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Abstract

Based on recent work by Fox and Andersen (2006), this paper describes substantial
extensions to the effects package for R to construct effect displays for multinomial and
proportional-odds logit models. The package previously was limited to linear and gener-
alized linear models. Effect displays are tabular and graphical representations of terms
– typically high-order terms – in a statistical model. For polytomous logit models, effect
displays depict fitted category probabilities under the model, and can include point-wise
confidence envelopes for the effects. The construction of effect displays by functions in the
effects package is essentially automatic. The package provides several kinds of displays
for polytomous logit models.

Keywords: effect displays, multinomial logit model, proportional-odds model, statistical graph-
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An “effect display” is a table or graph meant to represent a term in a statistical model. Effect
displays are generalizations of similar methods, such as Fisher’s (1936) “adjusted means” in
the analysis of covariance, Goodnight and Harvey’s (1978) “least-squares means” in analysis
of variance and covariance, and Searle, Speed, and Milliken’s (1980) “estimated population
marginal means.” To create an effect display, predictors in a term are allowed to range over
their combinations of values, while other predictors in the model are held to “typical” values.

The primary motivation for effect displays is the difficulty of interpreting many statistical
models directly from their estimated coefficients. For example, to interpret a linear model
with interactions requires that main effects – and possibly lower-order interactions – marginal
to an interaction be combined with the interaction, an operation that can entail mental
gymnastics. Similarly, the coefficients of regression splines defy direct interpretation. These
difficulties are compounded in generalized linear models, where interest usually inheres more
directly in the scale of the response variable than in the scale of the linear predictor on which
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the coefficients of the model are expressed.

Effect displays for generalized linear models were introduced by Fox (1987), and an imple-
mentation in the effects package for the statistical programming environment R (Ihaka and
Gentleman 1996; R Development Core Team 2009) was described in Fox (2003). The multi-
nomial and proportional-odds logit models are common statistical models for polytomous
(i.e., multi-category) categorical responses; these models are described in many sources (see,
e.g., Fox 2008, Section 14.2). Fox and Andersen (2006) extended effect displays to multi-
nomial and proportional-odds logit models where the principal obstacle was the derivation
of standard errors for the effects. Fox and Andersen’s results are given in Appendix A,
which describes the extension of the effects package to multinomial and proportional-odds
logit models. The package is available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=effects.

1. Review of effect displays for generalized linear models

The computation of effect displays is particularly simple for a generalized linear model, with
linear predictor η = Xβ and link function g(µ) = η; here, µ is the expectation of the
response vector y. Let β̂ represent an estimate of β, and V̂ (β̂) the estimated covariance
matrix of β̂. Let the rows of X0 include all combinations of values of predictors appearing in
a high-order term of the model, along with typical values of the remaining predictors. The
structure of X0, with respect for example to contrasts and interactions, is identical to that of
the model matrix X. We compute fitted values η̂0 = X0β̂ to represent the term in question,
consequently absorbing terms marginal to it. An “effect display” is a graph of these fitted
values as a function of the predictors in the term, or of the fitted values transformed to the
scale of the response, g−1(η̂0). The standard errors of η̂0, the square-root diagonal entries
of X0V̂(β̂)X

′
0, may be used to compute point-wise confidence intervals for the effects; the

end-points of these confidence intervals may also be transformed to the scale of the response.

To illustrate effect displays for a generalized linear model, we develop a logistic-regression
model for the Titanic data set in the effects package. This data set contains information
about the survival status, sex, age, and passenger class of 1309 passengers on the ill-fated
1912 maiden voyage of the ocean liner Titanic:

R> library("effects")

Loading required package: lattice
Loading required package: grid
Loading required package: MASS
Loading required package: nnet
Loading required package: colorspace

Attaching package: 'effects'

The following object(s) are masked from package:datasets :

Titanic

http://CRAN.R-project.org/package=effects
http://CRAN.R-project.org/package=effects
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R> summary(Titanic)

survived sex age passengerClass
no :809 female:466 Min. : 0.1667 1st:323
yes:500 male :843 1st Qu.: 21.0000 2nd:277

Median : 28.0000 3rd:709
Mean : 29.8811
3rd Qu.: 39.0000
Max. : 80.0000
NA's :263.0000

Notice that the variable age is missing for 263 passengers. In the analysis reported below,
we simply omit observations with missing age; for a more careful analysis of the Titanic
data, including imputation of missing data, see Harrell (2001, Chapter 12). The command
example(Titanic) reproduces the results that we present in this section.

We begin with a logistic regression of survival on sex, age, and passenger class, including all
interactions among the three predictors:

R> library("car")

R> titanic.1 <- glm(survived ~ passengerClass * sex * age, data = Titanic,

+ family = binomial)

R> Anova(titanic.1)

Anova Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

passengerClass 121.519 2 < 2.2e-16 ***
sex 275.779 1 < 2.2e-16 ***
age 34.913 1 3.447e-09 ***
passengerClass:sex 38.161 2 5.171e-09 ***
passengerClass:age 10.061 2 0.006537 **
sex:age 4.331 1 0.037429 *
passengerClass:sex:age 1.866 2 0.393344
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus, the three-way interaction among the predictors is non-significant, but each of the two-
way interactions is statistically significant. We proceed to remove the three-way interaction
and refit the model:

R> titanic.2 <- update(titanic.1, . ~ . - passengerClass:sex:age)

R> summary(titanic.2)

Call:
glm(formula = survived ~ passengerClass + sex + age + passengerClass:sex +
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passengerClass:age + sex:age, family = binomial, data = Titanic)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6138 -0.6755 -0.4435 0.3772 3.2448

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.390355 0.805280 4.210 2.55e-05 ***
passengerClass2nd 0.764667 0.959843 0.797 0.425650
passengerClass3rd -3.270002 0.764823 -4.276 1.91e-05 ***
sexmale -2.592233 0.753573 -3.440 0.000582 ***
age -0.003950 0.017574 -0.225 0.822158
passengerClass2nd:sexmale -0.878841 0.689942 -1.274 0.202738
passengerClass3rd:sexmale 1.885695 0.584625 3.225 0.001258 **
passengerClass2nd:age -0.060530 0.021420 -2.826 0.004714 **
passengerClass3rd:age -0.006244 0.016188 -0.386 0.699711
sexmale:age -0.031378 0.015117 -2.076 0.037929 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1414.62 on 1045 degrees of freedom
Residual deviance: 917.84 on 1036 degrees of freedom
(263 observations deleted due to missingness)

AIC: 937.84

Number of Fisher Scoring iterations: 5

The allEffects function in the effects package will compute effects for all high-order terms
in a model – that is, terms that are not marginal to any others in the model:

R> titanic.2.all <- allEffects(titanic.2, typical = median, given.values =

+ c(passengerClass2nd = 1/3, passengerClass3rd = 1/3, sexmale = 0.5))

R> print(titanic.2.all, digits = 3)

model: survived ~ passengerClass + sex + age + passengerClass:sex +
passengerClass:age + sex:age

passengerClass*sex effect
sex

passengerClass female male
1st 0.964 0.452
2nd 0.913 0.119
3rd 0.459 0.148



Journal of Statistical Software 5

passengerClass*age effect
age

passengerClass 0.166700006 9.037066672 17.907433338 26.777800004 35.64816667
1st 0.890 0.872 0.851 0.828 0.801
2nd 0.917 0.845 0.728 0.568 0.392
3rd 0.441 0.385 0.333 0.284 0.239

age
passengerClass 44.518533336 53.388900002 62.259266668 71.129633334 80

1st 0.772 0.740 0.705 0.6676 0.6279
2nd 0.241 0.135 0.071 0.0362 0.0181
3rd 0.200 0.166 0.137 0.1117 0.0908

sex*age effect
age

sex 0.166700006 9.037066672 17.907433338 26.777800004 35.64816667
female 0.928 0.910 0.890 0.865 0.835
male 0.572 0.445 0.325 0.224 0.148

age
sex 44.518533336 53.388900002 62.259266668 71.129633334 80
female 0.800 0.7606 0.716 0.6662 0.6127
male 0.094 0.0586 0.036 0.0219 0.0133

By default, the effect function, which allEffects calls, sets covariates – in this case, age is
the only covariate – not included in a term to their mean values; factors are set to their pro-
portional distribution in the data by averaging over contrasts. In the call to allEffects, we
overrode these defaults, specifying typical = median to compute the median rather than the
mean of excluded covariates, and setting given.values = c(passengerClass2nd = 1/3,
passengerClass3rd = 1/3, sexmale = 0.5) to fix the distribution of passenger class to
1/3 in each level and the distribution of sex to half male and half female. Also by default,
effect sets age to 10 values evenly spaced over its range; we can optionally supply the number
of values for a covariate via the default.levels argument or we can set the values directly,
as illustrated below. Notice that the print method for the object returned by allEffects
reports tables of the effects, which, by default, are on the scale of the response variable – for
a logit model, on the probability scale. There is also a summary method (not employed here),
which provides greater detail.
To plot the effects on one page (producing Figure 1):

R> plot(titanic.2.all, ticks =

+ list(at = c(.01, .05, seq(.1, .9, by = .2), .95, .99)), ask = FALSE)

The default is to plot on the scale of the linear predictor, where the linearity of the model
is preserved, but to label the response axis on the generally more easily interpreted scale of
the response. Because the plotted effects span a wider range on the probability scale than
is accommodated by the default tick marks, we specify custom tick marks via the ticks
argument; setting ask = FALSE produces a multi-panel display of all of the high-order terms
in the model. The broken lines on the graphs represent point-wise 95-percent confidence
envelopes around the fitted values, and the panels showing age give the marginal distribution
of age in the “rug-plot” at the bottom of the graphs.
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Figure 1: Effect display for high-order terms in the binary logistic-regression model fit to the
Titanic data. The red broken lines give point-wise 95-percent confidence envelopes around
the fitted effects.
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The panel at the top left of Figure 1 displays the passenger-class × sex interaction: For fe-
male passengers, survival decreased with class, while for male passengers, survival was highest
for first-class passengers but essentially the same for second- and third-class passengers. Fe-
male third-class passengers had approximately the same level of survival as male first-class
passengers.

The top-right panel depicts the class-by-age interaction: Survival declined with age for all
three passenger classes, but most dramatically for second-class passengers. First-class pas-
sengers had quite a high level of survival, and third-class passengers a relatively low level of
survival, at all ages.

The lower-left panel shows the sex-by-age interaction: For both sexes, survival decreased with
age, but age made more of a difference for males than for females, and the youngest males
survived at approximately the same rate as the oldest females.

The 95-percent point-wise confidence envelopes suggest that all of the effects are reasonably
precisely estimated (on the probability scale, which is expanded at the extremes of the logit
scale), except at the highest ages.

Although these graphs of the two-way interactions are more easily interpreted than the coeffi-
cients of the logit model, combining three “overlapping” two-interactions nevertheless requires
visual contortions. The effect function allows us to combine the two-way interactions by
plotting the absent three-way interaction to which they are marginal (see Figure 2), a proce-
dure that generates a warning:

R> with(Titanic, quantile(age, c(0, 0.99), na.rm = TRUE))

0% 99%
0.1667 65.0000

R> plot(effect("passengerClass*sex*age", titanic.2, xlevels =

+ list(age = 0:65)), ticks = list(at = c(.001, .005, .01, .05,

+ seq(.1, .9, by = .2), .95, .99, .995)))

Warning message:
In analyze.model(term, mod, xlevels, default.levels) :
passengerClass:sex:age does not appear in the model

As before, we supply custom tick marks, and we restrict age, which is highly skewed, to run
from 0 to its 99th percentile, via the argument xlevels = list(age = 0:65)). We can spec-
ify the three-way interaction as either "passengerClass*sex*age" or
"passengerClass:sex:age", but the order of the predictors must be the same as in the
model.

The display in Figure 2 is, we maintain, easier to digest than the separate panels for the three
two-way interactions shown in Figure 1, but the general pattern of the results is as we have
described above. A reasonable brief summary is that survival on the Titanic was of “women
and children first,” but modified by passenger class.

Because the model fit to the data is linear in age on the logit scale, it is possible to arrive at
these conclusions by examining the estimated coefficients of the model, but to do so requires
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Figure 2: Effect display for the three-way interaction passengerClass × sex × age, a term
that is not in the model fit to the Titanic data, but to which all of the two-way interactions
in the model are marginal.

laboriously adding terms according to relationships of marginality among them, a process
that is automated in the effect displays. Moreover, the effect plots in Figures 1 and 2 label
axes on the more easily interpreted probability scale.

2. Effect displays for multinomial logit models

The multinomial logit model is probably the most common regression model for polytomous
categorical data. The effects package uses the implementation of the multinomial logit model
in the multinom function from the nnet package (associated with Venables and Ripley 2002),
one of the “recommended” packages that ship with standard R distributions.



Journal of Statistical Software 9

The multinomial logit model takes the following form:

µij =
exp(x′iβj)

1 +
m∑

k=2

exp(x′kβj)
for j = 2, ...,m (1)

µi1 =
1

1 +
m∑

k=2

exp(x′kβj)
(for level 1)

= 1−
m∑

k=2

µik

Here, µij is the probability that the response variable is in its jth of m levels for observation
i; x′i is the ith row of the model matrix X; and βj is a vector of p regression coefficients
pertaining to level j of the response. The first level of the response is treated specially to

insure that
m∑

j=1
µij = 1; this choice is arbitrary and inconsequential, in the sense that the

model produces the same set of fitted probabilities regardless of the response level singled
out for special treatment. The interpretation of the regression coefficients, however, depends
upon the selection of “baseline” level for the response, because

log
µij

µi1
= x′iβj for j = 2, ...,m

Thus, the coefficients represent effects on the log-odds of membership in level j versus level 1
of the response. Differences in coefficients give effects on the log-odds of membership in other
pairs:

log
µij

µij′
= x′i(βj − βj′) for j, j′ 6= 1

Producing effect displays on the probability scale for the multinomial logit model is relatively
straightforward, because the model yields fitted probabilities µ̂0j for specified values of the lin-
ear predictors x′0β̂j . The only difficult point is the calculation of standard errors for the effects.
We adopt the strategy of displaying effects on the probability scale, but computing standard
errors and confidence intervals on the scale of the individual-level logits, log [µ0j/(1− µ0j)]:
Because the probabilities are bounded by 0 and 1, while the logits are unbounded, confidence
intervals on the logit scale are better-behaved. We outline this procedure in the Appendix A;
a more extended treatment may be found in Fox and Andersen (2006).

The data frame BEPS in the effects package contains data from the 1997-2001 British Election
Panel Study. We adapt an example that appeared in Fox and Andersen (2006), which, in
turn, was based on work by Andersen, Heath, and Sinnott (2002). The focus of the example
(available via the command example(BEPS)) is the interaction between political knowledge
and electoral choice: Individuals who are familiar with political parties’ platforms are expected
to be more likely to align their votes with their preferred positions on issues, in this case, with
the issue of the UK’s integration into the European Union. The data set contains the following
variables:

R> summary(BEPS)
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vote age economic.cond.national
Conservative :462 Min. :24.00 Min. :1.000
Labour :720 1st Qu.:41.00 1st Qu.:3.000
Liberal Democrat:343 Median :53.00 Median :3.000

Mean :54.18 Mean :3.246
3rd Qu.:67.00 3rd Qu.:4.000
Max. :93.00 Max. :5.000

economic.cond.household Blair Hague Kennedy
Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
Median :3.000 Median :4.000 Median :2.000 Median :3.000
Mean :3.140 Mean :3.334 Mean :2.747 Mean :3.135
3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000

Europe political.knowledge gender
Min. : 1.000 Min. :0.000 female:812
1st Qu.: 4.000 1st Qu.:0.000 male :713
Median : 6.000 Median :2.000
Mean : 6.729 Mean :1.542
3rd Qu.:10.000 3rd Qu.:2.000
Max. :11.000 Max. :3.000

� vote is a factor with three levels, Conservative, Labour, and Liberal Democrat. The
Conservatives were generally opposed to increased UK participation in the EU, while
the other two parties adopted a pro-Europe position.

� Europe is an 11-point scale measuring the respondent’s attitudes towards European
integration, with high scores representing “Eurosceptic” (i.e., anti-EU) sentiment.

� political.knowledge assesses the respondent’s familiarity with the parties’ positions
on the European-integration issue. Scores range from 0 (representing knowledge of none
of the parties’ positions) to 3 (knowledge of all three positions).

� Age, gender, perceptions of economic conditions over the past year (both national and
household), and evaluations of the leaders of the three major parties are included in the
model as “control variables” because of their known relationship to voting.

After exploration of the data, we model Europe as a three-degree-of-freedom regression
spline. (Fox and Andersen 2006, employed a simpler model in which both Europe and
political.knowledge entered the model linearly.)

R> library("splines")

R> beps <- multinom(vote ~ age + gender + economic.cond.national +

+ economic.cond.household + Blair + Hague + Kennedy +

+ bs(Europe, 3) * political.knowledge, data = BEPS)

# weights: 48 (30 variable)
initial value 1675.383740
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iter 10 value 1180.708452
iter 20 value 1118.628662
iter 30 value 1099.897721
final value 1099.705647
converged

R> summary(beps)

Call:
multinom(formula = vote ~ age + gender + economic.cond.national +

economic.cond.household + Blair + Hague + Kennedy + bs(Europe,
3) * political.knowledge, data = BEPS)

Coefficients:
(Intercept) age gendermale economic.cond.national

Labour 0.4368845 -0.02399920 0.10626171 0.5140082
Liberal Democrat 0.2847015 -0.01573357 0.07051507 0.1357502

economic.cond.household Blair Hague Kennedy
Labour 0.171391777 0.8364571 -0.8847782 0.2544345
Liberal Democrat -0.009083888 0.2862042 -0.7922262 0.6979467

bs(Europe, 3)1 bs(Europe, 3)2 bs(Europe, 3)3
Labour -3.158849 -0.05892978 -1.0441358
Liberal Democrat -3.674884 2.07463237 -0.4473039

political.knowledge bs(Europe, 3)1:political.knowledge
Labour 0.1745210 1.215945
Liberal Democrat 0.4401123 2.361358

bs(Europe, 3)2:political.knowledge
Labour -2.061518
Liberal Democrat -2.974902

bs(Europe, 3)3:political.knowledge
Labour -1.048592
Liberal Democrat -1.049691

Std. Errors:
(Intercept) age gendermale economic.cond.national

Labour 0.8443254 0.005539394 0.1706488 0.1070961
Liberal Democrat 0.9184809 0.005852651 0.1807515 0.1109461

economic.cond.household Blair Hague Kennedy
Labour 0.0970101 0.07958442 0.07653662 0.08041695
Liberal Democrat 0.1022730 0.08006522 0.08051648 0.08815429

bs(Europe, 3)1 bs(Europe, 3)2 bs(Europe, 3)3
Labour 1.505320 0.9436675 0.6549357
Liberal Democrat 1.675824 1.0511117 0.7228335

political.knowledge bs(Europe, 3)1:political.knowledge
Labour 0.3809462 0.9128263
Liberal Democrat 0.4026199 0.9723399

bs(Europe, 3)2:political.knowledge
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Labour 0.5498577
Liberal Democrat 0.5910182

bs(Europe, 3)3:political.knowledge
Labour 0.4205401
Liberal Democrat 0.4454216

Residual Deviance: 2199.411
AIC: 2259.411

R> Anova(beps)

Anova Table (Type II tests)

Response: vote
LR Chisq Df Pr(>Chisq)

age 19.199 2 6.776e-05 ***
gender 0.388 2 0.82351
economic.cond.national 29.912 2 3.196e-07 ***
economic.cond.household 5.791 2 0.05527 .
Blair 137.798 2 < 2.2e-16 ***
Hague 167.944 2 < 2.2e-16 ***
Kennedy 75.228 2 < 2.2e-16 ***
bs(Europe, 3) 95.016 6 < 2.2e-16 ***
political.knowledge 54.703 2 1.323e-12 ***
bs(Europe, 3):political.knowledge 67.450 6 1.362e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Partly because the model is for logits comparing each of the other two parties to the Con-
servatives, partly because of the interaction, and partly because of the use of a B-spline, it is
very difficult to interpret the Europe × political.knowledge interaction from the estimated
coefficients.

Although the coefficients for gender and household economic conditions are not statistically
significant, neither variable is the focus of the research, and we leave both terms in the model.
Effects are computed for the Europe × political.knowledge interaction as follows:

R> europe.knowledge <- effect("bs(Europe, 3)*political.knowledge", beps,

+ xlevels = list(Europe = seq(1, 11, length = 50),

+ political.knowledge = 0:3), given.values = c(gendermale = 0.5))

# weights: 48 (30 variable)
initial value 1675.383740
iter 10 value 1180.708452
iter 20 value 1118.628662
iter 30 value 1099.897721
final value 1099.705647
converged
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Figure 3: Effect plot for the Europe × political.knowledge interaction in the multinomial
logit model fit to the BEPS data.

To obtain “safe predictions” of the effects in a model that uses a data-dependent basis for
the model matrix (such as the present model, which employs a regression spline), the effect
function refits the model, adapting the strategy described in Hastie (1992, Section 7.3.3).

To produce a smooth graph, we set Europe to 50 evenly spaced values between 1 and 11,
even though the variable itself takes on only integer values; political.knowledge is set to
integer values between 0 and 3; the dummy regressor for gender, gendermale, is fixed to 0.5,
representing a group composed equally of men and women. The default effect plot for the
Europe × political.knowledge interaction is shown in Figure 3:

R> plot(europe.knowledge)

An alternative “stacked-area” representation of the interaction, using traditional political-
party colors (and suppressing the uninformative rug-plot at the bottom of each panel), is
displayed in Figure 4:

R> plot(europe.knowledge, style = "stacked",

+ colors = c("blue", "red", "orange"), rug = FALSE)
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Figure 4: Alternative “stacked-area” effect display for the Europe × political.knowledge
interaction.

It is clear from both effect displays that as voters’ knowledge increased, they more accurately
aligned their votes with their political opinions: At the lowest level of political knowledge
(the left-most column of Figure 3 and the left panel of Figure 4), the relationship between
attitude towards European integration and vote was weak, and indeed there was slightly higher
support for the pro-Europe Liberal Democratic Party among the most Eurosceptic voters
than among those most favorable to European integration of the UK. At the highest level of
political knowledge, support for the anti-Europe Conservative Party increased dramatically
with opposition to European integration, as support for Labour and the Liberal Democrats
declined. The confidence envelopes in Figure 3 show that these effects are quite precisely
estimated.

We reiterate that the use of a regression spline in this model makes direct interpretation of the
estimated coefficients a practical impossibility. Even if the we had fit a linear term in attitude
towards European integration, however, the complicated structure of the multinomial logit
model together with the interaction between attitude towards Europe and political knowledge
would have proved an obstacle to direct interpretation of the coefficients.

3. Effect displays for proportional-odds models

The proportional-odds model, perhaps the regression model most commonly used for an
ordinal response, is often derived by assuming a linear regression for a latent response variables
ξ,

ξi = α+ x′iβ + εi = α+ ηi + εi (2)

where x′i is the ith row of the model matrix, β is a vector of regression coefficients, and α is
an intercept parameter (which will prove redundant). Although the latent response cannot
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be observed directly, a binned version of it, y, with m levels is available:

yi =



1 for ξi ≤ α1

2 for α1 < ξi ≤ α2
...

m− 1 for αm−2 < ξi ≤ αm−1

m for αm−1 < ξi

where the “thresholds,”α1 < α2 < · · · < αm−1, are parameters to be estimated from the data
along with the regression coefficients. The cumulative distribution function of the observed
response is

Pr(yi ≤ j) = Pr(ξi ≤ αj)
= Pr(α+ ηi + εi ≤ αj)
= Pr(εi ≤ αj − α− ηi)

for j = 1, 2, ...,m − 1. Assuming that the errors εi are normally distributed produces an
ordered probit model; assuming that the errors are logistically distributed, with distribution
function

Λ(εi) =
1

1 + e−εi

produces an ordered logit model:

logit[Pr(yi > j)] = loge

Pr(yi > j)
Pr(yi ≤ j)

= −αj + x′iβ, for j = 1, 2, ...,m− 1 (3)

The intercept α in Equation 2 is set to 0 to identify the model, in effect fixing the origin
of the latent response. This model is called the “proportional-odds model” because different
cumulative log-odds, logit[Pr(yi > j)] and logit[Pr(yi > j′)], differ by the constant αj′ − αj ,
and therefore the odds themselves are proportional regardless of the value of x′i. Each level
of y save the last has its own intercept, which is the negative of the corresponding threshold,
but there is a common coefficient vector β.

The WVS data frame in the effects package contains data from the second wave of the World
Value Survey (Inglehart 2000), conducted between 1995 and 1997. Forty-two countries par-
ticipated in this survey, which collected data on social attitudes and related information
employing a common questionnaire. We focus here on four countries (with sample sizes given
in parentheses): Australia (1874), Norway (1127), Sweden (1003), and the United States
(1377). The response variable in our illustration, which is adapted from, but not identical
to, an example in Fox and Andersen (2006), is the answer to the question, “Do you think
that what the government is doing for people in poverty in this country is about the right
amount, too much, or too little?” Predictors include country, gender, religion (whether or
not the respondent belonged to a religion), education (whether or not the respondent held a
university degree), and age (in years):

R> summary(WVS)
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poverty religion degree country age
Too Little :2708 no : 786 no :4238 Australia:1874 Min. :18.00
About Right:1862 yes:4595 yes:1143 Norway :1127 1st Qu.:31.00
Too Much : 811 Sweden :1003 Median :43.00

USA :1377 Mean :45.04
3rd Qu.:58.00
Max. :92.00

gender
female:2725
male :2656

The command example(WVS) will reproduce the results in this section.

After exploring the data, we fit the following model, which includes interactions between
country and the other predictors (because the focus here is on national differences), and
employs a four-degree-of-freedom regression spline in age. We employ the polr function in the
MASS package (associated with Venables and Ripley 2002), which is one of the recommended
packages in R:

R> wvs.1 <- polr(poverty ~ country*(gender + religion + degree + bs(age, 4)),

+ data = WVS)

R> Anova(wvs.1)

Anova Table (Type II tests)

Response: poverty
LR Chisq Df Pr(>Chisq)

country 243.522 3 < 2.2e-16 ***
gender 11.469 1 0.0007077 ***
religion 4.161 1 0.0413731 *
degree 3.954 1 0.0467681 *
bs(age, 4) 63.749 4 4.721e-13 ***
country:gender 3.666 3 0.2998727
country:religion 21.229 3 9.437e-05 ***
country:degree 13.071 3 0.0044859 **
country:bs(age, 4) 39.015 12 0.0001046 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eliminating the nonsignificant interaction between country and gender yields

R> wvs.2 <- polr(poverty ~ gender + country*(religion + degree + bs(age, 4)),

+ data = WVS)

R> summary(wvs.2)

Re-fitting to get Hessian

Call:
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polr(formula = poverty ~ gender + country * (religion + degree +
bs(age, 4)), data = WVS)

Coefficients:
Value Std. Error t value

gendermale 0.18063079 0.05336493 3.3848223
countryNorway 0.78121663 0.37942412 2.0589535
countrySweden 0.92681750 0.61091266 1.5171031
countryUSA 0.06582379 0.39913430 0.1649164
religionyes 0.02907219 0.11255775 0.2582869
degreeyes -0.13419407 0.16864178 -0.7957345
bs(age, 4)1 0.94921130 0.39894576 2.3792991
bs(age, 4)2 1.28306334 0.37368792 3.4335157
bs(age, 4)3 1.28795735 0.56139196 2.2942212
bs(age, 4)4 1.54719724 0.55650180 2.7802197
countryNorway:religionyes -0.24538680 0.21596212 -1.1362493
countrySweden:religionyes -0.93870016 0.51184358 -1.8339590
countryUSA:religionyes 0.56612729 0.17405513 3.2525745
countryNorway:degreeyes 0.06813722 0.20910716 0.3258483
countrySweden:degreeyes 0.66297579 0.21686252 3.0571249
countryUSA:degreeyes 0.29178752 0.20773850 1.4045905
countryNorway:bs(age, 4)1 -0.46956213 0.60162430 -0.7804906
countrySweden:bs(age, 4)1 -0.34517378 0.66252453 -0.5209977
countryUSA:bs(age, 4)1 0.76323525 0.64214454 1.1885724
countryNorway:bs(age, 4)2 -1.44786885 0.66459380 -2.1785771
countrySweden:bs(age, 4)2 -1.74712063 0.76337334 -2.2886844
countryUSA:bs(age, 4)2 -1.84850957 0.59259945 -3.1193238
countryNorway:bs(age, 4)3 -1.23552288 1.08132883 -1.1425968
countrySweden:bs(age, 4)3 -0.21821661 1.28320100 -0.1700565
countryUSA:bs(age, 4)3 2.01537772 0.85772545 2.3496770
countryNorway:bs(age, 4)4 -0.21080180 1.62185112 -0.1299760
countrySweden:bs(age, 4)4 -0.82992489 2.28421574 -0.3633303
countryUSA:bs(age, 4)4 -1.35489504 0.84068831 -1.6116497

Intercepts:
Value Std. Error t value

Too Little|About Right 1.1117 0.2472 4.4969
About Right|Too Much 2.9382 0.2500 11.7539

Residual Deviance: 10315.45
AIC: 10375.45

As was true of the multinomial-logit model, it is difficult to interpret the results from the
estimated coefficients. We will instead present three illustrative effect displays for the country
× age interaction. The first display (Figure 5), which is the default, includes point-wise
confidence bands around the fitted effect:
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country*age effect plot
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Figure 5: Effect display for the country × age interaction in the proportional-odds logit
model fit to the WVS data.

R> with(WVS, quantile(age, c(0, .01, .99, 1)))

0% 1% 99% 100%
18 18 83 92

R> plot(effect("country*bs(age,4)", wvs.2, xlevels = list(age = 18:83),

+ given.values = c(gendermale = 0.5)), rug = FALSE)

Because there are a few very old individuals in the data set, we plot to the 99th percentile
of age, setting age to integer values between 18 and 83 (which produces a smooth plot).
We also fix the proportion of men to 0.5; religion and education are implicitly set to their
observed proportions in the data (which are, respectively, 0.85 church attenders and 0.21 with
post-secondary degrees).

The second display (Figure 6) is a “stacked-area” graph, obtained by setting the argument
style="stacked" to the plot method for polytomous effect-display objects:
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Figure 6: Stacked-area effect plot for the country × age interaction.

R> plot(effect("country*bs(age,4)", wvs.2, xlevels = list(age = 18:83),

+ given.values = c(gendermale = 0.5)), rug = FALSE, style = "stacked")

The colors for the levels of the ordered response are selected using the sequential_hcl func-
tion in the colorspace package (Ihaka, Murrell, Hornik, and Zeileis 2009; Zeileis, Hornik, and
Murrell 2009); default colors for multinomial logit models are selected using the rainbow_hcl
function in the same package.

Finally, Figure 7 shows an effect display for the country-by-age interaction on the scale of the
latent response, obtained by specifying the argument latent=TRUE to the effect function:

R> plot(effect("country*bs(age,4)", wvs.2, xlevels = list(age = 18:83),

+ given.values = c(gendermale = 0.5), latent = TRUE), rug = FALSE)

Notice that the display includes horizontal lines at the category thresholds of the response.

The three displays reveal a similar pattern: Support for government action for the poor
generally declined with age in all four countries, but the relationship to age was stronger in
Australia and the US than in Norway or Sweden, and at virtually all ages, support for the
poor was lower in the US than in the other three countries. The estimated modal response
in Norway and Sweden was ‘too little’ at virtually all ages, and ‘about right’ in the US at
almost all ages; in Australia, the modal response was ‘too little’ among young respondents
and ‘about right’ among older respondents. Figure 5 suggests that probabilities of category
membership are estimated with reasonable precision, except at the highest ages in Norway
and Sweden, but Figure 7 shows that there is substantial uncertainty in the estimated effects
on the scale of the latent response.

As in the previous example, the use of a B-spline in this model, here for age, makes it
impractical to interpret the coefficient estimates directly. Had we specified a linear effect for
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Figure 7: Effect display for the country × age interaction, plotted on the scale of the latent
response. The horizontal lines give the estimated thresholds between levels of the observed
response.

age, direct interpretation would have been possible in principle, at least on the scale of the
latent response, but would have required mental arithmetic to sum coefficients marginal to
each high-order term.
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A. Standard errors for the displays

This appendix adapts Fox and Andersen’s (2006) results on standard errors for effect displays
in polytomous logit models to the notation of the present paper, which, in turn, reflects the
parametrization of the multinomial and proportional-odds logit models in the multinom and
polr functions.

Because the fitted probabilities in the multinomial logit model are nonlinear functions of
the model parameters (from Equation 1), Fox and Andersen derive approximate standard
errors for effects by the delta method. Each fitted probability for an effect is computed at
a particular model vector x′0; differentiating the corresponding fitted probabilities µ0j with
respect to the parameters βj of the model produces

∂µ0j

∂βj

=
exp(x′0βj)

[
1 +

∑m
k=2,k 6=j exp(x′0βk)

]
x0

[1 +
∑m

k=2 exp(x′0βk)]2

∂µ0j

∂βj′ 6=j

= −
{

exp
[
x′0
(
βj′ + βj

)]}
x0

[1 +
∑m

k=2 exp(x′0βk)]2

∂µ01

∂βj

= −
exp(x′0βj)x0

[1 +
∑m

k=2 exp(x′0βk)]2

Let V̂ (β̂) represent the covariance matrix of the estimated coefficients β̂j stacked into a
column vector,

V̂ (β̂) = V̂


β̂2

β̂3
...

β̂m

 = [vst] , s, t = 1, . . . , r

where r = p(m− 1). Then

V̂ (µ̂0j) ≈
r∑

s=1

r∑
t=1

vst
∂µ̂0j

∂β̂s

∂µ̂0j

∂β̂t

Because 0 < µ̂0j < 1, Fox and Andersen suggest translating to individual-category logits,

λ0j = log
µ0j

1− µ0j
(4)

By a second application of the delta method,

V̂ (λ̂0j) ≈
1

µ̂2
0j(1− µ̂0j)2

V̂(µ̂0j) (5)

Confidence bounds computed on the logit scale using the standard error
√
V̂ (λ̂0j) can then

be translated back to the probability scale.

The proportional-odds model (Equation 3) is for cumulative logits, and so expressions for
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individual-category probabilities µ0j = Pr(Y0 = j) are required:

µ01 =
1

1 + exp(−α1 + η0)

µ0j =
exp(η0) [exp(−αj−1)− exp(−αj)]

[1 + exp(−αj−1 + η0)] [1 + exp(−αj + η0)]
, j = 2, . . . ,m− 1

µ0m = 1−
m−1∑
j=1

µ0j

where η0 = x′0β is the linear predictor at the focal model-vector x′0. The derivatives of µ0j

with respect to the parameters of the model (thresholds αj and regression coefficients β) are

∂µ01

∂α1
= − exp(−α1 + η0)

[1 + exp(−α1 + η0)]2

∂µ01

∂αj
= 0, j = 2, . . . ,m− 1

∂µ01

∂β
= − exp(−α1 + η0)x0

[1 + exp(−α1 + η0)]2

∂µ0j

∂αj−1
=

exp(−αj−1 + η0)
[1 + exp(−αj−1 + η0)]2

∂µ0j

∂αj
= − exp(−αj + η0)

[1 + exp(−αj + η0)]2

∂µ0j

∂αj′
= 0, j′ 6= j, j − 1

∂µ0j

∂β
=

exp(η0) [exp(−αj)− exp(−αj−1)] [exp(−αj−1 − αj + 2η0)− 1] x0

[1 + exp(−αj−1 + η0)]2 [1 + exp(−αj + η0)]2

∂µ0m

∂αm−1
=

exp(−αm−1 + η0)
[1 + exp(−αm−1 + η0)]2

∂µ0m

∂αj
= 0, j = 1, . . . ,m− 2

∂µ0m

∂β
=

exp(−αm−1 + η0)x0

[1 + exp(−αm−1 + η0)]2

Stacking all of the parameters in the vector γ = (α1, . . . , αm−1,β
′)′,

V̂ (γ̂) = [vst] , s, t = 1, . . . , r

where r = m+ p− 2. Then,

V̂ (µ̂0j) ≈
r∑

s=1

r∑
t=1

vst
∂µ̂0j

∂γ̂s

∂µ̂0j

∂γ̂t

Aproximate variances of the individual-category logits follow from Equations 4 and 5, as in
the multinomial logit model.
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