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ABSTRACT 

CORPOICA and IFPRI implemented a research project in Ventaquemada, Colombia. The 
project’s goal was to asses the benefits of Integrated Pest Management (IPM) practices and the 
potential of Genetically Modified insect resistant (Bt) potatoes to manage damage caused by 
the Guatemalan Tuber Moth (Tecia solanivora Povolny). The Guatemalan Tuber Moth is 
particularly destructive because field spraying on the adult stage is ineffective and there 
exists damage specificity to the tubers. Excessive pesticide sprays have resulted in resistance to 
several insecticides. Insect resistant (Bt) potatoes has been shown an effective means to control 
other members of the Tuber Moth complex. Thus a Bt potato may play a role in managing 
Tecia in Colombia.  This is an ex ante study as there are no Bt potatoes currently under field 
conditions in Colombia.. To examine this issue, we conducted a survey in 2003 of 78 farmers 
in the region to estimate a baseline of traditionally and IPM managed systems. The first year 
survey was supplemented with focus groups to examine damage and production costs in 2003 
and 2004. We also implemented activities such as field verification of IPM practices and 
damage, a Farmer Field School and other participatory methods. Our analysis uses methods 
such partial budgeting analysis, a production function input abatement expectations model, and 
an economic surplus model augmented by stochastic simulations. Results of the analysis 
presented here outlines estimated losses under field and storage conditions, likely range of 
benefits accrued by farmers in the region due to the potentia1 adoption of a portfolio of IPM 
management practices and Bt potatoes. Results from the survey conducted in 2003 show that 
producers in the area have endured significant field and storage losses within the previous 10 
years, but were low in that particular year. Initial results where confirmed by results of focus 
groups in 2003 and 2004 which show very low field and storage damage. Sustained 
precipitation explains the observed low levels of damage by the Tuber Moth. Low levels of 
damage induced zero (or even negative) cost differences between conventional and IPM 
management. In contrast, using the proposed expectation model to estimate expected payoffs to 
IPM investments show that even with low levels of damage it still pays for producers to invest 
in IPM practices. The economic surplus estimates show that even considering variability of 
field and storage losses, as well as of other critical parameters, the use of Bt potatoes in 
Colombia creates a positive return to investment to Bt potato research, assuming that damage 
is present under field conditions. We finalize by discussing some of the institutional and 
strategic considerations for the potential use of Bt potatoes in the country. 
  

 

Keywords: Potatoes, Integrated Pest Management, partial budget, economic surplus, 
stochastic simulation, Colombia 
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An Exploration of the Potential Benefits of Integrated Pest Management Systems and the 
Use of Insect Resistant Potatoes to Control the Guatemalan Tuber Moth (Tecia solanivora 

Povolny) in Ventaquemada, Colombia 
 

José Falck Zepeda,1 Nancy Barreto-Triana,2 Irma Baquero-Haeberlin,2Eduardo Espitia-Malagón,2 

Humberto Fierro-Guzmán,2 and Nancy López2 
 
 

1.  INTRODUCTION 

In Colombia, potatoes are produced mostly in smallholder farm systems characterized by 

high chemical input use and very intensive production per unit of land. Potatoes are cultivated in 

the highlands -the cold climate regions of the provinces (Departamentos) of Cundimarca, Boyacá 

and Nariño and a few others -  and their production has been a driver of economic activity and 

growth, not only because of the income received by producers, but also through employment 

generation. 

 Colombian potato producers have been exposed to extensive capacity building and 

training activities, sponsored mainly by the public sector.3 Among the activities are those 

undertaken during the implementation of agrarian reform programs,4 capacity building efforts by 

the International Potato Center (CIP) in the mid-1990s, and the programs currently being 

sponsored by the Municipal Technical Assistance for Agriculture programs (referred to as 

UMATA, its Spanish acronym). Potato producers in Colombia have proven to be very receptive 

to new technologies (if appropriate) and they actively seek new alternatives to address their 
                                                           
1 International Food Policy Research Institute (IFPRI),  2033 K Street NW, Washington, DC 20006, USA 

2 Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Centro de Investigación Tibaitatá, Km. 14 
Via Mosquera, Mosquera, Colombia 
3 The net benefit to recipient farmers will depend on the costs involved due to time and resource commitments and 
the expected benefits due to adoption of improved practices and behavioral changes. 
4 Agrarian reform in Colombia can be characterized by conflict, unequal distribution, failures, successes, and 
attempts to reform not only the existing situation but also the institutions created to address such critical problems. A 
fascinating discussion of the history of agrarian reform in Colombia can be found in Berry (2004) who discusses the 
initial agrarian reform that started with Law 200 of 1936, the Law 135 of 1961 that created the Instituto Colombiano 
de Reforma Agropecuaria(INCORA) up to current efforts and legislations. Programs and organizations created to 
support agrarian reform and rural development included the Instituto Colombiano Agropecuario (ICA), Corporación 
Colombiana de Investigacion Agropecuaria (CORPOICA), Cajas Agrarias (the Colombian bank for agriculture) and 
policies such as the Desarollo Rural Integrado (Integrated Rural Development – acronym in Spanish is DRI).  
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productivity constraints. Training activities introduced technological packages that included 

cultural and agronomic practices to manage specific pests and diseases.5 These packages were 

disseminated in different potato producing region as discrete portfolios of Integrated Pest 

Management (IPM) practices focused on a productivity constraint (Cisneros and Gregory; 1994). 

One of the most critical production constraints that potato producers have faced in 

Colombia is the Guatemalan Tuber Moth (Tecia Solanivora Povolny).6 This pest was first found 

in Colombia in the mid 1980s and within years it disseminated in many potato producing areas 

posing a serious productivity constraint to potato production. Studies have documented 

production losses that reached 80 percent in some years (EPPO Bulletin 2005). During the 

periods of heavier losses many producers may not have covered their costs and in some cases 

may have been unable to repay pending credit obligations.  

When the Guatemalan Tuber Moth (GTM) pest affected potato production in Colombia 

there was no technological response or management practice available to control the new pest. 

Producers experimented with high dosages and/or a large number of pesticide applications, 

without any significant success. Field spraying is ineffective when the moth is already in the 

adult stage (the strongest link in the life cycle). Sustained pesticide use may lead to resistance 

within insect populations.  Moreover, biological control of the pest is not likely to work 

sufficiently well because of the excessive use of insecticides and the high specificity of damage 

to the tubers. Integrated pest management practices were not fully successful in managing the 

pest either, mostly due to the lack of commercial availability of key IPM inputs in Colombia. One 

significant effect of the damage caused by GTM was farmer migration of their production sites to 

                                                           
5 For a complete list of practices included in the IPM package see Table 1.  
6 The potato tuber moth complex includes such lepidopteran insects as the common potato tuber moth -Phthorimaea 
operculella Zeller), the Andean PTM (Symmetrischema tangolias), and the Guatemalan PTM (Tecia solanivora 
Povolny) among others.  
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higher altitudes. The belief was at that point was that there would be less damage to the crop as 

GTM populations could not thrive at higher altitudes. One important collateral effect of potato 

production moving to higher altitudes was its damaging effect on cloudy forest and natural 

reserves (See Figure 1).  

Figure 1 The Guatemalan Tuber Moth (GTM) larva, damage to the tuber, and the location 
of the study in the Republic of Colombia 

 

 
Figure 1a. GTM larva 
 
 
 
 

 

 
Figure 1c. Potato producing area in 
Ventaquemada Colombia  
 

Cundinamarca

Boyacá

Colombia  
Figure 1e. Location of the study in the 
Republic of Colombia 

 

 
Figure 1b. GTM damage to the 
tuber 
 

 

Figure 1d. Potato production 
migration to high altitude areas 
“Paramos” 

 

 
Figure 1f. Comercial potato storage 
facilities in Villa Pinzón, Colombia 

 
 

 

Potatoes that have been genetically modified to express proteins that work as toxins from 

the soil bacteria Bacillus thuringiensis (Bt) have been shown to be effective means for controlling 

lepidopterans belonging to the potato tuber moth complex; and insects of other orders and 

families (Douches et al. 2004; Ghislain, Lagnaoui, and Walker 2003; Naimov, Dukiandjiev, and 

de Maagd 2003). There are several varieties of Bt potatoes developed by the public and private 

sectors that have provided adequate control of the tuber moth complex in other parts of the world, 
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although none has been field tested or used in Colombia.  The prospects that genetically modified 

Bt potatoes can play a role in solving the problem of GTM in Colombia are very promising. 

In this paper we present the first results of an ongoing three year project co-sponsored by 

CORPOICA and IFPRI. The region selected to implement the study is the Municipality of 

Ventaquemada, Boyacá7. This  is not only one of the most important potato producing regions in 

Colombia, but  also one that has been exposed to a wide array of Integrated Pest Management 

(IPM) technology transfer programs and capacity building efforts in the past. The project 

includes gathering and analysis of potato production costs in the selected region, identification of 

factors affecting producer prices, and estimation of farmers’ losses from infestations. We provide 

initial estimates of the economic cost and benefits of traditionally and IPM managed systems. We 

contrast these results with initial estimations of the potential value of the genetically modified 

(Bt) potato obtained through an economic surplus model augmented with risk considerations. The 

goal is to estimate the likely net benefits as a result of R&D investments in Bt potatoes in 

Colombia.8 

   

2. SUBJECT MATTER, AREA DESCRIPTION, METHODS, AND TECHNIQUES 

POTATO PRODUCTION IN BOYACÁ AND VENTAQUEMADA, COLOMBIA 

According to statistics from the Colombian Ministry of Agriculture and Rural 

Development (DANE 2003), in 2002 there were over 163,000 hectares cultivated with potatoes in 

Colombia, with an estimated total annual production of 2.8 million tons of potatoes with and 

                                                           
7 See Figure 1 for a map showing geographical location of the study. 
8 We follow the convention of including all relevant prices, quantities and costs deemed as necessary to move the 
technology into the hands of the end-user; as described in the R&D impact assessment literature (Alston, Norton and 
Pardey; 1995). However, there are two potential target stakeholders for using this information: investors and/or 
implementers of R&D activities and technology users (farmers). There are some variations as to the type of questions 
and the methodological approaches necessary to address these questions of both target groups. More detail on this 
difference is provided in the methodology section. 
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average yield of 17 ton/ha. The provinces (Departamentos) of Cundinamarca, Boyacá, Nariño 

and Antioquia, account for 89 percent of the area planted with potatoes and 90 percent of its 

production. The remaining potato area is distributed in the Departments of Santander, Tolima, 

Caldas and the Cauca valley. Cundinamarca and Antioquia have the highest yields with an 

average of 21 ton/ha. In contrast, Boyacá has a significantly lower yield of roughly 16 ton/ha.  

The 2002 Colombian National Agricultural census (DANE 2003) shows that the 

municipality of Ventaquemada with the largest cultivated area in Boyacá. The state of Boyacá 

has a total of 30,454 hectares in potato, with 10 percent of this area in Ventaquemada. The area 

planted to potatoes is distributed amongst 2,219 smallholder properties (“fincas”), with an 

average of 1.1 hectare per family. The 2002 census shows that of the total area planted in Boyacá  

50 percent is cultivated with the variety “Parda Pastusa”, 21 percent with Diacol Capiro (R-12), 

12 percent with Tuquerreña, 5 percent with Única, remainder divided amongst other improved 

varieties. 

Commercial production is predominately situated between 2,000 and 3,500 meters above 

sea level (masl). In contrast, smallholder production tends to located in a narrower range between 

2,500 and 3,000 meters above sea level. There are two marginal production zones, limited mostly 

by diseases and pests: those with temperate climates between 1,500 and 2,000 masl and the cold 

climates in higher altitudes between 3,500 and 4,000 masl. Commercial potato production is 

located mostly in hillsides. The DANE survey estimates that only 10 percent of total area planted 

with potatoes can be considered leveled (potential for machine tillage) soils. 

Potatoes in Colombia are planted in two semester long seasons with two harvest periods. 

The first harvest period runs from December to March. The second harvest is the largest and runs 

from June to September. The first harvest is characteristically unstable due to different climatic 
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factors, in particular changes in precipitation. This causes seasonal variability and potato price 

volatility that is directed related to harvest and thus to precipitation.9  

THE GUATEMALAN TUBER MOTH 

The Guatemalan Tuber Moth has been reported as a pest of economic importance in 

Central America and in some countries of the Caribbean and South America. In the Andean 

region of South America, GTM has been reported as far as the extreme south of Ecuador, near the 

border with Peru. Larvae feed exclusively on potato tubers, both in the field and in storage. The 

GTM larvae damages tubers in storage by mining through the tuber and thus promoting the onset 

of bacterial and fungi infections. Damage to the tuber by GTM is similar to that of other tuber 

moths and is virtually undetectable until the fourth instar larvae burrows out of the tuber and exit 

holes are visible.  Tuber quality is reduced significantly and heavily infested tubers cannot be 

used for human or animal consumption. Stocks can be fully destroyed or tubers rendered unfit for 

human consumption in less than 3 months, although in Colombia long term storage is not a 

common practice. In addition, storage damage in Colombia tends to be very low as producers 

cover tubers with powdered insecticide. Furthermore, producers and commercial buyers control 

the amount of damaged tubers and light in storage.10  

Guatemalan Tuber Moth production damage was reported in the early 1970s.  Hilje 

(1994) reports production damage of up to 95 percent in Central and South America. A report by 

Raman (1988) indicates that losses in 1972 in Costa Rica were approximately 20 to 40 percent of 

production in an area, corresponding to 2,000 hectares. Total damage was estimated by Raman to 

                                                           
9  A seasonal stationarity index developed by Nájar (2004) showed a very unusual price behavior in 2002, when data 
collection for our study started. According to the estimated seasonal index, in 2002 there seemed to occur a departure 
in the relationship between precipitation and prices. 
10 Storage temperature affects the development of pest populations and subsequent damage to the potato tubers. More 
damage occurs as storage temperature increases, allowing faster pest population growth. However, there are very few 
instances where commercial buyers control temperature via refrigeration. 
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be approximately $900,000 per year. Raman also reports that the GTM has become so established 

in the environment that producers may apply 12-24 pesticide applications per season to control 

the pest.  

In Colombia the pest was reported as a major economic constraint in Boyacá as early as 

1988 (B. N. I. 1998). In 1994, Colombia attributed losses of 276,323 metric tons to the 

Guatemalan Tuber Moth (CABI 2000; Arias et al. 1996), which was more than nine percent of 

the national production for that year. Moreno et al. (1998) reports that in 1997 field and storage 

losses in Colombia sum approximately to US$70,000,000.  

 

METHODOLOGY 

 
Theoretical framework for the evaluation of Integrated Pest Management (IPM) practices 

The economic surplus literature has been used to examine the impact of new 

technologies.11  However, for the assessment of the economic impact of Integrated Pest 

Management (IPM) there are several methodological problems that are not easy to deal with 

conventional economic surplus models. The first problem is the way that smallholder producers 

adopt IPM practices. Usually smallholder producers do not adopt the whole portfolio of IPM 

practices suggested by research and extension services, rather parts of the IPM technological 

package. The partial adoption, adoption in stages or sequential adoption of IPM technological 

packages have been discussed in Feder and Umali (1993), having been suggested by Byerlee and 

de Polanco (1986). These authors found that in México smallholder farmers adopted in stages, 

beginning by those items they viewed as more profitable and less risky, then moving on to less 

profitable and riskier items within the IPM package. However, the sequential adoption has been 

                                                           
11 Excellent compilations of economic surplus models and applications have been made by Maredia (2000) who 
contributed a manual of best practices, and the historical compilation by Pingali (2001). 
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disputed in other studies, where researchers tend to find that producers adopt IPM technologies in 

clusters (Rauniyar and Goode 1992).  

Other examples of adoption of IPM in stages include Smith et al. (1987) who found that 

even though the whole IPM package was profitable, partial adoption of components of the 

package was still rational. Szmedra, et al. (1990) studied the interaction of IPM programs and 

irrigation technologies in a dynamic system that allowed the introduction of risk aversion 

processes. These authors found that under different patterns or risk aversion and climatic 

conditions, it was rational for producer to partially adopt items within the IPM portfolio. Pedrosa, 

et al. (1997, 1999) also found that the partial adoption of the IPM portfolio had significant effects 

in reducing of the number of applications of pesticides.  

Partial or a step-wise adoption represents a problem for adoption studies of IPM 

portfolios. This is due to the fact that control of pests is obtained as a result of the 

complementarities of the different components within the IPM portfolio. It is not easy to define a 

priori the effect of partial or step-wise adoption. For the purposes of our study and the economic 

analysis to be done we identified nine practices that composed the original IPM portfolio 

suggested by the International Potato Center (CIP) in the region (Table 1).12  

Table 1--The IPM Package to manage the Guatemala Tuber Moth (GTM) in 
Ventaquemada, Colombia 

1) Good soil preparation  
2) Deep planting 
3) High row cultivation 
4) Timing of harvest 
5) Management of crop residues 
6) Use of sexual pheromone traps 
7) Cleaning and disinfection of storage site 
8) Use of baculovirus as inoculant 
9) Use of sexual pheromone traps 

 
                                                           
12 One suggested practice in the IPM portfolio, the use of baculovirus, was used initially during CIP capacity 
building and training activities, but was not commercialized and this input was not available commercially in the 
region. 
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We defined a producer as an “adopter” of the IPM portfolio, when she utilizes more than 6 

practices to control the GTM. This is a subjective assumption, but consistent with other studies 

such as Mauceri et al. (2005) in Ecuador, and Maumba and Swinton (2000) in Zimbabwe.  

In Colombia, López and Barreto (2003) implemented an IPM Project, validated in four 

on-farm producer sites in Cundinamarca and Boyacá. Demonstrative plots of approximately 

2,500 m2 each showcased the use of certified seed, fertilization based upon soil analyses, use of 

raised beds and cultivation, use of pheromone traps and critical levels to guide pesticide 

applications, destruction of post-harvest residues, and appropriate harvest timing. Results from 

these demonstrative plots indicated that it was not necessary to apply any pesticide in three of the 

four plots, as the pest did not reach critical levels after the careful application of these cultural 

practices in conjunction with a regular precipitation regime. Samples taken before harvest 

showed that damage in these plots varied from 1.3 to 6 percent of total yield. However, after 

harvesting all the plots, total damage was lower than 2 percent. 

Literature has cited many important variables to explain the adoption (and dis-adoption) 

of IPM portfolios and practices. In addition to risk, other explanatory variables such as distance 

from home to the production site (important as a determinant of the cost of monitoring) and 

farmer education and experience are important for explaining adoption of IPM practices. A 

significant explanatory variable of the dis-adoption of IPM is farmer’s perception of the lack of 

effectiveness of any or some of the components of the IPM portfolio (Shaxson and Bentley 1992; 

Pedrosa 1999; and Baquero et al. 2003). One of the critical components in explaining adoption 

and the potential posterior dis-adoption is the availability of a private or public support system 

that supplies the necessary inputs to implement IPM programs. Inputs include pheromones, traps, 

baculovirus and other biological controls agents, etc. This was the case in Colombia, where 
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producers could not access these inputs in a timely manner and thus where viewed by farmers as 

very effective but not applicable to their situation. 

The second (well known) problem with the assessment of the economic impact of IPM 

practices is the estimation of the plant production function. Agricultural pests cause a reduction in 

productivity and thus pesticides (or IPM) seek to reduce the negative effect of pests to 

productivity. The maximum crop productivity is defined by the inter-relation between genotype 

and environment. This interaction is affected directly by the management practices. On the other 

hand, the damage caused by pests is determined by population sizes, phenological state -which in 

turn depends on climatic conditions- other sources of food, population mobility, and others. Note 

that there are several variables involved in this system and that these are interrelated with each 

other through feedback mechanisms and linkages, such that in the eyes of producers, pest attacks 

may seem purely random. In our survey, we found that the level of tuber moth attack was 

associated with rainfall as attacks were severe during the dry season and very low during the 

rainy season. This observation suggested that precipitation is an important stochastic factor in the 

producers’ decision making process.  

In Ventaquemada, traditional pest management is based on preventive methods and/or 

applications of pesticides based on a pre-determined and closely followed schedule. In our 

survey, potato producers applied –usually on a weekly schedule- chemicals to control fungal 

diseases (such as Phytophtora infestans) independently of whether the disease was present or not. 

Equally, other pests and diseases are treated with pesticides based on the stage of development of 

the plant following a strictly enforced schedule. In general, the effect of pesticides is dramatic as 

insect populations decrease almost immediately. In contrast, IPM practices seek to limit the 

number of applications according to critical population levels controlling insect population 

density.  
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An important component of IPM practices is thus prevention. The purpose of the 

preventive measures implemented by IPM practices is to initiate the production cycle with lower 

population levels of the Tuber Moth, and to reduce the possibility of re-infestations. An 

additional complication of the decision making process is that practices and activities seem to be 

correlated with potato price expectations. As described earlier, prices show a high correlation 

with plantings in November-December which coincides with the driest period in the season. In 

essence, the interaction between precipitation and pest populations imply higher risk with 

drought and attack by the tuber moth, but with consequent higher prices. 

To estimate the expected net value of preventive measures we use the following simple 

decision making model based on Mumford and Norton (1984).We also utilize aspects of Oude 

Lansink and Carpentier (2001) and Brown, Lynch and Zilberman (2002) for the functional form 

of the production function of pest control. The potato production can be expressed as: 

 

Qt = Qmax * (1- A (R, M)) 

where: 

Qt= Production in time t 

Qmax= Maximum production capacity of the site being researched over time (plateau) 

A= Guatemalan Tuber Moth attack  

R = Precipitation  

M = Preventive Measures 
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Attack is thus proposed to be a function of the level of precipitation and preventive 

measures. Precipitation is included in this model as a random variable. The first derivatives of A 

with respect to Pp and M are negative. Increases in precipitation and increased use of preventive 

measures decrease GTM attacks.  

 

0A
R

δ
δ

<   

0<
M
A

δ
δ

 

 

The expected value of investments E (Bn) in preventive measures can be estimated with the 

following formula:  

 

E (Bn) = P (R) * Qt (R, M) – C(Xi) – C(M) 

 

where: 

P = Potato price 

C(Xi)= Input costs 

C(M)= Costs of preventive measures 
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According to this general model, relevant calculations include estimation of expected 

yield loss and the expected net benefit of control of the Guatemalan Tuber Moth. A distinct 

possibility of the expected net benefit calculation is that it may be rational to invest in preventive 

measures in the IPM portfolio even though there is the risk that high precipitation in particular 

production cycle reduces pest levels in the following production cycle, thus making investments 

redundant. This outcome may be important for our study, as field surveys have coincided with a 

crop period (2003-2004, 2004-2005) characterized by high precipitation. Under this 

circumstance, previous investments in IPM practices may not be compensated with posterior 

reductions in pesticide use, as there is a lower level of pest population growth due to rain. A 

short-term impact assessment based only on a particular year’s results is not complete, as it 

would not consider the stochastic nature of precipitation, its effect on tuber moth populations and 

thus the observed level of damage. This would, be in fact, a static examination of a dynamic 

phenomena, and thus insufficient for decision making. To address this shortcoming we 

incorporate into the evaluation methodology information from previous periods, which include 

years with low and high infestation levels, particularly for the estimation of economic surplus 

models. 

Ex ante estimation of the economic surplus resulting from the adoption of Bt potatoes 

To assess the ex ante impact of the adoption of insect resistant potatoes in selected 

regions in Colombia we have to take into consideration distinct issues affecting potato production 

and its constraints, and the nature of the Guatemalan Tuber Moth. In particular there is a marked 

response of the GTM to environmental conditions, particularly precipitation. As discussed above, 

periods of precipitation during the developing period of the crop and the insect tend to decrease 

its incidence in the following growing season.  
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There are important questions with regard to the comparison of ex ante and ex post 

assessments of impact of insect resistance as ex ante approaches usually do not integrate the 

insurance characteristics of Bt insect resistance as a management tool. In essence even though in 

an ex post assessment producer may have lost due to a lower than expected infestation (or 

alternatively there was no pest pressure at all and the producer paid for a premium to use the 

technology), in an ex ante sense she would still be gaining an economic benefit13.   

 An additional problem in Colombia is the determination of market prices. There are 

critical market imperfections that may affect prices and the distribution of benefits post adoption.  

The existing market structure is further complicated as producers consume their own production, 

but also produce for selling to the market. The traditional assumption of subsistence only 

smallholder farmers, who may sell production surpluses after satisfying household consumption 

needs, is very limited in Colombia.  

Taking into consideration these problems and limitations, we present here a first 

approximation to the estimation of economic surplus of adopting insect resistant (Bt) potatoes in 

Ventaquemada and the department of Boyacá in Colombia. These estimates establish a lower 

boundary for benefits as we assume that a Bt potato technology will be able to eliminate the 

highest of the field and storage losses that occur even with the IPM or traditionally managed 

systems in our estimations of expected value of investment model above. The rationale behind 

our choice of having both the highest of either the traditional or IPM losses as a counterfactual is 

that we do not have access to data to construct a proper counterfactual. In an ideal comparison, 

we would contrast potato production systems managed traditionally, with IPM, with an insect 

resistant potato, and an insect resistant potato system integrated with IPM. As there are no Bt 

                                                           
13 This line of reasoning is akin to the decision making process and the assessment of the value of purchasing life 
insurance.  
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potatoes varieties released into the environment in Colombia, we thus limit ourselves to the 

assumption of eliminating those losses from the traditional and IPM managed systems.  

It is worthwhile to discuss two “empirical regularities” observed in other studies dealing 

with insect management using the Bt gene technology in other crops. With a decrease in pesticide 

used to control the target pest as a result of adoption of Bt technologies, secondary pests become 

important as they are no longer controlled (albeit indirectly) by the broad based insecticides used 

to control the primary target pest. Secondly, high enough pressure from the secondary target pest 

may require supplemental pesticide applications in spite of using the Bt crop. The impact of these 

empirical regularities may need to be qualified as management of secondary pests usually lends 

itself to IPM practices. In essence, we would foresee that biotechnology and IPM practices may 

be complementary rather than competing management options. 

The small open economy surplus model 

  In this discussion paper we use a conventional small open economy surplus model 

(Alston, Norton and Pardey; 1995) to examine the likely socio-economic net benefits of the 

adoption of Bt potato technology in the Ventaquemada, Boyacá, Colombia. From the standpoint 

of the producer, standard economic surplus models do not explicitly consider production and 

investment risk considerations. We augmented the standard economic surplus model by including 

a more rigorous sensitivity analysis of key assumption parameters, in particular the supply 

elasticity assumption (Davis and Espinoza 1998; Zhao, et al. 2000; Falck Zepeda, Traxler and 

Nelson 2000), and of production parameters (Fisher, Masters and Sidibé; 2001). We also 

augmented the model to consider society’s production and financial risks due to the distribution 

of field and storage losses likely to be faced by producers in the region as calculated in our 

expectations model above.  
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Target Stakeholders 

As indicated in the introduction, we follow the convention in the R&D impact assessment 

literature of estimating changes in economic surplus induced by the adoption of a particular 

technology. Adoption of the specified technology induces a shift in the supply curve, which 

causes a change in the economic surplus. For the estimation of these changes, there is the need to 

include all the relevant costs (along with prices, quantities and structural assumptions embedded 

in the model) necessary to move the technology from the R&D phase to the hands of farmers for 

their adoption. Within this framework, socio-economic impact assessments have focused on 

estimating the (net) benefits to society14.       

There are two potential sets of target stakeholders who may use the estimations in this 

discussion paper to support their decision making process. First, investors and other financing 

actors and/or implementers of innovation activities and technology transfer organizations; 

second, producers who may adopt Bt potatoes and IPM as complementary technological 

approaches to manage losses due to GTM in Colombia. The decision making process and the 

determinants for both groups may be different and thus we describe them in more detail (For 

example, investors and R&D organizations may be interested in the minimum area necessary to 

obtain profits or to justify a breeding or testing program, or the (private) returns to private 

investments in agricultural R&D.)  

When we describe the decision making process for funding actors and/or innovators of 

GM biotechnologies, we have to differentiate the process for two general groups implementing 

R&D. We have two distinct of R&D organizations: those organizations that will implement GM 

biotechnologies from discovery to innovation, and those that will adapt outputs from discovery 

                                                           
14 Of course adoption of a technology can also lead to net costs to society. This situation would not be sustainable in 
the long term. 
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and R&D done elsewhere for use in-country. These general categories can be decomposed into 

distinct subsets and their permutations. In addition there are complications in terms of whether 

the analysis is ex post or ex ante or whether we are interested in private versus social returns to 

R&D investments.  

The current situation in Colombia is that there are very few institutions developing GM 

technologies from inception to technology transfer15. Most of the ongoing research is based on 

genes developed elsewhere, that facilitate the developing or modifying transformation protocols 

that will enable the insertion of useful genes into Colombian germplasm. In this scenario, the 

innovator -who may be a public or private organization-, may either decide to transfer the 

technology to farmers or enter into strategic arrangements with private (or public) sector 

institutions to carry on such transfer. In this scenario the relevant costs include compliance with 

biosafety regulations, royalties to use the gene and germplasm technology, legal costs, 

registration, adaptive research; as well some of the post-release tech transfer costs that may be 

recoverable by the innovator itself through the technology fee or premium charged to farmers. 

However, most of the post-release costs are bound to be incurred by farmers. From the standpoint 

of investors or R&D institutions, the relevant factors are the price paid by farmers for the seed 

and the technology premium or fee, the availability of competing technologies, availability of 

production alternatives (such as conventional varieties with chemical control) and those costs not 

recoverable in the technology fee.  

Public-private strategic partnerships introduce another set of complications for the 

economic analysis of GM biotechnologies. We will not pursue an analysis of this type of strategic 

partnerships in this paper, but can be accommodated into our methodology below. In this paper 

                                                           
15 This situation is likely to change as the process of discovery of useful genes becomes internalized into general 
laboratory practice. 
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we explore the current situation of public/private sector institutions that have access to a gene 

construct, those willing to insert such gene into available germplasm, and those willing to know 

the feasibility of such intervention. In the case of producers, we provide an initial estimate of net 

benefits to farmers assuming that the R&D and tech transfer have been successful and price 

information is available.  

Data sources 

CORPOICA and IFPRI conducted a survey in 2002-2003 of 78 households to estimate 

the level of damage due to GTM in the field and in storage conditions16. Households were 

stratified in two groups with 39 households in each group. The first group included households 

that had received training or capacity building/strengthening activities in IPM practices. The 

second group included those that had not received any type of training or capacity building 

activity in the past. In this initial stage, information was collected on socio-economic 

characteristics, damage due to GTM, adoption/use of practices contained within the IPM 

portfolio, level of applied pesticides, knowledge about the insect itself, and some data on 

pesticide applications effects on human health17.  The survey was conducted at the beginning of 

production cycle in 2003. We followed-up the initial data collected from farmers with personal 

visits to their households to verify adoption of IPM practices and by sampling potato yields and 

losses through field measurements.18  

To complement the survey data we conducted community focus groups to measure 

damage and costs of production. Cost patterns (with IPM and conventional technologies) 

                                                           
16 Budget considerations restricted the number of households surveyed. In addition, farmers in the area tend to resist 
providing household information due to security considerations and thus after the first survey we decided to 
approach farmers through different methods such as focus groups, a Farmer Field School and the implementation of 
a Farmer Field Day. These approaches built trust and confidence between farmers and our project. 
17 Due to the budget limitations we could not collect household specific agro-ecological data. This type of data is 
critical to derive significantly better determinants of technology adoption. 
18 A formal analysis of the determinants of IPM adoption will be pursued in a separate paper. 
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obtained from focus groups centered on a specific type of variety. Focus groups were conducted 

in 2003, 2004 and 2005, in this paper we report results from three focus groups conducted in 

2003 and 2004. The first focus group, held in October 2003 focused on variety Parda Pastusa. 

The second focus group emphasized the industrial/variety type of potatoes. The third group 

focused on the variety Parda Pastusa. The later two focus groups were conducted in February, 

2004. In addition to the focus groups, we surveyed 13 major commercial buyers of potatoes in the 

cities of Villapinzón and Tunja (both major centers for collection of potatoes) as well as 9 

producers interviewed in situ, to examine the effect of the damage of the GTM on potato prices 

and on commercialization practices in the area.  

 

 
3. DESCRIPTIVE STATISTICS AND PRODUCTION INFORMATION 

POTATO VARIETIES AND PRODUCTION CHARACTERISTICS.  

There are two types of potato varieties cultivated in the Ventaquemada region. The 

variety planted that covers a larger land area in the region is “Parda Pastusa.” Parda Pastusa is a 

variety developed and released in the 1950s by the “Instituto Colombiano de Agricultura (ICA).” 

This variety is utilized for direct consumption, seed and commercialization. When sold, Parda 

Pastusa potatoes are used mainly for consumption.  The second type is a portfolio of improved 

varieties released mostly by Colombian research institutes–often referred to as industrial 

varieties- are mostly sold for processing. Among them are R-12, ICA-Huila, ICA-Unica, 

Marengo, Puracé, Tuquerreña, Flor Blanca and ICA-Morita varieties.  The Parda Pastusa and the 

industrial varieties differ not only in terms of end use but also in productivity, price received by 

farmers and thus income per unit of land. Tables 2 and 3 present data for the Parda Pastusa and 

the industrial varieties portfolio.  
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Table 2-- Potato production and income generated per hectare by variety “Parda Pastusa”, Ventaquemada, 
Boyacá, February 2004 
 Tuber Size     
Class Large Medium Small # of Cargas Kg/ha US$ / kg Income 

(US$) 
1. For seed  X  10 1,250 0.11 132
     
2. For self consumption  X  10 1,250 0.05 63

   X 10 1,250 0.02 26
     
3. For 
commercialization 

X   100 12,500 0.11 1,316

  X  20 2,500 0.05 126
Totals    150 18,750 1,663
Notes: 
Source: CORPOICA/IFPRI compilation of data from focus groups examining production cost in Ventaquemada, 
Colombia 2004 
1 “Carga” equals 125 kg 
 
 
Table 3 Potato production and income generated per hectare using industrial varieties, 

Ventaquemada, Boyacá, February 2004 
 Tuber size     
Class Large Medium Small # of Cargas Kg /ha US$ / kg Income 

(US$) 
1. For seed  X  8 1000 0.17 168
     
2. For self consumption  X  4 500 0.04 21

   X 4 500 0.02 11
     
3. For 
commercialization 

X   140 17,500 0.08 1,326

  X  4 500 0.04 21
Totals    160 20,000 1,547
Notes: 
Source: CORPOICA/IFPRI compilation of data from focus groups examining production costs in Ventaquemada, 
Colombia 2004 
1 “Carga” equals 125 kg 
Industrial varieties include such varieties as ICA-Huila, R-12, ICA-Unica, Marengo, Puracé, Tuquerreña, Flor 
Blanca and ICA-Morita. 
 

Of those producers surveyed in the Ventaquemada area, most tend to sell a significant 

portion of their production, but they also save potatoes as seed and for own consumption. An 

important observation is that there are relatively few subsistence farmers in the region. Moreover, 

potato production is classified according to size. There are three size classifications: large 

(“gruesa”), medium (“pareja”) and small (“riche”). The larger potato size obtains a higher prize 
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and thus is typically sold. The medium size potato is used as seed for planting, family 

consumption and for sale. The small size is used for own consumption or for animal feed. 

Farmers that cultivate Parda Pastusa receive a higher price than industrial varieties, 

although the quantity per hectare produced by industrial varieties is higher (20 tons versus 18.75 

tons for Parda Pastusa). The price differential in 2004 between Parda Pastusa and industrial 

varieties was large enough to generate an income differential of US$ 116 per hectare in favor of 

Parda Pastusa in 2004. 

 

POTATO PRICES AND TUBER DAMAGE   

The price differential between Parda Pastusa and industrial varieties can also be seen in 

Table 4.  

Table 4 Average potato prices based on type, variety and size from regional collection 
centers in Villapinzón and Tunja, Colombia, 2004 

Type Variety Quality Potato price 
(US$/kg) 

Potato price if 
damaged (US$/kg) 

Traditional Pastusa Large 0.11 0.04-0.06 
  Medium 0.03 0.02 
  Small 0.02 0.00 
    
Industrial R-12 Large 0.07 0.00 
  Medium 0.03 0.00 
  Small 0.01 0.00 
 ICA-Huila Large 0.08 0.05 
  Medium 0.03 0.01 
  Small 0.00 0 
Source: CORPOICA/IFPRI survey of large buyers at the regional collection centers in  
Villapinzón and Tunja, Colombia, 2004 
 

 

This table shows the results of a small questionnaire of 13 large commercial buyers in the nearest 

collection centers located in the nearby towns of Villapinzón and Tunja. These are the most 

important collection centers in the eastern region of Cundimarca and Boyacá. Both towns are 

regional collection sites for potatoes. As the table indicates large commercial buyers in these 
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collection centers penalize producers if the tuber is damaged by paying less.  Although tuber size 

and variety type are major determinants of potato prices, other quality characteristics are 

important such as damage, size of eyes, color and cleanliness (Figure 2).      

 
Figure 2-- Attributes that define potato quality in the regional collection center of 

Villapinzón, Colombia, 2004 
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Source: Authors’ estimations based on CORPOICA/IFPRI survey of commercial buyers and potato producers, 2004 
 

The interactions between supply and demand are important determinants of potato prices. 

However, potato prices are determined largely at the wholesale market of Corabastos in Bogotá 

and others, and thus price determination is exogenous to the region (i.e. producers are price takers 

in Ventaquemada). There are several un-answered questions and speculation as to imperfections 

in potato markets and the ability of large commercial buyers and wholesalers to exercise market 

power in price determination in Colombia. If we compare the prices paid to farmers in our survey 

and a series of monthly average wholesale prices paid at the CORABASTOS market in Bogota, 

we see that there is a significant farm-to-wholesale spread.  
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We calculated a weighted average of prices paid to farmers based on size and production 

shares from our survey. The average price paid to farmers was 0.096 US$/kg. In the case of the 

average wholesale price paid at the CORABASTOS market, we used data from to estimate the 

average price for the months of January, February and March of 2004.  The average price paid at 

the CORABASTOS market was 0.206 US$/kg. The farm-to-wholesale spread was 0.11 US$/kg, 

which represented a markup of 114 percent of price paid to farmers. The farm-to wholesale price 

spread is used to cover cost due to management, transportation and losses during transport, as 

well as, the risk associated with this process.  

As information flows rapidly to all collection centers and other intermediaries through 

cellular phones, the ability to exercise market power may have decreased over time. In addition, 

the commercial buyers surveyed, although tied to the larger market of Corabastos, also sell in 

other important markets such as Tolima or the Atlantic coast. Thus, the assumption of using the 

price taker assumption within a small open economy may be closer to reality than compared to 

imperfect model assumptions. This is indeed a critical area to pursue future research within the 

potato production system.19  

Our small buyer and in situ producer questionnaire indicates that both producers and large 

commercial buyers understand that potatoes with tuber moth damage are in principle not accepted 

at the collection centers. Purchasers usually examine 1 to 3 bags (“costales”) randomly selected 

from the producers’ truck. Potatoes with tuber moth damage are rejected, sometimes leading to 

the rejection of the whole shipment. Potato buyers recognize that it is nearly impossible to have 

only undamaged tubers in a given shipment and thus producers admit a very small margin of 

                                                           
19 We envision that another area of future research is to develop models to explicitly include the dual consumption 
and production characteristics of the household model. This may not be as critical for Colombian producers in 
Ventaquemada as they are very profit oriented, but will be critical for the analysis in other areas of the Andes, where 
there are more subsistence farmers.  
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damaged tubers. Roughly, 89 percent of large buyers allow a small damage margin equal or less 

than 5 percent.  If buyers receive a shipment with damaged potato tubers, they severely penalize 

producers by paying a lower price. Most of the time, the damaged potatoes are used for animal 

feed. As explained by large buyers, having any inventory with damage puts their whole inventory 

in danger of further damage.  

In our survey we also asked the same set of producers about acceptability of a transgenic 

variety of potatoes. Roughly 85 percent did not know what a transgenic variety was, but 92 

percent would be interested in selling a potato with the same quality characteristics as the ones 

currently marketed, particularly if these varieties were resistant to the attack of the tuber moth.20  

POTATO PRODUCTION COSTS 

 
Table 5 shows the 2004 costs of production of Parda Pastusa and industrial varieties 

produced using IPM and traditionally managed systems.  

                                                           
20 A study by Buijs, et al. (2006) in Peru presented similar results to the findings of our study with regard to 
acceptability of a potato resistant to GTM damage.    
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Table 5 Production costs of Industrial and Parda Pastusa potato varieties under IPM and 
conventional systems for the management of Guatemalan Tuber Moth, 
Ventaquemada, Colombia, 2004. 

Production costs industrial 
varieties (US$/ha) 

 Production costs “Parda Pastusa” 
variety (US$/ha) 

 

Traditional IPM  Traditional IPM 
Activity Total % Total %  Total % Total  % 
Direct costs    
Labor    
1. Residue collection 0 0 47.4 1  0 0 47.4 1 
2. Soil preparation 110.5 3 110.5 3  151.6 4 151.6 4 
3. Planting 63.2 2 63.2 2  55.3 1 55.3 1 
4. Pest and disease control 378.9 10 371.1 10  252.6 7 252.6 7 
5. Crop management 157.9 4 173.7 5  173.7 5 173.7 5 
6. Harvest 210.5 6 210.5 6  150.0 4 150.0 4 

Subtotal Labor 921.1 25 976.3 26  783.2 21 830.5 22 
           
7. Inputs          
7.1. Seed 210.5 6 210.5 6  131.6 4 131.6 3 
7.2. Fertilizer/correctives 847.4 23 847.4 22  757.9 20 757.9 20 
7.3. Pesticides 834.7 23 813.7 21  1271.1 34 1231.6 32 
7.4. Packing material 247.4 7 247.4 7  213.2 6 213.2 6 
7.4. Biological control 0.0 0 42.1 1  0.0 0 42.1 1 
7.5. Etological control 0.0 0 33.7 1  0.0 0 33.7 1 
8. Transportation 157.9 4 157.9 4  189.5 5 189.5 5 

Subtotal Inputs 2297.9 62 2352.6 62  2563.2 68 2599.5 68 
Subtotal Direct costs 3218.9 87 3328.9 88  3346.3 89 3430.0 89 

           
Indirect costs          
9. Leasing costs 184.2 5 184.2 5  105.3 3 105.3 3 
10. Administrative (6%) 193.1 5 196.9 5  200.8 5 205.8 5 
11. Interest 90.5 2 92.7 2  101.0 3 102.4 3 

Subtotal Indirect costs 467.9 13 473.8 12  407.0 11 413.5 11 
TOTAL 3686.8 100 3802.7 100  3753.3 100 3843.5 100 
Source: Source: CORPOICA/IFPRI compilation of data from focus groups examining production costs in 
Ventaquemada, Colombia 2004 
 

 

The costs of production of both management systems are very similar during the period of 

the survey as producers reported low levels of GTM attack during the examined cultivation 

period. The total cost per hectare for industrial varieties under the traditional management system 

is US$3,686 whereas with the IPM managed system the cost increases to US$3,802.  In contrast, 
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the total cost per hectare for Parda Pastusa is US$3,753 for the traditional management system, 

versus US$3,843 for the IPM managed system. 

As can be seen from Table 5, potato production is typically labor intensive. Labor 

constitutes 21-26 percent of total costs for both variety types and management systems. The 

largest share of labor corresponds to pest and disease control, crop management and harvest. The 

largest shares of total cost of production correspond of fertilized/correctives and pesticides.21  

Figures presented in table 5 show a small savings in pesticides for using the IPM management 

system, but also a small increase in the cost of labor in 2004.  

 

4. RESULTS 

RELATIVE VALUES OF IPM AND CONVENTIONAL MANAGEMENT SYSTEMS 

To better understand the relative value of IPM and traditional management systems we 

conducted a series of partial budgeting exercises using results from cost of production focus 

groups in 2003 and 2004.  

The partial budgeting exercise examining the profitability of the production periods that 

ended the second semester of 2003, shows a small positive net benefit  using IPM practices to 

manage the Guatemalan Tuber Moth of US$ 41.2 per hectare (Table 6).  

                                                           
21 Most of the pesticide expenses were used to control “gota” (Phytophtora infestans) a fungal disease. 
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Table 6--Partial budgeting analysis of profitability of the use of IPM in a production system 
with variety “Parda Pastusa” in Ventaquemada Colombia October 2003 

Additional Costs Cost savings 
Labor Labor 
Residue collection 19.7 Insecticide applications to 

control GTM 
59.2

Aporque 19.7  
Sub-total 39.5 Sub-total 59.2

Biological/etological inputs Savings in chemicals 
Pherhormones 50.0 Insecticide (Chlorpyfifos)  82.9
Insecticide (Phoxim) 7.9  
Fungicide(Carboxamide) 6.6  

Sub-total 64.5 Sub-total 82.9
Indirect costs 8.8 Indirect costs 11.8

Total 112.7 Total 153.9
 Net benefit of using IPM = 41.2

Source: CORPOICA/IFPRI compilation of data based on cost of production focus groups Ventaquemada, Colombia 
2004 
 
In contrast, during the first semester of 2004, IPM adoption showed a loss of US$90.1 per hectare 

for Parda Pastusa and US$118.8 for the industrial varieties (Tables 7 and 8).  

Table 7-- Partial budgeting analysis of profitability of the use of IPM in a production 
system with variety Parda Pastusa in Ventaquemada Colombia February 2004 

Additional Costs Cost savings 
Labor Labor 
Residue collection (animal 
traction) 

31.6 Insecticide applications to 
control GTM 

0.0

Residue collection (Manual) 15.8  
Sub-total Sub-total 0.0

Biological etological inputs Savings in chemicals 
Pheromones 42.1 Insecticide (Chlorpyfifos) 39.5
Insect traps 6.3  
Insecticide (Phoxim) 6.3  
Fungicide(Carboxamide) 21.1  

Sub-total 75.79 Sub-total 39.5
  
Indirect costs 10.4 Indirect costs 3.9

Total 133.5 Total 43.5
 Net benefit of using IPM = -90.1

Source: CORPOICA/IFPRI compilation of data based on cost of production focus groups Ventaquemada, Colombia 
2004 
 
 



 

 

28

Table 8--Partial budgeting analysis of profitability of the use of IPM management practices 
in a production system that utilizes industrial varieties in Ventaquemada 
Colombia February 2004 

Additional Costs Cost savings 
Labor Labor 
Residue collection (animal 
traction) 

31.6 Insecticide applications to 
control GTM 

7.9

Residue collection (Manual) 15.8  
 15.8  

Sub-total 63.2 Sub-total 7.9
Biological/etological inputs Savings in chemicals 
Pherhormones 42.1 Insecticide (Chlorpyfifos) 21.1
Insect traps 6.3  
Insecticide (Phoxim) 6.3  
Fungicide(Carboxamide) 21.1  

Sub-total 75.78 Sub-total 21.1
  
Indirect costs 11.3 Indirect costs 2.6

Total 150.3 Total 31.5
 Net benefit of using IPM = -118.76

Source: CORPOICA/IFPRI compilation of data based on cost of production focus groups Ventaquemada, Colombia 
2004 
 
 

The small difference between both types of varieties may be due to smaller level of savings in 

chemicals in industrial type potatoes. A similar pattern of losses to IPM managed systems as 

compared to traditional systems was also found in the second semester of 2004; results of this 

exercise are not presented here.  

Does a loss as a result of a partial budgeting exercise indicate that it does not pay for 

producers in the Ventaquemada to use IPM? An answer will be provided in subsequent sections 

when the expectation of damage is introduced.     For now we can generalize that IPM managed 

systems imply additional higher costs of production in terms of residue collection and the 

materials required for biological and etological control, but this increment is so small that it 

probably will not be a major determinant of adoption of IPM practices. In the absence of the pest 

attack, profitability depends significantly on the reduction of conventional pesticides. Thus 
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damage levels -both in the field and in storage- become critical for the evaluation of benefits to 

producers.   

 

EXPECTED VALUE OF THE GUATEMALAN TUBER MOTH DAMAGE ON POTATO 
PRODUCTION  

To verify damage that producers endured in the region we conducted additional focus 

groups in 2003 and 2004.22  In these focus groups producers clearly reached the consensus that 

there were no significant differences between the tuber moth damage within the traditional and 

the integrated pest management system. In addition, field damage was less than 5 percent of total 

production. Because of the low damage reported in the focus groups we will make use of the 

results from our 2002-2003 original survey with producers stratified by reception of IPM training 

in the past. In the survey we included a series of questions to recover parts of the historical record 

of production losses. We asked producers to list the 3 years with highest levels of tuber moth 

attack in addition to corresponding yield and storage losses and to estimate the level of damage in 

those years. Recollection of previous (historical) events does have the disadvantage of relying on 

peoples’ memories and thus these estimates may underestimate or overestimate yield losses. 

Experiences by the Colombian authors of this paper in the region seem to indicate that producers 

tend to overestimate the damage reported in previous surveys. Yet, we may be able to control 

partially for the memory bias effect as we asked for the three highest damage levels over time. 

Figure 3 shows the results of producer answers to the question of years with largest losses due to 

the tuber moth, and accounts for the percent of producers that indicated a year of reference. More 

than 25 percent of producers report heavy losses from 1997 to 2001. The incidence of the pest is 

lower in the last two years. 

                                                           
22 We are finalizing the analysis of the 2005 focus. Preliminary assessment shows that in 2005, damage due to the 
GTM pest was also very low. 
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Figure 3--Percent of producers reporting heavy yield losses 1993-2003 in Ventaquemada, 
Colombia 
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Source: Authors’ estimations based on CORPOICA/IFPRI survey 
 
 

 

We refined our estimates by specifying average losses that producer endured, separating 

those producers that used traditional system and those that used the IPM system. To address the 

issue of the partial adoption of the IPM portfolio, we (subjectively) defined producers as 

“adopters” of the IPM portfolio as those that adopted 6 or more IPM practices of the total 

recommended portfolio (Table 9).   
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Table 9--Percent yield losses from the Guatemala tuber Moth under the traditional and 
IPM management systems, Ventaquemada, Boyacá, Colombia   

 Traditional Systems IPM System Difference 
Year Yield 

Losses 
(%) 

Storage 
Losses 
(%) 

Yield 
Losses 
(%) 

Storage 
Losses 
(%) 

Yield 
Losses 
(%) 

Storage 
Losses 
(%) 

1993 51.7 56.7  
1994 73.0 46  
1995 59.6 57.9  
1996 61.1 77.8  
1997 43.8 51.4  
1998 47.7 41  
1999 57.5 42.5 51.6 5.9 5.9 -6.5 
2000 54.0 29 31.8 22.2 22.2 7 
2001 34.2 37.5 17 17.2 17.2 25.2 
2002 31.4 25.7 29 2.4 2.4 13.2 
2003 40.0 20 25 15 15 10.7 

Average 50.4 44.1 30.9 12.5 12.5 9.9 
Source: CORPOICA/IFPRI survey 

 

Field losses averaged 50.4 percent for the traditional system, whereas the IPM system 

average was 30.9 percent. In contrast storage losses average was 44.1 and 12.5 percent for the 

traditional and the IPM systems respectively. Producers started adopting IPM practices in 1977. 

There is a clear reduction in yield losses caused by the attacks of the Tuber Moth under the IPM 

system. In average, the difference in yield and storage losses is 12.55 percent for yield in the 

field, and 9.92 percent in storage between the traditional and the IPM system.   

Figure 4 shows results of the first step in the application of our model developed in 

section 2.3; to estimate the expected yield and storage losses.   
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Figure 4-- Expected field and storage losses due to the Guatemalan Tuber Moth in 
Ventaquemada, Boyacá. 
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Figure 4a     Figure 4b 
Source: Authors’ estimations based on CORPOICA/IFPRI field survey 
 

 

To obtain expected losses we used the segregated responses of adopters/users of IPM and 

of the traditional production systems, not according to the IPM training efforts received in the 

past. The estimated expected losses are calculated as the percent loss (Table 9) multiplied by the 

probability of suffering an attack (Figure 3). On average, the expected yield losses in physical 

terms are 9.93 percent for the conventional system and 7.85 percent for IPM. In contrast, in 

storage expected yield losses are 8.53 percent for the conventional system and 5.88 percent for 

the IPM system.  

To estimate the expected gross benefit of utilizing IPM versus traditional systems, we 

used average prices for year 2003-2004 for Parda Pastusa variety and other production data for 

this variety reported in the focus groups. We assumed that producers stored 2500 kg of potatoes, 

1250kg for seed and 1250 kg for own consumption (Similar to data in Table 2). Results of this 

exercise, presented in Table 10, show that IPM represents an average saving in terms of field and 

storage losses avoided of US$129.2. Hence, this result shows that it is rational for producers to 
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invest in IPM preventive measures even when no damage is reported for the tuber moth as the 

expected value of losses ($129.2) is higher than the cost of preventive measures. 

Table 10--Gross value of yield and storage losses as a result of using IPM practices to 
control the Guatemalan Tuber Moth, Ventaquemada, Boyacá, Colombia 

Year Reduction 
yield losses 
(%) 

Reduction in 
storage losses 
(%) 

Value of 
reduction in yield 
losses (US$ 
current) 

Value of reduction in 
storage losses (US$ 
current) 

Total values 
(US$ current) 

1999 1.9 15.7 60.1 66.2 126.3 
2000 7.1 7 224.9 29.7 254.6 
2001 5 3.6 159.3 15.2 174.5 
2002 0.4 1.8 11.3 7.7 19.0 
2003 2 1.2 63.4 5.3 68.6 
Average 3.3 5.9 103.8 24.8 129.2 
 

 

ECONOMIC SURPLUS ESTIMATES 

Assumptions 

All of the baseline assumptions of the model are included in Table 11. Based on these 

assumptions we calculated four distinct scenarios using the @Risk™ software. The @Risk™ 

software allows substituting single assumption values for a probability distribution.  

Table 11 Baseline assumptions in Economic Surplus analysis 
Variable Assumption Comment 
Model Small open economy  Model implies no consumer surplus 

Estimated R&D + 
regulatory cost distribution 

Triangular (US$600,000; 
980,000; 2,000,000) 

Most likely value is from estimates from data collected in studies in India and South 
Africa for a similar Bt potato. Includes cost of compliance with biosafety regulations and 
adaptive R&D for gene insertion. 

No technology fee No attempt is made to recuperate investments in R&D, biosafety compliance and post-
release monitoring. Assumption used to calibrate model. 

Technology fee 

US$20 and US$80 per hectare Premium for use of the technology expressed as the range of technology fees charged for 
insect resistant traits globally by the private sector. Alternatively, can be also thought as 
the technology transfer costs to private/public sector 

Yield difference between Bt 
and counterfactual (%) 

Normal distribution (μ=7.8, 
σ=5.5; truncated at a minimum of 
−∞ and a maximum of 51.5%) 

Left hand side of the distribution truncated at −∞ as a consequence of not having data 
regarding a potential negative difference between Bt potatoes and counterfactual 
(conventional varieties plus treatment.)  A negative difference implies that traditional 
varieties have higher yields than Bt potatoes. Distribution truncated at a maximum yield 
loss differential of 51.5% which is the highest yield difference observed in field data 
collected in survey. 

Storage losses (%) by using 
Bt potatoes versus 
counterfactual 

Normal distribution (μ=5.9, 
σ=5.9, Truncated at −∞ and 49%) 

Truncating sampling on the left hand side of the distribution at −∞ is a consequence of 
not having a data about the potential negative difference in storage losses between Bt 
potatoes and conventional varieties plus chemical treatment (i.e. possibility that Bt 
potatoes will not work in storage and thus farmers loose production in storage even when 
using Bt)    
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Supply elasticity (ε ) Triangular distribution (0.14, 
0.92, 1.2) 

A study by Ramírez Gomez et al. (2004) estimated the elasticity of supply for a series of 
Colombian crops. For potatoes, supply elasticities varied from 0.14 in the short run to 
0.92 in the long run. We chose the values for a triangular distribution with the lowest 
expected value of 0.14, a most likely value of 0.92, and a maximum expected value of 
1.2 which corresponds to Rao(1989) maximum value.  

Cost of production 
differential (%) between Bt 
potatoes and alternative 

Normal distribution (μ=8.4, 
σ=7.9, truncated at maximum 
level of 23.1%)  

Mean and Standard Deviation of results from cost focus groups conducted in 2003 and 
2004. Truncation at maximum level found in these focus groups. 

Maximum level of adoption  35% and 95%  35% pessimistic and 95% optimistic rates of adoption 
Real discount rate 10%  

Period of simulation 25 years  
R&D and regulatory time 
lag 

7 years Expected 4 years of contained and confined field trials, and 3 years of conventional 
(extended) field testing.  

Adoption profile Years Time to maximum level=5, Time at maximum level=7, Time to dis-adopt=5 

Adoption curve Sigmoid  

Price- potato US$ 88.6 /ton Weighted average producer price from Table 2 over all classes & tuber sizes.  

 

The software program randomly generates a sample value from the proposed distribution 

and calculates values for pre-established output variables. We collected information on output 

values for producer surplus, net present value and internal rate of return. We allowed the software 

program to generate 50,000 iterations for each scenario. In the design of the simulation 

worksheets we estimated producer surplus and net benefits on a yearly basis for the total number 

of years of the simulation. Based on the stream of yearly estimates we calculated the Net Present 

Value (NPV) and Internal Rate of Return (IRR) to society. Each scenario will be discussed in 

detail below, however it is worthwhile to discuss those variables where we substituted a static 

value for a probability distribution.  

Elasticities.  We utilized a triangular distribution for the elasticity of supply. The 

minimum value for the distribution is 0.14, the most likely is 0.92 and the maximum value is 1.2. 

These values where chosen based on estimates in the literature, particularly from an econometric 

study done in Colombia.  

Field and storage losses.  For the distribution of field and storage losses, we used the 

expected loss values in Figure 4 to estimate the parameters characterizing a normal distribution.  

Thus, we estimated the mean and standard deviation over available years for IPM managed 
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systems for both yield and storage losses. Then we combined yield and storage losses into a joint 

production loss value. We used the Normal distribution (μ=7.8, σ=5.5) for yield losses truncated 

at a maximum value of 18.4 percent (the maximum value of all years in our survey). We left open 

the minimum value for yield losses at −∞. The −∞ yield difference assumption implies that there 

is no pest pressure from the GTM and/or that the Bt variety yields less than its counterfactual of a 

conventional variety managed in a conventional system.  In contrast the maximum yield loss of 

18.4 percent is the maximum recorded point estimate in our calculations of expected losses for 

either IPM or conventionally managed system. In the case of storage losses we also utilized a 

Normal distribution (μ=5.9, σ=5.9) truncated  at a maximum value of 15.7 percent, which is the 

highest expected storage value for either IPM or conventionally managed system collected from 

farmers in our study. We left open the negative tail of the storage losses distribution at a 

minimum value of −∞. For yield and storage differences, the assumption of having a left hand 

value of −∞, is tempered by the shape of the normal curve which tends to be flatter at both tails. 

Therefore, the probability of the computer software sampling negative values using this 

distribution is actually small.23 

Cost differences.  To describe the cost difference for controlling the target pest between 

Bt potatoes and the counterfactual (conventional varieties managed traditionally), we utilized a 

Normal distribution with μ=8.4, σ=7.9. The cost difference estimated here does not include the 

fee or premium for use of the technology. Data for the distributions was collected from the 

CORPOICA-IFPRI focus groups that examined the costs of production between varieties 

managed conventionally and those in an IPM managed systems. We assumed that a Bt variety 

                                                           
23 We also recognize that Bt potato technology may not be 100% efficient in controlling GTM populations in the 
field. Experience in the field with all Bt crops has demonstrated that effectiveness may vary from 80% to 100% 
population reduction. As the relationship between population levels and damage is not linear, therefore this calls for 
utilization of damage/biophysical models that take into consideration population levels, survival rates, ingestion of 
plant tissue such as the ones proposed by Linacre and Thompson (2005) 



 

 

36

would be able to reduce the cost of pesticides and labor utilized to control the tuber moth. The 

possibility exists that the cost of control of the counterfactual is actually less than that for the Bt 

varieties (i.e. the cost difference is negative). As we do not have better data, we allow the 

distribution to take the possible values based only on mean and standard deviation.  

Due to the uncertainty surrounding costs, for three of the simulations we imputed an 

additional distribution for the cost of adaptive R&D and compliance with biosafety regulations 

based on values reported in different publications.,. For the cost of regulation we used a 

triangular distribution with a value of $600,000 as the minimum expected value, $980,000 as the 

most likely value, and $2,000,000 as the highest expected value for the course of the 

development phase. The mean value for the cost distribution is US$1,193,000. These costs are 

distributed equally over the assumed 7 year time lag for R&D and biosafety compliance. They 

are also transformed to present values in our estimations. Estimating a value for the cost of 

adaptive R&D and/or biosafety regulations is challenging. However, the purpose of including the 

value of the cost of regulation is to examine the consequences of having a degree of uncertainty 

about the likely costs of technology transfer to producers, before making an investment in the 

technology. Costs considered here are the R&D and technology transfer costs incurred by a 

private or public sector investor who desires to move the technology from the lab to a field in 

Colombia. They do not include post-release monitoring and other activities (such as crop 

management registration and certification of good segregation).24 All of these costs may or may 

not be recovered in the technology fee or premium charged to farmers. 

Varietal choice and adoption levels.  Finally, one of the critical assumptions regarding 

impact is the variety chosen by innovators for inserting the Bt gene technology.  Based on the 

                                                           
24 One of the readers of a draft of this paper pointed out this very significant issue which was not clearly explained in 
the text. We wholeheartedly agree and expect to include post-release costs when we obtain good estimates of such, 
as well as make additional estimates for specific questions relevant to investors.  
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experience with Bt potatoes in the USA, and from conversations with large potato processors in 

Colombia, there appears to be increasing resistance to the use of GM technologies destined for 

industrial uses or processing (e.g. , the French fries market in Colombia).  Taking this issue into 

consideration, perhaps the most likely target variety for the inclusion of the Bt gene is Parda 

Pastusa. As this variety constitutes roughly 50 percent of the area planted in Colombia, we 

assumed that the maximum potential area for adoption of the Bt potato is the total area planted to 

Parda Pastusa, and thus the maximum adoption level is the current adoption level of Parda 

Pastusa. This assumption is very artificial as it does not consider adoption dynamics and changes 

in preferences of farmers moving from industrial varieties to a Bt Parda Pastusa variety and it is a 

fairly conservative assumption. We further assumed that for the maximum effective adoption 

level, farmers would have two separate rates of adoption (of the maximum potential area) for the 

Bt potato variety: 35 and 95 percent of the maximum potential area for a pessimistic and 

optimistic estimate respectively. 

Simulation results 

Results of the different scenarios are presented in Table 12.  

Table 12--Smulation results 
 Scenario 1 

Ventaquemada 
region only 

Scenario 2 
Ventaquemada 
region only 

Scenario 3 
Boyacá + 
Cundinamarca 

Scenario 5 
Boyacá + 
Cundinamarca 

Total hectares 
planted to potatoes 

3,062 3,062 97,000 97,000 

Maximum hectares 
assuming insertion 
in Parda Pastusa 

1,531 1,531 48,500 48,500 

Maximum adoption 
level (%) 

35 95 35 95 

Effective  hectares 
adopting Bt potatoes 

536 1,454 16,975 46,075 

Technology fee (or 
technology transfer 
cost) per hectare 

0 $ 80 $80 $20 

Average cost of 
R&D and 

0 1.1 million US$ 1.1 million US$ 1.1 million US$ 
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Technology transfer 
Net present value 
(NPV) of Producer 
Surplus 

    

Mean, 
(US$) 

785,725 
(138,287; 
1,631,660) 

1,333,345 
(-575,356; 
3,819,739) 

20,213,700 
(-420,235; 
47,261,590) 

67,608,640 
(8538877; 
145,189,800) 

Standard 
Deviation 

494,486 1,445,622 15,678,180 45,049,340 

Minimum; 
Maximum 

(1,987,476); 
6,437,598 

-3,791,295; 
15,373,910 

-62,959,400; 
186,599,900 

-99,423,330; 
581,229,900 

Internal Rate of 
Return (%) 

Not applicable 20.18% 53.8% 76.9% 

Notes:  
1) We used @Risk™ to run 50,000 iterations per Scenario. Convergence to a mean value was monitored and was 
reached when values < 1.5%. All results converged for both NPV and IRR output values.  
2) Maximum hectares are estimated as 50% of total hectares as we assume the Bt gene will be inserted in Parda 
Pastusa only. 
3) Number in parentheses for NPV are the 5% and 95% percentile values. As per Davis and Espinoza (1998) this 
constitutes the confidence interval.  
 
 

 

Scenario 1 considers the alternative where the Bt potato will be deployed only in the 

Ventaquemada region of Colombia. The total area planted with potatoes in the region is roughly 

3,062 hectares, and the maximum adoption area for the Bt potato being 1,531 hectares to 

accommodate insertion of the Bt gene into Parda Pastusa only. This scenario does not consider 

any type of R&D or technology transfer costs, or any recovery of such costs through a 

technology premium. In essence, this is a scenario that reflects pure price effect of yield gains 

and cost reductions. The Net Present Value (NPV) of net benefits to producers is $785,725 over 

the 25 years of the simulation. Furthermore as can be seen in Figure 5, there is a 2.1 percent 

probability that the NPV will be negative. This scenario is used mostly to calibrate the model and 

establish a baseline to compare our following results.  
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Figure 5-- NPV distribution for Scenario 1  
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It is not feasible to estimate an Internal Rate of Return (IRR)25 as no cost is involved in the 

calibration. The main question that can be raised from this scenario is that if this is a “costless” 

technology, why are there negative results? The answer lies in the price effect caused by the 

adoption of the technology. The negative price effect due to the shift rightward and downward of 

the supply curve may be higher than the potential benefits due to yield and cost savings.  

What happens when we include the cost of technology transfer and/or profits to 

innovators? That is, that either the public or private sector establish a technology fee or premium 

for using the technology. The technology fee can be thought of as the opportunity cost of 

providing technology transfer services if the technology is developed by a public sector 

institution. We explore the consequences of having two distinct levels of technology fees - 

US$20 and $80 per hectare- in Scenarios 2, 3 and 426. This is the range of technology fees 

reported in the literature for crops incorporating the Bt gene. 

                                                           
25 We also collected information on the distribution of the Internal Rate of Return output. As these results do not 
show any particular inconsistency, they are not included, but are available from the authors.   
26 See Falck-Zepeda et al 2000; Huang et al. 2002; Bennett et al. 2004; for Bt cotton. In the USA, the average 
technology fee paid for the Bt potato (NewLeaf™ ) was between $49 and $72 dollars per hectare (Carpenter and 
Gianessi; 2001).    
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In Scenario 2, we increased the maximum adoption level to 95 percent but also considered 

a technology fee of $80 per hectare and a 1.1 million US$ investment in R&D and/or technology 

transfer activities. The adoption level increase extends the potential area where adoption may 

occur to encompass both departments of Boyacá and Cundinamarca with a total area 1,454 

hectares. This scenario is somewhat more realistic than Scenario 1 as it considers cost to both the 

producer and the innovator from using the technology. However, the estimations here are returns 

to society and thus, from the standpoint of R&D institution, this scenario does not answer the 

critical question of the target area necessary to recuperate investments costs.  In Scenario 2 of 

Table 12, results from our simulations indicate that the NPV of the stream of net benefits to 

farmers is $1.33 million US$ with an IRR of 20.2 percent. This result is as expected, when area is 

increased benefits to society also increase. In addition, as seen in Figure 6a, the probability of 

NPV being negative over the life of the project is roughly 14.2 percent.  

Figure 6a--NPV distribution for Scenario 2 
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How sensitive are the NPV results to changes in inputs27 such as yield and storage losses? To 

find out an answer to this question we used the @Risk™ program to measure the sensitivity of 

the NPV to changes in inputs. Results from this regression are presented in Figure 6b.  

Figure 6b--Tornado graph illustrating regression sensitivity 
in Scenario 2 
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These results show that both yield and storage losses are the highest valued inputs in terms of 

affecting the NPV while using the Bt technology. In both cases the b coefficient indicates that a 1 

percent increase in value increases NPV by 0.5 percent. The result for cost reductions may seem 

counterintuitive. For every 1 percent reduction in the use of pesticides achieved through the use 

of Bt potatoes, NPV increases by 0.38 percent. 

Scenario 3 in Table 12 presents the result of expanding the maximum area to Boyacá and 

Cundimarca but allowing the maximum adoption rate to be 35 percent. This assumption is 

equivalent to having a total area planted to potatoes of 97,000 hectares, maximum target area of 

48,500 hectares, and a maximum potential adoption of Bt potatoes of 16,975 hectares. In this 

scenario, NPV increases to roughly 20.2 million dollars over the 25 years of the simulation with 

                                                           
27 Here we use the @Risk terminology, where the distributions used for sampling, constitute “input” to the 
simulation. In turn, the outputs of the simulation are the results of changing input values, in our case the NPV or the 
IRR.  



 

 

42

an IRR of 53.8 percent. Figure 7a shows the distribution of NPV for Scenario 3. The mean value 

of the NPV for this scenario increases with respect to previous scenarios. It is interesting to note 

that the probability that the NPV will be negative decreases to 5.4 percent. This is almost half the 

value for Scenario 2. Results from the Tornado graph in Figure 7b are quantitatively similar to 

results from previous scenario. 

Figure 7a-- NPV distribution for Scenario 3  
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Figure 7b Tornado graph illustrating regression sensitivity 
of Scenario 3 
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Table 12 present results from Scenario 4. In this scenario we increased the maximum adoption 

rate to 95 percent, and reduced the technology fee to the lower level of US$20 per hectare. , 

Adopting Bt potatoes increases the NPV to $67.6 million dollars and the IRR to 76.9 percent, as 

compared to Scenario 3. The probability of the NPV being negative also decreases with respect to 

other scenarios to 2.74 percent (See Figure 8a).  

Figure 8a--NPV distribution for scenario 4 
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Results for input sensitivity in Figure 8b are similar to other scenarios thus lending some support 

to the robustness of these estimates and their relative value with regard to input effect on output 

values. 
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Figure 8b--Tornado graph illustrating regression sensitivity 
of Scenario 4 
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When we compare the results of all scenarios we can start observing the size /scale effect 

of investments in plant breeding and biotechnology. That is, given a fixed cost of development, 

the larger the maximum target area, the higher the returns to investment. In terms of 

biotechnology innovations, we will have to modify our results (in future papers) in terms of 

whether each individual gene insertion will require a full biosafety assessment versus the notion 

that once the technology is available, we can in fact introduce the technology to any set of 

varieties, provided one pays the royalty fees requested. 

Our results show that inputs to the model such as yield and storage losses have a critical 

effect on the NPV of benefits obtained by farmers. We extended our analysis to obtain more 

detail on how sensitive our results are to input values. This process also served to test the 

robustness of our results to a certain degree. We ran the advanced sensitivity analysis option in 

@Risk to examine this issue. Results of the advanced sensitivity analysis are presented in Table 

13 and Figure 9.  
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Table 13--Advanced sensitivity analysis of NPV response to changes in inputs in Scenario 4 
Inputs Ranked by Mean Output 

Name Analysis Value Mean Min Max Standard 
Deviation 

Expected 
storage 
losses      

Base 
+10.00% 

8.946666527 $218,045,561 ($25,837,250) $526,180,122,624  $3,244,630,939 

Expected 
yield 
loss      

Base 
+10.00% 

8.616666842 $215,571,164 ($25,587,226) $526,333,640,704  $3,098,652,261 

Expected 
storage 
losses      

Base 
+6.67% 

8.67555542 $214,643,401 ($25,969,474) $518,486,523,904  $3,195,548,843 

Expected 
yield 
loss      

Base 
+6.67% 

8.355555725 $212,298,948 ($25,701,256) $518,923,288,576  $3,051,850,832 

Expected 
storage 
losses      

Base 
+3.33% 

8.404444313 $211,247,874 ($26,152,526) $510,807,474,176  $3,146,569,014 

Expected 
yield 
loss      

Base 
+3.33% 

8.094444609 $209,032,884 ($25,814,674) $511,526,404,096  $3,005,149,666 

Expected 
storage 
losses      

Base 
+0.00% 

8.133333206 $207,858,980 ($26,334,944) $503,142,940,672  $3,097,691,814 

Expected 
yield 
loss      

Base 
+0.00% 

7.833333492 $205,772,975 ($25,927,476) $504,143,020,032  $2,958,549,523 

Expected 
storage 
losses      

Base -
3.33% 

7.862222099 $204,476,719 ($26,516,724) $495,492,923,392  $3,048,917,556 

Expected 
yield 
loss      

Base -
3.33% 

7.572222376 $202,519,218 ($26,039,656) $496,773,103,616  $2,912,050,839 
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Figure 9-- Mean of NPV vs. percentage change of inputs for scenario 4 
Mean of NPV vs Percentage Change of Inputs
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Table 13 summarizes changes to the simulated distribution for NPV caused by “stepping” 

through 3 inputs (yield losses, storage losses and supply elasticity). Each input is “stepped” 

through seven values, and a full simulation was run at each value. A total of 21 simulations 

(50,000 iterations per simulation) were completed at the end of the run. We can see from Figure 9 

and Table 13 that results are fairly robust to changes in the +/- 5 and 10 percent changes in value. 

These results indicate that the input sensitivities estimated in all the different scenarios through 

the b coefficient in Tornado graphs are fairly good estimates of their true value and thus may be 

used as an indicator of their true contributing value.   

 

 
5. DISCUSSION 

Our results have interesting applications for the national agricultural research 

organizations in Colombia, in particular for those whose mission is to supply appropriate 
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technologies and to help farmers overcome their production constraints. Our results show that 

IPM managed systems continue to have a role in potato production in Colombia. Questions 

remain about the availability of some of the components of the IPM portfolio in Colombia, as 

well as understanding their relative value to producers. Our results also show that Bt potatoes 

may be a viable strategy to the management of the Guatemala Tuber Moth complex, particularly 

for those situations where heavy damage is present. In addition, IPM and the use of Bt potatoes 

may be complementary as there is still the need to manage secondary pests not controlled by the 

Bt technology. Further research to study and define IPM portfolios that incorporate Bt potatoes as 

an integral part of the interventions available to manage Bt technologies may be warranted. 

However, as mentioned above, there are many indications that precipitation has a very significant 

causal role in determining pest levels and thus damage in subsequent crop cycles. Therefore, in 

the absence of other considerations, one potential (stylized) management strategy for farmers 

would be to utilize the Bt technology after a series of dry periods and in turn carefully assess the 

value of the technology after 1 or 2 cropping cycles of precipitation. Of course, this strategy falls 

apart when one considers that germplasm enhancement and maintenance in potatoes is a long-

term activity. In addition, there are questions about technology transfer in terms of who will do 

the transfer, and who will provide the knowledge necessary to manage the crop within a 

traditional and/or IPM managed system.  After considering these realities, another aspect that 

requires further analysis is the insurance value of the Bt technology (and to a degree IPM as well) 

and problems related to producer vulnerability. 

We found in our study that by including a given level of R&D and biosafety regulatory 

compliance costs and time lag, net economic benefits to society are reduced. This is a 

consequence of delaying the onset of the stream of benefits necessary to release the technology to 

farmers. This statement needs to be qualified as the analysis does not consider the potential gains 
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to society in terms of the knowledge, information and safety acquired during the R&D and 

biosafety process.   

An expected result of the inclusion of a fixed level of R&D and biosafety costs necessary 

to develop a GM technology decreases net benefits to society and to innovators others things kept 

equal. We can also see different scenarios where, for example, those GM technologies that have 

to be developed and go through biosafety regulatory approval process, innovators need to 

amortize costs over a larger area to justify investments. In contrast, if there is an existing 

technology that has already gone through the adaptive R&D and biosafety processes (i.e. the 

biosafety system allows a reduced application for approved events) , the decision making process 

is different as the relevant costs to compare the stream of benefits are the royalty and fees 

necessary to use the technology. 

 

6.  LIMITATIONS AND CAVEATS  

The limitations of the economic surplus model are well known in the literature (Alston, 

Norton, and Pardey 1995).  The limitations of the economic surplus model pertaining to this 

study, includes the use of linear demand and supply curves, horizontal shifts of the supply curve. 

and the assumption of the use of a competitive market assumption; are well known.  However 

Alston, Norton and Pardey (1995); also point out that the economic surplus model is a widely 

used methodology globally.  Alternative methodologies and assumptions have their own set of 

problems and limitations.  Though economic surplus model have limitations, it continues to be 

the best alternative for estimating benefits to R&D processes.  One of the major limitations of our 

study is the inherent dynamic nature of pest infestations and their response to environmental 
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situations. We provide a partial solution to this problem by using “expected” yield estimates with 

some risk considerations and dynamics.  

One important aspect for R&D institutions considering developing GM potatoes is that 

consumers in Colombia attach a significant weight to variety attributes. Different varieties in 

Colombia have specific end uses.  Consumer preferences for varieties with specific attributes can 

be summarized by what the phrases “I am finicky about my potatoes” or “Don’t touch my 

potatoes.” Consumer perceptions that a genetic modification can alter these attributes may be 

strong enough, and be transferred along the marketing chain, that it may affect demand for a 

variety developed with a GM trait. This implies that R&D institutions have to develop 

communication strategies to inform consumers about the cost, benefits and safety of the product, 

as well as about any potential changes in the attribute mix of the transgenic varieties. 

Finally, our results are challenged by the reality that Guatemalan Tuber Moth attacks have 

not been high during the first two years of the study. Preliminary examination of the third year of 

data collection seems to tell the same story. Therefore our knowledge about the dynamics of 

GTM damage and thus of the potential value of IPM and genetic modifications continues to be 

incomplete. We will strive to close this knowledge gap over time. 

 
7. SUMMARY AND CONCLUSIONS 

The analysis of impact of the adoption of IPM practices destined to manage the 

Guatemalan Tuber Moth (Tecia solanivora Povolny) has three important characteristics that 

differentiate it from other technologies. First, adoption of IPM portfolios is characterized by 

partial or stage adoption of components of the portfolio. This pattern of adoption may affect the 

overall effectiveness of preventive measures. Second, pest management is not a conventional 

input that behaves as others, with a standard marginal revenue curve. Rather, we are dealing with 
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damage control; therefore the production function is bounded by intrinsic productivity of the 

plant, its interaction with the environment and the management done by the producer. This 

implies that the sources of adoption profitability are less use of chemical pesticides and a reduced 

loss of production.   Finally, the Tuber Moth depends to a large degree to climate, in particular 

precipitation. The survey we conducted coincided with a year of a food distribution of 

precipitation. This in turn implied low pest attack and low damage. In contrast, IPM practices are 

of a preventive nature and therefore have to be done, before the pest attack.  

We applied a conventional partial budgeting analysis (incremental costs/incremental 

benefits) that showed that the use of IPM practices was profitable for farmers during the second 

semester of 2003. Yet, the use of IPM practices was not profitable for the first semester of 2004, 

because the reduction of the use of pesticides was low, not only on conventional but also for the 

IPM system. In both cases, producers reported low attack by the Guatemalan Tuber Moth, and 

thus there was no significant effect on production. This analysis has a geographical and time 

context and is limited as it is a snapshot of the period production environment. Furthermore, the 

snapshot taken during our study was done in a period of very low infestation and damage by the 

target pest. We can only draw very limited conclusions, as basing conclusions exclusively on the 

snapshot taken does not reflect the dynamics and temporality of the pest.  

In order to obtain a much more dynamic vision of the production environment faced by 

Colombian producers in the region, we compiled actual an historical data on damage reported by 

farmers interviewed. These damages can be an over estimation, as producers in the area tend to 

magnify the level of damage. However, they may as well be an under estimation, as we asked 

farmers about the three crop cycles with the largest damage, not the damage per crop cycle. The 

data collected and the analysis done in this paper we obtain a much more dynamic view of losses 

caused by the pest, and thus allow us to discriminate between damage suffered by producers that 



 

 

51

utilize an IPM system versus those that utilize the conventional system. Our analysis show that 

producers act rationally while utilizing IPM practices even in the case of lower levels of GTM 

attack, as the expected benefit is larger that the cost of preventive measures. 

Result from the preliminary estimates of the ex ante assessment of economic surplus 

creation due to the potential use of the Bt potato technology seem to indicate a good potential to 

manage the pest, even in the case of uncertainty. Our results considering different levels of 

investments in R&D and technology transfer costs, as well as technology fees and premiums, 

indicate that at the technology fee levels considered in our analysis, innovators or investors may 

be able to recuperate their investment and at the same time deliver a technology that is useful to 

manage the Guatemalan Tuber Moth in Colombia, particularly when the level of infestation and 

damage are high. This opens a neglected area to conduct future research of examining the 

insurance value of Bt technologies. In essence, this line of discussion seeks to estimate the 

maximum premium payable by farmers to be able to use the technology in order to manage risk. 

This discussion will have repercussions in terms of funding mechanisms, strategic alliances, and 

the possibility of the technology becoming an integral part of the portfolio of techniques used to 

manage pests in developing countries.  

It is recommended to continue the study in order to follow up the crop cycle and continue 

measuring storage losses. It is also recommended to continue collecting data on the costs of 

production, particularly under the farmer school launched under this project. Only a larger 

temporal coverage of the production cycle can allow us to quantify the true effect of IPM and the 

potential benefit of Bt potatoes in the field.   

Finally, we would be remiss if we did not discuss in this paper three lines of argument 

with regard to the use of Bt technologies in potato. A distinct set of papers have shown the 

benefit from Bt crops in general in decreasing pesticide use (Traxler 2005; Traxler et al. 2004; 
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Falck-Zepeda et al 2000; Huang et al. 2002; Bennett et al. 2004). Reduction in terms of total 

pesticide load and the type of active ingredients used will certainly have an effect on human and 

animal health, and the environment. A second line of argument that is worthwhile to pursue in 

future papers is the intake and sustainability of the Bt technologies over time. Genetic 

modifications may have an easier intake on the part of farmers as there are is very little change in 

terms of management changes with regard to the crop. In addition, as our experience in Colombia 

has shown, farmers are not as dependent on other external inputs such as conventional pesticides, 

traps or pheromones required under IPM managed systems. Finally, for Colombian organizations 

either funding R&D in GM biotechnologies or dedicated to transferring technologies to farmers, 

there is a lot to do in terms of gaining the confidence of consumers and educating everybody on 

the assessment of risk, its analysis, and posterior safe use of the technology. Only time will tell if 

this paper contribute to initiate the discussion of all of these issues.  
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