yield function and variance function 
                                                           
5 Farmers’ understanding of land degradation in Tigray has been analyzed in two studies Hunting (1976) and Tilahun 
(1996). These studies showed that farmers realized the consequences of land degradation on production and were 
aware of land quality differences. 
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Variables Mean Yield 
Function 

(A) 

Variance Function 
(B) 

Constant -0.417*** 
(0.062) 

 

 

Labour 0.000615*** 
(0.00017) 

0.033*** 
(0.01) 

Labour squared 0.000005 
(0.73E-05) 

- 

Fertilizer 0.0053 
(0.0086) 

1.39*** 
(0.29) 

Oxen 0.0019** 

(0.001) 
-0.13*** 

(0.02) 

Oxen squared -0.000067*** 
(0.22E-04) 

- 

Variety richness 1.1*** 
(0.127) 

35*** 
(6.7) 

Variety richness-squared -0.45*** 
(0.062) 

-19.1*** 
(3.35) 

Land degradation 0.029** 
(0.0145) 

7.17*** 
(0.94) 

Degradation*variety richness -0.098*** 
(0.016) 

-25*** 
(2.12) 

Improved seeds 0.052*** 
(0.008) 

1.95*** 
(0.39) 

Altitude 0.000073*** 
(0.00001) 

-0.001** 
(0.0005) 

Fragmentation -0.24*** 
(0.02) 

-3.92*** 
(1.5) 

Burning 
 
 

0.0089* 

(0.0033) 
- 

Slope -0.036*** 

(0.01) 
4.1*** 
(0.78) 

Breusch Pagan statistics = 62.54.; F- statistic (B)= 11.96;  Log Likelihood function: 208. 64;    Restricted 
Log Likelihood:169.5 
n =116 
Standard errors are in parentheses. Significance levels are denoted by one asterisk (*) at the 10  percent level, two 
asterisks (**) at the 5  percent level, three asterisks (***) at the 1 percent level.  
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Variety richness expresses one concept, or dimension of durum wheat diversity. No single 

indicator of genetic diversity can capture all dimensions of genetic diversity, nor all interactions 

between genes and the environment (Meng et al. 1998; Smale et al. 2002; Brock and Xepapadeas 

2003). Here, we measure diversity by a modified Margalef index, adapted from the ecology 

literature. Variety richness is defined as the number of varieties that are grown and recognized as 

distinct by farmers, divided by the logarithm of wheat area cultivated by the household.  

Typically calculated over large areas and samples, the numerator of the Margalef index is defined 

as the number of species or sub-species less one.  

Richness indices treat each unit as equal, accounting neither for relative abundance nor 

for genetic distance. Nonetheless, variety richness is an intuitive concept that has appeal in an 

applied study of farmer decision-making.  Farmers observe variety richness, and policies can 

directly influence local levels of variety richness through encouraging the supply of new seed 

varieties or reducing the farmer’s cost of obtaining them. Finally, to investigate the role of variety 

richness in possibly mitigating the effects of land degradation on productivity and yield risk, we 

introduce an interaction term between variety richness and land degradation.  

 

 
5.  EMPIRICAL RESULTS  

We used a flexible quadratic functional specification for the mean function. This 

specification is particularly suited for the study of yield response and allows for zero values in the 

set of inputs.   A linear specification was specified for the variance function, with a quadratic 

term for variety richness. Alternative specifications were also considered for the variance 
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function.6  In general, the estimated results reported below were found to be fairly robust to the 

model specification.   

First, we examine whether the model may be subject to endogeneity issues. This would 

occur if some of the explanatory variables are correlated with the error term. For example, if 

variety richness were correlated with the error term, the least-squares estimate of the effects of 

variety richness on the mean and variance of wheat yield would be biased due to endogeneity. A 

similar situation may also arise with respect to land degradation. Thus, the potential presence of 

endogeneity must be tested.  

A possible strategy to test for endogeneity is using a Durbin-Wu-Hausman test (see 

Davidson and MacKinnon 1993; Wooldridge 2002). The test involves estimating auxiliary 

reduced-form regressions for the right-hand side variables suspected to be endogenous, followed 

by estimation of an augmented original model including the reduced-form residuals as additional 

explanatory variables. The statistical significance of the coefficients associated with the residuals 

is then evaluated. First, the test was implemented for variety richness. The distance of the 

household from the nearest input supplier was used as an instrumental variable. The coefficient 

on the residual was not statistically different from zero. Thus, we failed to find statistical 

evidence of significant endogeneity related to variety richness. We also tested for endogeneity in 

our degradation measure in a similar way, using household distance from the nearest market town 

as instrument. Again, we found no evidence of endogeneity.  On that basis, the econometric 

estimates reported below were obtained using weighted least squares.7   

                                                           
6 For instance, quadratic terms were used for land degradation along with interaction terms. However, these terms 
were found to be statistically insignificant. As a result, they are not included in the specification reported in table 3.   
7 Given that only one instrument has been used for one endogenous variable, the Sargan-Hansen-based test for 
exogeneity of instruments, such as the C test, cannot be calculated. The equation is exactly identified. However, the 
data do show that each instrument is correlated with each potentially endogenous variable. Note that maximum 
likelihood estimation is equivalent to iterated weighted least squares estimation.  
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The null hypothesis of homoscedasticity was tested against alternative hypotheses of:  i) 

general heteroscedasticity and ii) multiplicative heteroscedasticity (e.g. Just and Pope 1978 1979) 

using the Breusch Pagan test and an F-test. Results strongly reject the null hypothesis of 

homoscedasticity and find support for the multiplicative heteroscedastic model.  On that basis, 

the Just and Pope specification provides an appropriate framework for the analysis presented in 

this article. After controlling for agro-climatic conditions (e.g., altitude, land degradation), the 

analysis relies on the spatial variations in weather conditions to estimate production risk and 

evaluate the role of genetic diversity in risk management. 

 

ESTIMATION OF YIELD MEAN AND VARIANCE  

The econometric results are reported in Table 3 for the mean function and the variance 

function. Most of the estimated coefficients in the mean function are statistically different from 

zero at the 1 percent significance level (Table 3, column A). Conventional inputs have positive 

marginal effects, consistent with theory.  Labour and oxen have positive effects. The joint effects 

of oxen use and oxen use-squared are statistically significant with evidence of declining marginal 

returns. The quadratic term of labour is positive, though not statistically significant. The 

estimated coefficient for fertilizer use (primarily urea) is positive but not statistically significant. 

The estimated coefficient for the use of improved seeds is positive and statistically significant. 

Therefore, the use of new varieties increases mean yield. The practice of burning the crop residue 

is also positively and significantly correlated with mean yields. Physical characteristics of wheat 

production are also important. Altitude positively affects wheat productivity, probably due to the 

relatively cooler temperatures that are associated with higher elevation. Fragmented production 

significantly reduces yields and the use of burning is positively and significantly correlated with 
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yield. The share of land with a steep slope affects productivity negatively, and it is statistically 

significant.  

The effects of wheat diversity on mean yield are captured through three terms: a linear 

term, a quadratic term, and an interaction term with land degradation. Both the coefficient of the 

linear term and the coefficient of the quadratic term are statistically significant. This shows that 

crop genetic diversity exhibit decreasing marginal productivity.  Evaluated at sample means, the 

elasticity of mean wheat yields with respect to variety richness is 3.33. This indicates that wheat 

genetic diversity has a large and positive effect on mean productivity. This positive effect of 

variety richness holds for the full range of values found in the sample. However, the coefficient 

of the interaction term between diversity and land degradation is negative and significant. This 

means that the effects of diversity on mean productivity are relatively larger when there is less 

land degradation. Alternatively stated, land degradation tends to reduce the mean productivity 

benefits of genetic diversity.    

All the estimated coefficients associated with land degradation are highly significant. The 

coefficient of the linear term is positive, but the interaction effect of land degradation with variety 

richness is negative. When evaluated at sample means, the elasticity of wheat yields with respect 

to land degradation is negative (-0.06). In fact, increasing the share of degraded land planted to 

wheat is found to reduce productivity through most of the range of the sample data.  The negative 

coefficient of the interaction term "land degradation - variety richness" implies that the effect of 

land degradation on mean production is sensitive to the level of crop genetic diversity.    

Regression results for the variance function are shown in Table 3, column B. Both the 

linear and quadratic coefficients of variety richness are statistically significant. The positive 

linear term and negative quadratic term imply that variety richness reduces the variance of yields 
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but only above a certain wheat diversity level. Evaluated at sample means for the other variables, 

we find that the diversity decreases the variance when the richness index is above 0.68. Since the 

sample mean for the richness index is 0.45, this indicates that diversity reduces risk exposure for 

a significant part of the sample data. The coefficient of the interaction effect "land degradation - 

variety richness" is negative and statistically significant. This implies that the range of values 

where diversity reduces risk exposure tends to increase with land degradation. To illustrate, 

consider the situation in which 55 percent of operated plots are degraded.  Then, diversity would 

reduce the variance when the richness index is above 0.55. If instead, 70 percent of the plots are 

degraded, then a richness index larger than 0.45 would suffice to obtain a beneficial risk-reducing 

effect of diversity. This underscores that the risk-reducing benefits of crop genetic diversity can 

be relatively larger when degradation is more severe. It can also indicate the presence of 

facilitative (rather than competitive) effects of diversity as it may help buffer weather shocks in 

the presence of highly degraded soils. Under severe environmental conditions, different plants 

may be able to exploit positive synergies among them to reduce the adverse effects associated 

with the harshness of environmental conditions.   

The share of wheat production on degraded lands is found to have a significant effect on 

yield variance both through its positive linear term and its negative interaction term with variety 

richness. This shows that the extent of degraded land can affect farm household exposure to 

environmentally-induced risk. For example, land degradation is found to have a positive effect on 

yield variance for low levels of diversity.   

 Fertilizer use increases exposure to risk (which is consistent with the finding of Just and 

Pope (1979), Roumasset et al. (1979) and Rosegrant and Roumasset (1985)) and anecdotal 

evidence from Ethiopia. Households producing wheat at higher altitudes are less exposed to risk, 
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perhaps because cooler temperatures reduce yield variability. Labour use has a positive marginal 

effect on yield variability, although more use of oxen appears to reduce risk. Production 

fragmentation across multiple plots has a negative and statistically significant effect on the 

variance of yields. This may be due to the diversification of production conditions.  The steep 

slope of the plots is found to increase farmers’ exposure to risk. 

 

6.  SIMULATIONS 

The econometric estimates just discussed were used to simulate selected welfare effects, 

using equation (3), (3') and (4).  Figure 1 shows the simulated effects of variety richness on 

expected revenue, on the absolute risk premium Ra given in (3), on the certainty equivalent in (4), 

and on the relative risk aversion given in (3'). The simulations are evaluated at market prices 

(e.g., price of wheat = 1.4 Birr) and at sample means otherwise. Risk preferences are assumed to 

exhibit CRRA, with a relative risk aversion parameter equal to 3.8  

                                                           
8 We implemented the simulations also for a relative risk aversion parameter of 1 and 2. The results were 
qualitatively similar to the one reported below. This indicates that our main findings are not sensitive to the chosen 
risk aversion parameter. 



 
 
 

 

21

Figure 1- Certainty equivalent (CE), expected revenue (E rev), absolute risk premium (Ra), 
and relative risk premium (Rr): simulation for increasing levels of variety 
diversity. Values are in Birr. 
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Figure 1 shows that expected revenue increases with variety richness, while the risk 

premium and the certainty equivalent exhibit more complex patterns. The effect of variety 

richness on expected revenue is relatively large for all levels of the richness index. This 

documents the strong productivity-enhancing role of variety richness. The risk-reducing benefit 

of variety richness is also illustrated in figure 1. It shows how both the absolute and the relative 

risk premium vary with variety diversity. The absolute risk premium Ra first increases with 

diversity up to 0.68, then declines. Thus, for higher levels of variety richness (i.e., above 0.68), 

diversity reduces risk exposure and the cost of private risk bearing. To be effective in reducing 
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the cost of risk (as captured by the absolute risk premium), the level of crop genetic diversity 

must be moderate to high. The non-monotonic effect of diversity on the risk premium also affects 

the certainty-equivalent. For high levels of diversity, the certainty-equivalent becomes even 

larger because of an associated reduction in the risk premium.  

Figure 1 shows that the risk-reducing effect of diversity does not apply for low levels of 

variety richness. However, it remains true that the relative risk premium Rr = Ra/E(π) declines 

monotonically with diversity throughout the range of the sample data. It means that, for any level 

of diversity, increasing variety richness always reduces the relative cost of risk bearing (as 

measured by Rr). The reason is that, at low levels of diversity, a higher variety richness increases 

expected revenue E(π) relatively more than it increases the absolute risk premium Ra. This 

illustrates that crop genetic diversity has important risk management implications for the whole 

range of sample values of the richness index. When the richness index is small, Figure 1 shows 

that the positive productivity effect dominates the cost-of-risk effect. And when the richness 

index becomes large, then diversity has two beneficial effects on farmer’s welfare: it increases 

mean productivity and it decreases risk exposure.  

These results illustrate the importance of high genetic diversity among the wheat varieties 

cultivated by farmers in Tigray, including a range of improved and local materials, and 

differentiated, genetically heterogeneous local materials. They show that growing more than one 

variety expands the function of the locally available gene pool, enhancing productivity and 

enabling farmers to better manage environmental shocks.  
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7.  CONCLUSION  

We have analyzed the role of wheat genetic diversity in supporting wheat productivity 

and mitigating exposure to risk on degraded lands in the region of Tigray, Ethiopia. Ethiopia is a 

globally important centre of wheat diversity.  Farmers grow a spectrum of improved and local 

varieties of both bread and durum wheat. Durum wheat varieties, in particular, are heterogeneous, 

often containing several different genetic lines. Farm households face high costs of market 

transaction in Tigray and must rely on their own production to meet their food needs. Use of 

purchased inputs is minimal, and non-farm sources of income are few, so that farmers manage 

risk ex ante, largely through labour, land, and seed management.  

A stochastic production function was estimated using data collected from a sample of 

farmers located in 63 villages, including 135 households growing wheat. The econometric results 

were then used to simulate the effects of varying levels of variety richness on wheat productivity, 

yield variability, and cost of risk exposure, with interacting effects with land degradation.  

Estimated mean and variance functions are consistent with economic theory for 

conventional inputs. Findings provide empirical evidence that variety richness enhances 

productivity and can reduce yield variability. However, in order to capture the risk reducing 

benefits of crop genetic diversity, the richness index must reach a certain threshold level (0.68 

compared to a sample mean of 0.46). We also found that the marginal effect of diversity on 

variance varies with to land degradation. Indeed, the range of values where diversity reduces risk 

exposure tends to increase with land degradation. In Tigray where land degradation is a serious 

issue, variety diversification is therefore an important farm strategy for managing production risk.   
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The econometric estimates were used to evaluate the economic implications of crop 

genetic diversity on farmer welfare. We found that variety richness strongly increases expected 

revenue from wheat and can reduce the cost of risk. For all levels of crop genetic diversity, the 

positive effect of wheat diversity on productivity is found to be large.  Risk-reducing effects of 

variety richness are also found to be important, especially for high levels of diversity. To capture 

the relationship between the private cost of risk and biodiversity we used two related concepts: 

the absolute risk premium and the relative risk premium (measuring the cost of risk as a 

proportion of expected return). We found that the absolute risk premium decreases with the index 

of variety richness only beyond a certain threshold. This means that biodiversity must be 

moderate/high to contribute to a reduction in the cost of risk.  However, we also find that the 

relative risk premium decreases monotonically with diversity. This is because, at low levels of 

diversity, higher variety richness increases expected revenue relatively faster than it increases the 

absolute risk premium. This reflects the fact that, at low levels of the richness index, the 

productivity effect of diversity dominates the risk exposure effect in welfare analysis.  

Our analysis has some important implications. First, we documented the productivity 

benefits of variety richness in difficult agro-climatic environments. Second, the risk-reducing 

benefits of biodiversity appear to be significant, at least for high levels of diversity. While other 

risk-coping mechanisms might also provide needed income insurance to farm households in 

Tigray, within the range represented by the sample data, higher levels of variety richness help 

insure against risky agro-climatic conditions in wheat production.  These results highlight the 

importance of assuring the richness and heterogeneity of varieties grown by farmers in 

challenging production environments. This includes appropriate seed interventions and the 

development and delivery of improved varieties.  In a rain-fed, drought-prone environment with 
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degraded land, maintaining genetic variation is a principal strategy for securing harvests and 

reducing the vulnerability of farm households. Indeed, an important part of the welfare benefits 

of crop genetic diversity is related to risk-related factors. This appears particularly important in 

harsh environments with imperfect markets for seed and products. 
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