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Abstract

This article provides a brief introduction to the state space modeling capabilities in
SAS, a well-known statistical software system. SAS provides state space modeling in a
few different settings. SAS/ETS, the econometric and time series analysis module of the
SAS system, contains many procedures that use state space models to analyze univariate
and multivariate time series data. In addition, SAS/IML, an interactive matrix language
in the SAS system, provides Kalman filtering and smoothing routines for stationary and
nonstationary state space models. SAS/IML also provides support for linear algebra and
nonlinear function optimization, which makes it a convenient environment for general-
purpose state space modeling.

Keywords: Kalman filter, state space model, ARIMA, unobserved components, SAS/ETS,
SAS/IML.

1. Introduction

SAS software (SAS Institute Inc. 2008a) offers a set of solutions for enterprise-wide business
users and provides a powerful fourth-generation programming language for performing tasks
such as data management, report writing and graphics, statistical and mathematical analysis,
and operations research. This article provides a brief introduction to the state space modeling
capabilities that are available in SAS/ETS (SAS Institute Inc. 2010), the econometric and time
series analysis module of the SAS system, and in SAS/IML (SAS Institute Inc. 2008b), the SAS
interactive matrix language. The article is organized as follows. Section 2 uses the SAS/ETS
UCM procedure to analyze the Nile data, the common example used in all articles in this
volume. Section 3 discusses additional SAS/ETS procedures that are useful for state space
modeling. Section 4 illustrates the use of SAS/IML for state space modeling. The final section
contains concluding remarks.
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2 State Space Modeling Using SAS

2. Unobserved components modeling

The SAS/ETS UCM procedure can be used to analyze and forecast univariate time series
data using an unobserved components model (UCM). A UCM decomposes the response series
into components such as trend, seasonals, and the regression effects due to predictors. The
next section uses the Nile data to illustrate some of these aspects of unobserved components
modeling.

2.1. Analysis of Nile data

The Nile data consist of yearly readings of the Nile river water level, from 1871 to 1970,
recorded at Aswan, Egypt. The analysis of this series begins by first fitting to it the local
level model:

yt = µt + εt µt = µt−1 + ξt

That is, the readings yt are noisy observations of the underlying level µt, which follows a
random walk (RW). The observation noise εt and the RW disturbance ξt are assumed to be
independent, Gaussian, white noise sequences with variance parameters σ2ε and σ2ξ , respec-
tively. The local level model is an example of a UCM that decomposes the response series
into two unobserved components: the level component µt and the irregular component εt. It
is a natural starting point in this analysis because the yearly water level of a large river, in
the absence of major external shocks, can be expected to remain relatively constant for a long
time. You can fit this model to the Nile data by using the UCM procedure as follows:

proc ucm data = nile;

id year interval = year;

model waterlevel;

irregular plot = smooth;

level checkbreak plot = smooth;

estimate plot = residual;

forecast plot = forecasts lead = 10 alpha = 0.5;

run;

The PROC UCM statement signifies the start of the UCM procedure and specifies the input data
set, nile, which contains the response series. The optional ID statement specifies a date, time,
or datetime variable (year in this example) to label the observations. The INTERVAL = YEAR

option in the ID statement indicates that the measurements are collected on a yearly basis.
The model specification begins with the MODEL statement, where the response series is spec-
ified (waterlevel in this case). The components in the model are specified using separate
statements that enable you to control their individual properties. The irregular component,
εt, is specified using the IRREGULAR statement, and the level component, µt, is specified using
the LEVEL statement. The options in the ESTIMATE statement control the model-fitting envi-
ronment and the diagnostics output—for example, Figure 1 shows the residual plot produced
by using the PLOT = RESIDUAL option. The parameters of this model are the variances σ2ε
and σ2ξ ; Table 1, produced by default, shows their maximum likelihood estimates. The op-
tions in the individual component statements serve different purposes—some determine their
stochastic properties while others can be used to control their output. For example, Figure 2
shows the plot of the smoothed estimate of level µt, which is obtained by using the PLOT =
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Figure 1: Local level model: One-step-ahead residuals.

Component Parameter Estimate Std Error

Irregular Error Variance 15098.52 3145.55
Level Error Variance 1469.17 1280.37

Table 1: Parameter estimates for the local level model.

Figure 2: Local level model: Smoothed µt.

SMOOTH option in the LEVEL statement. The plot seems to indicate a shift in the water level
starting at or around 1899. This shift could be attributed to the start of construction of a
dam near Aswan in that year. Here it is known that a shift in the water level occurred within
the span of the series. However, in many cases such prior information is not available and it is
useful to detect such shifts in a data analytic fashion. Table 2 shows a summary of the most
likely outliers in the series based on the fitted model. Additive outliers are reported by de-
fault; in addition, level shifts are also reported if the CHECKBREAK option is used in the LEVEL

statement. The outlier summary shows that the level shift in the year 1899 is statistically
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Year Break Type Estimate Std Error Chi-Square DF Pr > ChiSq

1899 Level −315.74 97.64 10.46 1 0.0012
1913 Additive Outlier −406.02 133.60 9.24 1 0.0024

Table 2: Outlier summary.

Figure 3: Local level model: Smoothed and standardized εt and ξt.

significant.

An additive outlier, an unusually low water level in 1913, is also detected. The outlier
summary reported in Table 2 can also be inferred from the plot of smoothed, standardized
auxiliary residuals shown in Figure 3. The series forecasts and the series decomposition can
be requested using the FORECAST statement; the forecast plot shown in Figure 4 is produced
by the PLOT = FORECASTS option.

The local level model can be corrected for the level shift of 1899 by including a regression
variable, say ls1899, that is zero before 1899 and one thereafter. The additive outlier at 1913
can be similarly incorporated in the model by including a variable that is one at 1913 and
zero elsewhere. In order to keep the model structurally simple the following program corrects
the model for the level shift only. The level shift variable (ls1899) is specified as a regressor
variable in the MODEL statement.

proc ucm data = nile;

id year interval = year;

model waterlevel = ls1899;

irregular;

level;

estimate plot = panel;

forecast plot = decomp lead = 10 alpha = 0.1;

run;

Table 3 shows the parameter estimates of this revised model. Note that the estimate of the
noise variance σ2ε has not changed much. However, the estimate of the level disturbance
variance σ2ξ has become nearly zero, indicating that the level component, after accounting
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Figure 4: Local level model: Nile water level forecasts.

Component Parameter Estimate Std Error

Irregular Error Variance 16300.570 2328.66
Level Error Variance 0.001 0.59
LS1899 Coefficient −247.779 28.44

Table 3: Parameter estimates for the local level plus LS1899 model.

Figure 5: Local level plus LS1899 model: Smoothed (µt + LS1899).

for the level shift of 1899, is nearly time-invariant. This is also evident from Figure 5, which
shows the plot of the sum of smoothed trend and regression effect.

Finally, Figure 6, obtained by using the PLOT = PANEL option in the ESTIMATE statement,
shows a panel of residual diagnostic plots that are useful for checking the normality and the
lack of autocorrelation in the residuals. Figure 6 does not show any major violations of the
model assumptions.
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Figure 6: Local level plus LS1899 model: Residual diagnostics.

In conclusion, you can say that the local level model with the shift of 1899 is a reasonable
description for the Nile data.

2.2. UCM procedure: Additional information

The preceding section provided a simple illustration of UC modeling using the UCM proce-
dure. You can use the UCM procedure to fit a wide range of UCMs that can incorporate
complex trend, seasonal, and cyclical patterns and can include multiple predictors. For exam-
ple, you can analyze most univariate models discussed in Harvey (1989)—a classic reference
for UC modeling. Moreover, more elaborate models such as the one proposed for modeling
hourly electricity demand in Harvey and Koopman (1993) and a model proposed for seasonal
adjustment of weekly data in Harvey, Koopman, and Riani (1997) can also be easily handled.
Specifically, you can specify UCMs that consist of the following features:

� a variety of trend models, including random walk and local linear trend,

� several types of seasonals, including trigonometric seasonals with full control over the
included harmonics and spline approximation for long seasonal patterns,

� multiple stochastic cycles,

� regression effects with time-invariant and time-varying regression coefficients,

� nonlinear regression effects that are accomplished using spline specification,

� an irregular component that can incorporate serial correlation modeled by a two-factor
stationary ARMA process (ARMA(p, q)(P,Q)s),

� models that include lagged response values – for example, an ARIMA(p, d, q)(P,D,Q)s
model.



Journal of Statistical Software 7

The UCM procedure properly handles missing values in the response series. In particular,
it provides a rigorous treatment of ARIMA models with missing data (see Kohn and Ansley
1986).

The UCMs considered in the UCM procedure are special cases of the (linear) Gaussian state
space models (GSSM). The analysis of these GSSMs is based on the Kalman filtering and
smoothing (KFS) algorithm. If the initial state of a GSSM is diffuse, as is often the case
for UCMs, its treatment requires modification of the traditional KFS. The modification is
called the diffuse KFS (DKFS). The DKFS implementation in the UCM procedure is based
on de Jong (1991). The outlier detection process implemented in the UCM procedure is
based on de Jong and Penzer (1998). For additional information, see the chapter “The UCM
Procedure” in SAS Institute Inc. (2010).

3. State space modeling in SAS/ETS

Many state space models can be formulated as univariate or multivariate autoregressive mov-
ing average (ARIMA) models; for examples see Brockwell and Davis (1991) and Reinsel
(1997). The SAS/ETS ARIMA and VARMAX procedures provide state-of-the-art facilities for
univariate and multivariate ARIMA modeling, respectively.

The SAS/ETS STATESPACE procedure can be used for state space modeling of multivariate time
series, including automatic model identification based on the canonical correlation analysis.
The canonical correlation analysis implemented in the STATESPACE procedure is based on Aoki
(1990). This procedure, however, is not a general purpose state space modeling procedure. In
particular, it cannot be used to fit multivariate structural models discussed in Harvey (1989).

4. State space modeling using SAS/IML

SAS/IML is an interactive matrix language that, among other things, provides support for
linear algebra and nonlinear function optimization. It also provides Kalman filtering and
smoothing routines for stationary and non-stationary state space models.

Consider the following state space model with a partially diffuse initial state:

yt = Xtβ + Htzt + εt, t ≥ 1,

zt+1 = Wtβ + Ftzt + ηt, t ≥ 0,

z0 = a + Aδ, and β = b + Bδ

where zt is the state vector, yt is the observation vector, and for t ≥ 0,[
ηt
εt

]
∼ N

(
0, σ2

[
Vt Gt

G>t Rt

])
, δ ∼ N(µ, σ2Σ), Σ→∞

The noise vectors (η>t , ε
>
t )> and the (diffuse) random vector δ are assumed to be mutually

independent. The system matrices, Wt, Ft, Xt, Ht, a, A, b, B, Vt, Gt, and Rt, are
assumed to be known. The analysis of state space models of this form requires modification of
the traditional Kalman filtering and smoothing (KFS) algorithm, which is called the diffuse
KFS. You can analyze state space models of this form by using the SAS/IML subroutine
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Introductory paper SAS/IML state space model

αt zt
Tt Ft

Rtηt ηt
RtQtR

>
t σ2Vt

εt εt
Zt Ht

Ht σ2Rt

Table 4: Notation for state space models.

KALDFF for diffuse Kalman filtering, and by using the subroutine KALDFS for diffuse Kalman
smoothing. The SAS/IML DKFS implementation is based on de Jong (1991). Note that
the model described above can be recast into the canonical state space model described in
the introductory paper Commandeur, Koopman, and Ooms (2011) of the current volume.
This is done by incorporating the regression vector β into the state vector and, if state and
observation noise sequences are correlated, by incorporating the observation noise into the
state as well. Table 4 provides additional clarification of the difference in notation between
the two representations.

The SAS/IML documentation contains detailed information on KALDFF and KALDFS subrou-
tines, including examples of their use. These subroutines are organized such that fairly com-
plex state space models can be easily specified and useful quantities needed in their analysis
are obtained as output. A brief description of these routines is given below.

KALDFF subroutine has the following signature:

CALL KALDFF( pred, vpred, initial, s2, data, lead, int, coef,

var, intd, coefd, n0, at, mt, qt );

where the arguments have the following meaning:

� Input:

– data contains the y-values.

– lead is the number of steps to forecast after the end of the data.

– int contains information about the regressors Xt and Wt (t ≥ 1).

– coef contains information about the system matrices Ft and Ht (t ≥ 1).

– var contains information about the system matrices Rt, Vt and Gt (t ≥ 1).

– intd contains information about the system vectors a and b.

– coefd contains information about the system matrices A and B.

� Output:

– pred contains the one-step-ahead state forecasts.

– vpred contains the covariances of the one-step-ahead state forecasts.
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– initial contains the estimate of the initial state δ along with its covariance esti-
mate.

– s2 contains estimate of the scalar σ2.

� Input/Output (these arguments act as input as well as output and are better explained
in the documentation):

– n0 is an optional integer argument that contains divisor used for computing the
estimate of σ2.

– qt is an optional argument that on output contains quantities needed for the
likelihood computation.

– at is an optional argument that on output contains certain intermediate quantities
needed during the subsequent smoothing computations (KALDFS call). As input it
is used to provide certain initialization information.

– mt is an optional argument that on output contains certain intermediate quanti-
ties needed during the subsequent smoothing computations (KALDFS call) and for
the likelihood computation. As input it is used to provide certain initialization
information (such as V0).

The KALDFS subroutine computes the smoothed state vector and its mean square error matrix
from the one-step-ahead forecast and mean square error matrix computed by KALDFF. It has
the following signature:

CALL KALDFS( sm, vsm, data, int, coef, var, bvec, bmat, initial,

at, mt, s2 , un, vun ) ;

where the arguments have the following meaning:

� Input:

– data contains the y-values.

– int contains information about the regressors Xt and Wt.

– coef contains information about the system matrices Ft and Ht.

– var contains information about the system matrices Rt, Vt and Gt.

– bvec contains information about the system vector b.

– bmat contains information about the system matrix B.

– quantities computed by the preceding KALDFF call:

* initial contains the estimate of the initial state δ along with its covariance
estimate.

* s2 contains estimate of the scalar σ2.

* at.

* mt.

� Output:

– sm contains the smoothed state vectors.
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– vsm contains the covariances of the smoothed state vectors.

� Input/Output:

– un is an optional argument that on output contains certain quantities used in
smoothing recursions.

– vun is an optional argument that on output contains certain quantities used in
smoothing recursions.

The attached program illustrates how to use SAS/IML to specify and fit a simple multivariate
state space model. More general state space models, possibly with time-varying system ma-
trices, can be handled in a similar fashion. The remainder of this section describes the model
used in this illustration, a broad outline of the attached program, and the produced output.

Consider the following two-way random effects panel model: for t ≥ 1,

yt = Xtβ + γ + τt1 + εt

where yt are k-dimensional observations, Xt are k × p dimensional matrices that contain
predictor variables, β is a p-dimensional regression parameter vector, the cross-sectional ef-
fects vector γ is a k-dimensional zero-mean Gaussian random vector with covariance σ2γIk,
τt (which denote the time effects that are common across cross-sections) is a sequence of
uncorrelated, zero-mean Gaussian random variables with variance σ2τ , and εt is a sequence of
uncorrelated, zero-mean k-dimensional random vectors with covariance σ2ε Ik. Here Ik denotes
a k-dimensional identity matrix, 1 denotes a vector with all entries equal to 1, and the random
sequences εt and τt, and the random vector γ are assumed to be mutually independent.

The preceding model can be written as a state space model as

yt = Xtβ + Hzt + εt zt+1 = Fzt + ηt

where the (k + 1)-dimensional state vectors zt consist of τt as the first element and γ as
the remaining elements, the k × (k + 1) matrix H is equal to [1 Ik], the (k + 1) × (k + 1)
matrix F is a diagonal matrix with all diagonal elements equal to one except the first (which
is zero). For t ≥ 1, the (k + 1)-dimensional disturbance vectors ηt in the state equation
consist of all zeros except the first element, which is τt. η0 is a zero mean Gaussian vector
with diagonal covariance consisting of σ2τ as its first diagonal element and σ2γ as its remaining
diagonal elements. The initial state, z0, is zero—that is, a and A are zero—and the diffuse
vector δ is the same as the regression parameter vector β, which means b is zero and B is
identity. The observation and state noise sequences are uncorrelated, that is, Gt are zero.
The tuning parameters in this model are the disturbance variances σ2γ , σ

2
τ , and σ2ε , which can

be estimated by optimizing the likelihood of the data. The regression parameter vector β,
the cross-sectional effects γ, and the time effects τt are estimated by using state smoothing.

The attached program uses the airline cost data set from Greene (2000) to illustrate how to
use SAS/IML to specify and fit this state space model. In the illustration the panel model stud-
ies the dependence of the log transformed cost, lC, on three variables—the log-transformed
quantity (lQ), the log-transformed price of fuel (lPF), and the load factor (LF). An overall
intercept is also included in the model. The data set contains yearly data on six airlines,
which form the panels, over the fifteen-year time span 1970–1984. Note that, for this exam-
ple, the elements of γ signify airline specific corrections to the overall mean and a time effect
τt represents a similar correction to the overall mean at time t.
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The program can be broadly described by the following steps:

� A subroutine, rantwo, is defined that does filtering, smoothing, and likelihood compu-
tation for the two-way random effects panel model. This is done by creating appropriate
system matrices corresponding to this model and calling the KALDFF and KALDFS sub-
routines to do the actual computations. More precisely, the signature of rantwo is as
follows:

CALL RANTWO( y, X, va, vb, ve, smooth, pred, vpred, initial,

dff_logl, sm, vsm);

where the arguments have the following meaning:

– Input

* y contains the y-values, for example, lC values for the six airlines in the case
of this example

* X contains the regressors, for example, the intercept column and the lQ, lPF,
and LF values for the six airlines in the case of this example

* va, vb, and ve contain the variances σ2γ , σ
2
τ , and σ2ε

* smooth, a zero or one flag for deciding whether the smoothing step is to be
performed or not

– Output

* pred and vpred contain the one-step-ahead state predictions and their covari-
ances

* sm and vsm contain the smoothed states and their covariances

* initial contains the estimate of β and its covariance

* dff_logl contains the diffuse log-likelihood

� A very simple function, rantwo_2ll, is defined, which computes minus two times the
log-likelihood of the data for given values of σ2γ , σ

2
τ , and σ2ε , by calling rantwo. It assumes

that the data, y and X, remain fixed (global variables).

� Obtain the maximum likelihood estimates of the variance parameters by minimizing
rantwo_2ll with respect to σ2γ , σ

2
τ , and σ2ε . This is accomplished by using a SAS/IML

non-linear optimization subroutine NLPQN. SAS/IML contains a set of optimization sub-
routines for minimizing or maximizing a continuous nonlinear function. The parameters
can be subject to boundary constraints and linear or nonlinear equality and inequality
constraints.

� Obtain the estimates of the regression parameter vector β, the cross-sectional effects
γ, and the time effects τt by state smoothing. This is done by calling rantwo at the
optimized values of σ2γ , σ

2
τ , and σ2ε .

Finally, a portion of the output from this program is shown next. This output has been slightly
modified for readability purposes. Table 5 shows the maximum likelihood estimates of σ2γ , σ

2
τ ,

and σ2ε . Similarly, Table 6 shows the estimates of regression effects and their standard errors,
and Table 7 shows the smoothed estimate of the panel effect vector γ.
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σ2γ σ2τ σ2ε
0.0151623 0.0010679 0.002738

Table 5: ML estimates of the variance parameters.

Effect Estimate Std Error

Intercept 9.36913 0.234647
lQ 0.86744 0.024532
lPF 0.43595 0.016621
LF −0.98529 0.218658

Table 6: Regression effects β.

Airline 1 Airline 2 Airline 3 Airline 4 Airline 5 Airline 6

0.0666301 0.0116846 −0.202884 0.1521905 −0.041562 0.0139418

Table 7: Smoothed estimate of the panel effects vector γ.

5. Conclusion

This article and the attached SAS program provide a brief overview of the state space modeling
functionality available in SAS/IML and SAS/ETS. Generally speaking, if a state space model
belongs to one of the standard forms such as ARIMA, VARMAX, or UCM, it is easier to use
the SAS/ETS procedures that are specially designed for their handling. Otherwise, you can
use SAS/IML software for general state space modeling. For additional information you can
consult SAS online documentation available at http://support.sas.com/documentation/.
There you can find SAS Institute Inc. (2010) for SAS/ETS documentation, and SAS Institute
Inc. (2008b) for SAS/IML documentation.
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