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ABSTRACT 
 

Pollution of the environment by metals and organic contaminants is an intractable 

global problem, with cleanup costs running into billions of dollars using current 

engineering technologies.  The availability of alternative, cheap and effective 

technologies would significantly improve the prospects of cleaning-up metal 

contaminated sites.  Phytoremediation has been proposed as an economical and ‘green’ 

method of exploiting plants to extract or degrade the contaminants in the soil.  To date, 

the majority of phytoremediation efforts have been directed at leaping the biological, 

biochemical and agronomic hurdles to deliver a working technology, with scant attention 

to the economic outlook other than simple estimates of the cost advantages of 

phytoremediation over other techniques.  In this paper we use a deterministic actuarial 

model to show that uncertainty in project success (the possibility that full clean up may 

not be realized) may significantly increase the perceived costs of remediation works for 

decision-makers. 

 
 
KEYWORDS:  Biotechnology, project risk, soil contaminants, Environmental 
remediation, Industrial crop technologies
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INCORPORATING PROJECT UNCERTAINTY IN NOVEL ENVIRONMENTAL 
BIOTECHNOLOGIES: ILLUSTRATED USING PHYTOREMEDIATION 

 
Nicholas A. Linacre,1* Steven N. Whiting,2 and J. Scott Angle3 

 
 

1.  INTRODUCTION 

Pollution of soils with metals, metalloids and organic contaminants is a serious 

problem in the United States and globally.  Under the source-pathway-receptor model of 

risk assessment, the failure to clean up contaminated sites (source) leads to risk of harm 

to plants, animals, humans and natural resources such as water (receptors) via significant 

pollutant linkages (pathways).  For example, the contaminants may impact groundwater 

or surface water on site, or may be directly toxic to plants, animals and humans.  

Additional concerns are raised when the contaminants migrate from the site in 

groundwater, run-off and dusts, or enter the food chain.   

Globally, all countries have sites contaminated with metals and organic 

contaminants.  In the developed world there is the often legal, obligation that the ‘polluter 

pays’ for clean up.  There can also be some financial provisioning by government to 

remediate, or at least stabilize, significant contaminated sites where a polluter cannot pay 

or be identified for some reason.  For example, in 1980 the United States Congress 

established the Superfund Program to locate, investigate, and clean up the most 

contaminated sites nationwide (USEPA 2002).  Currently, there are approximately 1200 
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sites4 on the US EPA’s priority clean up list.  Resources For The Future estimate that the 

Superfund will cost US tax payers between US$14 billion and US$16.4 billion over the 

next 10 years (Probst et al. 2001).  In many developing countries, however, clean-up 

funds are likely to be inadequate or nonexistent.  Moreover, the local people are more 

likely to be in contact with the contaminants than in the developed world, due to reliance 

on subsistence agriculture or the inadequate provision or unaffordable costs of services 

such as clean drinking water. 

The availability of alternative cheap and effective technologies would 

significantly improve the prospects of cleaning-up contaminated sites, particularly where 

financial provisioning is poor.  Phytoremediation, has been championed as a potentially 

economical and ‘green’ method of removing contaminants from the soil, which does not 

require significant engineering works.  For metal contamination, metal-accumulating 

plants can be used to ‘harvest’ contaminant metals from soils – “phytoextraction”.  For 

petroleum hydrocarbons, pesticides and chlorinated solvents contamination, the 

biological and biochemical mechanisms of plants and associated bacteria are exploited to 

degrade organic contaminants in situ eventually reducing the organic compounds to 

water, CO2 and mineral salts – “phytodegradation”.  And, for metalloid contamination 

such as selenium and mercury, plants can be exploited to either accumulate the metalloids 

or to convert them volatile organic forms, which are released to the atmosphere – 

“phytovolatilization”.  For detailed reviews of the general principles and biological 

mechanisms of phytoremediation see, for example, Leeson and Alleman 1999; Raskin 

and Ensley 1999; Terry and Banuelos, 2000; McCutcheon and Schnoor 2003; Tsao 2003.  

Note that phytoremediation using plants in wetlands, water filtering systems or 
                                                           
4 http://oaspub.epa.gov/oerrpage/basicqry 
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evapotranspirative covers are not considered in this paper; for technological information 

the reader is directed to, for example to Kadlec and Knight (1996); Weand and Hauser 

(1997); Campbell and Ogden (1999); Batty (2003). 

Much of the optimism surrounding the different phytoremediation strategies is 

based on the belief that they might offer significant cost advantages over engineering-

intensive remediation solutions such as ‘dig and dump’, soil washing or heat treatment.  

Phytoremediation strategies are also perceived to have the added benefit that they might 

be more sustainable and “environmentally-friendly” because the contaminated soil is 

treated rather than disposed of by landfill.  Despite the potential positives of 

phytoremediation, the primary considerations for stakeholders needing to treat 

contaminated land are the (1) likelihood of success (i.e., meeting regulatory criteria for 

contaminants), (2) the time taken to achieve success, and (3) the cost effectiveness5 of the 

solution.   

To date, most effort has been invested in conquering the technical, agronomic and 

biological challenges involved in delivering phytoremediation as a working technology 

(improving success) and speeding up the rate at which phytoremediation occurs6 (time to 

achieve success), which go some way to addressing the first and second of a site 

stakeholder’s concerns.  While phytoremediation may appear initially to be cost effective 

there has been scant attention to third concern, the economic outlook, other than simple 

estimates of how much cheaper phytoremediation might be compared to other 

technologies.  Most analyses of the cost effectiveness of phytoremediation solely 
                                                           
5 Cost effectiveness refers to the ability of a technology to remediate a site at a lower cost per hectare than 
an alternative technology.  
6 Phytoremediation can take several years to achieve success (e.g., for metals see Zhao et al., 2003).  Note 
that in the case of high concentrations of contaminants, or where the contaminants are beneath the rooting 
zone of plants, success might never be achievable using phytoremediation.  The considerations for testing 
feasibility of phytoremediation for a particular set of contaminant conditions are not explored in this article.  
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compare ‘estimates’ of accounting costs of ‘dig and dump’ projects against 

phytoremediation works, where phytoremediation is costed as an agricultural concern 

(e.g. Glass 1999).  There are two crucial omissions in such analyses.  Firstly, they rarely 

consider costs in terms of a realistic bill-of-quantities for each remediation technique, 

which would include overheads, management and salaries on top of the engineering 

costs.  Secondly, the cost estimate models ignore the effect of uncertainty on 

management decision-making7, which will increase the perceived cost of works.   

In this article we consider uncertainty8 in project outcomes.  Managing 

uncertainty is a key factor in economic decision-making, and can be incorporated in 

economic management models using expected utility theory9.  The same principles of 

uncertainty should be considered in the assessment of environmental technologies, 

including phytoremediation, bioremediation, physical treatment systems or soil disposal.  

We have developed a simple management decision model that explicitly incorporates the 

effect of uncertainty on management decisions.  The purpose of the model is to 

demonstrate the effect that uncertainty has on perceived cost.  Managing uncertainty will 

be the next big hurdle for phytoremediation as a commercial product now that the 

biological and agronomic techniques are being perfected.  This type of information will 

be vital to support Best Practicable Environmental Option (BPEO)10 desk studies, which 

precede the design of a remediation strategy. 

                                                           
7 Refers to the process where by management arrives at a decision.  This includes approaches such as risk 
analysis and cost benefit analysis (www.sra.org). 
8 Uncertainty arises from a number of sources and includes inherently random processes and natural 
variation.  Uncertainty also includes our lack of knowledge of situations which may be deterministic and 
not necessary inherently random.  In this situation lack of knowledge leads uncertainty over what will 
occur.  Phytoremediation projects exhibit both types of uncertainty described.  
9 For example see Hare and McCutcheon (1991) for a practical implementation or Mas-Colell et al. (1995) 
for a theoretical development.  
10 http://www.ehsni.gov.uk/pubs/publications/BPEOCurrentStatusFeb2005.pdf 
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2.  MODEL DEVELOPMENT 

Typically remediation investment decisions are based on a combination of the net 

present value of profits (NPV), the payback period t, and the probability of success p. The 

Net Present Value is thus the sum of the discounted stream of annual net benefits. Net 

Present Value requires subtracting all the costs necessary to bring the project into 

existence and an estimate of future benefits. The NPV is discounted at the hurdle rate of 

return, which is simply the rate of interest applied to discount the stream of net benefits. 

The hurdle rate represents an existing benchmark rate of interest usually the rate of return 

demand for projects calculated on the proportion of debt and equity used to finance the 

project. If the NPV is greater than zero, then the project is accepted.  Usually these 

parameters are subject to constraints, which will be dependent on both business and 

regulatory pressures.  For example, management may require that the NPV of profits be 

positive, the payback period be less than three years and that the project have at least a 90 

percent chance of success, or, if the regulator is involved, achieving 100 percent success 

might be required for compliance.  The payback period is the time taken to return any 

initial capital investment.  A short payback period ensures that capital is freed within a 

reasonable period of time as opposed to being tied up for many years.  The NPV of 

profits measures the discounted value of future profits using a rate of return required for 

the project.  

Consider a simple model for comparing phytoremediation of a contaminated site 

with an engineering method of remediation.  For the purposes of demonstration it does 

not matter whether this is phytoremediation of metals, metalloids or organics 

contaminated soil.  The engineered remediation technique could be ‘dig and dump’, heat 
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treatment, soil washing etc, so, for the purposes of demonstration, let us call the 

engineered remediation, RemedY.  In the model, it is assumed that profits are generated 

from the sale of the decontaminated land (benefits), for example, from real estate sales 

that occur at the end of the remediation period.  It can also be assumed that no initial 

financial strain occurs because companies considering the use of phytoremediation pay a 

technology fee as part of the cost of using the technology.  Therefore we assume that 

there is no significant initial capital outlay in addition to buying the seed and paying a 

technology fee11. The implication of this assumption is that the payback period can be 

ignored. This is a common assumption for this kind of work (Hare and McCutcheon 

1991).   

Further if it is assumed that using pytoremediation is 100 percent successful then 

the net present value of profit is given by: 

( ) ∑
=

−+
−

+
=

N

t
t

t
N

s
p i

c
i

P
NPV

1
1)1(1

       (1) 

where ct is the cost of phytoremediation each year, i is the discount rate (usually the 

hurdle rate of return), N is the project time horizon, and Ps is the expected net value from 

the sale of the land (i.e. net profit after sale costs), which is assumed to be a constant but 

in reality is a random variable. This equation is a standard business model for estimating 

NPV of profit (Hare and McCutcheon 1991). 

If it is assumed that phytoremediation is unsuccessful then the net present value of 

profit is given by: 

                                                           
11 In reality sites are often prepared by adding chemicals to the soil. The cost depends on the type of 
preparation required.  For example sulfur added to lower soil pH is relatively cost effective and thus 
insignificant compared to the overall cost of phytoremediation; however, chelates can be quite expensive. 



 

 

7

( ) N
d

N

t
t

t
N

s
pd i

c
i

c
i

P
NPV

)1()1(1 1
11 +
−

+
−

+
= ∑

=
−+       (2) 

where cd is the additional cost associated with undertaking RemedY in year N (after 

phytoremediation failed) to meet the regulatory clean up needs for the site.  The profit is 

also assumed to be delayed by an additional year. 

If we included our estimates of the success of the project (probability of success p 

and the probability of failure 1-p), then the model is given by the expected net present 

value (EV) of profits (combining (1) and (2)) 
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For decision-making (4) should be compared with the EV of profits from RemedY given 

by 
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Comparing (4) and (5) it is necessary for dp EVEV ≥  if phytoremediation is going to be 

the preferred technology or  
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The right hand side of (6) is linear in p and forms an upper bound on the cost of 

phytoremediation. 

3.  RESULTS 

‘Real’ values could be inserted into the model developed above to illustrate the 

effect of uncertainty on the cost comparison of phytoremediation and RemedY.  

However, obtaining actual cost and profit data for illustrative purposes is not easy 

because off-the-shelf phytoremediation products are not available and there are 

significant site-specific and pollutant-specific tailoring of the bill-of-quantities required 

for remediation projects, including assumptions about the person-hours required for each 

program of works.  Moreover, assumptions on the potential use and consequent value of 

the land are required, which will drive the remediation cost a stakeholder is willing to 

forfeit and the timescale for return on the investment.  For example, values for farmland 

vary from a few hundred dollars per hectare in the least populated states to a many 

thousand dollars per hectare in the most populated states (USDA 2002).  For the purposes 

of this article, some arbitrary values thought to be representative of real-world values 

have been chosen to illustrate the impact of uncertainty on the cost of phytoremediation 

projects.  The primary assumption we have made, based on public perception of 

phytoremediation, is that RemedY is several-fold more expensive per hectare than 

phytoremediation. 
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Using the set of generic values in Table 1, profits and costs can be combined to 

illustrate the effect of different scenarios.  Five cases were investigated: (a) a base case, 

(b) high property prices, (c) high phytoremediation costs, (d) low RemedY costs, and (e) 

short phytoremediation times. 
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Table 1--Parameter values used for the scenario analysis. 
Parameter Scenario 

(a) 
Base 
case 

Scenario 
(b) 

High 
property 

price 

Scenario (c) 
High 

phytoremediation 
cost 

Scenario 
(d) 

Cheap 
RemedY§ 

Scenario (e) 
Fast 
phytoremediation 

Description 

Ps (Profit 
per 
hectare) 

1000 
USD/ha 

2000 
USD/ha 

1000 USD/ha 1000 
USD/ha 

1000 USD/ha 
 

Profit per hectare from land sales. 
Prices vary from place to place. The 
value was chosen for illustrative 
purposes (USDA 2002).  

ct   † 45 
USD/ha 

45 
USD/ha 

90 USD/ha 45 
USD/ha 

45 USD/ha A range of values is cited in Glass 
1999.  40 USD was chosen for 
illustrative purposes from this range. 

cd    ‡ 900 
USD/ha 

900 
USD/ha 

900 USD/ha 450 
USD/ha 

900 USD/ha Cost of ‘dig and dump’ 

I 0.05 0.05 0.05 0.05 0.05 Discount rate. 
N 10 years 10 years 10 years 10 years 5 years Project Term 
§ RemedY costs per hectare based on clean up of the top 50 cm of soil, which would be the equivalent depth to which phytoremediation is typically possible (i.e., 
rooting depth).   
† Cost of phytoremediation is given a surrogate cost value 45 USD/ha in the base case model.  Expensive phytoremediation is represented by a value of 90 
USD/ha, i.e., a doubling in phytoremediation cost. 
‡ Cost of the engineering technology ‘RemedY’ is given a surrogate cost of 900 USD/ha, i.e., this is 20 times more costly than phytoremediation per hectare;  In 
the cheap engineered technology scenario, the cost of RemedY is set at 450 USD/ha, i.e., half halving the cost of this technology, but is still 10 times more 
expensive than phytoremediation.   
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Scenario (a), the base case using ‘typical’ costs for the model parameters, is 

provided in all of the subsequent figures for comparison.   

Scenario (b) – High land value.  Increasing property prices may have a significant 

impact on the remediation strategy used, even when phytoremediation is guaranteed to 

succeed.  In areas with valuable commercial or residential land, RemedY may provide 

faster realization of profits and, in terms of the net present value of profits, this may be 

preferred.  For example if property prices double over the prices assumed in the base case 

then RemedY appears to be the better strategy given the assumptions of the model 

(Figure 1).   

Figure 1--Comparing scenarios (a) and (b) i.e. the effect of a doubling of property 
prices on the viability of using phytoremediation.  The red line f(p) 
represents the right hand side of Equation 6 and the blue line y represents 
the left hand side of Equation 6.  For phytoremediation to be economically 
viable y ≤ f(p).  The graph on the left hand side shows that 
phytoremediation is viable for probabilities of success above 
approximately 0.7.  The graph on the right hand side shows that 
phytoremediation is not viable with a doubling in property prices when 
compared to the base case (left hand side graph). 
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Scenario (c) – Phytoremediation costs increase relative to RemedY.  If 

phytoremediation becomes more expensive then it is important that the project has a 
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greater chance of success because there is a higher cost associated with failure.  A 

doubling of the phytoremediation cost was sufficient to make phytoremediation unviable 

(Figure 2).   

Figure 2--The graph on the right hand side shows the effect of increasing the cost of 
phytoremediation projects.  The red line f(p) represents the right hand 
side of Equation 6 and the blue line y represents the left hand side of 
Equation 6.  For phytoremediation to be viable y ≤ f(p).  Doubling the cost 
of Phytoremediation results in Phytoremediation projects becoming 
unviable compared to the Base Case. 
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Scenario (d) – RemedY costs decrease relative to phytoremediation.  If RemedY 

becomes more affordable then phytoremediation becomes less attractive as a strategy.  

Under scenario d, if RemedY costs are halved over the base case then phytoremediation 

becomes unviable (Figure 3).   

Figure 3--The graph on the right hand side shows the effect of decreasing RemedY 
costs.  The red line f(p) represents the right hand side and the blue line y 
represents the left hand side of Equation 6 respectively.  For 
phytoremediation to be viable y ≤ f(p).  Phytoremediation projects never 
become viable if the RemedY cost is halved compared to the base case (left 
hand side graph). 
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Such situations might not arise in developed countries if, for example, RemedY were dig-

and-dump, because the increasing cost of landfilling of contaminated spoil would tip the 

financial balance towards other in situ treatment technologies.  Indeed, in the United 

Kingdom, the recent Landfill Directive (July 2004) and associated changes to waste 

acceptance criteria have dramatically reduced the number of landfills that will take 

contaminated waste from around 200 down to around 11.  In consequence, the cost of 

landfilling contaminated soil has risen from £100 per tonne (~US$180) to £150 per tonne, 

and is continuing to rise. 

Scenario (e) – Phytoremediation technology develops such that operation time is 

reduced.  The time taken to reduce contamination to levels below regulatory reference 

levels is an important driver in deciding which strategy should be used.  If 

phytoremediation technology is improved such that the time frame for successful 

remediation is reduced, then this will work in favor of applying cheaper 

phytoremediation technologies.  This occurs because, if failure occurs, the receipt of 

profit is not delayed too long.  For example, halving the remediation term implies that a 

phytoremediation project will become viable if the probability of success is 

approximately 0.25 compared to approximately 0.7 in the base case (Figure 4).  
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Figure 4--The graph on the right hand side shows the effect of decreasing the 
remediation time for phytoremediation.  The red line f(p) represents the 
right hand side and the blue line y represents the left hand side of 
Equation 6 respectively.  For phytoremediation to be viable y ≤ f(p).  
Phytoremediation projects become viable if the probability of success is 
approximately 0.25 compared to approximately 0.7 in the base case (left 
hand side graph). 

 

0 0.5 1
0

500

1000
Base Case - Scenario (a)

probability of success

f p( )

y

p
 

0 0.5 1
0

500

1000
Fast Phyt. - Scenario (e)

probability of success

f p( )

y

p
 

 
 
Many pilot studies of phytoremediation have found that it can take from a few to many 

hundreds of crops to successfully remediate a metal contaminated site using plants (e.g., 

Zhao et al., 2003).  Clean-up times of longer then a few (3) years are likely to be 

unacceptable to stakeholders and regulators alike, unless special conditions for the site 

are granted.   

 

4.  DISCUSSION 

The availability of a cheap alternative technology to conventional highly 

engineered methods of contaminated land remediation would save industry and taxpayers 

many millions of dollars.  Phytoremediation has been proposed as a potentially cheap 

biotechnology for cleaning up soils contaminated with moderate levels of metals or 

organic pollutants, particularly where the pollution is distributed over a very large area.  

Phytoremediation is sold as having the added benefit of retaining the physical and 
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biological integrity of the soil.  Research has advanced the effectiveness of 

phytoremediation and has enhanced understanding of the situations where 

phytoremediation is most likely to be viable alternative to other remediation technologies.  

Further research into the real cost of phytoremediation is critical to making 

meaningful cost comparisons with alternative technologies in BPEO assessments.  In 

particular, fiscal management decisions about technology for a particular situation must 

consider both the likely success of the remediation (i.e., Will the land be acceptably clean 

at the end of a defined time period?) and management’s confidence in this estimate.   

To illustrate the vital impact of remediation success on the economic benefits 

flowing from the remediation, we presented a simple Net Present Value assessment 

incorporating remediation success with the differential costs of two technologies and the 

financial benefits of releasing real-estate.  A number of simple assumptions underlie 

cost/success analysis of phytoremediation against a generic ‘other’ remediation 

technology RemedY.  In particular, a deterministic expected value model was used to 

explore the effect of project success p on the cost comparison [realistically the variable p 

can be viewed as having a significant random component and in more sophisticated 

models should be incorporated as a probabilistic parameter together with uncertainty in 

prices and the likelihood of success of alternatives].  The results of our model illustrate 

the impact that variation in p may have on the decision to use phytoremediation without 

directly quantifying the extent of the uncertainty.  This is shown graphically by plotting 

the decision variables against p (Figures 1, 2, 3, and 4).  

This simple deterministic approach allows us to begin to understand the 

relationship between probability of remediation success, the comparative project cost, 
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and how these are affected by market changes such as the value and need for real estate 

(Figures 1 and 4) or the relative costs of the different technologies (Figures 2 and 3).  The 

model results are plausible.  If property prices are high then there is a time advantage to 

remediating the site now, i.e. using a guaranteed technology such as ‘dig and dump’ that 

totally removes the contaminants quickly (Figure 2).  However, this result depends on the 

period over which the phytoremediation project would need to be conducted to achieve 

the same success.  Short phytoremediation terms may favor phytoremediation over other 

technologies (Figure 4) because of the potential cost advantages of phytoremediation, 

which is likely to be a cheaper technology.   

Clearly, the cost differential between the technologies will have an effect on 

technology selection despite the potential difference in their success.  As the relative cost 

of each technology changes the more ‘risky’ technology (phytoremediation), in terms of 

success, is increasingly favored as its cost advantage is increased over RemedY (Figures 

2 and 3).  It is interesting to note that when calibrating the model, obtaining realistic costs 

for both phytoremediation and other technologies such as ‘dig and dump’ was 

problematic.  Even ignoring the cost for staff, plant and project management that vary 

dramatically between projects, the typical rates for phytoremediation per meter cube of 

soil are not available.  Similarly, taking dig and dump as the example and ignoring the 

cost for staff, plant and project management, the rates for landfill vary considerably from 

state to state and from location to location, and are heavily dependent on the nature, 

concentration and mixture of contaminants in the soil.  Landfill rates could be as low as 

$2 US per ton to more than $150 US per ton for household waste.  Disposal costs for 

hazardous materials would be expected to be more expensive and may incur additional 
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costs for haulage to landfills that are licensed to take hazardous waste.  This will certainly 

drive the adoption of in situ remediation technologies.  Further work is clearly needed in 

this area to calibrate realistic cost assessment models, or to tailor them to a particular 

region or even to a particular site. 

Various extensions of model include incorporating situations where the primary 

goal of remediation is the environmental cleanup of a site.  Such projects my not rely on 

land sales to generate profits and environmental valuation approaches such as contingent 

valuations may be required to quantify the benefits associated with a cleanup.  In such 

situations the model would more realistically include an additional parameter to reflect 

that cleanup may only be partially effective and, depending on the circumstances, this 

may be an acceptable result.  Stochastic extensions of the model would more realistically 

reflect the extent and variation of parameters.   The probability of success p and the cost 

of remediation ct could be treated as random variables with a normal and lognormal 

distribution, respectively. This would allow a more comprehensive exploration of the 

effect of uncertainty on decisions.   

To conclude, the model presented in this article illustrates that the probability of 

remediation success, and the time taken to achieve that success, are major influencing 

factors in the decision to use phytoremediation, not just overall cost comparisons with 

alternate technologies.  The deterministic model clearly demonstrates how stakeholders 

assessing remediation options for a contaminated site would consider the cost of works, 

likelihood of remediation success and other market drivers.  The model presented here is 

the cornerstone for the development of stochastic models that incorporates realistic 

assessments of the uncertainty associated with the variable p, the success of the 
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remediation.  Modeling of uncertainty will be a key complement to models assessing the 

viability of phytoremediation from the scientific and agronomic standpoint, such as the 

Phytoextraction Simulator model developed by Phytomine Ltd in New Zealand.  Indeed, 

Phytoextraction Simulator does include economic factors such as profit from metal 

recovery, cost of inaction and an estimate of the cost of an alternative technology.  Future 

probabilistic models that take into account, for a certain site, both the suitability of each 

remediation technology plus the uncertainty of success will provide vital support to 

feasibility studies for the different remediation technologies and BPEO assessments.  

Therefore analysis is required to decide what factors are likely to influence 

phytoremediation so that the probability of success can be quantified and incorporated 

into management decision making.
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