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EXECUTIVE SUMMARY 
 
 

This paper examines future prospects for rainfed cereal production, and its 

importance in the evolving global food system.  The IMPACT-WATER integrated water-

food modeling framework developed at IFPRI is applied to assess the current situation and 

plausible future options of irrigation water supply and food security, primarily on a global 

scale.  This model simulates the relationships among water availability and demand, food 

supply and demand, international food prices, and trade at regional and global levels. 

Globally, 69 percent of all cereal area is rainfed, including 40 percent of rice, 66 percent of 

wheat, 82 percent of maize and 86 percent of other coarse grains.  Worldwide, rainfed 

cereal yield is about 2.2 metric tons per hectare, which is about 65 percent of the irrigated 

yield (3.5 metric tons per hectare). Rainfed areas currently account for 58 percent of world 

cereal production.       

The baseline projection from the IMPACT-WATER model—which incorporates 

our best estimates of the policy, investment, technological, and behavioral parameters 

driving the food and water sectors—shows that rainfed agriculture will continue to play a 

major role in cereal production, accounting for about one-half of the increase in cereal 

production between 1995 and 2021-25.  The importance of rainfed cereal production is 

partly due to the dominance of rainfed agriculture in developed countries.  More than 80 

percent of cereal area in developed countries is rainfed, much of which is highly 

productive maize and wheat land such as that in the Midwestern United States and parts of 

Europe.  The average rainfed cereal yield in developed countries was 3.2 metric tons per 

hectare in 1995, virtually as high as irrigated cereal yields in developing countries.  
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Rainfed cereal yields in developed countries are projected to grow to 3.9 metric tons per 

hectare by 2021-25.   

Irrigation is relatively more important in cereal production in developing countries, 

with nearly 60 percent of future cereal production in developing countries coming from 

irrigated areas.  However, rainfed agriculture remains important in developing countries as 

well.  Rainfed yields in developing countries are projected to increase from 1.5 metric tons 

per hectare to 2.1 metric tons per hectare by 2021-25, and rainfed area in developing 

countries will account for 43 percent of total cereal area, and rainfed areas will account for 

40 percent of growth in cereal production.  

A number of alternative scenarios show that more rapid growth in rainfed yield and 

production could compensate for reduced investments in irrigation or reduced groundwater 

pumping to eliminate groundwater overdraft, but that achieving the required improvements 

in rainfed production would be a significant challenge.  Thus, for example, a scenario that 

eliminates groundwater mining throughout the work would result in a decline in irrigated 

cereal production of 20.1 million metric tons in China, 18.4 million metric tons in India, 18 

million metric tons in WANA, 1.6 million metric tons in developed countries, and 53.0 

million metric tons in developing countries as a whole in 2021-25 relative to the baseline.  

These reductions can be offset by an increase in rainfed area and yield, but the required 

increase in yields would be very large.  Compared to the baseline, average rainfed cereal 

yield would need to increase by 13 percent or 0.6 metric tons per hectare in China, 20 

percent or 0.30 metric tons per hectare in India, and 0.3 metric tons per hectare in WANA; 

rainfed cereal area will increase by 0.6 million hectares in China, 0.8 million hectares in 

India, and 0.10 million hectares in WANA. 
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The paper also undertakes a critical synthesis of the literature to assess the potential 

of actually achieving such significant increases in rainfed cereal yields beyond the baseline 

projections.  It is essential in most of the world that rainfed production increases come 

mainly from yield increases, not from further expansion in area.  Many environmental 

problems can develop from further expansion of rainfed production into marginal areas.  

Biodiversity losses can develop from the clearing of areas to be used for agriculture.  

When these areas are cleared, many plants native to the area may be lost, and disease and 

pest problems may also develop due to changes in the ecosystem.  Soil erosion is also often 

a significant problem in areas of agricultural expansion.  Many of the marginal areas to 

which agriculture expands in the developing world include hillsides and arid areas, which 

make soil erosion a particular concern.   Three primary ways to enhance rainfed cereal 

yields are examined, increasing effective rainfall use through improved water 

management, particularly water harvesting; increasing crop yields in rainfed areas through 

agricultural research; and reforming policies and increasing investments in rainfed areas.    

 

WATER HARVESTING  

Water harvesting involves concentrating and collecting the rainwater from a larger 

catchment area onto a smaller cultivated area.  The runoff can either be diverted directly 

and spread on the fields or collected in some way to be used at a later time.  Water 

harvesting techniques include external catchment systems, microcatchments, and rooftop 

runoff collection, the latter of which is used almost exclusively for non-agricultural 

purposes.  External catchment water harvesting involves the collection of water from a 
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large area that is a substantial distance from the area where crops are being grown.  Types 

of external catchment systems include runoff farming, which involves collecting runoff 

from the hillsides into flat areas, and floodwater harvesting within a streambed using 

barriers to divert stream flow onto an adjacent area, thus increasing infiltration of water 

into the soil.  Microcatchment water harvesting methods are those in which the catchment 

area and the cropped area are distinct but adjacent to each other.  Some specific 

microcatchment techniques include contour or semi-circular bunds, and meskat-type 

systems in which the cropped area is immediately below the catchment area that has been 

stripped of vegetation to increase runoff. 

While many water harvesting case studies and experiments have shown increases in 

yield and water use efficiency, it is not clear if the widespread use of these technologies is 

feasible.  Construction and maintenance costs of water harvesting systems, particularly the 

labor costs, are very important in determining if a technique will be widely adopted at the 

individual farm level.  The initial high labor costs of building the water harvesting 

structure often provide disincentives for adoption.  The initial labor costs for construction 

generally occur in the dry season when labor is cheaper but also scarce due to worker 

migration; maintenance costs, on the other hand often occur in the rainy season when labor 

costs are higher due to competition with conventional agriculture.  Thus, while many case 

studies of water harvesting methods show positive results, these methods have yet to be 

widely adopted by farmers. Some projects may require inputs that are too expensive for 

some farmers to supply.  In addition, many farmers in arid or semi-arid areas do not have 

the manpower available to move large amounts of earth that is necessary in some of the 

larger water harvesting systems. 
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In addition to water harvesting, the use of improved farming techniques has been 

suggested to help conserve soil and make more effective use of rainfall.  Conservation 

tillage measures such as minimum till and no till have been tested in some developing 

countries.  Precision agriculture, which has been used in the United States, has also been 

suggested for use in developing countries.  Along with research on integrated nutrient 

management, applied research to adapt conservation tillage technologies for use in 

unfavorable rainfed systems in developing countries could have a large positive impact on 

local food security and increased standards of living.   

AGRICULTURAL RESEARCH TO IMPROVE RAINFED CEREAL YIELDS 

A common perception is that rainfed areas did not benefit much from the Green 

Revolution, but breeding improvements have enabled modern varieties to spread to many 

rainfed areas.  Over the past 10-15 years most of the area expansion through the use of 

modern varieties has occurred in rainfed areas, beginning first with wetter areas and 

proceeding gradually to more marginal areas.  In the 1980s, modern varieties of the major 

cereals spread to an additional 20 million hectares in India, a figure comparable to 

adoption rates at the height of the Green Revolution (1966-75).  Three quarters of the more 

recent adoption took place on rainfed land, and adoption rates for improved varieties of 

maize and wheat in rainfed environments are approaching those in irrigated areas. 

Although adoption rates of modern varieties in rainfed areas are catching up with 

irrigated areas, the yield gains in rainfed areas remain lower.  The high heterogeneity and 

erratic rainfall of rainfed environments make plant breeding a difficult task.  Until recently, 

potential cereal yield increases appeared limited in the less favorable rainfed areas with 
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poor soils and harsh environmental conditions.  However, recent evidence shows dramatic 

increases in yield potential in even drought-prone and high temperature rainfed 

environments.  For example, the yield potential for wheat in less favorable environments 

increased by more than 2.5 percent per year between 1979 and 1995, far higher than the 

rates of increase for irrigated areas.  A change in breeding strategy to directly target rainfed 

areas, rather than relying on “spill- in” from breeding for irrigated areas was a key to this 

faster growth. 

Both conventional and non-conventional breeding techniques are used to increase 

rainfed cereal yields.  Three major breeding strategies include research to increase harvest 

index, to increase plant biomass, and to increase stress tolerance (particularly drought 

resis tance).  The first two methods increase yields by altering the plant architecture, while 

the third focuses on increasing the ability of plants to survive stressful environments.  The 

first of these may have only limited potential for generating further yield growth due to 

physical limitations, but there is considerable potential from the latter two.  For example 

the “New Rice for Africa”, a hybrid between Asian and African species, was bred to fit the 

rainfed upland rice environment in West Africa.  It produces over 50 percent more grain 

than current varieties when cultivated in traditional rainfed systems without fertilizer.  In 

addition to higher yields, these varieties mature 30 to 50 days earlier than current varieties 

and are far more disease and drought tolerant than previous varieties. 

If agricultural research investments can be sustained, the continued application of 

conventional breeding and the recent developments in non-conventional breeding offer 

considerable potential for improving cereal yield growth in rainfed environments.  Cereal 

yield growth in farmers’ fields will come both from incremental increases in the yield 
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potential in rainfed and irrigated areas and from improved stress resistance in diverse 

environments, including improved drought tolerance (together with policy reform and 

investments to remove constraints to attaining yield potential, as discussed in the next 

section).  The rate of growth in yields will be enhanced by extending research both 

downstream to farmers and upstream to the use of tools derived from biotechnology to 

assist conventional breeding, and, if concerns over risks can be solved, from the use of 

transgenic breeding. 

 Participatory plant breeding plays a key role for successful yield increases 

through genetic improvement in rainfed environments (particularly in dry and remote 

areas).  Farmer participation in the very early stages of selection helps to fit the crop to a 

multitude of target environments and user preferences.  Participatory plant breeding may 

be the only possible type of breeding for crops grown in remote regions; a high level of 

diversity is required within the same farm, or for minor crops that are neglected by formal 

breeding.   

In order to assure effective breeding for high stress environments, the ava ilability 

of diverse genes is essential.  It is therefore essential that the tools of biotechnology, such 

as marker-assisted selection and cell and tissue culture techniques, be employed for crops 

in developing countries, even if these countries stop short of true transgenic breeding.  To 

date, however, application of molecular biotechnology has been limited to a small number 

of traits of interest to commercial farmers, mainly developed by a few life science 

companies operating at a global level.  Very few applications with direct benefits to poor 

consumers or to resource-poor farmers in developing countries have been introduced—

although the New Rice for Africa described above may show the way for the future in 
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using biotechnology tools to aid breeding for breakthroughs beneficial to production in 

developing countries.  Much of the science and many tools and intermediate products of 

biotechnology are transferable to solve high priority problems in the tropics and subtropics, 

but it is generally agreed that the private sector will not invest sufficiently to make the 

needed adaptations in these regions.  Consequently, national and international public 

sectors in the developing world will have to play a key role, much of it by accessing 

proprietary tools and products from the private sector.  However, there has been little 

detailed analysis of the incentives and mechanisms by which such public-private 

partnerships can be realized. 

 

POLICY REFORM AND INFRASTRUCTURE INVESTMENT IN RAINFED AREAS 

Cereal yields can also be increased through improved policies and increased 

investment in areas with exploitable yield gaps (the difference between the genetic yield 

potential and actual farm yields).  Such exploitable gaps may be relatively small in high 

intensity production areas such as most irrigated areas, where production equal to 70 

percent or more of the yield gap is achieved.  However, with yield potential growing 

significantly in rainfed environments (see above) exploitable yield gaps are considerably 

higher in rainfed areas, because remoteness, poor policies and a lack of investments have 

often isolated these regions from access to output and input markets, so farmers face 

depressed prices for their crops and high prices or lack of availability of inputs.  Riskier 

soil and water conditions in less favorable areas also depress yields compared to their 

potential. 
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Emerging evidence shows that the right kinds of investments can boost agricultural 

productivity far more effectively than previously thought in many less- favored lands.  

Increased public investment in many less-favored areas may have the potential to generate 

competitive if not greater agricultural growth on the margin than comparable investments 

in many high-potential areas, and could have a greater impact on the poverty and 

environmental problems of the less- favored areas in which they are targeted.  Although 

rainfed areas differ greatly from region to region based on the physical and climatic 

characteristics of the area, certain development strategies may commonly work in many 

rainfed areas.  Key strategies include the improvement of technology and farming systems; 

ensuring equitable and secure access to natural resources; ensuring effective risk 

management; investment in rural infrastructure; providing a policy environment that does 

not discriminate against rainfed areas; and improving the coordination among farmers, 

NGOs, and public institutions.  

CONCLUSIONS 

Rainfed agriculture will maintain an important role in the growth of food 

production in the future.  However, appropriate investments and policy reforms will be 

required to enhance the contribution of rainfed agriculture.  Water harvesting has the 

potential in some regions to improve rainfed crop yields, and can provide farmers with 

improved water availability and increased soil fertility in some local and regional 

ecosystems, as well as environmental benefits through reduced soil erosion.  However, 

despite localized successes, broader farmer acceptance of water harvesting techniques has 

been limited, due to the high costs of implementation and higher short-term risk due to the 
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necessity of additional inputs, cash, and labor.  Water harvesting initiatives frequently 

suffer from lack of hydrological data and insufficient attention during the planning stages 

to important social and economic considerations, and the absence of a long-term 

government strategy for ensuring the sustainability of interventions.  Greater involvement 

of farmers from the planning stages and the use of farmers for maintenance and data 

collection and provision of appropriate educational and extension support could help 

expand the contribution of water harvesting. 

The rate of investment in crop breeding targeted to rainfed environments is crucial 

to future cereal yield growth. Strong progress has been made in breeding for enhanced crop 

yields in rainfed areas, even in the more marginal rainfed environments.  The continued 

application of conventional breeding and the recent developments in non-conventional 

breeding offer considerable potential for improving cereal yield growth in rainfed 

environments.  Cereal yield growth in rainfed areas could be further improved by 

extending research both downstream to farmers and upstream to the use of tools derived 

from biotechnology to assist conventional breeding, and, if concerns over risks can be 

solved, from the use of transgenic breeding.   

Crop research targeted to rainfed areas should be accompanied by increased 

investment in rural infrastructure and policies to close the gap between potential yields in 

rainfed areas and the actual yields achieved by farmers.  Important policies include higher 

priority for rainfed areas in agricultural extension services and access to markets, credit, 

and input supplies.  Successful development of rainfed areas is likely to be more complex 

than in high-potential irrigated areas because of their relative lack of access to 

infrastructure and markets, and their more difficult and variable agroclimatic 
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environments.  Progress may also be slower than in the early green revolution because new 

approaches will need to be developed for specific environments and tried on a small scale 

before being disseminated more widely.  Investment in rainfed areas, policy reform, and 

transfer of technology such as water harvesting will therefore require stronger partnerships 

between agricultural researchers and other agents of change, including local organizations, 

farmers, community leaders, NGOs, national policymakers and donors.   

 
 

 
KEYWORDS:   rainfed agriculture, water harvesting, crop breeding, agricultural policy, 
less favored areas. 
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The Role of Rainfed Agriculture in the Future of 

Global Food Production 
 
 

Mark Rosegrant,1 Ximing Cai, 2 Sarah Cline,3 and Naoko Nakagawa4 
 
 

INTRODUCTION 

Eight hundred million people are food- insecure, and 166 million pre-school 

children are malnourished in the developing world.  Producing enough food, and 

generating adequate income in the developing world to better feed the poor and reduce the 

number of those suffering will be a great challenge.  This challenge is likely to intensify, 

with a global population that is projected to increase to 7.8 billion people in 2025, putting 

even greater pressure on world food security, especially in developing countries where 

more than 80 percent of the population increase is expected to occur.  Irrigated agriculture 

has been an important contributor to the expansion of national and world food supplies 

since the 1960s, and is expected to play a major role in feeding the growing world 

population.   

                                                 
1 Research Fellow, Environment and Production Technology Division, International Food Policy Research 
Institute. 
2 Post-Doctoral Fellow, Environment and Production Technology Division, International Food Policy 
Research Institute. 
3 Senior Research Assistant, Environment and Production Technology Division, International Food Policy 
Research Institute. 
4 Graduate Student, School of Forestry and Environmental Studies, Yale University. 
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However, irrigation accounts for about 72 percent of global and 90 percent of developing-

country water withdrawals, and water availability for irrigation may have to be reduced in 

many regions in favor of rapidly increasing nonagricultural water uses in industry and 

households, as well as for environmental purposes.  Out of concern over increasing water 

scarcity for irrigation, the role of water management and investments for irrigated 

agriculture and food security has received substantial attention in recent years (Hofwegen 

and Svendsen 2000; Rosegrant 1997).     

However, rainfed areas currently account for 58 percent of world food production.  

Given the importance of rainfed cereal production, insufficient attention has been paid to 

the potential of production growth in rainfed areas to play a significant role in meeting 

future food demand.  This paper examines future prospects for rainfed cereal production, 

and its importance in the evolving global food system.  The paper starts with a critical 

synthesis of the literature on the prospects for increased rainfed crop production.  The 

review of water management, agricultural research, policy reform, and infrastructure 

investment for rainfed agriculture is then utilized to develop a “business-as-usual” baseline 

scenario and a number of alternative scenarios for future growth in rainfed agriculture, 

explicitly linked to alternative outcomes for the driving forces behind rainfed growth.  

These scenarios are then implemented in the IMPACT-WATER holistic modeling 

framework, in order to assess their impact on future global food supply, demand, trade, and 

prices.   

SOURCES OF GROWTH IN RAINFED CROP PRODUCTION 

In order to increase production, farmers have two options, either to use extensive 

systems (which expand the area planted) or intensive systems (which increase inputs on a 



 

 

3 
 

planted area in order to increase yields).  In order to meet immediate food demands, 

farmers in many rainfed areas have expanded production into marginal lands.  These 

fragile areas are susceptible to environmental degradation, particularly erosion, due to 

intensified farming, grazing and gathering.  This problem may be especially severe in areas 

of Africa, in which the transfer from extensive to intensive systems was slower than in 

other regions (De Haen 1997). 

Expansion of production into marginal areas can cause many environmental 

problems.  When these areas are cleared, many plants native to the area may be lost, and 

disease and pest problems may also develop due to changes in the ecosystem.  Soil erosion 

is also often a significant problem in areas of agricultural expansion.  Many of the 

marginal areas to which agriculture expands in the developing world include hillsides and 

arid areas, which make soil erosion a particular concern.   

These environmental impacts can lead to additional economic and health problems, 

particularly for the poor individuals that generally live in marginal areas.  These impacts 

are generally greater on the poor than on other factions of the population due to the fact 

that they do not have adequate assets to mitigate the impacts of environmental degradation 

(Scherr 2000).  Environmental problems can have far-reaching implications in poor 

communities through decreased agriculture production potential, which may further 

increase poverty, leading to increased malnutrition and poor health.  Increasing production 

by expanding the planted area into marginal areas may have additional negative impacts on 

the population that moves into these areas, as living conditions can be much harsher than 

in more productive areas.    
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Because of these environmental consequences of area expansion, crop yield growth 

is a better solution than increasing the area planted in rainfed areas.  McNeely and Scherr 

(2001) note that under some circumstances, increasing production on more productive 

lands—such as irrigated areas—can ease the pressure to use more marginal lands for 

cropland and help to keep those natural habitats from being destroyed.  But as will be seen 

below, the potential for expansion of irrigated area is limited in most of the world.  

Therefore, intensive cropping systems that involve increased inputs such as labor, 

fertilizers, pesticides, or improved varieties to increase yields will be essential for rainfed 

crop production.   Sustainable intensification of rainfed agriculture development can 

increase production while limiting environmental impacts.  The three primary ways to 

enhance rainfed agricultural production through higher crop yields are: 1) to increase 

effective rainfall use through improved water management; 2) to increase crop yields in 

rainfed areas through agricultural research; and 3) to reform policies and increase 

investment in rainfed areas.   These sources of growth are reviewed in turn. 

 

WATER HARVESTING FOR RAINFED AGRICULTURE 

Many developing countries located in arid or semi-arid regions experience 

significant problems in securing adequate amounts of water for rainfed crop production.  

Water scarcity problems in arid regions result simply from the lack of sufficient rainfall.  

Semi-arid regions, however, may receive enough annual rainfall to support crops but it is 

distributed so unevenly in time or space that rainfed agriculture is not viable (Reij, Mulder 

and Begemann 1988).  Rockström and Falkenmark (2000) note that due to high rainfall 

variation in semi-arid regions, a decrease of one standard deviation from the mean annual 
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rainfall often leads to the complete loss of the crop.  Water loss through evaporation and 

runoff exacerbates water scarcity problems in these areas.  Low rainfall areas that receive 

between 300 – 600 mm annually may be able to combat these problems using 

supplemental irrigation methods, but regions receiving less than 300 mm of annual rainfall 

must resort to other methods to secure enough water to support crop production (Oweis, 

Hatchum and Kijne 1999).   

Water scarcity is a significant problem for farmers in Africa, Asia, and the Near 

East where 80 - 90 percent of water withdrawals are used for agriculture (FAO 2000).  

While farmers in some high-potential regions have been able to increase yields by 4 - 5 

percent in recent years, farmers in the semi-arid tropics of Asia and Africa have only 

increased agricultural growth by less than 1 percent (Barghouti 2001).  Farmers in these 

arid regions may be particularly hard hit, as development requires more water for domestic 

and industrial uses.  Potential does exist, however, to increase agricultural water use 

efficiency through water harvesting and conservation techniques.  Bruins, Evenari and 

Nessler (1986) estimate that an additional 3 - 5 percent of arid areas could be cultivated 

using runoff farming.  Some water harvesting methods have proven successful in practice; 

trials of water harvesting in Burkina Faso, Kenya, Niger, Sudan and Tanzania have shown 

increased yields of 2 - 3 times those achieved in dryland farming (FAO 2000). 

Water harvesting is a general term usually used to describe the collection and 

concentration of runoff for many purposes, including agriculture and domestic uses.  

Although specific water harvesting terminology varies by author, Reij, Mulder and 

Begemann (1988) list several characteristics that are generally involved in discussions of 

water harvesting.  One characteristic is the importance of storage to many water harvesting 
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systems due to the intermittent water flow in the arid and semi-arid areas where water 

harvesting takes place.  In addition, most water harvesting operations consist of a 

catchment area and a receiving area for the capture of runoff, and are generally small both 

in size and in level of investment.  Water harvesting activities occur near the location 

where the rain falls, therefore the storing of river water in large reservoirs and groundwater 

mining are generally not included under the category of water harvesting.   

Water harvesting for agriculture (sometimes referred to as runoff farming) involves 

concentrating and collecting the rainwater from a larger catchment area onto a smaller 

cultivated area.  The runoff can either be diverted directly and spread on the fields or 

collected in some way to be used at a later time.  Different authors have classified water 

harvesting methods in various ways (see Reij, Mulder and Begemann (1988) for an 

extensive review of different classification methods) and a standardized classification 

system has yet to be developed.  Pacey and Cullis (1986) classify rainwater harvesting 

techniques into three broad categories: external catchment systems, microcatchments, and 

rooftop runoff collection.   

External catchment rainwater harvesting (sometimes referred to as macrocatchment 

water harvesting) involves the collection of water from a large area that is a substantial 

distance from the area where crops are being grown.  Types of external catchment systems 

include runoff farming, which involves collecting sheet or rill runoff from the hillsides into 

flat areas, and floodwater harvesting within a streambed using barriers to divert stream 

flow onto an adjacent area, thus increasing infiltration of water into the soil.  This type of 

water harvesting can be used for any number of different crops including row crops, trees 

or closely growing crops (Oweis, Hachum and Kijne 1999).   
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Microcatchment water harvesting methods are those in which the catchment area 

and the cropped area are distinct but adjacent to each other.  Some specific microcatchment 

techniques include contour or semi-circular bunds made of earth, stone or trash, pitting, 

strip catchment tillage, and a meskat-type system in which the cropped area is immediately 

below the catchment area that has been stripped of vegetation to increase runoff.  These 

methods are often used for medium water demanding crops such as maize, sorghum, millet 

and groundnuts (Habitu and Mahoo 1999).   

Rooftop runoff collection involves the collection of runoff from slanted building 

roofs and is used almost exclusively for domestic consumption5.  Some other water 

collection methods that have been used include fog collection and snow collection.  Fog 

collection has been used in some mountainous coastal regions of Central and South 

America with large amounts of fog.  This method utilizes fine nylon net strung between 

poles, which collects water droplets from condensed fog that is then stored for later use 

(Ringler, Rosegrant and Paisner 1999).  This method generally does not result in large 

amounts of water being collected.  Snow harvesting has also been used in some areas of 

Afghanistan (Pacey and Cullis 1986).  In this method, snow is collected in the winter and 

stored in a deep watertight pit, which proceeds to slowly melt over the following summer.  

This method is not feasible in many arid and semi-arid areas that are located in warmer 

climates.  

In situ water harvesting (or water conservation) methods are also used to help 

increase water use efficiency and are classified as water harvesting by some authors.  

                                                 
5 Rooftop runoff collection will not be discussed further in this paper given that it is generally not used for 
agricultural production. 
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These techniques will also be discussed in this section as they are often used in conjunction 

with water harvesting techniques, and as noted by Reij, Mulder and Begemann (1988), the 

distinction between water harvesting and in situ water conservation can be vague and hard 

to define.  Many factors influence the usefulness of rainwater harvesting in general as well 

as the applicability of different methods in a particula r area.  Rainfall harvesting is only 

necessary in arid and semi-arid regions that receive low levels of rainfall or in which there 

is high intra or inter-seasonal rainfall variability that makes traditional rainfall agriculture 

infeasible.  Rainfall intens ity is one factor that impacts the effectiveness of the chosen 

water harvesting method.  Li, Gong and Wei (2000) point out that while the bare ridge and 

furrow method has been shown to be quite effective in semi-arid areas of India where 

rainfall is generally high intensity, the same methods lead to water infiltration into the bare 

ridges and evaporation in areas of China that experience much lower intensity rainfall. 

Other factors that influence the choice of rainwater harvesting method include 

topography, soil characteristics – particularly those related to water infiltration, and the 

choice of crop to be planted.  Specific topographic characteristics that are necessary for 

rainwater harvesting include a landscape surface that facilitates runoff, and varia tions in 

altitude such that runoff flows down the slope and collects at a flat portion of the 

landscape.  In addition, the cropped area soil must be deep enough and of a suitable texture 

to induce rainfall infiltration and retention (Bruins, Evenari and Nessler 1986).  Loamy 

soils with a medium texture are generally the best-suited soils for water harvesting projects 

(Critchley and Siegert 1991).  Due to the unique soil and landscape characteristics across 

regions, the same rainwater harvesting technique may produce quite dissimilar results in 

different areas.  Particular attention needs to be given to the relationship between soil 



 

 

9 
 

management and water availability to assure the best possible results from water 

harvesting operations. 

Soil nutrient availability is essential in enhancing the effects of water harvesting 

and helping to ensure increased yields.  Rockström (1993) addresses the importance of the 

water-nutrient equilibrium in crop production.  He notes that although fertilizer application 

on fields with adequate moisture will increase yields, addition of nutrients during periods 

of drought may actually lead to decreases in yields.  The relationship between soil nutrient 

levels and water harvesting is particularly important in areas of sub-Saharan Africa where 

soil nutrient levels are generally very low (Rockström and Falkenmark 2000).  Tabor 

(1995) notes that regular application of animal manure is crucial to the success of 

microcatchment water harvesting in the Sahel as manure increases nutrient levels and 

improves the physical condition of the soil.  Increased nutrient availability will also help to 

promote root development and canopy cover growth, which will increase water uptake by 

the crops and help to advance biomass growth (Rockström and Falkenmark 2000). 

In addition to soil nutrient requirements, the physical structure of the soil also has 

an impact on the effectiveness of water harvesting.  The degradation of the easily erodable 

soils in many arid and semi-arid regions leads to specific concerns regarding water 

harvesting methods.  The erosion of the sandy surface of these soils, often due to the 

removal of vegetation by overgrazing or other means, exposes the clayey subsurface that 

forms a crusty layer with lower infiltration rates.  While these crusted surfaces are often 

abandoned because of their low potential for agriculture, they may prove very useful for 

water harvesting by inducing runoff from the more impenetrable catchment area to the 

cultivated area below (Tabor 1995).  The impact of raindrops on the eroded surface can 
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also help to induce crusting (Abu-Awwad and Shatanawi 1997).  In some situations, the 

runoff may also bring nutrient-rich litter along with it to the cultivated area, thus increasing 

the availability of nutrients to the crops (Nabhan 1984).   

In cases when a crusty layer is not formed on the catchment area, the soil surface 

may be treated with other materials to reduce infiltration rates and promote runoff.  Some 

chemical treatments have been used for this purpose, including asphalitic materials and 

paraffin wax.  While these materials have increased runoff efficiency, they are generally 

only effective for 2-5 years (Ojasvi et al. 1999).  Other materials such as plastic sheeting, 

fiberglass and concrete have also been used but these items are often too expensive for 

farmers in arid areas to afford.   

Although the catchment area benefits from a layer of soil with low infiltration rates, 

this characteristic can be detrimental to crop production in the cultivated area.  Very low 

infiltration rates that result from crusty surfaces can lead to waterlogging in the cultivated 

area, rendering the area unfit for crop production.  The most appropriate type of soil for the 

cultivated area would be a deep fertile loamy soil.  The presence of organic matter 

improves soil structure and allows for greater water infiltration and better penetration of 

plant roots.  Deep soils are able to hold water from a water harvesting system and may also 

be able to provide a more nutrients for plant growth (Critchley and Siegert 1991).   

WATER CONSERVATION 

Water conservation methods, often referred to as in situ rainwater harvesting, 

include activities such as mulching, deep tillage, contour farming and ridging (Habitu and 

Mahoo 1999).  The purpose behind these methods is to ensure that the rainwater is held 
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long enough on the cropped area to ensure infiltration.  These techniques are best suited to 

areas where rainfall and water holding capacity are sufficient to meet the crop water 

requirement but the amount of water infiltration is not adequate to reach the required 

moisture level (Habitu and Mahoo 1999).  Some methods, such as mulching or the addition 

of organic matter, may also help to enhance the physical characteristics of the soil.  Water 

conservation is often used in tandem with water harvesting techniques in order to achieve 

better results. 

Deep tillage is a water conservation technique that improves soil moisture capacity 

by increasing soil porosity.  In addition, runoff is reduced through increased roughness at 

the soil surface, which increases the time available for water to infiltrate the soil.  This 

increased infiltration will increase the availability of water in the root zone to assist in 

plant growth.  It is important to note, however, that these techniques are not suitable in all 

situations.  Soil texture and structure as well as economic limitations that may exist if high 

capital inputs are needed.  For example, draft animal power is essential to deep tillage due 

to the amount of power needed.  In the Dodoma region of Tanzania, few areas use deep 

tillage techniques because the draft animal power is not available (Habitu and Mahoo 

1999).   

Contour farming is a technique in which tilling and weeding are done along the 

contours to help stop water runoff.  Mulching or the addition of other organic material to 

the soil is a water conservation method that may both increase soil water availability by 

increasing soil water holding capacity and decreasing evaporation and improve the quality 

of the soil.   
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The addition of organic matter is often used along with other conservation methods 

to help increase water infiltration.  When organic material is added with conservation 

tillage systems instead of using traditional mould-board ploughs, the decrease in erosion is 

even greater (Rockström and Falkenmark 2000).  Fall and Faye (1999) note that animal 

traction used in place of tractors and heavy machinery decreases soil compaction, thus 

increasing soil aeration and water infiltration.  These benefits are further increased when 

organic material is added to the soil.  Beet (1990) found that in Ghana, a decrease in 

organic matter in soils from 5 percent to 3 percent decreased soil water retention from 57 

percent to 37 percent.  While animal traction may be useful in increasing soil aeration and 

infiltration of water, it may also result in soil degradation in the form of increased erosion 

(Fall and Faye 1999).  The development of new farming techniques may be useful in 

combating these additional problems.  

MICROCATCHMENTS 

Microcatchment water harvesting systems consist of a distinct catchment area and 

cultivated area that are adjacent to each other (Habitu and Mahoo 1999).  Boers and Ben-

Asher (1982) additionally specify that the distance between the catchment area and the 

runoff receiving area of microcatchments must be less than 100 meters.  Some advantages 

of microcatchments include the high specific runoff yield compared to larger catchments 

(Bruins, Evenari and Nessler 1986) and their simplicity, inexpensiveness and easy 

reproducibility (Boers and Ben-Asher 1982).  Some authors suggest that microcatchment 

water harvesting systems offer significant increased cropping potential to smallholders 
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without access to tractors in developing countries (Suleman et al. 1995).  Microcatchments 

have been used in Asia, Africa, America and Australia. 

Bunding and V-Shaped Catchments 

Various forms of bunding and v-shaped microcatchments have been used 

successfully in some arid and semi-arid regions.  Contour bunds are earth, stone or trash 

embankments placed along the contours of the hillside in order to trap rainwater behind 

them and allow for greater infiltration.  Microcatchments using contour bunds were found 

to be successful for fruit tree plantations in Syria.  At least twice yearly runoff was found 

to be sufficient for the selected tree species (almonds, pistachios, figs and grapes) used in 

the study.  The same method was found to be uneconomical for mountainous areas as the 

construction costs were too expensive to offset any additional gains in yield (Oweis, 

Hachum and Kijne 1999).  Semi-circular bunds are generally placed in a staggered 

formation and allow water to collect in the hoop for greater infiltration.  Excess water is 

displaced around the edges of the bund when the hoop area is filled with water.  Contour 

bunds are generally used on slopes less than five percent, while semicircular bunds are 

usually only used if the slope is less than three percent (Habitu and Mahoo 1999). 

  V-shaped microcatchments are similar to semicircular bunds except that a v-

shaped catchment area is used instead of a hoop shaped area.  A study conducted in Niger 

used v-shaped microcatchments in the production of millet and sorghum.  The catchments 

were set up so that runoff would collect in the v-shaped area and then overflow around the 

sides once the basin was filled.  The yields obtained from this study were greater than the 

national average yields for sorghum and millet in Niger.  Due to these results, the author 
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suggests that this type of microcatchment system should be pursued in areas where demand 

for agricultural land is high and/or the yields are below average (Tabor 1995). 

Meskat-type Systems 

Other types of microcatchments use a catchment area that diverts runoff water 

directly onto a cultivated area at the bottom of the slope.  The meskat-type system differs 

from those previously described in that the field is divided into a distinct catchment area 

that is located directly above the cropped area instead of alternating catchment and 

cultivated areas (Habitu and Mahoo 1999).  The cultivated basin is surrounded by a u-

shaped bund in order to hold the runoff.  Meskat-type systems are used for most types of 

cereal crops including maize, sorghum and millet (Habitu and Mahoo 1999).  Suleman et 

al. (1995) conducted a study in the Northwest Frontier Province of Pakistan using water 

catchment aprons of various lengths and slope gradients to examine increases in soil 

moisture.  In this method, a flat cultivated area is located in between two apron catchment 

areas.  They found that soil moisture is significantly increased when aprons of 4 to 5 

meters with 7 to 15 percent gradients are used.  Moisture was increased by 59 percent in 

the first 15 cm of soil, by 63 percent in the second 15 cm, and by 80 percent in the 30 to 45 

cm depth range.  A study in Balochistan, Pakistan compared wheat yields for three 

experimental fields: a control area in which the entire area was planted, a water harvesting 

area with a ratio of 1:1 between the catchment area and cropped area, and a second water 

harvesting area with a ratio of 2:1 between the catchment area and cultivated area (Rees et 

al. 1991).  While the water storage in the 1:1 and 2:1 trials increased by 55 and 43 percent 

respectively over the control, the yields were not always higher than the control.  Averaged 

over the three years of the study, the 1:1 trial achieved yields that were 95 percent of the 
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control yields.  The 2:1 trial, however, obtained significantly lower yields than the control 

due to waterlogging problems.  

Comparison of Microcatchment Techniques and Combination Methods 

Kaushik and Lal (1998) conducted an experiment comparing five different water 

harvesting techniques (flat bed, bed and furrow, furrows on grade with eventual cultural 

operations, field bunding, and inter-row water harvesting) on rainy season crops in New 

Delhi, India.  Significant differences in yield, moisture use, and moisture use efficiency 

were only found in lower rainfall year of the two-year study.  The highest grain yield, 

monetary returns, soil moisture use, and moisture use efficiency were obtained using the 

bed and furrow method.  Inter-row harvesting and bunding were found to have slightly 

better results than the two remaining methods.  Kaushik and Gautam (1994) found 

increased pearl millet yields of 73.6 percent over the flat bed method when using a ridge 

and furrow seedbed, and an increase of 54.0 percent when using a flat seedbed with straw 

mulch.  In the same study, the ridge and furrow method was shown to obtain a higher plant 

height, moisture use rate and water use efficiency compared to the flat bed method.   

Another study in Jodhpur, India tested several water harvesting and moisture 

conservation methods on three tree species (Gupta 1995).  The methods tested included a 

control, weeding only, weeding and soil working, weeding and 1 m diameter saucers, 

weeding and 1.5 m diameter saucers, weeding and 1.5 m diameter saucers with mulching, 

bunding microcatchments around each tree in a checkerboard design, and the ridge and 

furrow method.  Increased height, collar circumference, crown diameter, and biomass 

accumulation over the control were found for all three tree species using the ridge and 

furrow method.   
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Some studies have used a microcatchment system along with a runoff enhancing or 

mulching technique in order to increase water use effectiveness.  Li, Gong and Wei (2000) 

used a plastic-covered ridge to complement a ridge and furrow microcatchment system 

used in the low-intensity rainfall area of Gaolan County in China.  Gravel mulch was also 

used in this study to hold water in contact with the soil for a longer period of time to 

increase infiltration and reduce evaporation.  The test plots using plastic covered ridges 

obtained higher corn yields than the bare ridge plots.  The highest yields were obtained 

from the plot with both plastic covered ridges and gravel mulched furrows, which 

produced yields 1.3 times greater than the plastic covered ridge only plot, 2.6 times greater 

than the bare ridge and furrow field, and 1.9 times greater than the bare flat soil control 

field.   

Another study tested the use of various forms of waste (polyethylene bags, 

newspaper, stone, and marble) to line catchment areas in a shallow conical microcatchment 

agroforestry system in India (Ojasvi et al. 1999).  These linings served to harvest water and 

mulch jujube trees.  The largest plant height was obtained using linings of stone and 

marble.  During the first year of the study, when the lining served only as mulch due to 

lack of rainfall, an increase of 33.3 percent and 25.0 percent in tree height over the control 

was found for stone and marble.  Increases in tree height of 97.3 percent (stone) and 108.5 

percent (marble) over the control were obtained in the second year when the linings served 

as mulch and aided in water harvesting.  All types of lining were found to increase the soil 

moisture levels compared to the control.   
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EXTERNAL CATCHMENTS 

External catchments or macrocatchment rainwater harvesting entails runoff 

collection from a large area located a significant distance from the cultivated area (Habitu 

and Mahoo 1999).  The collected water is sometimes stored in a separate location before 

being used.  Some types of external catchments include hillside sheet or rill runoff 

utilization, floodwater harvesting within a streambed, hillside conduit systems and 

ephemeral stream diversion.   

 
Hillside Runoff and Conduit Systems 

The hillside sheet or rill runoff system uses runoff from a hilltop or other areas, 

which then collects in flat areas where it is used for cultivation.  The runoff is often used 

without any additional management (Habitu and Mahoo 1999).  In some instances, 

bunding is also used in order to hold the runoff in the cultivated area.  Maize, sugarcane 

and vegetables are often grown using hillside sheet or rill runoff systems.  One of the 

predominant characteristics of external catchments is the low labor cost since there is 

generally no flood control management.  

Hillside conduit systems are beneficial in areas where the runoff must travel over a 

long distance before reaching the cultivated area.  When the slope along which the runoff 

must travel is very long, the velocity of the flow is often rather slow, which makes it quite 

possible that a significant amount of the water may be absorbed before it reaches the 

cultivated area (Bruins, Evenari and Nessler 1986).  In this situation, it is useful to dig 

channels on the hillside, which increases the runoff flow velocity and allows more of the 

runoff to reach the field and be absorbed there. 
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Floodwater Harvesting and Stream Diversion 

Floodwater harvesting within a streambed involves blocking the water flow, 

causing water to concentrate in the streambed.  The streambed area where the water 

collects is then cultivated.  It is important to make sure that the streambed area is flat with 

runoff producing slopes on the adjacent hillsides and that the flood and growing seasons do 

not coincide (Reij, Mulder and Begemann 1988).  A terraced wadi system is one type of 

floodwater harvesting, in which a series of low check-dams are constructed across a wadi 

or ephemeral stream and the wadi area is cultivated.  Some important factors to consider 

when determining if this method is suitable for an area include the soil quality and depth in 

the wadi and the ratio of catchment area of the wadi and the size of the area to be 

cultivated in relation to the rainfall runoff (Bruins, Evenari and Nessler 1986).  This 

method has been used in many areas including North Africa, Punjab, Mexico, Colorado 

and Niger (Bruins, Evenari and Nessler 1986). 

Ephemeral stream diversion is another external catchment system that is often used 

to harvest rainwater.  In this technique, the water in an ephemeral stream is diverted and 

applied to the cropped area using a series of weirs, channels, dams, or bunds.  Habitu and 

Mahoo (1999) describe two main ephemeral stream diversion systems.  The first method 

uses a weir to divert the stream water into a cultivated area close to the stream that has 

been divided into several open basins using some type of bunding.  Once one basin has 

filled, the overflow discharges into an adjacent basin.  The second method uses a weir and 

a system of channels to divert the water into a rectangular basin.  This method can be used 

on fields that are further away from the stream source.  Reij, Mulder and Begemann (1988) 
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describe this type of system as a form of water spreading.  Some of the greatest efforts in 

ephemeral stream diversion include the large Marib Dam complex in Yemen and the 

Purron Dam complex in Mexico (Bruins, Evenari and Nessler 1986).  A three-year 

macrocatchment (using a diversion ridge along a delivery channel) on-farm study in 

Botswana resulted in increased sorghum yields during two of the three seasons (Carter and 

Miller 1991).  Water harvesting was found to improve sorghum yields most during seasons 

with inadequate or poorly distributed rainfall.  Additional gains were found when fertilizer 

was utilized with water harvesting; in the 1987/88 season, yields were 110 percent higher 

due to water harvesting and yields increased 20 percent due to the addition of phosphorous 

and manure.   

COSTS AND BENEFITS OF WATER HARVESTING TECHNIQUES 

While many water harvesting case studies have shown increases in yield and water 

use efficiency, it is not yet clear if the widespread use of these technologies is feasible.  

Construction and maintenance costs of water harvesting systems are very important in 

determining if a technique will be widely adopted at the individual farm level.  

Additionally, extension and educational support to farmers is crucial to assure that water 

harvesting methods are adopted and maintained. 

Several factors that influence the cost of catchment construction include labor and 

maintenance costs, soil characteristics, and the size and shape of the catchment (Tabor 

1995).  While some authors discuss these costs in general or empirically determine the 

costs for a specific case study, few cost comparisons of different water harvesting methods 

have been conducted.  Kunze (2000) presents several different techniques for measuring 
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the costs of water harvesting systems and applies some of these techniques using empirical 

data from a case study in Burkina Faso.  The data required for cost measurements is often 

quite extensive.  It was found that fie ld- level data provided better results than household 

data for the analyses discussed.  Using an investment analysis procedure, the construction 

of permeable rock bunds for sorghum production in Burkina Faso were found to be 

profitable at the farm level (Kunze 2000).   

A study in Balochistan, Pakistan determined the costs, gross benefits and net 

benefits of different size microcatchments used to grow wheat and barley on valley floors 

(Rodríguez et al. 1996).  Over six seasons (four seasons for barley), 3 different methods 

were used: a control area in which the entire area was cropped, an area with a 1:1 ratio 

between catchment area and cropped area, and an area with a 2:1 ratio between the 

catchment area and cropped area.  Results showed an increase of farmers’ income of 23 

percent for wheat in the 1:1 ratio plots, and a decrease in income variation of 19 percent.  

The income of barley farmers was different, however, with the control methodology 

producing the best results due to the lower barley prices.  A prior study in the same area of 

Pakistan found similar net benefits for a 1:1 catchment/cultivated area ratio trial compared 

to the control.  The net benefits of the 2:1 ratio trial were found to be significantly lower 

than the control due to waterlogging yie ld losses (Rees et al. 1991).    

Reij, Mulder and Begemann (1988) review cost estimates of several water 

harvesting studies in Africa.  One Kenyan study cited found costs of constructing a water 

spreading system in Turkana to be in the range of about US$ 625 - US$ 1015 per hectare 

(Hogg 1986).  Another Turkana project involving the improvement of a sorghum garden 

estimated construction costs of around US$ 750 per hectare (Cullis 1987).  Two contour 
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ridging projects in Kenya found significantly lower costs.  Critchley (1987) found costs of 

US$ 110 - 330 per hectare for a contour ridging project in Baringo, while MoALD (1984) 

found total costs of around US$ 190 per hectare for contour ridges.  The costs of an agro-

forestry project in Burkina Faso were found to be much higher in the initial year than in 

later years.  Wright (1985) found that in 1981, the initial year of the project, average costs 

per hectare were around US$ 1715, while average costs in 1985 and 1986 were around 

US$ 40 and US$ 20, respectively. 

Labor and construction constitute the bulk of water harvesting costs in areas where 

ample land is available to construct the water harvesting structures.  In land-scarce areas, 

the use of land for water harvesting will involve an opportunity cost, which may influence 

a farmer’s decision to adopt water harvesting techniques.  The initial high labor costs of 

building the water harvesting structure often provide disincentives for adoption (Tabor 

1995).  The initial labor costs for construction generally occur in the dry season when labor 

is cheaper but also scarce due to worker migration; maintenance costs, on the other hand 

often occur in the rainy season when labor costs are higher due to competition with 

conventional agriculture (Tabor 1995).  While labor costs may be somewhat high in 

countries with less manpower (one study in the Negev desert found costs of US$ 10 - 40 

per hectare cultivated), countries such as Pakistan with ample labor supplies are expected 

to be able to construct the systems for a much lower price (Suleman et al. 1995).  The 

construction costs of small-scale water harvesting systems are quite small when compared 

to traditional large water projects – one estimate indicates that they are only 50-65 percent 

of the large-scale construction costs on a per unit cultivated area basis (Li et al. 2000).   
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Fertilizer costs are also important for establishing water harvesting systems.  Due to 

the link between soil nutrients and water requirements, availability of soil nutrients is 

essential to the initial development of crops.  Animal manure is probably the best option 

for most farmers in arid and semi-arid areas due to the high cost and lack of access to 

chemical fertilizer.  Tabor (1995) suggests that livestock-owning farmers use water 

harvesting systems or in areas where animal manure is plentiful to help assure that the soil 

nutrient requirements are met.  

SOCIO-ECONOMIC AND ENVIRONMENTAL ISSUES 

While many case studies of water harvesting methods show positive results, these 

methods have still yet to be widely adopted by farmers.  Many authors have pointed out the 

importance of considering the socioeconomic status of the farmers in the area where a 

technique is being employed (Bruins, Evenari and Nessler 1986; Oweis, Hachum and 

Kijne 1999; Tabor 1995; Critchley and Siegert 1991).  Some projects may require inputs 

that are too expensive for some farmers to supply.  In addition, many farmers in arid or 

semi-arid areas do not have the manpower available to move large amounts of earth that is 

necessary in some of the larger water harvesting systems.  Another consideration that may 

be important is the traditional farming practices used in the area.  For example, a project 

that requires animal tillage would not be attractive to farmers that generally plow by hand. 

Considerations of risk may be very important in the initial decision of whether to 

adopt rainwater harvesting at an individual farm level.  Especially due to the low economic 

status of many of the farmers in regions where rainwater harvesting is suggested, it is 
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important that the expected returns from the adoption of the new technique be greater than 

the costs of implementing it.   

Although many rainwater harvesting techniques work well at the experimental 

level, ensuring on-farm adoption proves to be an additional challenge in testing the 

techniques on a broader scale.  Collective action issues may prove to be a problem when 

trying to implement water harvesting techniques.  Since many of the water harvesting 

structures are large and require a substantial amount of land and labor to implement, the 

creation of these structures is often undertaken at a communal level.  Problems develop at 

this level, however, as farmers are often not willing to supply voluntary labor to build the 

structures and the maintenance of communal water harvesting systems is often neglected.  

Reij, Mulder and Begemann (1990) note that very few water harvesting projects have 

made an effort to incorporate technologies that can be easily implemented at a family farm 

level. 

Some authors point out particular considerations that are important when trying to 

assure widespread on-farm adoption.  Factors that may ensure the acceptance of techniques 

at the farm level include the involvement of farmers from the planning stages and the use 

of farmers for maintenance and data collection which can create a sense of ownership over 

the project (Oweis, Hachum and Kijne 1999).  In addition, it is useful to provide 

information about benefits of the water harvesting technology early on in the adoption 

process to help promote adoption through the provision of appropriate educational and 

extension support to ensure that the farmers have the knowledge necessary to implement 

the chosen technology (Critchley and Siegert 1991).   
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The environmental effects of water harvesting for agriculture should also be 

considered when determining whether to adopt a certain technology.  Some examples of 

environmental damage that may occur due to water harvesting include salinization, 

sodification, low water tables or water logging, and soil degradation (Oweis, Hachum and 

Kijne 1999).  An additional consideration is how the use of additional rainwater from 

rainwater harvesting techniques will affect water users downstream that may rely on the 

same water supply for their crop production. 

MODERN FARMING METHODS 

In addition to the water harvesting and conservation methods discussed above, the 

use of more modern farming techniques has been suggested to help conserve soil and make 

more effective use of rainfall.  Conservation tillage measures such as minimum till and no 

till have been tested in some developing countries to conserve soil water and decrease the 

rate of soil water evaporation.  Precision agriculture, which has been used in the United 

States, has also been suggested for use in developing countries.  Along with research on 

integrated nutrient management, applied research to adapt conservation tillage 

technologies for use in unfavorable rainfed systems in developing countries could have a 

large positive impact on local food security and increased standards of living. 

Conservation and no-tillage techniques may be especially helpful in areas where 

farmers do not have the capital or labor required for other techniques.  The usefulness of 

these methods will also depend, however on the soil texture and structure.  Trials of some 

conservation tillage techniques have been undertaken in areas of Sub-Saharan Africa with 

mixed results.  Fall and Faye (1999) discuss the use of three seedbed preparation 



 

 

25 
 

techniques (tillage in dry soil conditions, scarification and different sizes of sweeps, and 

direct seeding with no tillage) in dry soil for better soil-water management.  Tillage in dry 

soil conditions is not sustainable over time and should not be recommended to farmers, as 

it can promote erosion from wind and first rain events.  Scarification of the soil surface 

allows for protection against erosion and runoff due to the addition of crop residues to the 

soil.  This method is used in the semi-arid region of the Sahel but specific results on yield 

increases have yet to be proven.  Direct seeding in dry soil has been used in groundnut 

production in Senegal.  Advantages to this method include: reduced production costs, 

diminished soil erosion, decreased runoff, less soil compaction, and better timeliness in 

seeding (Fall and Faye 1999).  Smallholders in Namibia have also adopted dry seeding, 

planting on ridges, and minimum and no tillage, although some of the farmers do not seem 

to be aware of the soil and water conservation properties of these techniques as the 

methods were passed down from previous generations (Misika and Mwenya 1999).  The 

commercial farming sector in Namibia has experienced even greater success than the 

small–scale farmers, having practiced conservation tillage methods for over 15 years 

(Misika and Mwenya 1999).  Increased maize yields from 1.8 to 4.8 tons per hectare were 

found when breaking up the plough-pan in Tanzanian trials (FAO 2000).   

No-tillage technology (often used with mulching) has been found to improve soil 

moisture conservation and thus reduce crop failure in dry years, particularly in arid or 

semi-arid areas such as Sub-Saharan Africa.  Additional soil improvements such as 

enhanced soil structure and increased organic matter content have also resulted.  Ekboir, 

Boa and Dankyi (2001) found that farmers in Ghana using no-till with mulch were able to 

reduce cash and labor investments and also experienced greater yields.  However, despite 
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the apparent benefits of conservation tillage, the use of mulch, and related technologies for 

rainfed agriculture, there has been very little farm level adoption of these technologies.  In 

many instances the technology is very location specific and requires high levels of 

investments for tailoring it to specific conditions and to disseminate it to particular groups 

of farmers. 

Precision agriculture has had some success in the United States and other 

developed countries.  While traditional agricultural techniques have tended to apply the 

same management to an entire field, precision agriculture methods focus on information 

technology using site-specific soil, crop and other environmental data to determine specific 

inputs required for certain sections of a field.  Many of these methods involve the use of 

technologies such as geographic information systems (GIS), satellites, and remote sensing.  

Precision agriculture can directly increase crop yields, and also improve water availability 

through greater relative infiltration of rainfall.  In developing countries, the smaller farm 

sizes could allow for management on a field basis.  Precision agriculture may hold 

significant promise in the future for agriculture in developing countries, as nutrient levels 

can vary greatly from field to field.  For example, a recent study in the Philippines showed 

that variations in rice yields from 2400 to 6000 kg/hectare in 42 different fields were 

attributed to differences in soil nitrogen (Cassman 1999).  More accurate analysis of soil 

nutrient levels could assist farmers in determining fertilizer levels specific to different 

areas in the field.  However, a huge hurdle to overcome in implementing precision 

agriculture in developing countries is the availability of necessary data to determine these 

site-specific inputs, and the investment cost of obtaining and utilizing this data.   
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SUPPLEMENTAL IRRIGATION 

 

Supplemental irrigation is another method used in low rainfall areas to assure that 

crops receive enough water in order to survive.  While water harvesting is generally used 

in areas that receive between 100 – 300 mm of rainfall annually, supplemental irrigation is 

used in areas with a slightly greater annual rainfall of approximately 300 – 600 mm 

(Oweis, Hachum and Kijne 1999).  Supplemental irrigation has been described as a 

technique used on crops that can be grown using rainfall alone, which applies a limited 

amount of water during times of low rainfall to ensure that enough water is received to 

support crop growth and stabilize yields (Oweis, Hachum and Kijne 1999; Perrier and 

Salinki 1987).  The goal of supplemental irrigation is to provide enough water during 

critical growth stages to produce optimal yield per unit of water, not to provide stress-free 

conditions throughout the growing season with the aim of producing maximum yield 

(Oweis, Hachum and Kijne 1999).   

This differs from conventional irrigation in that the amount of water applied in 

supplemental irrigation would not by itself be sufficient to ensure crop growth.  

Conversely, conventional irrigation supplies the entire water needs to the crop because 

rainwater may not provide sufficient water for plant growth for all or part of the season 

(Perrier and Salinki 1987).  Conventional irrigation is used in regions where water is 

plentiful, while supplemental irrigation is often used in places where water is often scarce. 

Timing of water application is one of the most important factors to be determined 

when using supplemental irrigation.  Supplemental water applications are especially 

important when water is scarce during critical growth periods.  Oweis, Hachum and Kijne 
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(1999) present a rule of thumb that for crops such as alfalfa, maize and spring grains, 

supplemental irrigation is needed when the soil water content drops to a rate of 50 percent 

of available water (which is equal to the field capacity minus the permanent wilting point) 

in the root zone.  Other crops such as potatoes and vegetables will produce better when soil 

water is kept within the top 35 percent of available water.   

The water used for supplemental irrigation can be obtained from a variety of 

sources.  Groundwater, surface water, industrial wastewater, and water obtained through 

water harvesting methods are all used for supplemental irrigation.  The water harvesting 

methods discussed earlier are often used in conjunction with supplemental irrigation since 

SI is often undertaken in low-rainfall areas.  Important factors to consider when designing 

a water harvesting system for supplemental irrigation include the storage capacity, type of 

storage and storage location.  Specific methods of irrigation used depend upon the 

resources available to the farmers in an area as well as any economic or labor costs that 

may be involved with setting up the SI system.   

Potential benefits that can be achieved through the use of supplemental irrigation 

include increased yields, stabilization of yields across years, and creating conditions that 

allow for the use of higher technology inputs such as high-yielding varieties, herbicides 

and fertilizers (Oweis, Hachum and Kijne 1999).  Research at the ICARDA research 

station in northern Syria has shown that water use efficiency can be greater under 

supplemental irrigation than under rainfed agriculture.  Under research conditions, it was 

found that the application of a cubic meter of water at a time of water stress, combined 

with good management increased water use efficiency more than twice over that of rainfed 

production (Oweis 1999).  
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AGRICULTURAL RESEARCH FOR RAINFED CEREALS: RECENT TRENDS 

A common perception is that rainfed areas did not benefit much from the Green 

Revolution, but breeding improvements have enabled modern varieties to spread to many 

rainfed areas.  Over the past 10-15 years most of the area expansion through the use of 

modern varieties (MVs) has occurred in rainfed areas, beginning first with wetter areas and 

proceeding gradually to more marginal areas (Byerlee 1996).  In the 1980s, modern 

varieties of the major cereals6 spread to an additional 20 million hectares in India, a figure 

comparable to adoption rates at the height of the Green Revolution (1966-75).  Three 

quarters of the more recent adoption took place on rainfed land, and adoption rates for 

improved varieties of maize and wheat in rainfed environments are approaching those in 

irrigated areas (Byerlee 1996).      

The adoption rate of modern varieties of the major cereals varies by cereal type and 

region.  Byerlee and Traxler (1995) show that in rainfed areas of developing countries, the 

spread of wheat MVs (Type I change 7) lead to a 15-20 percent yield gain over traditional 

varieties (TVs), while annual yield gain attributed to adopting newer generations of MVs 

(Type II change) averaged 0.5-1.0 percent in high rainfall areas with almost no gains in 

very dry areas in the past thirty years.  Compared to extensive diffusion in the United 

States where hybrid maize covered 96 percent of the maize area by 1960, a little less than 

half of the maize area in developing countries is sown to MVs (hybrids and open-

                                                 
6 Wheat, rice, maize, sorghum and millet.  
7 Type I change occurs in areas where MVs are replacing traditional varieties (TVs), usually producing a 
sharp increase in productivity.  Type II change occurs in areas where farmers are adopting newer generations 
of MVs to replace older generation MVs (Morris, Dubin, and Pokhrel,1994).   
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pollinated varieties8), ranging from 36 percent in sub-Saharan Africa (excluding South 

Africa) to 66 percent in East, South, and Southeast Asia (Pingali 2001).  By the mid 1980s 

some 40 percent of rainfed lowland rice was planted to MVs (Byerlee 1994), an adoption 

rate much lower than the almost 100 percent adoption of MVs in irrigated environments of 

developed countries, but still significant.  Adoption of MVs in upland rice ecosystems has 

been discouraged by the poor growing conditions and poverty levels (Crosson 1995), and 

there has been zero use of MVs in flood-prone environments (Byerlee 1994).  

Improved varieties of secondary cereals and other grains such as pulses that are 

grown widely in marginal rainfed environments may also increase production.  In Africa, 

sorghum and millet are grown in a harsh semi-arid tropical climate where inadequate 

rainfall and lack of irrigation make production of other cereal crops difficult to sustain.   

The adoption rate of improved varieties of sorghum in 1995/1996 ranged from zero to 50 

percent in Southern Africa, with the extreme exception being the South African rate at 77 

percent Maredia et al. (2000).  The figure for millet was lower, ranging from zero in 

several countries to 25 percent, with Zambia showing the highest rate of 63 percent.  

Yields of sorghum and millet increased at an annual rate of 0.4 and 0.6 percent, 

respectively, from 1971 to 1996/1997.   

The adoption of new varieties of sorghum and millet is likely to have a very small 

impact on yields unless there is also a fairly rapid increase of input use, especially 

inorganic fertilizers and quality seeds.  However, with appropriate input use, improved 

millet varieties are estimated to increase yields by 22 percent or about 0.2-0.5 ton per 

                                                 
8 Open-pollination refers to pollination by wind, insects or other natural mechanisms (Zaid et al. 1999). 
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hectare even under the dry conditions of Sahelian countries like Niger (Mazzucato and Ly 

1994).   

    

FUTURE IMPROVEMENTS IN RAINFED CROP YIELDS:  RESEARCH 
STRATEGIES AND POTENTIALS 

This section reviews the potential for crop genetic improvements to enhance 

rainfed production.  Significant long-term increases in potential crop yield are possible in 

favorable rainfed areas, but until recently, potential cereal yield increases appeared limited 

in the less favorable rainfed areas with poor soils and harsh environmental conditions 

(Byerlee et al. 1999).  However, recent evidence shows dramatic increases in yield 

potential in even drought-prone and high temperature rainfed environments.  Lantican and 

Pingali (2002) show that yield potential for wheat in these less favorable environments 

increased by more than 2.5 percent per year between 1979 and 1995, far higher than the 

rates of increase for irrigated areas.  A change in breeding strategy to directly target rainfed 

areas, rather than relying on “spill- in” from breeding for irrigated areas was a key to this 

faster growth. 

Similarly, in a comprehensive review of the evidence, Heisey, et al. (1998) show 

that well-adapted maize hybrids deliver significant performance benefits compared to 

open-pollinated varieties (OPVs) and local varieties even when grown in marginal 

production environments under low levels of management (see also Heisey and Smale, 

1995; Bolaños, 1995; Cordova, Barreto, and Crossa, 1996; Edmeades, et al., 1997; Howard 

et al., 1999; De Meyer and Bänziger, 2000; Kirubi, et al., 2000). However, it is essential 

that hybrids be well adapted to local conditions.  When hybrids have performed poorly 
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compared to OPVs or local varieties, they have typically been introduced without having 

first undergone adequate testing to ensure their suitability for local production conditions 

or consumption requirements (Heisey, et al. 1998). 

Past breeding strategies for both irrigated and rainfed areas emphasized yield 

maximization.  For example, the maize seed presently distributed comes from varieties 

selected without sufficient attention to agronomic and socioeconomic factors that limit 

production: periods of drought and/or frost during the crop’s vegetative stage, soil 

exhaustion, grain type and color, and forage qualities (Hibon et al. 1992).  More recent 

crop genetic improvements through both conventional and non-conventional breeding have 

placed more of an emphasis on altering specific characteristics of the crop.  Conventional 

breeding uses whole plants to select desired characteristics.  These techniques have 

generally focused on maximizing yields through increased plant productivity and 

resistance to stress.  Non-conventional breeding uses cellular and molecular biology 

techniques such as marker-assisted selection and cell and tissue culture techniques, which 

allow plants to be screened more quickly in the laboratory rather than the field.  These 

techniques can also more rapidly and efficiently select for particular characteristics that 

may increase tolerance to diseases, pests, and adverse weather conditions, thus increasing 

yields.  Non-conventional breeding also inc ludes the transfer of genetic material from one 

species into another, creating transgenic or genetically modified organisms (GMOs) with 

beneficial characteristics that cannot be achieved through conventional breeding.   

Both conventional and non-conventional breeding techniques are used with the 

goal of increasing yields.  Three major strategies that are used to increase yields include an 
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increased harvest index (HI)9, an increase in the general plant biomass, and increased stress 

tolerance (particularly drought resistance).  The first two methods increase yields by 

altering the plant architecture, while the third focuses on increasing the ability of plants to 

survive stressful environments.  Each of these methods will be discussed and examples 

given in the subsequent sections.   

INCREASING THE HARVEST INDEX 

One method to improve yield is to increase the harvest index (HI), but this 

technique may have only limited potential for generating further yield growth (Cassman 

1999; Evans 1998).  In recently released varieties, the HI of rice is about 0.50-0.55, and the 

scope for continued increases is limited by the need to maintain sufficient leaf area and 

stem biomass for interception of solar radiation, physical support, and storage of 

assimilates and nitrogen used in grain filling (Cassman 1999).  However, Khush (1996) 

suggests that it is possible to raise the HI of rice to around 0.60, and breeding for “super 

rice” with 200 to 250 grains per panicle rather than the 100 to 120 grains of modern high-

yielding varieties is ongoing at the International Rice Research Institute (IRRI).  However, 

IRRI estimates that it will not be available to farmers until 2005 at the earliest (IRRI 2000) 

and its adaptability to rainfed environments remains unclear.   

Recent wheat cultiva rs appear to have a relatively low HI of 0.41-0.47 when grown 

with irrigation in California and Mexico but a further increase in HI might be feasible 

(Cassman 1999).  Richards et al. (2000) list several traits used to improve the HI of wheat, 

                                                 
9 The harvest index is defined as “the ratio of grain to total crop biomass” (Cassman 1999). 
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of which tiller inhibition10 and carbohydrate storage in stems and its remobilization to 

grain are of importance.  The increased HI of maize has contributed little to the genetic 

yield gains of modern hybrids (Cassman 1999).   

INCREASING TOTAL PLANT BIOMASS 

Another strategy to increase yield is to increase the total dry matter (biomass per 

unit of land and inputs such as water and nitrogen) by increasing plant productivity.  The 

development of hybrid varieties and increased photosynthesis are both techniques that 

focus on increased biomass. 

  Hybridization 

Hybrid varieties increase plant productivity and provide greater yields than 

conventional varieties, making use of heterosis (or hybrid vigor), the phenomenon in 

which the progeny of two distinctly different parents grow faster, yield more, and resist 

stress better than either parent.  Hybrid varieties of all of the major cereals have been 

developed throughout the past several decades.  An overview of some of the major 

research results follows. 

Hybrid maize was the first hybrid to be developed among the major cereals since it 

is a cross-pollinated species11.  Attempts to introduce U.S. hybrids in subtropical and 

tropical environments during the 1950s failed due to the lack of adaptation to climate, 

disease, and insect pests (Dowswell et al. 1996).  However, later improvements in hybrid 

maize have allowed diffusion of hybrid maize in subtropical and tropical regions.  It is 

                                                 
10 Dryland cereal crops continue to produce an excessive number of tillers about half of which die at about 
the beginning of stem elongation.   
11 Cross-pollination refers to the fertilization of a plant from a plant with a different genetic make-up (Zaid et 
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estimated that nearly half of the maize area in developing countries is sown to hybrid 

maize, while improved open-pollinated varieties (OPVs) occupy a lower proportion of 

around 20 percent (Byerlee et al. 1999).  The substantial adoption of hybrid maize in 

developing countries shows that the cost of purchasing hybrid seeds each planting season 

is not prohibitive for many farmers compared to the income benefits of these varieties.   

The adoption of improved varieties has had a significant impact on maize 

production in Africa.  For hybrids, most estimates suggest that on-farm yield gains have 

averaged at least 40 percent in favored areas, with dry areas or drought years providing at 

least a 30 percent yield gain.  According to Morris, Clancy, and López-Pereia (1992), the 

yield gain due to improved OPVs is probably less, with a yield gain of about 15-25 percent 

compared to local materials in tropical areas.  Applying these data to the estimated area 

planted to MVs in Africa, the overall yield gain due to adoption of MVs alone is 12-14 

percent.  Maize area expanded as well, especially in the drier savanna areas, since early 

maturing varieties and hybrids became available (Byerlee et al. 1994). 

Although a male sterile/fertility restorer system12 in wheat was discovered in the 

early 1960s, hybrid wheat has not been regarded as a viable option until recently (Jordaan 

1996).  Wheat is a self-pollinating plant like rice, requiring more complicated and costly 

processes to obtain male sterility than cross-pollinating plants such as maize.  Cytoplasmic 

                                                                                                                                                    
al., 1999). 
12 A male sterile/fertility restorer system is a process of hybridizing self-pollinating plants.  By inducing 
male sterility in female line, the plants may be pollinated by the male line that contains a fertility restorer, so 
that fertilization occurs with cross-pollination.  Male sterility origins are genetic, cytoplasmic, or 
cytoplasmicgenetic.  The fertility restorer gene R, is dominant and is found in certain strains of the species, or 
may be transferred from a related species e.g., wheat.  This gene restores male fertility in the male sterile 
line, hence it is known as restorer gene. 
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male sterility13, nuclear male sterility and chemical hybridizing agents (CHAs), which are 

chemical agents used to produce male sterility, are three systems leading to male sterility 

in wheat.  Due to the slow process of cytoplasmic male sterility that lacks versatility in 

methods of fertility restoration and the lack of cost-effective methods of maintaining 

nuclear male sterility, several companies abandoned their hybrid wheat research and 

development programs.  Those who continued rescheduled their strategy to include CHAs 

and biotechnology (Jordaan 1996). 

However, hybrid wheat varieties based on cytoplasmic male sterility/restorer 

systems have been developed, produced and marketed.  In South Africa, wheat hybrids 

tested in 25 locations in the Free State in South Africa out-yielded the non-hybrids tested 

by 14.8 percent and 11.5 percent in 1994 and 1995, respectively14.  These hybrids also 

have an advantage over conventional cultivars under conditions of water stress.  Given 

these yield and water stress tolerance advantages, hybrid wheat technology may be of 

particular importance for wheat production under marginal conditions.  CIMMYT (1998) 

suggests the problem with CHA toxicity in the past has been largely solved by a new 

generation of CHAs that are not only less toxic than previous versions, but in fact much 

less harmful than other chemicals utilized in agriculture.      

                                                 
13 Maternally inherited inability to produce functional pollen. 
14 Yield advantages are as much as 23.3 percent and 18.5 percent if the means of the highest yielding hybrids 
are used.   
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Although most hybrid rice has been bred for irrigated environments, the possibility 

of spreading the technology to rainfed areas may hold potential to increase rainfed yields.  

Since the release of the first commercial F1 hybrid rice in 1976 in China, F1 hybrid rice 

was planted on about 18 million hectares of the total 33 million hectares planted to rice by 

1992.  Those hybrid varieties yielded about 20 percent higher than inbred varieties (IRRI 

1993).  Hybrid rice technology has been limited to temperate and subtropical regions; 

however, tropical hybrids have recently become available in other Asian countries.  

Vietnam, India and Bangladesh plant hybrid rice on 200,000, 150,000, and 30,000 hectares 

respectively, reporting yield increases of up to 20 percent above the best yields of semi-

dwarf rice varieties (IRRI 2001).  Hybrid rice between indica subspecies increased yield 

potential by about 9 percent under tropical conditions.  This gain is attributed to the greater 

biomass production rather than harvest index (Peng et al. 1999).  The diffusion of hybrid 

rice has slowed in China because of the lower eating quality of grains.  There has so far 

been limited success in developing high-yielding cultivars that also have better eating 

quality (Hossain 1996).   

Further enhancement in yield potential may be possible from the use of 

intersubspecific heterosis 15 because the magnitude of heterosis is higher if the genetic 

difference in the parents is greater.  Indica and japonica rice germplasm have, as opposed 

to the narrowed genetic diversity among the improved indica rice due to massive 

international exchange of germplasm, remained distinct, as there has been very little gene 

flow between these two varietal groups.  As expected, the hybrids between indica and 

                                                 
15 Intersubspecific heterosis occurs when plants of different subspecies (such as the indica and japonica 
subspecies within the Asian rice species Oryza sativa) are crossed.       
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japonica parents showed higher heterosis for yield (Yuan et al. 1989).  It has been shown 

that the level of heterosis in the indica/tropical japonica hybrids is higher than that of 

indica/indica hybrids (Khush 1996).  In the medium term, yield increases of around 20 

percent are possible through the adoption of hybrid rice (Virmani et al. 1994).  The long-

range prognosis is for a new plant type that could yield about 12.5-13 tons per hectare and, 

as a parent of the hybrids, increase this yield to 15 tons per hectare of grain (Khush 1995). 

NERICA (New Rice for Africa), developed by crossing African and Asian rice 

species (Oryza glaberrima and Oryza sativa, respectively), is a recent breakthrough in 

intersubspecific hybrids (hybrids obtained by crossing 2 subspecies) that appears to have 

tremendous potential.  NERICA varieties, bred to fit the rainfed upland rice environment in 

West Africa, produce over 50 percent more grain than current varieties when cultivated in 

traditional rainfed systems without fertilizer.  In addition to higher yields, the NERICA 

varieties mature 30 to 50 days earlier than current varieties and are far more disease and 

drought tolerant than previous varieties (WARDA 2000). 

Crossing African and Asian rice species has been difficult due to large genetic 

differences, but has been realized by a technique called embryo-rescue, which enables 

crosses between two varieties to survive and grow to maturity.  Germplasm held in gene 

banks that hold seeds of 1,500 African rice varieties was one of the keys to success.  

Research shows that 10 percent adoption was achieved in three countries (Guinea, Côte 

d’Ivoire, and Sierra Leone).  NERICA varieties may also be developed for use on rainfed 

uplands in Asia and Latin America (WARDA 2001).  Between 2000 and 2004, breeders 

expect to release 37 new hybrids across West Africa.  By 2005, they hope the new varieties 
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will cover most of the rainfed upland rice land in West Africa.  In addition to the upland 

areas, 31 new varieties are to be released in the rainfed lowlands (WARDA 2000).  

Increased Photosynthesis 

Increased photosynthesis or radiation use efficiency aims to improve carbon 

accumulation productivity, contributing to greater biomass production.  One example of an 

attempt to increase photosynthesis is research to create C4 rice plants.  Tropical species 

such as maize, sorghum, and sugarcane are C4 plants, which have evolved a more efficient 

photosynthesis mechanism than C3 plants such as rice, barley, and wheat.  C3 plants may 

lose up to 50 percent of their recently fixed carbon through photorespiration, while the 

carbon loss of C4 plants is greatly reduced or completely inhibited; therefore, C4 plants are 

more advantageous in their photosynthetic productivity.  It should be noted, however, that 

C4 species do not always have higher water use efficiency.  Under non- ideal conditions 

such as drought, there are more tolerant C3 species such as cowpea and cotton than the 

comparatively sensitive C4 maize and sorghum cultivars (Ong et al. 1996).         

The potential benefits from modifying rice, a C3 plant, by incorporating traits 

currently found in C4 plants such as maize, sorghum and sugar cane, are large.  While the 

rice plant already contains all of the genes responsible for C4 photosynthesis, they are not 

switched on and regulated as they are in maize.  By transferring genes with an improved 

mechanism for the process of photosynthesis from maize to rice, researchers in the United 

States (Washington State University) and Japan (Tsukuba) have produced initial results 

that suggest that rice yields could be increased by up to 20 percent (FAO 2000; Ku et al. 

2000). 
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BREEDING FOR THE TARGET ENVIRONMENT BY INCREASING STRESS 
TOLERANCE 

 Recent research has focused on bringing about yield increases that will last over a 

wide range of environments, providing food security and using genetic diversity in plant 

breeding instead of the prior approach of focusing only on increased yields through 

changes in plant architecture.  This can be observed in the CIMMYT/ICARDA wheat 

program, in which about 35 percent of the bread wheat crossing program is devoted to 

abiotic stress tolerance (i.e. heat, drought, or cold) and about 44 percent towards pests and 

diseases.  Varieties are selected under multi- location testing that represent wider range of 

biotic and abiotic stresses (ICARDA 1997).   

Genotype by environment (G×E) interaction is influential in limiting breeding 

program efficiency (Ceccarelli et al. 2000).  Two strategies to address G×E interactions 

include: 1) avoidance by selecting cultivars that are adapted to the complete range of target 

environments, or 2) exploitation through the selection of several different cultivars, each of 

which are specially adapted to a subset of target environments.  Selection for specific 

adaptation is especially significant in breeding crops for unfavorable conditions, because 

unfavorable environments tend to be more heterogeneous than favorable environments 

(Ceccarelli et al. 2000).  Successful breeding with consideration of environmental 

adaptability includes Sooty-Rascon, a new variety of durum wheat bred by CIMMYT for 

drought-prone environments in WANA regions.  This variety produced at least 3.4 tons per 

hectare regardless of drought severity (CIMMYT 2000). 
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Drought Resistance 

Breeding for drought resistance has a substantial positive impact on rainfed cereal 

yield, as moisture stress is the most pronounced constraint throughout rainfed 

environments.  The trade-off between yield and stress tolerance has been a difficult task for 

plant breeding.  For example, a crop variety with a short growing season may mature 

before drought occurs, but in rainy years its yields are likely to be less than that of a long-

season variety.  This complexity has slowed the development of drought-resistant crop 

varieties (OTA commissioned paper 1983).  However, early maturing varieties may 

compensate for the yield loss by enabling double cropping.  For instance, in the Bihar 

plateau in India, a switch to short duration varieties (85-105 days) from medium duration 

local varieties (120-130 days) in the medium and uplands helped the plants escape periodic 

drought during the rainy season and helped increase cropping intensity, as they fit well in 

sequential or mixed/intercropping patterns (Bagchi et al. 1995).   

Drought tolerance improvement is probably one of the most difficult tasks for 

cereal breeders.  This difficulty stems from the diversity and unpredictability of in-field 

drought conditions, as well as from the diversity of drought tolerance strategies developed 

by plants, which may be targeted and used as selection criteria.  However, substantial 

progress has been made in recent years related to the physiology, genetics and molecular 

biology of drought tolerance in different plant species.  Functional genomics increases 

understanding of drought tolerance control and defines strategies for crop improvement.  

In several cereal species, genetic maps have helped to identify chromosomal 

regions controlling some traits related to drought stress response.  Cereal crops such as 

maize, sorghum, rice, wheat and barley have been studied to identify regions controlling 
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characteristics such as phenology, root characteristics, plant architecture and growth, 

photosynthesis, chlorophyll amount or "stay green" character, and water-use efficiency 

(This et al. 2000). 

The limiting factors in rainfed wheat production are drought, temperature extremes, 

low nitrogen, low phosphorus, soil acidity, high aluminum saturation, and micronutrient 

deficiencies or excesses, making farm-level yields and aggregate production low and 

unstable (CIMMYT March 1999b).  While half the area sown to wheat in developing 

countries and up to 70 percent of that grown in developed countries suffers from periodic 

drought (Trethowan and Pfeiffer 2000), wheat has been found to be relatively drought 

hardy, unlike maize, which may fail completely if the flowering stage is delayed beyond a 

critical threshold due to drought (Bolaños and Edmeades 1993).  Breeding for drought 

tolerance in wheat, therefore, should focus more on improving overall radiation use 

efficiency under stress rather than reproductive stages of growth and partitioning 

(Reynolds et al. 2000).   

In an Australian study, improved early vigor16 in wheat was also found to be an 

important trait for increasing water-use efficiency and thereby grain yields in rainfed 

environments, but only at a medium rainfall site.  At drier sites, greater early vigor initiates 

terminal drought earlier to reduce yield (Botwright et al. 2001).  A collaborative effort 

between CSIRO of Australia and CIMMYT of Mexico combines a physiological 

understanding of growth with molecular genetics and conventional plant breeding to 

improve wheat yields in dry environments.  A new wheat variety is about to be released 

                                                 
16 Early vigor refers to high leaf area index during early growth reducing evaporative water loss from the soil 
surface. 
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which has improved water efficiency bred by selecting for carbon isotope discrimination17.  

This wheat line combines highly desirable grain quality characteristics with excellent 

disease resistance as well as high water use efficiency.  Grain yields are 10 percent higher 

than conventional varieties in dry environments.  A genetic increase of 20 percent is 

considered feasible and at least a 20 percent gain is also achieved by improving agronomic 

practices such as timelier sowing, stubble retention systems, and fertilizer management.  

The release of this variety was initially limited to Australia (Richards et al. 2000). 

Compared to wheat and rice, maize is more likely to be grown in areas that are 

regarded as marginal (Heisey and Edmeades 1999), even though maize possesses 

particular sensitivity to drought stress at anthesis, or flowering.  Drought is thought to 

cause maize grain losses of up to 20 million tons annually in the tropics.  Recurrent 

selection for improved drought tolerance has resulted in tropical maize yield gains during 

midseason drought of 5 percent.  Ribaut et al. (1999) have shown that new breeding 

schemes involving optimal combinations of marker-assisted selection and conventional 

selection to improve drought tolerance in maize hold considerable promise for the future.  

Selection for traits correlated with drought yields has been shown to significantly improve 

the performance of maize under dry conditions at flowering, with no yield cost under well-

watered conditions (CIMMYT 1998).     

Maize breeding strategies in drought-prone environments include drought-tolerant 

varieties and early maturing varieties that escape drought.  The R200 series of hybrids in 

Zimbabwe and the Katumani Composite-derived varieties in Kenya are examples of 

successful maize breeding for dry environments through the introduction of early maturing 

                                                 
17 This is the first cultivar that has been bred using the isotope discrimination technique.    
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varieties (Heisey and Edmeades 1999).  New OPVs released in South Africa in May 2001, 

can have 30-50 percent higher yields than traditional varieties (World Bank 2001).   

IRRI is developing modern high-yielding varieties of rice for rainfed lowlands that 

enhance seedling vigor and are better able to withstand submergence, drought, sodium, 

iron, and aluminum toxicity, phosphorus and zinc deficiency, pests, and diseases.  

Beginning in 1995 with 31 rice varieties, the team currently works with 10 reference lines.  

Over the next 3 to 5 years, the reference lines will be grown in the widest possible variety 

of environments, and their reactions carefully measured (IRRI 2001).     

In late 2000, IRRI launched a working group on “aerobic rice,” a high-yielding 

tropical rice plant that grows on dry but irrigated aerobic soil instead of in flooded paddies, 

and responds to irrigation and fertilization.  The aerobic rice varieties developed to suit the 

subtropical and temperate climates are already being grown experimentally in China and 

the Philippines, and will soon be grown in India to test adaptability to the tropics.  

Conventional varieties already exist that grow in dry upland fields but they cannot match 

the yield potential of conventional commercial varieties, nor do they respond to irrigation 

or fertilization.  Weed growth that is normally suppressed by flooding but can be dominant 

on dry land is another challenge for aerobic rice.  The biggest concern with the current 

varieties of aerobic rice is a “yield collapse,” in which the harvest is acceptable in the first 

season but drops by about 20 percent in the second and may fall a further 70 percent in the 

third.  Although the reason for this yield-collapse is unknown, experience shows that it 

doesn’t occur when rice is rotated with other crops.  Aerobic rice is grown commercially 

while rotating with other crops under irrigation on 250,000 hectares in Brazil (IRRI 2001; 

Bouman 2001). 
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The spring barley variety “Mamluk”, developed mainly for drought-resistance 

through cooperation between ICARDA and the Krasnodar Research Institute of 

Agriculture in Russia, marked an average yield increase of 15-18 percent over current 

varieties in rainfed sys tems; extra yield was found to rise to 22-25 percent in more 

favorable conditions following two years of testing in Armenia (ICARDA 1999).  

ICARDA developed an improved barley landrace variety  “Arta,” which averaged about 70 

percent greater on-farm yields than most local landraces.  Other drought-tolerant barley 

and wheat cultivars have been selected and are being tested under stress conditions in a 

number of CWANA and SSA countries (ICARDA 1999).  

Sorghum variety S35, a very drought-resistant cultivar, was developed at the 

ICRISAT breeding program in India and was released in Cameroon in 1986 and Chad in 

1989.  Today, S35 occupies about 33 percent of the total rainfed sorghum area in 

Cameroon and 27 percent in Chad.  Compared to farmers' best traditional varieties across 

all study sites in Cameroon and Chad, S35 yields 27 percent more output (grain) and 

reduces unit production costs by 20 percent.  These farm-level impacts are larger in Chad 

where yield gain is 51 percent higher and cost reduction is 33 percent higher.  Estimated 

net present value of the benefits from S 35 research spillover in the African region was 

US$ 15 million in Chad (Yapi et al. 1999). 

COMBINING DESIRABLE TRAITS 

Combining desirable traits such as increased biomass production, stress tolerance, 

and quality traits such as cooking quality are becoming a common strategy of breeders.  

With attention placed on breed the plant to fit the particular environments and farmers’ 
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preference, a high adoption rate can be expected.  For instance, non-conventional hybrids, 

MH17 and MH18, made from a top-cross of Malawian hybrids and a CIMMYT 

population, released in Malawi in 1990, were popular because farmers valued their 

processing characteristics and their resilience under drought and poor soil fertility.  The 

smallholders’ cash constraint prohibited many of them from purchasing the new seeds 

needed to continue growing the hybrids (CIMMYT 1998). 

A major constraint to hybrid use, especially to resource-poor farmers, is loss of 

hybrid vigor if the next generation seeds are kept and used for the following season, 

forcing farmers to purchase seeds each season.  One goal of breeders is to develop maize 

and rice varieties that will reproduce through apomixis18, so that the seeds of a hybrid with 

this trait can be retained from one year to the next.  The ability to transfer apomixis 

capability to maize from its wild relative, Tripsacum (although it is admittedly difficult) 

represents an untapped genetic resource for abiotic and biotic stress resistance (Conway 

1997; Hoisington et al. 1999).  CIMMYT is currently researching how to enhance 

apomixis in maize.  Apomixis could greatly simplify the production of hybrid seeds and 

make it possible for farmers to buy seed of improved varieties at a much lower price.  

Some researchers estimate that the introduction of apomictic maize could reduce seed costs 

by at least 25 percent (CIMMYT March 1999a). 

Researchers in Hong Kong, China, and the United States are developing 

genetically-modified F1 hybrid rice, or “super hybrid rice,” which may yield as much as 15 

tons per hectare.  The breeding process involves increasing photosynthesis by inserting a 

                                                 
18 Vegetative propagation through seeds. The offspring of apomictic plants are perfect genetic replicas 
("clones") of the mother plant. 
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maize gene into the hybrid rice (Ku et al. 2000).  This GM F1 hybrid rice is expected to be 

ready for trial in 2004, and may be available to Chinese farmers by 2008.  In the United 

States, RiceTech released XL6, the first F1 hybrid rice variety for highly mechanized 

farming in January 2000.  More than 180 farmers in Arkansas and Missouri planted XL6 

on about 11,000 acres in 2001.  Across the region, XL6 yields were 20 percent higher than 

the best conventional varieties (RiceTech 2000). 

 

PROSPECTS FOR THE FUTURE 

If agricultural research investments can be sustained, the continued application of 

conventional breeding and the recent developments in non-conventional breeding offer 

considerable potential for improving cereal yield growth in rainfed environments.  Cereal 

yield growth in farmers’ fields will come both from incremental increases in the yield 

potential in rainfed and irrigated areas and from improved stress resistance in diverse 

environments, including improved drought tolerance (together with policy reform and 

investments to remove constraints to attaining yield potential, as discussed in the next 

section).  The rate of growth in yields will be enhanced by extending research both 

downstream to farmers and upstream to the use of tools derived from biotechnology to 

assist conventional breeding, and, if concerns over risks can be solved, from the use of 

transgenic breeding. 

Partic ipatory plant breeding plays a key role for successful yield increases through 

genetic improvement in rainfed environments (particularly in dry and remote areas).  

Farmer participation in the very early stages of selection helps to fit the crop to a multitude 

of target environments and user preferences (Ceccarelli et al. 1996; Kornegay et al. 1996).  
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Ceccarelli et al. (1996) demonstrate that participatory plant breeding may be the only 

possible type of breeding for crops grown in remote regions, a high leve l of diversity is 

required within the same farm, or for minor crops that are neglected by formal breeding.  

The study also suggests that the breeder was more efficient in selecting higher yielding 

entries in a high rainfall area, while the farmers were more efficient in selecting under high 

stress conditions (Ceccarelli et al. 2000). 

Moving upstream, with the progress in mapping cereal genomes, the similarities 

between cereal crops will facilitate the integration of cereal genetic information and 

contribute to the faster identification of desirable traits.  In order to assure effective 

breeding for high stress environments, the availability of diverse genes is essential.  It is 

therefore essential that the tools of biotechnology, such as marker-assisted selection and 

cell and tissue culture techniques, be employed for crops in developing countries, even if 

these countries stop short of true transgenic breeding.   

To date, however, application of molecular biotechnology has been limited to a 

small number of traits of interest to commercial farmers, mainly developed by a few life 

science companies operating at a global level.  Very few applications with direct benefits 

to poor consumers or to resource-poor farmers in developing countries have been 

introduced—although the New Rice for Africa (NERICA) may show the way for the future 

in using biotechnology tools to aid breeding for breakthroughs beneficial to production in 

developing countries.  Much of the science and many tools and intermediate products of 

biotechnology are transferable to solve high priority problems in the tropics and subtropics, 

but it is generally agreed that the private sector will not invest sufficiently to make the 

needed adaptations in these regions.  Consequently, national and internationa l public 
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sectors in the developing world will have to play a key role, much of it by accessing 

proprietary tools and products from the private sector.  However, there has been little 

detailed analysis of the incentives and mechanisms by which such public-private 

partnerships can be realized (Byerlee and Fischer 2000). 

Most developing countries have virtually no capacity in molecular biology 

research, although strong programs exist in countries such as China, India and Brazil.  

These programs present special challenges and opportunities for accessing the new 

technologies, based on facilitation of private investments, public-private partnerships, local 

capacity to design around proprietary technologies, working with CGIAR centers as 

intermediaries and partners, and regional collaboration (Byerlee and Fischer 2000).  

Development of GMOs also has significant potential for improving stress tolerance 

and yields in rainfed (and irrigated) environments, if concerns over consumer and 

environmental safety can be overcome.  However, although cell and tissue culture and 

other agricultural biotechnology research are underway in many developing countries, 

most transgenic crops are planted in the developed world for developed country markets.  

In 1999, North America accounted for 82 percent of genetically modified plantings, with 

the United States alone accounting for 72 percent.  In Asia, only China has a significant 

area planted to GM crops.  The first country in the world to approve commercialization of 

GM crops, China has authorized the environmental release of over 100 varieties, including 

insect resistant-cotton, virus-resistant tobacco, papayas, green peppers, and potatoes, and 

slow ripening tomatoes.  India is undertaking major research, but has yet to approve the 

commercialization of GM varieties.  Modest research efforts are ongoing in Thailand and 

the Philippines (Pinstrup-Andersen 2000).   
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If successfully tapped, biotechnology will make an extremely important 

contribution to future crop yield growth, particularly in difficult rainfed environments. The 

debate over genetically modified organisms may significantly delay current crop 

improvement efforts and move the release dates of many improved varieties further into 

the future.  When biotechnology moves beyond the application of molecular biology to 

assist conventional breeding to the creation of transgenic crops, it may introduce risks 

associated with the release of genetically modified material into the environment.  These 

risks could include genes ‘jumping’ from genetically modified plants to other plants 

through cross-pollination, rapid creation of new pest biotypes through adaptation to 

genetically modified plants, and allergic reactions to the consumption of genetically 

modified foods. These risks are not well understood and they provoke a great deal of 

anxiety among some segments of the public. National institutions must have the capacity 

to evaluate these risks, to adapt and regulate breeding and crop management strategies to 

minimize these risks, and to implement and rigorously enforce appropriate regulatory 

systems. 

 
POLICY REFORM AND INFRASTRUCTURE INVESTMENT IN RAINFED 

AREAS 

Cereal yields can also be increased through improved policies and increased 

investment in areas with exploitable yield gaps (the difference between the genetic yield 

potential and actual farm yields).  Such exploitable gaps may be relatively small in high 

intensity production areas such as most irrigated areas, where production equal to 70 

percent or more of the yield gap is achieved (Cassman 1999).  However, with yield 

potential growing significantly in rainfed environments (see above) exploitable yield gaps 
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are considerably higher in rainfed areas, because remoteness, poor policies and a lack of 

investments have often isolated these regions from access to output and input markets, so 

farmers face depressed prices for their crops and high prices or lack of availability of 

inputs.  Riskier soil and water conditions in less favorable areas also depress yields 

compared to their potential. 

Historically, agriculture investment in most developing countries has focused on 

irrigated and high-potential rainfed areas in order to increase food production.  The 

strategy of focusing on irrigated and high-potential areas has been widely used with the 

idea that investments in these areas will trickle down to help reduce poverty in the less-

favored areas (LFAs).  Increased food production in the irrigated and high-potential rainfed 

areas is expected to lead to a reduction in food prices, thus helping to alleviate poverty in 

LFAs as well.  Under the assumption that the potential for agricultural development is 

limited in many LFAs, policies that emphasize the development of non-farm sectors of the 

economy and migration out of these areas are often suggested as long-term solutions in 

LFAs.  Although these strategies have worked in some areas, many LFAs have fallen even 

further behind due to the poor growing conditions, inadequate rainfall and lack of 

investment (Rosegrant and Hazell 2000). Despite some out-migration to more rapidly 

growing areas, population size continues to grow in many less favored areas and this 

growth has not been matched by increases in yields. The result is often worsening poverty 

and food- insecurity problems, as well as the widespread degradation of natural resources.  

Many of the expected benefits arising from rapid agricultural growth in high-

potential areas have been confirmed (Pinstrup-Andersen and Hazell 1985; Hazell and 

Ramasamy 1991; David and Otsuka 1994).  Nevertheless, Hazell, Jagger, and Knox (2000) 
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note that the rationale for neglecting less-favored areas is being increasingly challenged 

by: a) the failure of past patterns of agricultural growth to resolve growing poverty, food 

insecurity and environmental problems in many less- favored areas; b) increasing evidence 

of stagnating levels of productivity growth and worsening environmental problems in 

many high-potential areas (Pingali and Rosegrant 1994; Pingali, Hossain, and Gerpacio 

1995); and c) emerging evidence that the right kinds of investments can increase 

agricultural productivity to much higher levels than previously thought in many less-

favored lands.  Increased public investment in many less- favored areas may have the 

potential to generate competitive if not greater agricultural growth on the margin than 

comparable investments in many high-potential areas, and could have a greater impact on 

the poverty and environmental problems of the less-favored areas in which they are 

targeted (Hazell, Jagger, and Knox 2000).  If so, then additional investments in less-

favored areas may actually give higher aggregate social returns to a nation than additional 

investments in high-potential areas.  

Support for this proposition is provided in recent studies by Fan and Hazell (1999), 

Fan, Hazell, and Thorat (1998), Fan, Hazell and Haque (2000), and Fan, Zhang, and Zhang 

(2001), which show that returns to public investments in rainfed and other less favored 

areas in India and China are generally higher than in irrigated areas.  A similar pattern 

emerges in terms of poverty impact. For all types of investments, additional spending in 

many of the rainfed areas raises far more poor people above the poverty line than does 

additional investment in irrigated areas.  These studies support an increase in policy and 

investment attention to rainfed areas.   
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The development of an agricultural sector is important to the economy of LFAs.  

Since there are currently many people living in these areas, a sufficient food supply is 

important in the near term.  These areas provide unique challenges in that they generally 

have poor soils, low rainfall, high climate variability, and poor infrastructure.  As 

discussed in previous sections, these less- favored, low-rainfall areas generally do not 

benefit from the same strategies that are used in high-potential areas or areas in which 

irrigation is possible. 

Although LFAs can differ greatly from region to region based on the physical and 

climatic characteristics of the area, certain development strategies may commonly work in 

many LFAs.  Rosegrant and Hazell (2000) list seven general features of suitable 

development strategies for LFAs: 1) promotion of broad-based agricultural development; 

2) improvement of technology and farming systems; 3) ensuring equitable and secure 

access to natural resources; 4) ensuring effective risk management; 5) investment in rural 

populations and infrastructure; 6) providing the appropriate policy environment; and 7) 

reinforcing public institutions. 

Encouraging broad-based agricultural development is especially important in the 

LFAs of developing countries due to the large number of smallholder farms.  These small 

and medium-sized farms should receive priority in agricultural research and extension and 

receive access to markets, credit, and input supplies.  In addition to the encouragement of 

agricultural development at the farm level, investments in research and development 

specifically geared toward LFAs are also important.  As discussed in the previous sections, 

the development of water management techniques and advancements in cropping methods 

geared specifically toward low-potential rainfed areas can lead to increased production in 
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those areas.  Water management at the catchment level, controlled soil erosion, soil 

moisture and fertility improvement, and the production of higher value crops that may fit 

well into a particular environment are all improved farming methods that may be beneficial 

in LFAs (Scherr and Hazell 1994).  

Ensuring equitable and secure access to natural resources is often ve ry important in 

LFAs as land distribution is often insecure, the rate of landlessness is generally high, and 

land leases many times are short and insecure.  Land tenure and common property resource 

issues are crucial when considering access to natural resources in LFAs.  Secure land 

tenure can encourage farmers to engage in sustainable farming practices that may help 

increase production in LFAs.  The investments required for sustainable development of 

agricultural land and other land improvements may not seem worthwhile to many farmers 

if they are unsure of how long they will be able to harvest the land.  This is also often the 

case with water harvesting; Nasr (1999) notes that individuals are unlikely to undertake the 

investment needed to build water harvesting structures on land that they do not formally 

own.    

Common property resources on LFAs are also of concern to many poverty-stricken 

residents of these areas.  The collective ownership of common property resources in these 

areas can be an effective way to reduce risk for individuals since the group as a whole 

shares risk.  Common property resources are likely to be degraded, however, if there is no 

body in control of management of the resource.  Collective action undertaken by the group 

of resource users is often the most effective way of managing common property resources.  

Collective action is generally more successful when the number of resource users is small, 

the individuals involved in the collective action effort have similar goals for resource use, 
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and the benefits received from being part of the collective action effort are significant 

(Rosegrant and Hazell 2000). 

The management of risk is also important in LFAs due to the tendency of these 

areas to receive especially high or low amounts of rainfall and to experience catastrophic 

climate events such as drought that may affect production levels.  One way to help 

alleviate risk is the development of new crop varieties and techniques, such as those 

discussed earlier in this paper that help to avoid common consequences of drought or other 

climate events.  For example, drought and pest tolerant crop varieties and the development 

of soil moisture conservation and water harvesting techniques can help farmers to deal 

with these situations.  Correctly designed government programs, such as safety-net 

programs, insurance and credit, can also help farmers to deal with these events.  

Agricultural insurance is another method used, particularly in developed countries, to help 

farmers deal with risk.  In general, traditional crop insurance programs have not worked 

very well, particularly for poorer farmers.  Area-based crop insurance that is based on 

rainfall instead of yield may be more appropriate for farmers in LFAs.  Area-based 

insurance programs are better able to reach poor and rural farmers, and rainfall based 

insurance is easier and cheaper to use than yield based insurance (Hazell 1992). 

Rainfed areas are often poorly placed to compete in a liberalized economy because 

of their restricted access to markets and high transport and marketing costs.   Public sector 

investment in the infrastructure of rainfed areas can also help to develop the agricultural 

sector of these areas.  Development in the electricity, transportation and 

telecommunications sectors can help with the marketing of food products, which would in 

turn impact the agricultural sector.  Additional market reforms including price and trade 
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liberalization can help to send the correct market signals to farmers and hopefully lead to 

increased market opportunities in rainfed areas.  Investments in rural infrastructure as 

discussed above are also important in order to ensure that these market reforms lead to the 

expected increase in market opportunities. 

Finally, it is important that public agencies are able to deal with the unique 

problems of rainfed areas.  Many extension and agricultural research agencies have 

traditionally focused on irrigated and high-potential areas.  The top-down approach to 

management that is used in many of these agencies also generally does not work well in 

the less-favored rainfed areas.  As mentioned in the previous sections, involving the 

farmers throughout the process of implementing water harvesting systems or the planting 

of new hybrid varieties can increase the rate of adoption.  Rosegrant and Hazell (2000) 

suggest that a more participatory approach by these agencies with more accountability to 

the farmers may help in the development of less-favored rainfed areas. 

 

RAINFED AND IRRIGATED AGRICULTURE IN 1995  

 Rainfed and irriga ted crop area and yield in 1995 are assessed based on data from 

FAO (1999) and Cai and Rosegrant (1999) 19.  Table 1 shows rainfed and irrigated cereal 

area, yield, production, and fraction of rainfed area and production, in several countries 

and aggregated regions in 1995.

                                                 
19 1995 is the most recent year for which it was feasible to assemble adequate data.   
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Table 1: Rainfed and irrigated total cereal area, yield, production in 1995, and fraction of irrigated area of the total, fraction 
of the irrigated production of the total, in selected countries and regions  
 Irrigated  

Area 
Irrigated 

Yield 
Irrigated 

Production 
Rainfed  

Area 
Rainfed  

Yield 
Rainfed 

Production 
 Rainfed 

Area 
Rainfed 

Production 
 (million ha) (mt/ha) (million mt) (million ha) (mt/ha) (million mt) Percent Percent 
         

USA 8.2 7.04 57.8 54.7 4.82 263.4 86.9 82.0 
15 European 
Countries 9.4 6.32 59.4 26.0 4.79 124.4 73.4 67.7 
Japan 2.1 4.39 9.2 0.2 3.28 0.7 9.7 7.5 
Australia  2.6 2.31 6.0 11.8 1.64 19.4 81.9 76.3 
Other Developed 2.1 2.84 6.0 23.4 2.58 60.5 91.7 91.0 
Eastern Europe 5.9 4.23 25.1 18.0 2.87 51.6 75.2 67.3 
Cenasia 9.4 1.14 10.7 11.9 0.57 6.8 56.1 39.0 
Rest Former USSR 11.4 1.93 22.1 58.0 1.53 88.4 83.5 80.0 
Mexico 3.1 4.74 14.7 7.4 1.66 12.4 70.6 45.7 
Brazil 1.2 2.94 3.5 18.6 2.16 40.1 93.9 91.9 
Argentina 1.0 4.79 4.7 8.5 2.54 21.6 89.6 82.1 
Colombia 0.3 3.39 1.0 1.0 1.83 1.9 77.1 64.5 
Other Latin America 1.9 3.42 6.6 6.2 1.66 10.4 76.5 61.2 
Latin America 7.5 4.07 30.6 41.8 2.07 86.4 84.7 73.8 
Nigeria 1.3 2.84 3.7 16.6 0.90 14.9 92.8 80.2 
N Sub-Saharan 
Africa 1.1 1.51 1.6 29.0 0.65 18.8 96.4 92.1 
C&W Sub-Saharan 
Africa 0.2 2.00 0.4 9.6 0.91 8.7 98.0 95.8 
S Sub-Saharan 
Africa 0.6 1.90 1.1 8.1 0.95 7.7 93.4 87.6 
E Sub-Saharan 
Africa 0.1 2.06 0.3 6.5 1.42 9.2 98.0 97.1 
Sub-Saharan Africa 2.0 1.71 3.4 53.2 0.83 44.3 96.4 93.0 
Egypt 2.6 5.48 14.3 0.0 0.00 0.0 0.0 0.0 
Turkey 0.3 4.83 57.8 13.7 1.96 263.4 98.2 95.7 
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Table 1 (continued) --Rainfed and irrigated total cereal area, yield, production in 1995, and fraction of irrigated area of the 
total, fraction of the irrigated production of the total, in selected countries and regions. 
 Irrigated  

Area 
Irrigated 

Yield 
Irrigated 

Production 
Rainfed  

Area 
Rainfed  

Yield 
Rainfed 

Production 
 Rainfed 

Area 
 Rainfed 

Production 
 

(million ha) (mt/ha) (million mt) (million ha) (mt/ha) (million mt) 
Percent Percent 

         
Other W Asia & N 
Africa  6.9 2.81 19.4 20.3 1.02 20.6 74.6 51.5 
W Asia & N Africa 9.8 3.58 34.9 34.0 1.40 47.5 77.7 57.6 
India 37.8 2.65 100.3 62.3 1.20 74.6 62.2 42.7 
Pakistan 10.4 2.02 21.1 0.8 0.60 0.5 7.4 2.3 
Bangladesh 5.8 2.85 16.5 1.9 1.35 2.6 24.9 13.5 
Other S Asia  3.7 1.62 6.0 2.9 1.35 3.9 43.5 39.2 
South Asia  57.7 2.49 143.8 67.9 1.20 81.5 54.1 36.2 
Indonesia  9.1 3.44 31.4 5.6 1.70 9.6 38.1 23.3 
Thailand 2.1 2.67 5.6 8.8 1.52 13.3 80.7 70.4 
Malaysia  0.5 2.36 1.1 0.3 1.45 0.4 35.9 25.6 
Philippines 2.6 2.18 5.7 3.9 1.49 5.9 60.1 50.8 
Vietnam 3.8 3.16 11.9 3.6 1.68 6.0 48.8 33.5 
Myanmar 0.9 2.74 2.5 5.3 1.87 10.0 85.3 79.8 
Other SE Asia  0.2 2.02 0.3 2.2 1.22 2.7 92.9 88.8 
Southeast Asia  19.2 3.05 58.5 29.8 1.61 47.9 60.8 45.0 
China 62.4 4.23 263.6 26.2 3.59 94.0 29.6 26.3 
S Korea 1.0 4.41 4.4 0.2 3.29 0.6 16.1 12.5 
Other E Asia  1.1 2.71 3.1 0.6 1.57 1.0 36.2 24.8 
East Asia  64.5 4.20 271.1 27.1 3.54 95.7 29.5 26.1 
World Other 0.0 1.63 0.0 0.0 0.42 0.0 81.8 53.6 
World 213.1 3.48 742.3 474.3 2.18 1033.3 69.0 58.2 
Developed  41.8 4.44 185.6 192.1 3.17 608.3 82.1 76.6 
Developing 171.3 3.25 556.7 282.2 1.51 425.0 62.2 43.3 
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  Developing countries rely substantially more on irrigated agriculture than 

developed countries, with 38 percent of all cereal area irrigated, accounting for 59 percent 

of total cereal production.  Conversely,  only 18 percent of all cereal area is irrigated in the 

developed world, accounting for 23 percent of total cereal production.  Rainfed cereal yield 

in the developed world is almost double the rainfed yield in the developing world, and only 

slightly lower than the irrigated yield in the developing world.  As a result, rainfed cereal 

production in the developed world contributes 59 percent of global rainfed production, and 

34 percent of total cereal production.    

For some countries and regions with an arid or semi-arid climate, the fraction of 

rainfed crops is very low, for example, zero percent of the cereal area harvested in Egypt 

and 7.4 percent in Pakistan is rainfed.  Since rice is the dominant crop in Japan and South 

Korea, rainfed cereal harvested area occupies only 10 percent and 16 percent, respectively, 

of the total area harvested.  Other countries in which the fraction of rainfed harvested 

cereal area is below 50 percent include Bangladesh, China, Malaysia, Indonesia, and 

Vietnam.  The fraction of rainfed cereal harvested area in Nigeria, all Sub-Saharan African 

countries, and some South American countries such as Argentina and Brazil is over 90 

percent, while in Latin America as a whole the percentage is a slightly lower 85 percent.  

Although none of Egypt’s cereal area is rainfed, the WANA region as a whole has a much 

higher fraction of 78 percent. 

Globally, 69 percent of cereal area planted is rainfed, including 40 percent of rice, 

66 percent of wheat, 82 percent of maize, 86 percent of other grains, and 85 percent of 

soybeans.  The global rainfed harvested area of rice, wheat, maize, other cereals, soybeans, 

potatoes, sweet potatoes, and cassava and other roots is 560 million hectares in 1995, with 
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cereals representing 85 percent of this total.  Worldwide rainfed cereal yield is about 2.2 

metric tons per hectare, which is about 65 percent of the irrigated yield.  Rainfed cereal 

production accounts for 58 percent of worldwide cereal production.   

The global rice harvested area is 146 million hectares, of which approximately 87 

million hectares is irrigated, and 59 million hectares are rainfed.  There is very little rainfed 

rice planted in developed countries, while rainfed rice occupies approximately 42 percent, 

or 59 million hectares of the total rice area in developing countries.  Developing countries 

are also responsible for almost the entire world production, with 97 percent of the total 

world rice yield coming from developing countries.  Rainfed rice yield in developing 

countries is 1.4 tons per hectare or about 44 percent of the total irrigated rice yield in 

developing countries, this amounts to 24 percent of the developing country total, and 23 

percent of world production. 

Globally, 222 million hectares of wheat was harvested in 1995, 66 percent of which 

was rainfed, and the remaining 34 percent irrigated.  About 83 percent of the area planted 

to wheat in developed countries was rainfed, while in developing countries slightly less 

than half of the total wheat area planted was rainfed.  Rainfed wheat yields in developed 

and developing countries are approximately 2.5 tons per hectare and 1.2 tons per hectare, 

respectively, while the irrigated yields are slightly higher at 2.9 tons per hectare and 1.7 

tons per hectare.  Rainfed wheat production contributes 33 percent of the total yield in 

developing countries, 81 percent in developed countries, and 52 percent worldwide. 

Maize is grown under rainfed conditions more often than rice and wheat.  Of the 

roughly 138 million hectares sown to maize in the world, 82 percent is rainfed, while 18 

percent is irrigated.  Developing countries occupy over 60 percent of the total maize area 
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worldwide.  The average rainfed maize yield in developed countries is 3.4 tons per hectare, 

while that of developing countries lags behind at 1.8 tons per hectare.  Irrigated yields are 

higher at 4.2 tons per hectare in developed countries and 2.9 tons per hectare in developing 

countries.  Rainfed maize production contributes 66 percent of the total yield in developing 

countries, 81 percent in developed countries, and 74 percent globally. 

Global production of other grains including millet, sorghum, etc. is predominantly 

rainfed, with 156 million hectares being rainfed, accounting for 86 percent of the total 

world harvested area.  Differing from wheat and maize, other grains have a lower fraction 

of rainfed area in developed countries than in developing countries, with 91 percent of total 

area planted using rainfed methods in developing countries, and 80 percent in developed 

countries.  The average rainfed yield of other grains in developed countries is 2.1 tons per 

hectare, while that of developing countries is much lower at 0.9 tons per hectare.  Irrigated 

areas yield 3.5 tons of other grains per hectare in developed countries and 2.2 tons per 

hectare in developing countries.  Rainfed production of other grains contributes 80 percent 

of total yield in developing countries, 71 percent in developed countries, and 74 percent 

globally. 

Approximately 62 million hectares of soybeans are harvested worldwide, of which 

53 million hectares are rainfed.  Developed countries plant 91 percent of the total soybean 

area using rainfed agriculture, while 80 percent of the area in developing countries is 

rainfed.  Unlike cereal crops, rainfed and irrigated soybean yields are similar .  In 

developed countries, the irrigated soybean yield is 2.7 tons per hectare, slightly higher than 

the rainfed yield of 2.2 tons per hectare; in developing countries, the irrigated yield is only 

slightly higher than the rainfed yield, with both at approximately 1.8 tons per hectare.  
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BASELINE PROJECTIONS 

The IMPACT-WATER integrated water- food modeling framework, developed at 

IFPRI (Rosegrant and Cai 2000) is applied to assess the current situation and plausible 

future options of irrigation water supply and food security, primarily on a global scale.  

This model simulates the relationships among water availability and demand, food supply 

and demand, international food prices, and trade at regional and global levels.  The world 

is divided into 69 spatial units, including single river basins in China, India and the US and 

aggregated river basins in other countries and regions.  For each spatial unit, crop-wise 

water demand and supply are calculated, and then incorporated into separate rainfed and 

irrigated crop area and yield functions.  Eight food crops are considered: rice, wheat, 

maize, other coarse grains, soybeans, potatoes, sweet potatoes, and cassava and other roots 

and tubers.   

The baseline scenario presented here is based on our best estimates of the policy, 

investment, technological, and behavioral parameters driving the food and water sectors.  

Irrigation plays a dominant role in cereal production in developing countries, with nearly 

60 percent of future cereal production in developing countries coming from irrigated areas, 

accounting for four-fifths of the growth in global irrigated cereal production.  However, 

IMPACT-WATER projects that irrigated and rainfed production will each account for 

about one-half of the increase in cereal production between 1995 and 2021-25.   
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Figure 1--Share of irrigated and rainfed production in cereal production increase, 
1995-2021/25  

 

 

 

The strong contribution to overall cereal production from rainfed areas differs from 

previous estimates which have projected that as much as 80 percent of the additional food 

supplies required to feed the world over the next 30 years could depend on irrigation (IIMI 

1992).  

The importance of rainfed cereal production is in significant part due to the 

dominance of rainfed agriculture in developed countries.  More than 80 percent of cereal 

area in developed countries is rainfed, much of which is highly productive maize and 

wheat land such as that in the Midwestern United States and parts of Europe (Figure 2).   
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Figure 2--Cereal harvested area, 1995 and projected 2021/25 

 

 

 

 

 

 

 

 

 

 

 

The average rainfed cereal yield in developed countries was 3.2 metric tons per 

hectare in 1995, virtually as high as irrigated cereal yields in developing countries.  These 

rainfed cereal yields in developed countries are projected to grow to 3.9 metric tons per 

hectare by 2021-25 (Figure 3). 
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Figure 3—Cereal yields, 1995 and projected 2021/25 

 

 

 

Rainfed agriculture remains important in developing countries as well.  While 

rainfed yields in developing countries are projected to increase only from 1.5 metric tons 

per hectare to 2.1 metric tons per hectare by 2021-25, rainfed area in developing countries 

will account for 43 percent of total cereal area, only slightly lower than the percentage in 

1995.   

IMPACT-WATER utilizes hydrologic data (precipitation, evapotranspiration, and 

runoff) to recreate the hydrologic regime of 1961-91 (Alcamo 2000).  Non- irrigation water 

uses, including domestic, industrial, and livestock water uses are projected to grow rapidly.  

Total non- irrigation water consumption in the world is projected to increase from 370 km3 
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percent is projected to occur in developing countries.  Irrigation water demand is estimated 

and projected based on crop evapotranspiration and effective rainfall (estimated on a 

monthly basis), irrigated area, and water use efficiency.  Globally, irrigated harvested area 

for cereals is estimated to be 221 million hectares in 1995, and growth is projected to be 

slow, with a total increase of 24 million hectares for irrigated cereals by 2025.  The 

increase in total irrigated harvested area is slightly higher, with an increase from 355 

million hectares in 1995 to 417 million hectares in 2025.  Instream and environmental 

water demand is accounted as committed flow that is unavailable for other uses, and ranges 

from 15 percent to 50 percent of the runoff depending on runoff availability and relative 

demands of the instream uses in different basins. 

On the supply side, for future years up to 2025, we assume increases in water 

management efficiency, reservoir storage and water withdrawal capacity, based on 

estimates of current investment plans and the pace of water management reform.  Table 2 

shows the area and yield growth rate between 1995 and 2025 for rainfed rice, wheat, 

maize, other grains, and soybeans in selected countries and aggregated regions under the 

baseline scenario.
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Table 2(a)—Rainfed Area and Yield Growth Rates For Rice For Selected Countries and Regions  

 

 Area 
(million ha) 

Annual 
Growth Rate 

Yield 
(mt/ha) 

Annual 
Growth Rate 

   1995 2025 Percent 1995 2025 Percent 
USA 0.0 0.0 0.00 0.00 0.00 0.00 
15 European Countries 0.0 0.0 0.00 0.00 0.00 0.00 
Other Developed 0.0 0.0 -0.07 1.48 1.70 0.47 
China 0.6 0.6 0.00 3.61 4.25 0.54 
East Asia (excl. China) 0.3 0.2 -1.49 1.55 1.80 0.46 
India 24.7 15.9 -1.46 1.44 1.88 0.89 
South Asia (excl. India) 3.0 2.8 -0.21 1.37 1.98 1.24 
Southeast Asia 21.4 21.7 0.04 1.46 2.20 1.37 
Latin America 3.7 3.6 -0.16 1.27 1.76 1.10 
Sub-Saharan Africa 5.2 6.8 0.90 0.86 1.51 1.90 
W. Asia & N. Africa 0.0 0.0 0.00 0.00 0.00 0.00 
Developed 0.0 0.0 -0.07 1.48 1.70 0.47 
Developing 58.9 51.5 -0.45 1.41 1.99 1.17 
World 58.9 51.5 -0.45 1.41 1.99 1.17 
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Table 2(b)—Rainfed Area and Yield Growth Rates For Wheat For Selected Countries and Regions  

 

 Area 
(million ha) 

Annual 
Growth Rate 

Yield 
(mt/ha) 

Annual 
Growth Rate 

   1995 2025 Percent 1995 2025 Percent 
USA 23.3 24.4 0.16 2.31 3.14 1.03 
15 European Countries 13.0 12.7 -0.09 5.20 5.59 0.24 
Other Developed 54.1 55.2 0.07 1.95 2.68 1.07 
China 8.2 5.1 -1.57 2.80 3.68 0.91 
East Asia (excl. China) 0.1 0.1 0.05 0.64 0.77 0.61 
India 7.0 4.0 -1.86 1.57 2.07 0.92 
South Asia (excl. India) 1.2 1.0 -0.55 0.81 1.28 1.56 
Southeast Asia 0.0 0.0 -1.63 0.47 0.54 0.47 
Latin America 8.1 11.1 1.07 2.05 3.74 2.02 
Sub-Saharan Africa 1.4 2.0 1.13 1.47 2.51 1.79 
W. Asia & N. Africa 21.2 23.7 0.37 0.00 0.00 0.00 
Developed 90.4 92.3 0.07 2.51 3.20 0.82 
Developing 55.5 56.3 0.05 1.61 2.22 1.08 
World 145.9 148.7 0.06 2.17 2.83 0.89 
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Table 2(c)—Rainfed Area and Yield Growth Rates For Maize For Selected Countries and Regions  

 

 Area 
(million ha) 

Annual 
Growth Rate 

Yield 
(mt/ha) 

Annual 
Growth Rate 

   1995 2025 Percent 1995 2025 Percent 
USA 24.2 25.6 0.19 7.75 11.95 1.45 
15 European Countries 3.0 2.5 -0.56 7.83 9.26 0.56 
Other Developed 11.6 11.9 0.10 3.14 4.19 0.96 
China 14.0 16.3 0.51 4.36 6.14 1.15 
East Asia (excl. China) 0.2 0.2 -1.05 2.52 3.12 0.71 
India 5.1 4.7 -0.21 1.29 2.05 1.55 
South Asia (excl. India) 1.0 1.0 0.10 1.54 2.38 1.47 
Southeast Asia 7.9 8.1 0.09 2.04 3.38 1.70 
Latin America 25.8 30.5 0.55 2.17 3.06 1.15 
Sub-Saharan Africa 20.1 25.3 0.77 1.18 1.83 1.48 
W. Asia & N. Africa 0.7 0.5 -1.08 0.00 0.00 0.00 
Developed 38.7 40.1 0.11 6.38 9.47 1.33 
Developing 74.8 86.7 0.49 2.23 3.24 1.25 
World 113.5 126.7 0.37 3.65 5.21 1.20 
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Table 2(d)—Rainfed Area and Yield Growth Rates For Other Grains For Selected Countries and Regions  

 

 Area 
(million ha) 

Annual 
Growth Rate 

Yield 
(mt/ha) 

Annual 
Growth Rate 

   1995 2025 Percent 1995 2025 Percent 
USA 7.2 7.2 -.03 3.09 4.75 1.45 
15 European Countries 10.0 8.2 -0.67 3.35 3.85 0.46 
Other Developed 6.8 7.1 0.13 2.57 4.41 1.82 
China 3.4 3.3 -0.14 2.29 3.43 1.36 
East Asia (excl. China) 0.2 0.2 0.14 2.50 3.58 1.21 
India 25.5 25.1 -0.05 0.84 1.30 1.49 
South Asia (excl. India) 0.5 0.5 0.00 0.90 1.31 1.24 
Southeast Asia 0.4 0.4 0.24 0.96 1.39 1.22 
Latin America 4.1 4.9 0.57 2.16 3.54 1.65 
Sub-Saharan Africa 43.1 63.9 1.33 0.67 1.07 1.55 
W. Asia & N. Africa 12.1 13.4 0.35 1.29 1.96 1.41 
Developed 63.0 61.5 -0.08 2.14 2.81 0.92 
Developing 93.0 115.4 0.72 0.92 1.39 1.36 
World 156.0 176.9 0.42 1.41 1.88 0.96 
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Table 2(e)—Rainfed Area and Yield Growth Rates For Soybeans For Selected Countries and Regions  

 

 Area 
(million ha) 

Annual 
Growth Rate 

Yield 
(mt/ha) 

Annual 
Growth Rate 

   1995 2025 Percent 1995 2025 Percent 
USA 23.0 24.9 0.27 2.54 3.56 1.14 
15 European Countries 0.3 0.3 0.07 3.0 4.78 1.50 
Other Developed 1.5 1.5 0.18 1.80 2.74 1.42 
China 4.1 5.5 1.00 1.76 3.21 2.02 
East Asia (excl. China) 0.4 0.4 0.27 1.30 2.11 1.63 
India 4.3 5.9 1.01 0.95 1.82 2.20 
South Asia (excl. India) 0.0 0.0 0.18 0.63 1.01 1.57 
Southeast Asia 1.9 2.2 0.44 1.16 1.91 1.69 
Latin America 17.2 21.9 0.81 2.10 3.57 1.80 
Sub-Saharan Africa 0.2 0.2 0.81 1.22 1.96 1.58 
W. Asia & N. Africa 0.0 0.0 0.00 0.00 0.00 0.00 
Developed 24.8 26.8 0.26 2.50 3.53 1.15 
Developing 28.1 36.1 0.84 1.79 3.10 1.86 
World 52.9 62.9 0.58 2.12 3.29 1.47 
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Rainfed rice area in developing countries will decrease overall by 7.4 million 

hectares, with the largest reduction  projected in Ind ia, although rainfed rice area is 

projected to increase slightly in some areas such as Sub-Saharan Africa (SSA).   

Worldwide, rainfed wheat area is projected to increase slightly, with 68 percent of 

this increase expected in the developed world.  The largest rainfed wheat area reductions 

are expected in China and India, while the major rainfed wheat area increases will in Latin 

America and West Asia and North Africa (although overall developing country rainfed 

area increases by only 0.8 million hectares).  Maize rainfed area will increase significantly 

between 1995 and 2025, with a global net increase of 13.2 million hectares.  Most of this 

increase takes place in developing countries, including 5.2 million hectares in SSA, 4.6 

million hectares in Latin America, and 2.3 million hectares in China.  Although rainfed 

area for other grains is expected to decrease slightly in the developed world, a global 

increase is projected primarily due to an increase in SSA of 20.9 million hectares.  

Additional rainfed soybean area will be developed for most countries and regions as shown 

in Table 2, with net global increase of 10.0 million hectares, of which the majority is 

expected in developing countries.  

Projections of rainfed crop yield increases are based on our evaluation of the 

investments and potentials for improvements in water management, breeding research for 

rainfed areas, and the likely policies and investments in rainfed areas.  The growth rate of 

rainfed cereal yield is in the range of 0.5 – 2.0 percent, with a global average of around 1.0 

percent.  Sub-Saharan Africa experiences the highest yield growth rates ranging from an 

annual growth rate of 2.0 percent for rice to 1.5 percent for maize.  Crop yield performance 

has gradually improved in SSA over the past decade, and it is projected that continued 
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improvements in technologies and policies will permit relatively strong growth from the 

very low yield levels in 1995.  Latin America and Southeast Asia also experience relatively 

high yield growth.  For all cereals excluding maize, yield growth rates are lower in 

developed than in developing countries.   

Effective rainfall use for rainfed crops is assumed to increase by 3-5 percent in the 

baseline due to improvements in water harvesting and on-farm water management, as well 

as varietal improvement that shifts crop growth periods to better utilize rainfall.  This is 

approximately equivalent to increasing crop evapotranspiration by 150 km3. 

 
RAINFED AGRICULTURE VS. IRRIGATED AGRICULTURE–CHANGES TO 

2025 

A comparison of the average rainfed and irrigated cereal area, yield, and 

production, the fraction of rainfed area, and fraction of rainfed production during 2021-25 

(Table 3) with the same items for 1995 (Table 1) shows changes in these items, a reflection 

of the changing role of rainfed agriculture during 1995-2025 under the baseline scenario.
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Table 3-- Rainfed and irrigated cereal area, yield, and production in 2025, and fraction of rainfed area and production 
 

Countries/Regions  Irrigated Rainfed  
  

Area 
 
Yield  

 
Production 

 
Area  

 
Yield 

 
Production 

Rainfed 
Area 

Rainfed 
Production 

 (million ha) (mt/ha) million/mt (million ha) (mt/ha) (million/mt) Percent 
USA 8.5 9.94 84.8 57.6 6.12 352.7 87.1 80.6 
15 European Countries 9.7 7.95 77.2 24.8 5.24 130.0 71.9 62.8 
Japan 1.3 5.63 7.4 0.2 3.74 0.8 14.4 10.0 
Australia  3.5 3.82 13.2 13.4 2.34 31.4 79.5 70.4 
Other Developed 2.5 5.80 14.6 24.1 3.43 82.7 90.6 85.0 
E Europe 7.3 5.52 40.4 21.0 3.10 65.1 74.2 61.7 
Ce Asia 9.9 1.45 14.3 12.8 0.82 10.5 56.6 42.4 
Rest Former USSR 12.2 2.55 31.2 54.9 1.81 99.6 81.8 76.2 
Mexico 3.9 5.73 22.4 7.9 2.57 20.1 66.8 47.4 
Brazil 1.2 3.96 4.7 26.7 2.79 74.4 95.8 94.1 
Argentina 1.4 8.47 12.3 11.6 3.90 45.2 88.9 78.7 
Colombia 0.4 4.98 1.9 1.1 2.57 2.9 74.5 60.1 
Other Latin America 2.9 4.26 12.2 7.8 2.32 18.0 73.0 59.6 
Nigeria 1.9 4.30 8.0 21.6 1.27 27.3 92.0 77.3 
N. Sub-Saharan Africa 1.4 2.07 2.9 40.6 0.98 39.7 96.7 93.2 
Africa 0.4 2.77 1.0 14.5 1.21 17.6 97.6 94.6 
S Sub-Saharan Africa 1.0 2.43 2.3 10.6 1.33 14.0 91.7 85.9 
E Sub-Saharan Africa 0.2 2.50 0.5 8.3 1.88 15.5 97.5 96.7 
Egypt 2.5 8.20 20.4 0.0 0.00 0.0 0.0 0.0 
Turkey 0.3 5.69 1.5 13.2 2.66 35.1 98.0 95.8 
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Table 3 (continued) --Rainfed and irrigated cereal area, yield, and production in 2025, and fraction of rainfed area and 
production 

 
Countries/Regions  Irrigated Rainfed  
  

Area 
 
Yield  

 
Production 

 
Area  

 
Yield 

 
Production 

Rainfed 
Area 

Rainfed 
Production 

 (million ha) (mt/ha) million/mt (million ha) (mt/ha) (million/mt) Percent 
Other W Asia & N Africa 8.0 3.68 29.3 22.4 1.22 27.3 73.8 48.3 
India 46.7 3.81 177.7 49.8 1.63 81.4 51.6 31.4 
Pakistan 10.6 3.07 32.5 0.9 0.93 0.8 7.9 2.5 
Bangladesh 6.4 4.03 25.8 1.6 2.03 3.3 20.1 11.2 
Other S Asia  4.0 2.40 9.5 3.0 2.16 6.5 43.2 40.6 
Indonesia  9.3 4.62 43.0 5.9 2.44 14.5 39.0 25.2 
Thailand 2.3 2.95 6.7 9.1 2.08 19.0 80.1 74.0 
Malaysia  0.4 3.51 1.4 0.3 1.78 0.5 41.9 26.8 
Philippines 2.8 2.98 8.2 4.5 2.46 11.2 62.1 57.5 
Vietnam 4.2 5.17 21.9 3.5 3.19 11.3 45.4 33.9 
Myanmar 1.0 4.30 4.5 5.7 2.80 16.0 84.5 78.1 
Other SE Asia 0.3 3.43 0.9 2.4 2.22 5.3 89.9 85.2 
China 66.6 5.89 392.4 29.6 4.65 137.5 30.7 25.9 
S Korea 0.9 5.04 4.4 0.1 6.01 0.8 12.7 14.7 
Other E Asia  1.2 3.30 3.8 0.6 1.70 1.0 32.6 20.0 
Rest of the World 0.0 1.92 0.0 0.0 0.59 0.0 83.1 60.3 
Developed 45.1 5.96 268.8 196.1 3.89 762.4 81.3 73.9 
Developing 191.8 4.52 866.6 316.2 2.08 656.8 62.2 43.1 
World 236.9 4.79 1135.3 512.3 2.77 1419.2 68.4 55.6 
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Worldwide, rainfed cereal area in 2021-25 is projected to be 512 million hectares, 

an 8 percent increase over the area planted in 1995; the aggregated rainfed cereal yield is 

27 percent higher than yield in 1995; and the total rainfed cereal production increased 37 

percent over the production in 1995.  Increases in irrigated area, yield and production by 

2021-25 are expected to be slightly higher than rainfed increases, with an 11 percent 

increase in irrigated expected over 1995 levels, a 38 percent increase in yield projected, 

and a 53 increase in production expected over 1995 values.  Rainfed cereal area still 

accounts for the majority of total harvested area and total cereal production in 2021-25, 

although irrigated area and production comprise slightly more of the totals than in 1995.  

The developing world maintains very similar fractions of rainfed area and production to 

the values in 1995, and experiences a yield growth of 0.57 tons per hectare.  The developed 

world will experience slightly larger increases in the fraction of rainfed area and rainfed 

production, as well as a yield growth of 0.72 tons per hectare over 1995 levels.  For more 

detailed results on the role of rainfed crops, Table 4 shows fractions of total area and 

production that is rainfed for rice, wheat, maize, total cereals, and soybeans in several 

countries and aggregated regions. 



 

 

77 
 

Table 4: Fractions of rainfed area and production to the total in 1995 and 2021-2025 
of major cereals and soybeans for selected countries and regions  
 

Rice Area Production 
 1995 2021-25 1995 2021-25 
USA 0.00 0.00 0.00 0.00 
15 European Countries 0.00 0.00 0.00 0.00 
Other Developed 0.00 0.00 0.00 0.00 
China 0.02 0.02 0.02 0.01 
East Asia (excl. China) 0.17 0.11 0.07 0.04 
India 0.58 0.43 0.44 0.28 
South Asia (excl. India) 0.26 0.23 0.16 0.15 
Southeast Asia 0.53 0.53 0.36 0.38 
Latin America 0.56 0.52 0.35 0.35 
Sub-Saharan Africa 0.81 0.77 0.68 0.64 
W Asia & N Africa 0.00 0.00 0.00 0.00 
Developed 0.00 0.00 0.00 0.00 
Developing 0.41 0.38 0.24 0.22 
World 0.40 0.37 0.23 0.22 

 
 

Wheat Area Production 
 1995 2021-25 1995 2021-25 
USA 0.93 0.94 0.87 0.88 
15 European Countries 0.79 0.79 0.74 0.71 
Other Developed 0.86 0.84 0.82 0.76 
China 0.28 0.22 0.22 0.17 
East Asia (excl. China) 0.24 0.25 0.17 0.17 
India 0.28 0.19 0.18 0.12 
South Asia (excl. India) 0.10 0.09 0.04 0.04 
Southeast Asia 0.24 0.16 0.13 0.11 
Latin America 0.89 0.91 0.80 0.87 
Sub-Saharan Africa 0.78 0.75 0.73 0.71 
W Asia & N Africa 0.81 0.81 0.63 0.59 
Developed 0.86 0.85 0.81 0.77 
Developing 0.47 0.46 0.33 0.31 
World 0.66 0.64 0.57 0.53 
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Table 4 (continued): Fractions of rainfed area and production to the total in 1995 
and 2021-2025 of major cereals and soybeans for selected countries and regions  
 

Maize Area Production 
 1995 2021-25 1995 2021-25 
USA 0.85 0.85 0.83 0.80 
15 European Countries 0.75 0.70 0.72 0.63 
Other Developed 0.82 0.80 0.76 0.71 
China 0.61 0.58 0.54 0.46 
East Asia (excl. China) 0.38 0.32 0.30 0.25 
India 0.84 0.77 0.70 0.52 
South Asia (excl. India) 0.50 0.50 0.50 0.47 
Southeast Asia 0.95 0.92 0.88 0.86 
Latin America 0.90 0.90 0.79 0.78 
Sub-Saharan Africa 0.96 0.96 0.90 0.90 
W Asia & N Africa 0.36 0.27 0.16 0.12 
Developed 0.83 0.82 0.81 0.77 
Developing 0.82 0.80 0.66 0.61 
World 0.82 0.80 0.74 0.69 

 
 

Total Cereals Area Production 
 1995 2021-25 1995 2021-25 
USA 0.87 0.87 0.82 0.81 
15 European Countries 0.73 0.72 0.68 0.63 
Other Developed 0.82 0.81 0.76 0.72 
China 0.30 0.31 0.26 0.26 
East Asia (excl. China) 0.28 0.25 0.18 0.17 
India 0.62 0.52 0.43 0.31 
South Asia (excl. India) 0.22 0.21 0.14 0.14 
Southeast Asia 0.61 0.61 0.45 0.47 
Latin America 0.85 0.85 0.74 0.75 
Sub-Saharan Africa 0.96 0.95 0.89 0.89 
W Asia & N Africa 0.78 0.77 0.58 0.55 
Developed 0.82 0.81 0.77 0.74 
Developing 0.62 0.62 0.43 0.43 
World 0.69 0.68 0.58 0.56 
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Table 4 (continued) --Fractions of rainfed area and production to the total in 1995 and 
2021-2025 of major cereals and soybeans for selected countries and regions  
 

Soybean Area Production 
 1995 2021-25 1995 2021-25 
USA 0.92 0.92 0.91 0.90 
15 European Countries 0.85 0.85 0.82 0.77 
Other Developed 0.84 0.84 0.83 0.86 
China 0.49 0.55 0.50 0.54 
East Asia (excl. China) 0.95 0.95 0.94 0.95 
India 0.90 0.94 0.87 0.92 
South Asia (excl. India) 0.73 0.73 0.64 0.67 
Southeast Asia 1.00 1.00 1.00 1.00 
Latin America 0.92 0.94 0.89 0.92 
Sub-Saharan Africa 0.25 0.27 0.49 0.52 
W Asia & N Africa 0.00 0.00 0.00 0.00 
Developed 0.91 0.91 0.91 0.90 
Developing 0.80 0.84 0.80 0.85 
World 0.85 0.87 0.85 0.87 
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ALTERNATIVE SCENARIO SPECIFICATION 

The future outlook for water and food projected under the baseline, and the 

contribution of rainfed agriculture to this future, is dependent on policy and investment 

decisions on agricultural research, irrigation, water supply infrastructure, and other water 

resource investments, as well as the pace of water demand management improvement and 

the farmers’ decisions regarding on-farm management and adoption of new technologies.  

But what would happen if improvements in effective rainfall use lagged, or there were 

significant cutbacks in irrigation development and water supply investments?  Could 

more rapid growth in rainfed crop production compensate for reductions in irrigation and 

water supply investment compared to the baseline?  Through alternative scenarios, we 

explore the impacts of these changes and other modifications in policy, technology, and 

investment.  This section explores other possible situations in rainfed agriculture and 

food security.  The alternative scenarios are defined as follows: 

No improvement in effective rainfall use (NIER).  Under the baseline scenario, we 

assume a 3-5 percent increase in effective rainfall use.  This alternative scenario assumes 

no improvement in effective rainfall use.  These results will show the impact of the 

assumed improvement in effective rainfall use under the baseline scenario. 

Low investment in irrigation development and water supply but higher increase of 

rainfed area and yield (LIV-HRF).  Due to global and regional environmental concerns,  

the increasing cost of irrigation investment, and current low prices of many crops grown 

with irrigation, projected inc reases in irrigated area and levels of infrastructure 

investment and water management improvement under the baseline may not be achieved 
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over the projection period.  This scenario assumes that the rate of increase in potential 

irrigated area will be one-third of those under the baseline scenario.   

Additionally, reductions in the reservoir storage growth rates for irrigation and 

water supply, water use efficiency, and maximum allowable water withdrawal (MAWW) 

are implemented.  The net increase of global reservoir storage for irrigation and water 

supply only increases by 396 km3 between 1995 and 2025 under the LIV-HRF scenario 

compared to an increase of 690 km3 under the baseline.  Global average basin irrigation 

efficiency increases only to 0.57, compared to 0.61 under the baseline (global basin 

irrigation efficiency in 1995 is 0.55), corresponding to a water consumption savings of 23 

km3 under the LIV-HRF scenario compared to 115 km3 under the baseline.  The net 

increase in MAWW between 1995 and 2025 is only 301 km3 under LIV-HRF compared 

to 742 km3 under the baseline.    

To examine the potential for rainfed production growth to compensate for the 

effect of reductions in irrigated area and irrigation water supply, we assume that rainfed 

area and yield increase to levels that can almost offset the reduction of irrigated 

production, and maintain essentially the same international trade prices.  A larger 

increase is assigned to rainfed yield than area (because of limited potential for area 

expansion), and a larger increase is assigned to those basins, countries, or regions where 

irrigation effects are greater.   

Low investment in irrigation development and water supply but high increase of 

effective rainfall use (LIV-HIER).  This scenario looks at the possibility of increasing 

effective rainfall use to counteract the reduction of irrigated production due to low 

investment in irrigation development and water supply.  Effective rainfall use gradually 
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increases by 10-15 percent above 1995 levels from 1995 to 2025 in those basins/countries 

with rainwater shortages for crop production, including river basins in the western US, 

northern and western China, northern and western India, and countries in Northern Africa 

and WANA.  An increase ranging from 5-10 percent is projected for other regions. 

Groundwater overdraft phased out, combined with higher growth in rainfed 

production, including higher rainfed area, yield, and larger improvement of effective 

rainfall use (GW-HRF2).  Many regions in the world, including northern India, northern 

China, some WANA countries, and the western US have experienced significant 

groundwater depletion due to pumping in excess of groundwater discharge (Postel 1999).  

This scenario assumes it is possible for regions and countries that are unsustainably 

pumping their groundwater to return to sustainable use in the future, with groundwater 

overdraft in these countries/regions gradually phased out over the next 25 years.  To 

explore the potential to offset lower irrigated production due to reduced groundwater 

pumping in these countries and regions, under this scenario, we assume an additional 

rainfed area and yield increase and higher effective rainfall use in the countries or regions 

where groundwater overdraft occurs, while other countries and regions remain the same 

as the baseline scenario. 

 
ALTERNATIVE SCENARIO RESULTS 

Results from the baseline and alternative scenarios are compared in Table 5, in 

terms of rainfed and irrigated cereal area and yield, the fraction of rainfed cereal 

production for selected countries and regions, and international prices for cereals (all 

shown as averages from 2021-2025).  Specific results from each alternative are discussed 

below. 
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Table 5--Comparing alternative scenarios to the baseline: average projections 
during 2021-2025 
 
Irrigation Water Consumption (km3) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 337 337 292 292 293 
India 230 230 180 180 217 
SE Asia 88 88 63 63 88 
Sub-Saharan Africa 61 61 33 33 61 
Latin America 94 94 65 65 94 
W Asia & N Africa 135 135 115 115 120 
Developed 274 274 233 233 271 
Developing 1,206 1,206 982 982 1,124 
World 1,480 1,480 1,215 1,215 1,394 

 
a) NIER - no improvement in effective rainfall use 
b) LIV-HRF - low investment in irrigation development and water supply but higher increase of rainfed 
area and yield 
c) LIV-HIER - low investment in irrigation development and water supply but higher increase of effective 
rainfall use 
d) GW-HRF2  - Groundwater over draft phasing off and larger rainfed agriculture development, including 
higher rainfed area, yield, and larger improvement of effective rainfall use 
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Table 5 (continued) --Comparing alternative scenarios to the baseline: average 
projections during 2021-2025 

 
Rainfed Area (million ha) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 29.6 29.1 31.0 30.4 30.2 
India 49.8 49.0 51.2 51.3 50.6 
SE Asia 31.5 31.2 32.0 31.8 31.5 
Sub-Saharan Africa 95.5 93.7 99.3 99.8 95.5 
Latin America 55.1 55.1 55.9 55.5 55.1 
W Asia & N Africa 35.6 34.9 36.6 36.7 35.6 
Developed 196.1 194.8 196.3 200.6 196.2 
Developing 316.2 312.5 322.1 325.0 319.8 
World 512.3 507.4 518.4 525.6 516.0 

 
Irrigated Area (million ha) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 66.6 66.7 57.7 58.0 64.0 
India 46.7 46.7 40.2 40.5 46.7 
SE Asia 20.3 20.3 19.2 19.5 20.3 
Sub-Saharan Africa 4.8 4.8 3.2 3.2 4.8 
Latin America 9.8 9.8 7.8 7.9 9.8 
W Asia & N Africa 10.7 10.8 9.6 9.7 10.3 
Developed 45.1 45.4 42.8 43.2 44.9 
Developing 191.8 192.2 169.2 170.5 187.9 
World 236.9 237.5 212.0 213.7 232.8 

 
a) NIER - no improvement in effective rainfall use 
b) LIV-HRF - low investment in irrigation development and water supply but higher increase of rainfed 
area and yield 
c) LIV-HIER - low investment in irrigation development and water supply but higher increase of effective 
rainfall use 
d) GW-HRF2  - Groundwater over draft phasing off and larger rainfed agriculture development, including 
higher rainfed area, yield, and larger improvement of effective rainfall use 



 

 

85 
 

Table 5 (continued) --Comparing alternative scenarios to the baseline: average 
projections during 2021-2025 
 
Rainfed Yield (mt/ha) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 4.65 4.52 5.46 4.95 5.25 
India 1.63 1.54 2.04 1.76 1.96 
SE Asia 2.47 2.33 3.06 2.61 2.47 
Sub-Saharan Africa 1.19 1.15 1.33 1.26 1.19 
Latin America 2.92 2.90 3.14 3.03 2.91 
W Asia & N Africa 1.75 1.71 1.92 1.84 2.04 
Developed 3.89 3.82 4.23 4.10 3.90 
Developing 2.08 1.99 2.40 2.23 2.22 
World 2.77 2.68 3.09 2.94 2.86 

 
Irrigated Yield (mt/ha) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 5.89 5.94 5.47 5.59 5.82 
India 3.81 3.84 3.76 3.84 3.41 
SE Asia 4.27 4.29 3.97 4.05 4.27 
Sub-Saharan Africa 3.08 3.12 3.02 3.09 3.08 
Latin America 5.46 5.50 5.15 5.24 5.45 
W Asia & N Africa 4.78 4.80 4.80 4.87 4.01 
Developed 5.96 6.00 5.65 5.72 5.95 
Developing 4.52 4.55 4.28 4.36 4.33 
World 4.79 4.83 4.55 4.64 4.63 

 
a) NIER - no improvement in effective rainfall use 
b) LIV-HRF - low investment in irrigation development and water supply but higher increase of rainfed 
area and yield 
c) LIV-HIER - low investment in irrigation development and water supply but higher increase of effective 
rainfall use 
d) GW-HRF2  - Groundwater over draft phasing off and larger rainfed agriculture development, including 
higher rainfed area, yield, and larger imp rovement of effective rainfall use 
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Table 5 (continued) --Comparing alternative scenarios to the baseline: average 
projections during 2021-2025 
 
Rainfed Production (million mt) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 137 132 169 151 158 
India 81 75 105 90 99 
SE Asia 78 73 98 83 78 
Sub-Saharan Africa 114 108 132 126 114 
Latin America 161 160 175 168 161 
W Asia & N Africa 62 60 70 68 73 
Developed 762 744 831 822 766 
Developing 657 622 773 725 710 
World 1,419 1,360 1,602 1,547 1,476 

 
Irrigated Production (million mt) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 392 396 315 324 372 
India 178 179 151 156 159 
SE Asia 87 87 76 79 87 
Sub-Saharan Africa 15 15 10 10 15 
Latin America 53 54 40 41 53 
W Asia & N Africa 51 52 46 47 41 
Developed 269 272 242 247 267 
Developing 867 874 723 744 813 
World 1,135 1,147 965 991 1,079 

 
a) NIER - no improvement in effective rainfall use 
b) LIV-HRF - low investment in irrigation development and water supply but higher increase of rainfed 
area and yield 
c) LIV-HIER - low investment in irrigation development and water supply but higher increase of effective 
rainfall use 
d) GW-HRF2  - Groundwater over draft phasing off and larger rainfed agriculture development, including 
higher rainfed area, yield, and larger improvement of effective rainfall use 
 



 

 

87 
 

Table 5 (continued) --Comparing alternative scenarios to the baseline: average 
projections during 2021-2025 

 
Fraction of Rainfed Production  (percent) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
China 31 30 41 37 38 
India 47 46 56 51 47 
SE Asia 89 88 93 93 89 
Sub-Saharan Africa 75 75 81 80 75 
Latin America 55 54 60 59 64 
W Asia & N Africa 74 73 77 77 74 
Developed 43 42 52 49 47 
Developing 56 54 62 61 58 
World 31 30 41 37 38 

 
World International Trade Prices (US$/mt) 

 Baseline NHERa 
LIV-

HRFb 
LIV-

HIERc 
GW-

HRF2d 
Price of Rice  236 245 248 301 236 
Price of Wheat   123 133 125 141 122 
Price of Maize  106 114 108 124 105 
Price of other grains  83 94 82 93 82 

 
a) NIER - no improvement in effective rainfall use 
b) LIV-HRF - low investment in irrigation development and water supply but higher increase of rainfed 
area and yield 
c) LIV-HIER - low investment in irrigation development and water supply but higher increase of effective 
rainfall use 
d) GW-HRF2  - Groundwater over draft phasing off and larger rainfed agriculture development, including 
higher rainfed area, yield, and larger improvement of effective rainfall use
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Under NIER, in which the small increase in effective rainfall use under the baseline 

is eliminated, the international trade prices experience an increase of 4 percent for rice, 8 

percent for wheat and maize, and 13 percent for other grains, than that under the baseline.  

There is a net reduction of rainfed cereal production of 47 million metric tons (a rainfed 

reduction of 59 million metric tons, which is partially offset by an increase of 12 million 

metric tons in irrigated areas due to higher cereal prices).  The reduction of rainfed cereal 

production is most significant in West Asia and North Africa, Sub-Saharan Africa, China, 

and India, ranging from approximately 5 - 8 percent.  Each of these countries and regions 

has large areas of low rainfall rainfed cereal production. Rainfed area harvested will 

decrease by 5.0 million hectares, of which 3.7 million hectares is in developing countries.  

The worldwide fraction of rainfed cereal production declines from 56 percent under the 

baseline to 54 percent under NIER. 

Under LIV-HRF, with a strategy of offsetting the reduction in irrigation investment 

by investing in rainfed area development and increased yield, the international price will 

maintain approximately the same level as the baseline for all cereal crops except rice.  It 

proved impossible to fully compensate for the loss of rice production , which has a high 

proportion of irrigated area.  Compared to the baseline, this scenario results in a decline in 

global irrigation water consumption of 256 km3, or 18 percent, and an irrigated cereal 

production decline of 170 million metric tons (140 million metric tons in developing 

countries).  Rainfed area, however, experiences a slight increase of 6 million hectares 

(mostly in developing countries), an 11 percent rainfed yield increase(15 percent in 

developing countries), and an additional 183 million metric tons of rainfed production (116 

million metric tons in developing countries).   
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China (and possibly India) will not be able to increase rainfed production enough to 

offset the irrigated production decline, because irrigated areas occupy a larger fraction of 

total cereal harvested area than rainfed areas.  In developed countries, irrigated production 

will be less affected by low irrigation investment, and developed countries will be able to 

make up for the developing country decrease by increasing rainfed production.  Under this 

scenario, developed country irrigated production declines by 27 million metric tons, while 

rainfed production increases by 69 million metric tons.  Finally, under low irrigated and 

high rainfed agriculture, the fraction of rainfed production will increase significantly, to 62 

percent globally, 52 percent in developing countries, and 77 percent in developed 

countries, compared to 56, 43 and 74 percent respectively under the baseline scenario. 

The international trade prices (especially rice) under LIV-HIER are significantly 

higher than those under the baseline.  This shows that the projected increase in effective 

rainfall water use cannot fully compensate for the irrigation decline due to low investment 

in irrigation development and water supply.  Although the global rainfed cereal production 

under LIV-HIER is 128 million metric tons more than that under the baseline, irrigated 

production under LIV-HIER is 16 million metric tons lower than the baseline.  In 

developing countries, the gap between the increased rainfed production and the reduction 

of irrigated production is 54 million metric tons.  Although there is no reliable data to 

justify the potential increase of effective rainfall use in various regions of the world, we 

think the very large projected increase under this scenario will be difficult, if not 

impossible, to achieve. 

Can the world phase out groundwater overdraft and compensate the irrigated 

production decline due to reduced groundwater pumping in some regions by increasing 



 

 

90 
 

rainfed production?  The modeling results from the GW-HRF2 scenario, with less 

groundwater pumping and higher rainfed agriculture development, show that such a 

strategy is possible.  Compared to levels under the baseline scenario, groundwater 

pumping will decline by 169 km3, including a reduction of 11 km3 in the US, 30 km3 in 

China, 69 km3 in India, 29 km3 in WANA and 24 km3 in other countries.  Global 

groundwater pumping in 2025 falls to 753 km3, representing a decline from the 1995 value 

of 817 km3 and from the baseline 2025 value of 922 km3.   

Irrigated production will be reduced by 20.1 million metric tons in China, 18.4 

million metric tons in India, 18 million metric tons in WANA, 1.6 million metric tons in 

developed countries, and 53.0 million metric tons in developing countries.  These 

reductions can be offset by an increase in rainfed area and yield in those regions, but the 

required increase in yields would be very large.  Compared to the baseline, average rainfed 

cereal yield would need to increase by 13 percent or 0.6 metric tons per hectare in China, 

20 percent or 0.3 metric tons per hectare in India, and 0.3 metric tons per hectare in 

WANA; rainfed cereal area will increase by 0.6 million hectares in China, 0.8 million 

hectares in India, and 0.10 million hectares in WANA (Table 5).  Such an increase would 

require substantial additional investments in agricultural research and management for 

rainfed areas compared to the baseline.   Given the size of these required increases in 

rainfed cereal yield in China, India, and WANA, it may be necessary for these countries to 

also rely more on imports to meet the decline in irrigated production compared to the 

baseline.   
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SUMMARY AND CONCLUSIONS 

 

Although irrigated production has made an increasing contribution to global food 

production (especially during the Green Revolution), rainfed agriculture still produces 

about 60 percent of total cereals.  The baseline analysis shows that rainfed agriculture will 

continue to play a very important role in cereal production, contributing one-half of the 

total increase of cereal production between 1995 and 2025.   However, appropriate 

investments and policy reforms will be required to enhance the contribution of rainfed 

agriculture, particularly if irrigation investment declines relative to the baseline scenario. 

Water harvesting has the potential in some regions to improve rainfed crop yields, 

and can provide farmers with improved water availability and increased soil fertility in 

some local and regional ecosystems, as well as environmental benefits through reduced 

soil erosion.  However, despite localized successes, broader farmer acceptance of water 

harvesting techniques has been limited, due to the high costs of implementation and higher 

short-term risk due to the necessity of additional inputs, cash, and labor.  Water harvesting 

initiatives frequently suffer from lack of hydrological data and insufficient attention during 

the planning stages to important social and economic considerations, and the absence of a 

long-term government strategy for ensuring the sustainability of interventions.  Greater 

involvement of farmers from the planning stages and the use of farmers for maintenance 

and data collection and provision of appropriate educational and extension support could 

help expand the contribution of water harvesting. 

The rate of investment in crop breeding targeted to rainfed environments is crucial 

to future crop yield growth. Strong progress has been made in breeding for enhanced crop 
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yields in rainfed areas, even in the more marginal rainfed environments.  The continued 

application of conventional breeding and the recent developments in non-conventional 

breeding offer considerable potential for improving cereal yield growth in rainfed 

environments.  Cereal yield growth in rainfed areas could be further improved by 

extending research both downstream to farmers and upstream to the use of tools derived 

from biotechnology to assist conventional breeding, and, if concerns over risks can be 

solved, from the use of transgenic breeding.   

Crop research targeted to rainfed areas should be accompanied by increased 

investment in rural infrastructure and policies to close the gap between potential yields in 

rainfed areas and the actual yields achieved by farmers.  Important policies include higher 

priority for rainfed areas in agricultural extension services and access to markets, credit, 

and input supplies.  Successful development of rainfed areas is likely to be more complex 

than in high-potential irrigated areas because of their relative lack of access to 

infrastructure and markets, and their more difficult and variable agroclimatic 

environments.  Investment in rainfed areas, policy reform, and transfer of technology such 

as water harvesting will therefore require stronger partnerships between agricultural 

researchers and other agents of change, including local organizations, farmers, community 

leaders, NGOs, national policymakers and donors.  
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LIST OF ABBREVIATIONS 

 
CHA   Chemical hybridizing agent 
CIMMYT  International Maize and Wheat Improvement Center 
CSIRO   Commonwealth Scientific & Industrial Research Organization 
GMO   Genetically modified organism 
GW-HRF2 Groundwater overdraft phased out, combined with higher growth in 

rainfed production, including higher rainfed area, yield, and larger 
improvement of effective rainfall use 

GxE   Genotype by environment 
HI   Harvest index 
ICARDA  International Center for Agricultural Research in the Dry Areas 
IFPRI   International Food Policy Research Institute 
IIMI   International Irrigation Management Institute 
IRRI   International Rice Research Institute 
LFA   Less-favored area 
LIV-HIER Low investment in irrigation development and water supply but high 

increase of effective rainfall use 
LIV-HRF Low investment in irrigation development and water supply but 

higher increase of rainfed area and yield 
MAWW  Maximum allowable water withdrawal 
MoALD  Ministry of Agriculture and Livestock Development, Kenya 
MV   Modern variety 
NERICA  New Rice for Africa 
NIER   No improvement in effective rainfall use 
OPV   Open-pollinated variety 
SI   Supplemental irrigation 
SSA   Sub-Saharan Africa  
TV   Traditional variety 
WANA  West Asia and North Africa 
WARDA  West Africa Rice Development Association 
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