
JSS Journal of Statistical Software
July 2007, Volume 21, Issue 2. http://www.jstatsoft.org/

The WaveD Transform in R: Performs Fast

Translation-Invariant Wavelet Deconvolution

Marc Raimondo
University of Sydney

Michael Stewart
University of Sydney

Abstract

This paper provides an introduction to a software package called waved making avail-
able all code necessary for reproducing the figures in the recently published articles on the
WaveD transform for wavelet deconvolution of noisy signals. The forward WaveD trans-
forms and their inverses can be computed using any wavelet from the Meyer family. The
WaveD coefficients can be depicted according to time and resolution in several ways for
data analysis. The algorithm which implements the translation invariant WaveD trans-
form takes full advantage of the fast Fourier transform (FFT) and runs in O(n(log n)2)
steps only. The waved package includes functions to perform thresholding and fine reso-
lution tuning according to methods in the literature as well as newly designed visual and
statistical tools for assessing WaveD fits. We give a waved tutorial session and review
benchmark examples of noisy convolutions to illustrate the non-linear adaptive properties
of wavelet deconvolution.

Keywords: WaveD, wavelets, vaguelettes, deconvolution, Meyer wavelet.

1. Introduction

In this paper we present the WaveD transform in R and illustrate some statistical applications
of the WaveD transform to the deconvolution of noisy signals. The aim of deconvolution is
to recover an unknown function f from a noisy observation of g ∗ f(t) =

∫
T g(t− u)f(u)du,

Y (t) = g ∗ f(t) + ε ξ(t), t ∈ T = [0, 1], (1)

where the convolution kernel g is observed with noise (taking ε = ε below) or without noise
(taking ε = 0 below),

gε(t) = g(t) + ε ζ(t), t ∈ T = [0, 1], (2)

and ξ, ζ are independent white noises and 0 < ε, ε < 1 are noise levels. Both f and g are
supposed to be periodic on T and g ∗ f(t) denotes the circular convolution. In the finite

http://www.jstatsoft.org/

2 The WaveD Transform in R

sample implementation of model (1) at points ti = i/n, i = 1, ..., n, we let

ε = σ/
√
n, (Aε),

where σ is the noise standard deviation and n is the sample size. Let y be a vector with
elements (y1, ..., yn) where yi = Y (ti), i = 1, . . . , n. An illustration of model (1) is given in
Figure 3 using the test functions of Figure 1. As for model (2) we consider the two cases:
(a) ε = 0 in which case gε(t) = g(t) (known kernel); (b) ε = ε = σ/

√
n (noisy kernel). We

denote g a vector (g1, ..., gn) with elements gi = gε(ti), i = 1, . . . , n. An illustration of model
(2) in the Fourier domain is given in Figure 8. In its simplest form, the WaveD transform as
discussed in this paper requires only y and g as input, other arguments are optional.

1.1. What can the WaveD transform offer?

Over the last decade many wavelet methods have been developed to recover f from indirect
observations, among others: Donoho (1995); Abramovich and Silverman (1998); Pensky and
Vidakovic (1999); Walter and Shen (1999); Johnstone (1999); Cavalier and Koo (2002); Fan
and Koo (2002); Kalifa and Mallat (2003). Applications and general references on deconvolu-
tion models may be found in O’Sullivan (1986), Bertero and Boccacci (1998) and Johnstone
and Raimondo (2004).

The WaveD transform was first introduced in Johnstone, Kerkyacharian, Picard, and Rai-
mondo (2004) and later refined in Donoho and Raimondo (2004), Kerkyacharian, Picard, and
Raimondo (2007) and Cavalier and Raimondo (2007). Some extensions of the WaveD trans-
form to the 2-dimensional setting are discussed in Donoho and Raimondo (2005) and Cavalier
and Raimondo (2006).

A specific feature of the WaveD method (when compared with existing wavelet deconvolution
methods as listed above) is to address the deconvolution problem in the periodic setting (1)
using band-limited wavelets. As a result most of the WaveD computations can be carried
out in the Fourier domain. While sharing near-optimal properties with some of the existing
wavelet methods listed earlier, we list below some features which are specific to the WaveD
method:

• The fast algorithm which implements the translation invariant version of WaveD takes
full advantage of the Fast Fourier Transform and is computed in O(n(log n)2) steps.

• The WaveD method is easy to use with only two tuning parameters required.

• The WaveD method can be used with noisy eigen values (without modification).

• The WaveD fine resolution level is chosen according to the degree of ill-posedness in a
data-driven fashion and in agreement with the optimal theory.

• The WaveD method can be used with non-homogeneous operators such as in boxcar
convolution.

From the statistical point of view, when comparing WaveD with non-wavelet methods, we
note that WaveD enjoys the statistical properties specific to wavelet thresholding estimators:

• WaveD is a truly non-linear adaptive algorithm which has near optimal asymptotic
properties over a wide range of function classes and for a variety of Lp-loss functions.

Journal of Statistical Software 3

• WaveD is capable of representing functions with discontinuities or with non-homogeneous
time and frequency behaviour.

• The translation invariant version of WaveD improves upon the numerical performance
of ordinary WaveD by cycle spinning over all circulant shifts.

• WaveD is an non-iterative deconvolution technique.

1.2. What’s new in the waved package?

Earlier versions of the WaveD method have been implemented through various small Matlab
packages, corresponding to various existing WaveD transforms. For example one package uses
the algorithm of Kolaczyk (1994) to compute the ordinary Meyer wavelet transform. Another
uses the algorithm of Donoho and Raimondo (2004) to compute the translation invariant
Meyer transform. These small WaveD packages are not self-contained and are intented for
use with WaveLab (Buckheit, Donoho, Johnstone, and Sargle 1995).

This paper describes a unified setting where all the WaveD transforms are implemented in the
software environment R (R Development Core Team 2007) via a contributed package named
waved (Raimondo and Stewart 2006). The aims of the waved package are:

1. To make available, in one self-contained package all code necessary to compute the
various WaveD transforms with optimal data-driven tuning for wavelet deconvolution.

2. To take full advantage of the object-oriented R environment: the (top) function, called
WaveD, produces objects of class wvd. The wvd class of objects are R lists containing
the various WaveD transforms as well as all the WaveD estimate characteristics such as
threshold, fine resolution level, degree of Meyer wavelet and so on.

3. To introduce visual and statistical tools to assess the validity and the quality of a
WaveD fit. Special features of the waved package include a summary and a plot function
specifically designed for objects of class wvd.

4. To allow a user to reproduce illustrative figures and analyses from the literature.

Finally, we discuss how the waved package differs from existing R packages for wavelet analysis.
Existing wavelet R packages include: the wavethresh package of Nason, Kovac, and Mächler
(2006): a software to perform wavelet statistics and transforms; the waveslim package of
Whitcher (2006): basic wavelet routines for one, two and three dimensional signal analysis; the
wavelets package of Aldrich (2007): a package of functions for computing wavelet filters. These
packages offer a wide range of compactly supported wavelet transforms, typically Daubechies
wavelets, for direct data analysis. On the other hand the waved package is designed for
indirect data analysis (such as noisy-convolution) and uses band-limited wavelets, typically
Meyer wavelets.

1.3. Paper organisation

In section 2 we give a brief introduction to the WaveD transform based on the Fourier trans-
form. Section 3 is concerned with setting-up the waved software and its demo. We also present

4 The WaveD Transform in R

the WaveD function in R and introduce objects of class wvd. In Section 4, we discuss some
more advanced features of the WaveD function in R, this includes statistical applications, fine
tuning of the parameters and WaveD fit assessment. Section 5 contains a list of waved main
functions.

2. The WaveD transform

2.1. Fourier transforms

Convolution products are naturally represented in the Fourier domain. In the periodic setting,
we can write the model (1) in terms of Fourier coefficients,

y` = g`f` + εξ`, ` ∈ Z, (3)

where, with e`(t) = e2πi`t and 〈f, g〉 =
∫
T fḡ, f` = 〈f, e`〉, g` = 〈g, e`〉 and ξ` = 〈ξ, e`〉 are i.i.d.

standard (complex-valued) normal random variables. As for the model (2) we have

x` = g` + εz`, ` ∈ Z, (4)

where z` are i.i.d. standard (complex-valued) Gaussian r.v.’s independent of ξ`, and noise
level 0 < ε < 1. This model includes cases where the eigen-values (g`) are not fully known
but are observed with noise as illustrated in Figure 8.
In this paper ψ denotes a Meyer wavelet and φ denotes the corresponding scaling function.
Typically ψ is a band limited function whose Fourier transform F (ψ) := ψ̂ is smooth (Mallat
1998, p.247). In practice, we use a polynomial function to define the so-called Meyer window
(Mallat 1998, p.248). Throughout this paper we use ψ̂ and φ̂ corresponding to a polynomial of
degree 3, as in the software default setting. As usual ψκ(x) = 2j/2ψ(2jx− k) where κ = (j, k)
denotes the translated-dilated version of ψ, and φκ(x) denotes the translated-dilated version
of φ. In the periodic setting, the waved package utilises the periodised scaling function
Φκ(x) :=

∑
`∈Z φκ(x + `), and periodised wavelets Ψκ(x) :=

∑
`∈Z ψκ(x + `), whose Fourier

coefficients satisfy
Ψj,0
` = 〈Ψj,0, e`〉 = 2−j/2ψ̂(`/(2j × 2π)),

and
Ψκ
` = 〈Ψκ, e`〉 = exp(2πi`k/2j)Ψj,0

` .

2.2. The WaveD paradigm

The WaveD paradigm (Johnstone et al. 2004) stipulates that one can perform deconvolution
and wavelet transforms simultaneously. To see this we write wavelet coefficients in terms of
Fourier coefficients using Plancherel’s formula. This is illustrated in the next diagram using
the noise-free input function h(t) = (f ∗ g)(t). In this diagram (and in the sequel) →F ,←F−1

denotes the Fourier transform and its inverse. We define the Forward WaveD transform and
its inverse as

FWaveD(h, g) = (βκ)κ, IWaveD(βκ) =
∑
κ

βκΨκ, (5)

where βκ =
∫
fΨκ, κ = (k, j), j = −1, 0, 1, ..., k = 0, ..., 2j − 1, (Ψ−1,0 = Φ).

Illustration of the WaveD paradigm in the time, Fourier and wavelet domain,

Journal of Statistical Software 5

Time domain Fourier domain Wavelet domain
h(t) = (f ∗ g)(t) →F h` = f` × g`

Ψκ(t) (Ψκ
`) −→

∫
hΨ̄κ∑

`(h`)Ψ̄
κ
`

h` ÷ g` (elementwise division)∑
` f`Ψ̄

κ
` ∫

fΨ̄κ = βκ∑
κ βκΨκ = f(t) ←−

2.3. Adaptive denoising via non-linear WaveD transform

In the case of noisy data (1), (2) we note that

FWaveD(y, g) =
(∑

`

(
y`
g`

)Ψκ
`

)
κ

:= (β̃κ)κ,

provides an unbiased estimator of (βκ)κ. The waved software uses statistical techniques to
perform wavelet regression and smoothing. The main idea is to remove small wavelet coeffi-
cients (noise) and keep large wavelet coefficients (signal). Optimal and data driven choices of
WaveD tuning parameters are further discussed in section 4; here we shall only present the
WaveD method in broad terms using a generic threshold function

η(β̃κ) := β̃κ × I(|β̃κ| ≥ λ), (6)

where λ is a threshold parameter. The WaveD estimator (Johnstone et al. 2004) is

WaveD(y, g) :=
∑
κ

η(β̃κ)Ψκ(t) := f̂(t), (7)

which with a slight abuse of terminology we also call the WaveD transform. We summarise
the main steps in the diagram below

Time domain Fourier domain Wavelet domain
Y (t) →F y` = f` g` + εξ` −→

(∑
`(
y`
g`

)Ψκ
`

)
κy thresholding

f̂(t) ←− (η(β̃κ))κ

2.4. The translation invariant WaveD transform

Numerical (and computational) properties of the WaveD transform are improved using cycle
spinning (Donoho and Raimondo 2004). For any h > 0, we denote Thf(x) = f(x + h) the
shift operator and→FWaveD,←IWaveD the Forward WaveD transform and its inverse (5). For an

6 The WaveD Transform in R

arbitrary time shift h we define one cycle-spin of the WaveD transform as

Time domain Wavelet domain
Y (t)

shift
y

ThY (t) −→FWaveD (βhκ)y
η

thresholding

f̃h(t) ←−IWaveD η(βhκ)
unshift

y
T−h(f̃h)(t)

Let Hn = {1/n, 2/n, ..., 1− 1/n, 1} be the set of all possible circulant shifts. The translation
invariant WaveD transform is

f̃TI = Aveh∈HnT−h(f̃h) =
1
|Hn|

∑
h∈Hn

T−h(f̃h) . (8)

3. The WaveD transform in R

3.1. Software access

The waved software (Raimondo and Stewart 2006) is provided as an R package obtainable
from the Comprehensive R Archive Network at http://CRAN.R-project.org/. Installation
instructions are provided there also.

3.2. Getting help

Once the waved package has been installed detailed help pages for basic functions may be
obtained within R using the help() function. For example help(WaveD) gives the help page
of the main waved function. Note that waved refers to the R package whereas WaveD is the
main function which performs wavelet deconvolution. See section 5 for a list of basic waved
functions.

3.3. The waved demo

From now on we assume that the waved package has been attached. Typing demo(waved)
provides a series of examples which illustrate various applications of the WaveD transform.
To simulate data according to (1) and (Aε) one needs to specify: (a) a target function f ; (b)
a convolution kernel g; (c) a sample size n; (d) a standard deviation σ. The simplest way to
get started is to use the waved package demo. Just type demo(waved) and answer questions
at the prompt. Alternatively, the function waved.example() can be used (recommended) to
generate the data sets and figures in this paper by setting its two arguments to TRUE (default).

R> data <- waved.example(TRUE, TRUE)

http://CRAN.R-project.org/

Journal of Statistical Software 7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 1: two signals t→ f(t), ti = i/n, i = 1, ..., n = 2048. Left: lidar; right: doppler.

Initializing noisy-blurred signals model:
sample size n = 2048
noise sd = 0.05
Convolution kernel g:
gamma-distribution with shape paremeter= 0.5
and scale parameter= 0.25
(effective) Degree of Ill-Posedness (DIP)= 0.5
The seed number has been set to 11
Blurred Signals to Noise Ratios:
Lidar BSNR(dB) = 15.3
Doppler BSNR(dB) = 13.8

This creates a list data which contains the data used in this paper,

R> attach(data)

R> names(data)

[1] "lidar.noisy" "lidar.noisyT" "doppler.noisyT" "lidar.blur"
[5] "doppler.noisy" "doppler.blur" "t" "n"
[9] "g" "lidar" "doppler" "seed"
[13] "sigma" "g.noisy" "g.noisyT" "dip"
[17] "k.scale"

The various data sets are depicted in Figure 1 (target signals), Figure 2 (blurred signals) and
Figure 3 (noisy blurred signals). The noise standard deviation default setting (as shown in

8 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure 2: signals of Figure 1 after smooth blurring with DIP=ν=0.5, see (10).

Figure 3) is σ = 0.05 with sample size n = 2048 so that the blurred-signal-to-noise-ratios
(BSNR), in dB, for signals of Figure 3 is approximately 15dB where

BSNRdB = 10 log10

(||f ∗ g||2
σ2

)
. (9)

In the default setting the convolution kernel g is defined using the density of a Gamma
distribution with shape and scale parameters set to 0.5 and 0.25 respectively. In this setting,
the eigen-values (g`) satisfy

|g`| ∼ |l|−ν , (10)

with ν = 0.5. The parameter ν which drives the decay of the eigen-values is often referred as
the Degree of Ill-Posedness (DIP) of the convolution problem (Johnstone et al. 2004).

3.4. Setting up your examples

Once you become more familiar with the waved package you may want to generate your own
data by modifying the default parameters of the demo. The function waved.example() can be
used to generate simulated examples with different model parameters: sample size, noise level,
Degree of Ill-Posedness, seed and so on. This is done by setting its first argument to FALSE
and answering questions at the prompt. For example to set the sample size to n = 4096,

R> my.own.simulation <- waved.example(FALSE)

Please enter the sample size (must be a power of 2)

R> 4096

and so on to keep or change the other model parameters. To recover the data sets used in this
paper just set the first argument of waved.example() to TRUE; the second argument refers to
graphics display, the default setting is TRUE, hence

Journal of Statistical Software 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4
0.

6
Figure 3: Blurred signals of Figure 2 plus noise with s.d σ = 0.05, BSNR ≈ 15 dB see (9).

R> original.data.with.figures <- waved.example(TRUE, TRUE)

R> original.data.without.figures <- waved.example(TRUE, FALSE)

Alternatively, the figures can be produced by calling in waved data names

R> plot(t, lidar, type="l")

R> plot(t, lidar.blur, type="l")

R> plot(t, lidar.noisy, type="l")

3.5. The WaveD function and wvd objects

The function WaveD creates R objects of class wvd. The wvd class objects are lists which
contain the various WaveD transforms as well as all the WaveD estimate characteristics such as
threshold, resolution level, degree of the Meyer wavelet and so on. Statistical properties of
objects of class wvd are discussed in Section 4. The summary and plot functions for objects
of class wvd are discussed in Section 4.5. In its simplest version the WaveD function requires
two input arguments: y a vector with elements (y1, ..., yn) where yi = Y (ti), i = 1, . . . , n,
see (1), and g a vector (g1, ..., gn) with elements gi = gε(ti), i = 1, . . . , n, see (2). Optional
arguments to WaveD include: F the finest resolution level j used in the expansion (7) as
well as the threshold value λ at (6). The parameter F may take any value within the range
L, ..., (log2(n)−1) where L is a low resolution level (default L = 3). In our examples n = 2048
so that F may take any value within the range 3,...,10. For illustration purposes,

R> lidar.wvd <- WaveD(lidar.blur, g, F=6, thr=0)

R> multires(lidar.wvd$w, lo=3, hi=6)

R> lidar.noisy.wvd <- WaveD(lidar.noisy, g, F=6, thr=0)

R> multires(lidar.noisy.wvd$w, lo=3, hi=6)

10 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

4.
0

5.
0

6.
0

R
es

ol
ut

io
n

Le
ve

l

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

4.
0

5.
0

6.
0

R
es

ol
ut

io
n

Le
ve

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Figure 4: top plots depict the Forward WaveD transform of lidar.blur (left) and lidar.noisy
(right). Bottom plots depict (corresponsding) inverse WaveD transforms (5).

these commands produce the WaveD transform of the blurred lidar data of Figure 2 as well
as the WaveD transform of the noisy-blurred lidar data of Figure 3. In both cases using F=6
as the finest resolution level and threshold thr=0 (no thresholding). The corresponding plots
can be seen in Figure 4.
The forward WaveD transform can be obtained by typing

R> lidar.w <- FWaveD(lidar.blur, g, F=6)

or lidar.wvd$w which returns the same output as lidar.w as defined above. The vector
lidar.w is a vector of wavelet coefficients stored from the lowest resolution level to the
highest resolution level. The function dyad(j) may be used to access wavelet coefficients at
a given resolution level

R> lidar.wavelet.coef.at.level.5 <- lidar.w[dyad(5)]

A useful property of wavelet coefficients is that they are large (in absolute value) near discon-
tinuities, see e.g. the top RHS plot of Figure 4. Another feature of wavelet coefficients is that

Journal of Statistical Software 11

they become more and more sensitive to noise as the resolution level increases. See e.g. the
top LHS plots of Figure 4. In Figure 4 (top plots), the function multires() is used to depict
wavelet coefficients according to time and frequency. More details about the multires()
function and the data structure of the WaveD transforms are given in Section 5.

The inverse WaveD transform can be obtained by typing

R> inverse.waved <- IWaveD(lidar.w)

or lidar.wvd$iw. The vector lidar.wvd$iw returns the inverse WaveD transform (5) com-
puted from lidar.w without any thresholding. Two illustrations of the inverse WaveD trans-
form are depicted on the bottom plots of Figure 4 (with corresponding Forward WaveD
transforms depicted on the top plots).

The ordinary WaveD transform is a combination of the FwaveD and IWaveD transforms
together with some thresholding options (7). The ordinary WaveD transform is obtained from
a wvd object by typing lidar.wvd$ord which, here, returns approximations to lidar as seen
in Figure 4. If no thresholding is performed (thr=0) the ordinary WaveD transform returns
the same output as the inverse WaveD transform. If a non-zero threshold is used the ordinary
WaveD transform returns the inverse WaveD transform after thresholding. For noisy data it
is desirable to improve WaveD approximations such as depicted on the RHS bottom plot of
Figure 4 by using a non-zero threshold. This is detailed next.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Figure 5: WaveD transform (7) of lidar.noisy with F=6, λ = 0.2 (left) and λ = 0.02 (right).

4. Statistical applications of the WaveD transform

In this section we discuss some more advanced features of the WaveD transform when dealing
with noisy data. We use the simulated data of Figure 3 to illustrate how the WaveD function
chooses the fine tuning parameters F and thr in a data-driven fashion in agreement with the
optimal choices prescribed in the literature (Cavalier and Raimondo 2007).

12 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

4.
0

5.
0

6.
0

R
es

ol
ut

io
n

Le
ve

l

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

4.
0

5.
0

6.
0

R
es

ol
ut

io
n

Le
ve

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Figure 6: illustration of thresholding (11) using the lidar.noisy data. Top left: Forward WaveD
transform (un-thresholded). Top right: Forward WaveD transform after maxiset thresholding. Bottom
plots: corresponding WaveD estimates (7).

4.1. Choosing a threshold

The threshold value λ at (6) may be thought of as a smoothing parameter since it dictates
the amount of smoothing in the estimate, large λ yields smoother estimates and vice-versa.
A single threshold value λ may be entered directly in the WaveD function

R> plot(t, WaveD(lidar.noisy, g, F=6, thr=0.2)$ord, type="l")

R> plot(t, WaveD(lidar.noisy, g, F=6, thr=0.02)$ord, type="l")

with corresponding plots depicted in Figure 5. Alternatively a set of level dependent thresh-
olds may be entered as a vector,

R> my.thr <- c(0.01, 0.02, 0.03, 0.04)

R> lidar.my.thr.wvd <- WaveD(lidar.noisy, g, L=3, F=6, thr=my.thr)

will use threshold λ = 0.01 at level j = 3, λ = 0.02 at resolution level j = 4 and so on.

Journal of Statistical Software 13

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
10

R
es

ol
ut

io
n

Le
ve

l

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

Figure 7: the maxiset threshold (11) do not always prevent noise in high resolution level. Left: the
Forward WaveD transform of lidar.noisy after maxiset threshodling when F=10. Right: correspond-
ing WaveD estimate (7).

The maxiset threshold. If no threshold parameter is specified the WaveD function will use
the so-called “maxiset threshold” (11). This level-dependent threshold is derived from the
maxiset theory (Johnstone et al. 2004). For example,

R> lidar.maxi.wvd <- WaveD(lidar.noisy, g)

will use the follwing threshold values

R> round(maxithresh(lidar.noisy, g, L=3, F=6), 4)

[1] 0.0134 0.0198 0.0298 0.0459

corresponding to a vector thr with entries (λ3, λ4, ..., λ6) of level dependent thresholds (11).
The effect of the maxiset threshold is illustrated in Figure 6. As seen in the RHS plots of
Figure 6, the WaveD estimate with the maxiset threshold automatically select significant co-
efficients to be kept for the reconstruction. This process removes noise (small coefficients) and
smoothes the estimate. The un-thresholded and the thresholded Forward WaveD transforms
may be obtained from a wvd object as follows,

R> unthresholded.w <- lidar.maxi.wvd$w

R> multires(unthresholded.w, lo=3, hi=6)

R> thresholded.w <- lidar.maxi.wvd$w.thr

R> multires(thresholded.w, lo=3, hi=6)

which produce the plots of Figure 6. The maxiset threshold is computed as follows

λj = σ̂γ σj cn. (11)

14 The WaveD Transform in R

−400 0 200 400

−
6

−
5

−
4

−
3

−
2

−
1

0

−400 0 200 400

−
6

−
5

−
4

−
3

−
2

−
1

0
Figure 8: illustration of the fine level selection in the Fourier domain (13), a log-scale is used on
the vertical-axis. In both plots the dashed curve represent the noise level ` → log |`1/2ε(log(1/ε2))|.
Left, solid curve: ` −→ log |g`|, where g` are noise-free eigen-values (ε = 0). Right: noisy-eigen-values
(solid) ` −→ log |x`| where x` = g` + εξ` with ε = ε = 0.05/

√
2048.

• σ̂: estimate of the noise standard deviation, σ. If yJ,k = 〈Y,ΨJ,k〉, denote the finest scale
wavelet coefficients of the observed data, then σ̂ = m.a.d.{yJ,k}/.6745, where m.a.d. is
median absolute deviation. Type scale(lidar.noisy) to get σ̂ for the lidar.noisy
data.

• γ: constant which depends on the tail of the noise distribution. For Gaussian noise, the
range

√
2 ≤ γ ≤

√
6 gives good results in practice. The default setting for WaveD is the

conservative choice γ =
√

6.

• σj : level-dependent scaling factor which depends on the convolution kernel.

σj := τj(x`) =
(
|Cj |−1

∑
`∈Cj

|x`|−2
)1/2

,

where Cj = {l : Ψκ
` 6= 0} ⊂ (2π/3) · [−2j+2,−2j]

⋃
[2j , 2j+2].

• cn: sample size-dependent scaling factor reminiscent of the Universal threshold:

cn =
(log n

n

)1/2
.

4.2. Choosing the finest resolution level

The fine resolution level F is related to the highest (Fourier) frequency M allowed in the
WaveD estimator 2F ≈ M. The tuning parameter F stipulates the range of resolution levels
where the approximations (7) or (8) are used:

Λn = {(j, k), L ≤ j ≤ F, 0 ≤ k ≤ 2j}.

Journal of Statistical Software 15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Figure 9: left, ordinary WaveD transform of lidar.noisy. Right, translation-invariant WaveD trans-
form of lidar.noisy.

Here L is a low resolution parameter (default is L = 3). A numerical value for F within the
range L ≤ F ≤ log2(n)− 1 may be entered directly in the WaveD function as in the examples
of Section 3.5 where we used F = 6. If n = 2048 the maximum value allowed is F=10,

R> lidar.Fmax.wvd <- WaveD(lidar.noisy, g, F=10)

R> multires(lidar.Fmax.wvd$w.thr)

R> plot(t, lidar.Fmax.wvd$ord, type="l")

Unlike direct estimation problems (Donoho, Johnstone, Kerkyacharian, and Picard 1995)
where it is customary to keep all resolution levels setting F = log2(n) − 1, the asymptotic
theory for deconvolution (Johnstone et al. 2004) shows that one should stop at a fine resolution
level F = j1 where j1 depends on the degree of ill-posedness of the convolution kernel (10)

2j1 = O
((n

log n
) 1

1+2ν

)
. (12)

The last condition shows that the faster the eigen values go to zero the sooner the wavelet
expansion should stop. In pratical terms this means that the maxiset threshold will prevent
noise in the estimate up until a high resolution level j1 which depends on the degree of difficulty
of the convolution as well as the noise level. It is important to note that, even after maxiset
thresholding, the WaveD estimate based on all resolution levels may, sometimes, contain high
noise perturbations. This is illustrated on Figure 7 where there are large noise residuals in
the WaveD estimate due to large (unthresholded) coefficients at resolution level F=10.

Data driven fine level selection. To prevent noise perturbation at high resolution level,
WaveD is fitted with a function find.j1 which implement the data-driven method of Cavalier
and Raimondo (2007) to find the optimal fine resolution level j1 for noisy deconvolution based
on the maxisets threshold. The idea is to keep all (Fourier) frequencies until (the moduli of)

16 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Figure 10: ordinary WaveD transform of lidar.noisy with HARD thresholding (left) and SOFT thresh-
olding (right).

the eigen values fall below an appropriate noise level. This is illustrated on Figure 8. Let

M = min
{
`, ` ≥ 0 : |x`| ≤ `1/2 ε (log 1/ε2)

}
, (13)

denote the maximum Fourier frequency allowed in the WaveD formula (5). Then we define
the maximum wavelet resolution level as

ĵ1 = blog2(M)c − 1, (14)

where bxc is the largest integer below x. As seen on Figure 8 this process works for both
noise-free eigen-values (ε = 0) and noisy eigen-values. For example,

R> print(find.j1(g, scale(lidar.noisy)))

[1] 198 6

returns the optimal Fourier frequency M and fine resolution level F. The plotspec90 function
produces plots of the fine level selection process (13)

R> plotspec(g, scale(lidar.noisy))

R> plotspec(g.noisy, scale(lidar.noisy))

as seen in Figure 8.

4.3. Improving the fit using the translation invariant WaveD transform

While thresholding wavelet coefficients reduces the noise and smoothes the WaveD estimate it
also introduces Gibbs phenomenon near discontinuities see e.g. RHS bottom plots of Figure 6.

Journal of Statistical Software 17

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4
0.

6

Observations

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

4.
0

5.
0

6.
0

R
es

ol
ut

io
n

Le
ve

l

Thresholded FWaveD transform

−400 −200 0 200 400

−
6

−
5

−
4

−
3

−
2

−
1

0

Fourier domain fine resolution
 level F=6

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

TI−WaveD estimate

Figure 11: a typical plot of an object of class wvd, plot(doppler.wvd).

Such Gibbs effects can be reduced by cycle spining (Donoho and Raimondo 2004). Both the
ordinary (7) and the translation invariant (8) WaveD transform can be obtained from a wvd
object,

R> plot(t, lidar.maxi.wvd$ord, type="l")

R> plot(t, lidar.maxi.wvd$waved, type="l")

with corresponding outputs depicted in Figure 10. In any case where some thresholding is
performed we recommend using the translation invariant WaveD transform as it reduces visual
artifacts.

The MC-option. The algorithm which implements the translation-invariant WaveD trans-
form takes full advantage of the Fast Fourier Transform and requires only O(n(log n)2) steps.
This is faster than the algorithm which implements the ordinary WaveD transform. For con-
venience we provide an MC (Monte Carlo) option in the WaveD function. The default setting
is MC=FALSE so that a wvd object like WaveD(lidar.noisy, g) contains both the ordinary
and the translation invariant WaveD transforms. For faster computations in simulations and

18 The WaveD Transform in R

0 200 400 600 800

−
3

−
2

−
1

0
1

2
3

Shapiro normality test
 P=0.886

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

N(0,1) pdf and estimated density

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

●● ●●●● ●● ●●●

−3 −2 −1 0 1 2 3

Boxplot

Figure 12: plot(doppler.wvd). These residual plots suggest a good WaveD fit.

Monte-Carlo approximations, it is possible to set MC=TRUE, in this case the WaveD function
will only return the translation invariant WaveD estimate,

R> lidar.ti.fast.waved <- WaveD(lidar.noisy, g, MC=TRUE)

4.4. Thresholding policy

There are many ways to threshold wavelet coefficients and different strategies may be used
(Donoho et al. 1995). The two main thresholding policies studied in the literature are the
HARD thresholding policy as in (6) or the SOFT thresholding policy,

ηS(β̃κ) := sign(β̃κ)(|β̃κ| − λ)× I(|β̃κ| ≥ λ), (15)

where λ is a threshold parameter. The statistical theory for WaveD estimation (Johnstone
et al. 2004) is established for the HARD threshold policy (6) which is the default setting in WaveD.
However, for data analysis purposes and experimental study we provide a SOFT thresholding
option (15) in the WaveD function,

Journal of Statistical Software 19

0 200 400 600 800

−
4

−
2

0
2

4

Shapiro normality test
 P=0

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

N(0,1) pdf and estimated density

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●●

●

●

●

●●

●

●
●●●

●

●●

●

●

●
●

●

●
●

●●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Normal Q−Q Plot

● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ● ●●●● ●●●● ●● ●

−4 −2 0 2 4

Boxplot

Figure 13: plot(lidarT.wvd). These residual plots suggest a poor WaveD fit.

R> plot(t, WaveD(lidar.noisy, g, SOFT=FALSE)$ord, type="l")

R> plot(t, WaveD(lidar.noisy, g, SOFT=TRUE)$ord, type="l")

As seen in Figure 10, SOFT thresholding tends to further smooth the WaveD estimate but the
general appearance does not appear as sharp as the translation invariant WaveD estimate of
Figure 9.

4.5. The summary and plot functions for wvd objects

For convenience we provide a summary and a plot function specifically for objects of class wvd.
These functions can be used to assess the quality of WaveD fits. We illustrate this using the
doppler.noisy data set (doppler in Gaussian noise, see Figure 11) and the lidar.noisyT
data set (lidar in Student-t2 noise, see Figure 14).

R> doppler.wvd <- WaveD(doppler.noisy, g)

R> lidarT.wvd <- WaveD(lidar.noisyT, g)

R> plot(doppler.wvd)

20 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Observations

0.0 0.2 0.4 0.6 0.8 1.0

3
4

5
6

R
es

ol
ut

io
n

Le
ve

l

Thresholded FWaveD transform

−400 −200 0 200 400

−
6

−
5

−
4

−
3

−
2

−
1

0

Fourier domain fine resolution
 level F=6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

TI−WaveD estimate

Figure 14: lidar WaveD fit in non-Gaussian noise (default setting). The data set lidar.noisyT
(depicted on the top LHS) is the blurred-lidar of Figure 2 plus a Student-t2 noise scaled so that the
BSNR (9) is approximately 15 dB. This plot was produced by plot(lidarT.wvd).

The plot function for wvd objects is illustrated in Figures 10,12 and 14.

R> summary(doppler.wvd)

Call:
WaveD(yobs = doppler.noisy, g = g)
Degree of Meyer wavelet = 3 , Coarse resolution level= 3
Sample size = 2048 , Maximum resolution level= 10 .
WaveD optimal Fourier freq= 196 ; WaveD optimal fine resolution level j1= 6
The choice of the threshold is: Maxiset threshold
Thresholding policy= Hard . Threshold constant gamma= 2.449

Max|w| Threshold % of thresholding
level 3 0.301 0.009 0.125
level 3 0.222 0.013 0.000

Journal of Statistical Software 21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

(d)

Figure 15: Various lidar WaveD fits in the Student-t2 noise scenario.

level 4 0.167 0.020 0.625
level 5 0.128 0.030 0.906
level 6 0.078 0.046 0.969

In addition to providing the tuning parameters F = j1, thr = threshold, M = maximum
Fourier frequency, γ = maxiset threshold noise constant as well as thresholding policy, the
summary function gives some additional statistics such as the percentage of thresholding at a
given resolution level as well as the maximum (in absolute value) of the wavelet coefficients at
a given resolution level. It also gives the result of a test for normality based on the estimated
noise in the data. This can be used to assess the WaveD fit as discussed next.

Estimating noise contribution. In statistical application of wavelet methods it is custom-
ary to estimate noise feature such as variance or tail index using the wavelet coefficients of
the raw data at the largest resolution level (Raimondo and Tajvidi 2004). Here we shall call
the vector of wavelet coefficients at the largest resolution level: noise.proxy. This vector
may be obtained from a wvd object: noise.proxy <- lidar.maxi.wvd$noise. The summary
and plot functions use the noise.proxy vector to perform some elementary data analysis,

22 The WaveD Transform in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Observations

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

R
es

ol
ut

io
n

Le
ve

l

Thresholded FWaveD transform

−400 −200 0 200 400

−
6

−
5

−
4

−
3

−
2

−
1

0

Fourier domain fine resolution
 level F=5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

2
0.

6
1.

0

TI−WaveD estimate

Figure 16: lidar WaveD fit when the eigen-values are noisy.

compare Figure 12 with Figure 13.

WaveD-fit assessment. The asymptotic theory and fine tuning of the WaveD parameters
(Cavalier and Raimondo 2007) is based on the Gaussian white noise model (1) in which the
error terms follow a normal distribution. A close inspection to the proof shows that the
constant γ used in the maxiset threshold depends on the tail of the noise. For Gaussian noise
the value γ =

√
6 gives good results in simulation. However, in other scenarios a larger value

may be needed as this would be the case for heavy tailed noise. To assess the appropriateness
of the WaveD fit and of the maxiset threshold, the summary function gives the result of a
(Shapiro) test for normality based on the estimated noise in the data. For example,

R> plot(lidarT.wvd)

R> summary(lidarT.wvd)

...Estimated standard deviation= 0.094
Shapiro test for normality, P= 1.490849e-12

we see that for the Student-t2 noise scenario, the WaveD fit residuals fail the normality-test

Journal of Statistical Software 23

with a Shapiro-test P -value close to zero. The corresponding WaveD estimate exhibits a
large noise residual even after thresholding as seen on the bottom-RHS plot of Figure 14.
This combined with the residual plots of Figure 11 suggest a poor WaveD fit.

Improving WaveD-fit in non-Gaussian noise. We suggest some heuristic approaches to
improve WaveD fit in non-Gaussian scenarios,

R> plot(WaveD(lidar.noisyT, g, SOFT=TRUE)$ord, type="l")

R> plot(WaveD(lidar.noisyT, g, SOFT=TRUE, eta=sqrt(8))$ord, type="l")

R> plot(WaveD(lidar.noisyT, g, SOFT=FALSE, eta=sqrt(8))$waved, type="l")

R> plot(WaveD(lidar.noisyT, g, SOFT=FALSE, eta=sqrt(12))$waved, type="l")

(a) Using a soft threshold tends to reduce noise contributions and is more robust against
non-normal noise; (b) using an ordinary WaveD estimate with a slightly larger γ tends to
reduce noise contributions and is more robust against non-normal noise (in the summary
function check max|w| against the threshold and increase γ accordingly); (c) using a TI-
WaveD estimate with a slightly larger γ tends to reduce noise contributions but may not
remove residuals contributions as effectively as in Ordinary WaveD; (d) using a TI-WaveD
estimate with a bigger γ tends to reduce noise contributions and Gibbs phenomena. These
four approaches are illustrated on Figure 15 using the lidar.noisyT data. On this occasion
the TI-WaveD estimate with γ = 2

√
3 yields a better estimate.

4.6. WaveD estimation with noisy eigen-values

We finish this section by illustrating further adaptive properties of WaveD estimates. Depicted
in Figure 16 is a WaveD lidar fit constructed from the noisy-blurred data of Figure 3 and
the noisy eigen-values in the RHS plot of Figure 8.

R> lidar.NEV.wvd <- WaveD(lidar.noisy, g.noisy)

R> plot(lidar.NEV.wvd)

By comparing Figure 16 with Figure 9 we see that the quality of the WaveD approximation
is not affected much if one uses noisy eigen values instead of the true eigen values. This is
consistent with the asymptotic theory and numerical results of Cavalier and Raimondo (2007).

5. R commands

5.1. The WaveD command

The command WaveD(y,g) performs wavelet deconvolution using the data y and the convo-
lution kernel g. If g is not specified WaveD(y) performs a (direct) wavelet transform.

• Required arguments

– y: a vector with elements (y1, ..., yn) where yi = Y (ti), i = 1, . . . , n, as in (1)

– g: a vector (g1, ..., gn) with elements gi = gε(ti), i = 1, . . . , n, as in (2).

• Optional arguments

24 The WaveD Transform in R

– L: lowest resolution level (default=3).

– F: finest resolution level (default=data driven choice (14)).

– deg: deg of the Meyer Wavelet deg=1,2, or 3 (default=3).

– eta: threshold parameter (default=
√

6).

– MC: if Monte Carlo (MC=TRUE) WaveD returns only the TI-WaveD (default=FALSE).
Note if MC=TRUE the WaveD output is a simple vector not a list.

– SOFT: if SOFT=TRUE WaveD uses the soft-thresholding policy else hard (default=FALSE).

– thr: threshold length=1 or length=F-L+2 (default is maxiset threshold (11)).

• Value: in the case that MC=TRUE, WaveD returns a vector consisting of the translation
invariant WaveD estimate (8). In the case that MC=FALSE (the default), WaveD returns
an object of class wvd, list with following components

– j1: estimate of optimal resolution level (14).

– F: fine resolution level used (may be different than j1).

– M: estimate of optimal Fourier frequency (13).

– thr: threshold (6).

– w: Forward WaveD Transform (before thresholding).

– FWaveD: same as w.

– w.thr: Forward WaveD Transform (after thresholding).

– iw: Inverse WaveD Transform (based on w).

– ordinary: ordinary WaveD transform (7).

– waved: translation invariant WaveD transform (8).

– percent: percent of thresholding per resolution level.

– noise: noise proxy, wavelet coefficients at the largest resolution level.

– p: P-value of the Shapiro normality test based on noise.

– residuals: wavelet coefficients that have been removed before fine level F.

5.2. Other useful commands

We give a list of other waved commands which can be used independently of the WaveD()
function. In the examples below it is assumed that y is a vector with elements (y1, ..., yn)
where yi = Y (ti), i = 1, . . . , n, as in (1) and that g: a vector (g1, ..., gn) with elements
gi = gε(ti), i = 1, . . . , n, as in (2).

• FWaveD(y, g): the command lidar.w=FWaveD(y, g) returns a vector of wavelet coef-
ficients as in WaveD(y, g)$w. This vector has length n, the last n/2 entries are wavelet
coefficients at resolution level (J −1) where J = log2(n); the n/4 entries before that are
wavelet coefficients at resolution level (J − 2), and so on until level L. In addition, the
first 2L entries are scaling coefficients at coarse resolution level C = L. See the dyad()
function below for how to access wavelet coefficients at a given resolution level.

Journal of Statistical Software 25

• dyad(j) returns integers 2j + 1, ..., 2j+1 , hence the command WaveD(y,g)$w[dyad(7)]
returns the wavelet coefficients at resolution level 7.

• multires(WaveD(y, g)$w, lo=3, hi=7) depicts wavelet coefficients according to time
and resolution level 3,4,..7. In a fashion similar to the top plots of Figure 4.

• maxithresh(y, g, L=3, F=7) returns the maxiset threshold (11).

• scale(y) returns an estimate of the noise standard deviation.

• find.j1(g, scale(y)) returns the optimal Fourier frequency (13) and optimal resolu-
tion level (14).

• IWaveD(WaveD(y,g)$w) returns the inverse WaveD transform. The IWaveD function
can be used to construct/plot wavelets Ψj,k. First create a vector with n entries all
equal to zero and then set its entry with index ind = 2j +k+1, as given by the function
dyadjk(j,k), to one. Then use the IWaveD() function. For example,

R> wL <- rep(0,2048)

R> wR <- rep(0,2048)

R> wL[dyadjk(4,3)] <- 1

R> wR[dyadjk(6,40)] <- 1

R> plot(t, IWaveD(wL,3), type="l")

R> plot(t, IWaveD(wR,3), type="l")

returns plots of the Ψ4,3 and Ψ6,40 Meyer wavelets.

Acknowledgments

Bothauthors are grateful for the comments of an editor, an associate editor and a referee which
have improved the original version of the paper. Both authors would like to aknowledge the
contributions on the waved project from Laurent Cavalier, David Donoho, Iain Johnstone,
Gérard Kerkyacharian and Dominique Picard.

References

Abramovich F, Silverman BW (1998). “Wavelet Decomposition Approaches to Statistical
Inverse Problems.” Biometrika, 85(1), 115–129.

Aldrich E (2007). wavelets: A Package of Funtions for Computing Wavelet Filters, Wavelet
Transforms and Multiresolution Analyses. R package version 0.2-2, URL http://www.
atmos.washington.edu/~ealdrich/wavelets/.

Bertero M, Boccacci P (1998). Introduction to Inverse Problems in Imaging. Institute of
Physics, Bristol and Philadelphia.

Buckheit JB, Donoho D, Johnstone IM, Sargle JD (1995). WaveLab Reference Manual. Stan-
ford University, Stanford, USA. URL http://www-stat.stanford.edu/~wavelab/.

http://www.atmos.washington.edu/~ealdrich/wavelets/
http://www.atmos.washington.edu/~ealdrich/wavelets/
http://www-stat.stanford.edu/~wavelab/

26 The WaveD Transform in R

Cavalier L, Koo JY (2002). “Poisson Intensity Estimation for Tomographic Data Using a
Wavelet Shrinkage Approach.” IEEE Transactions on Information Theory, 48, 2794–2802.

Cavalier L, Raimondo M (2006). “On Choosing Wavelet Resolution in Image Deblurring.” In
E Banissi, M Sarfraz, M Hunag, Q Wu (eds.), “Computer Graphics, Imaging and Visuali-
sation 2006, Proceedings,” pp. 177–181. IEEE Computer Society. ISBN 0-7695-2606-3.

Cavalier L, Raimondo M (2007). “Wavelet Deconvolution With Noisy Eigen-Values.” IEEE
Transactions on Signal Processing, 55(6), 2414–2424.

Donoho D (1995). “Nonlinear Solution of Linear Inverse Problems by Wavelet-Vaguelette
Decomposition.” Applied Computational and Harmonic Analysis, 2, 101–126.

Donoho D, Johnstone IM, Kerkyacharian G, Picard D (1995). “Wavelet Shrinkage: Asymp-
topia?” Journal of the Royal Statistical Society B, 57, 301–369. With discussion.

Donoho D, Raimondo M (2004). “Translation Invariant Deconvolution in a Periodic Setting.”
The International Journal of Wavelets, Multiresolution and Information Processing, 14(1),
415–423.

Donoho D, Raimondo M (2005). “A Fast Wavelet Algorithm for Image Deblurring.” The
Australian & New Zealand Industrial and Applied Mathematics Journal, 46, C29–C46.
URL http://anziamj.austms.org.au/V46/CTAC2004/Dono.

Fan J, Koo JK (2002). “Wavelet Deconvolution.” IEEE Transactions on Information Theory,
48(3), 734–747.

Johnstone IM (1999). “Wavelet Shrinkage for Correlated Data and Inverse Problems: Adap-
tivity Results.” Statistica Sinica, 9(1), 51–83.

Johnstone IM, Kerkyacharian G, Picard D, Raimondo M (2004). “Wavelet Deconvolution
in a Periodic Setting.” Journal of the Royal Statistical Society B, 66(3), 547–573. With
discussion.

Johnstone IM, Raimondo M (2004). “Periodic Boxcar Deconvolution and Diophantine Ap-
proximation.” The Annals of Statistics, 32(5), 1781–1804.

Kalifa J, Mallat S (2003). “Thresholding Estimators for Linear Inverse Problems and Decon-
volutions.” The Annals of Statistics, 31, 58–109.

Kerkyacharian G, Picard D, Raimondo M (2007). “Adaptive Boxcar Deconvolution on Full
Lebesgue Measure Sets.” Statistica Sinica, 17, 317–340.

Kolaczyk ED (1994). “Wavelet Methods for the Inversion of Certain Homogeneous Linear
Operators in the Presence of Noisy Data.” PhD dissertation. Department of Statistics,
Stanford University, Stanford.

Mallat S (1998). A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego, CA,
2nd edition. ISBN 0-12-466605-1.

Nason G, Kovac A, Mächler M (2006). wavethresh: Software to Perform Wavelet Statistics
and Transforms. R package version 2.2-9.

http://anziamj.austms.org.au/V46/CTAC2004/Dono

Journal of Statistical Software 27

O’Sullivan F (1986). “A Statistical Perspective on Ill-posed Inverse Problems.” Statistical
Science, 1, 502–527.

Pensky M, Vidakovic B (1999). “Adaptive Wavelet Estimator for Nonparametric Density
Deconvolution.” The Annals of Statistics, 27, 2033–2053.

Raimondo M, Stewart M (2006). waved: Software to Perform Wavelet Deconvolution. R
package version 1.0, URL http://www.maths.usyd.edu.au/~marcr/.

Raimondo M, Tajvidi N (2004). “A Peaks Over Threshold Model for Change-Points Detection
by Wavelets.” Statistica Sinica, 14(1), 395–412.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Walter GG, Shen X (1999). “Deconvolution Using the Meyer Wavelet.” Journal of Integral
Equations and Applications, 11, 515–534.

Whitcher B (2006). waveslim: Basic Wavelet Routines for One, Two and Three-Dimensional
Signal Processing. R package version 1.6, URL http://www.image.ucar.edu/~whitcher/.

http://www.maths.usyd.edu.au/~marcr/
http://www.R-project.org/
http://www.R-project.org/
http://www.image.ucar.edu/~whitcher/

28 The WaveD Transform in R

Affiliation:

Marc Raimondo and Michael Stewart
School of Mathematics and Statistics
The University of Sydney
NSW 2006, Austrialia
E-mail: marcr@maths.usyd.edu.au
URL: http://www.maths.usyd.edu.au/~marcr/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 21, Issue 2 Submitted: 2007-03-06
July 2007 Accepted: 2007-04-20

mailto:marcr@maths.usyd.edu.au
http://www.maths.usyd.edu.au/~marcr/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	What can the WaveD transform offer?
	What's new in the waved package?
	Paper organisation

	The WaveD transform
	Fourier transforms
	 The WaveD paradigm
	Adaptive denoising via non-linear WaveD transform
	The translation invariant WaveD transform

	The WaveD transform in R
	Software access
	Getting help
	The waved demo
	Setting up your examples
	The WaveD function and wvd objects

	Statistical applications of the WaveD transform
	Choosing a threshold
	Choosing the finest resolution level
	Improving the fit using the translation invariant WaveD transform
	Thresholding policy
	The summary and plot functions for wvd objects
	WaveD estimation with noisy eigen-values

	R commands for WaveD transform
	The WaveD command
	Other useful commands

