
JSS Journal of Statistical Software
May 2011, Volume 41, Issue 4. http://www.jstatsoft.org/

State Space Models in R

Giovanni Petris
University of Arkansas

Sonia Petrone
Università Bocconi

Abstract

We give an overview of some of the software tools available in R, either as built-
in functions or contributed packages, for the analysis of state space models. Several
illustrative examples are included, covering constant and time-varying models for both
univariate and multivariate time series. Maximum likelihood and Bayesian methods to
obtain parameter estimates are considered.

Keywords: Kalman filter, state space models, unobserved components, software tools, R.

1. Introduction

There are currently more than 2000 contributed packages available on CRAN, the Com-
prehensive R Archive Network (R Development Core Team 2011). The requirements for a
package to be made available on CRAN are minimal, essentially boiling down to the syntactic
correctness of the code included in the package and the formal correctness in the documen-
tation of the functions and data sets provided by the package. This has the positive effect of
encouraging communication and sharing of ideas within the community of R users. On the
other hand, the decentralized structure of the network of contributors makes it easy to end up
with several unrelated packages from different authors, all meant to solve the same problem,
to different degrees and using different, incompatible, user interfaces. As a consequence, it
may be hard for the common user to navigate all the repository to find the right package for
the analysis one is planning to carry out. State space models and Kalman filtering provide
a typical illustration of this state of affairs. Functions like RSiteSearch or findFn in pack-
age sos (Graves, Dorai-Raj, and Francois 2010) can be used to navigate the many packages
dealing to some extent with state space models. In this paper we will illustrate some of the
R packages that a user can employ to analyze time series data by state space methods. As
a rough guideline, we have opted to focus on packages that offer a complete suite of func-
tions to perform filtering, smoothing, and forecasting for univariate and multivariate linear

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6287953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 State Space Models in R

This volume West & Harrison

αt θt
Zt F>t
εt νt
Ht Vt
Tt Gt+1

Rtηt ωt+1

Rt, Qt Wt+1(= RtQtR
>
t)

at at
Pt Rt
at|t mt

Pt|t Ct

Table 1: Notation for state space models.

Gaussian state space models. To the best of our knowledge, the packages that satisfy this
requirement at the time of writing are three: dse (Gilbert 2009), dlm (Petris 2010a), and
KFAS (Helske 2010). We will treat dlm and KFAS in some detail in Section 2. Another
package worth mentioning is sspir (Dethlefsen, Lundbye-Christensen, and Luther Christensen
2009). Package sspir includes functions for exponential family state space models and a nice
formula interface to specify common models. On the other hand, its main limitations are that
multivariate models are not covered and that, being written entirely in R, execution speed
can be an issue, especially with long time series. The reader interested in a full description
of package sspir can consult Dethlefsen and Lundbye-Christensen (2006).

The present paper is not meant to be an exhaustive review of all, or even some, of the R
tools available for state space analysis. Rather, its purpose is to bring to the attention of
the reader the most interesting among such tools by means of simple or moderately complex
examples. The interested user can then learn more details by consulting the documentation
of each package or other publications related to it. An interesting comparative review of the
tools available in R for state space analysis is Tusell (2011).

There is no universally accepted notation for state space models, and this is unfortunately
reflected in different names being used for the same quantities by the different contributed
packages. However, two are the most commonly used notations in statistical and econometric
applications. One, used in this collection, is that used in earlier works by Harvey (1989) and
more recently revived in Durbin and Koopman (2001); this is the most common notation in
the econometric literature. The other originated in the work by Harrison and Stevens (1976),
was further popularized by West and Harrison (1997), and it is the one commonly adopted in
the statistical (and Bayesian in particular) literature. The notation is also different for filtered
and smoothed estimates and their variances. Table 1 shows the correspondence between the
two notations.

In terms of approach and notation, package dlm falls in the tradition of West and Harrison
(1997). It was developed to accompany Petris, Petrone, and Campagnoli (2009); see also
Petris (2010b). The main focus is on Bayesian analysis, but maximum likelihood estimation
of unknown parameters is also supported. Time-varying linear Gaussian state space models,
both univariate and multivariate, can be analyzed using the functions provided in the package.

Journal of Statistical Software 3

Function
Task

dlm KFAS

Kalman filter dlmFilter kf

Kalman smoother dlmSmooth ks

Forecasts dlmForecast forecast

Likelihood dlmLL kf

ML estimates dlmMLE –

Table 2: Main functions in R packages dlm and KFAS.

The user interface is fairly well developed, providing for example extractor and replacement
functions for any of the matrices defining the model. Furthermore, standard models can
be easily set up using a suite of especially designed functions, and models can be combined
by adding them together (e.g, local level plus trend) as well as by taking outer sums (e.g,
producing a multivariate local level model from several univariate ones). Some of the most
important functions are listed in Table 2. For more details the reader can consult Petris et al.
(2009) and the package documentation, including the vignette1.

Package KFAS falls, as far as notation and algorithms are concerned, in the tradition of Durbin
and Koopman (2001). In addition to time-varying linear Gaussian state space models, both
univariate and multivariate, univariate exponential family (Poisson and Binomial) linear state
space models can be analyzed. Simulation-based Bayesian inference, via Markov chain Monte
Carlo methods, although not explicity supported, can be implemented using the functions
provided for the simulation smoother. On the negative side, the user interface is very basic
and the documentation could be improved. Some of the most important functions of KFAS
are listed in Table 2.

In what follows, up to Section 4, we use the term state space model to denote a linear Gaussian
state space model. The paper is organized as follows. Section 2 introduces the main tools for
the analysis of state space models in R, in the simple case of a local level model for the Nile
data. Besides maximum likelihood estimation, Bayesian inference is illustrated too. Section
3 provides additional univariate and multivariate examples. Extensions to non-linear and
non-Gaussian state space models are briefly discussed in the final Section 4.

2. The local level model

Probably the simplest nontrivial state space model is the local level model (Commandeur,
Koopman, and Ooms 2011, Section 2.1). In this Section we illustrate how to work with
this specific state space model in R. We first demonstrate the tools that are included in the
standard distribution of R, and then move on to contributed packages dlm and KFAS.

2.1. The local level model in R

Structural time series models (Commandeur et al. 2011, Section 2.3) can be easily imple-
mented in R through the function StructTS by B.D. Ripley, included in the base package

1A vignette is a PDF document included in a package, providing additional documentation for that package.
Vignettes can be opened from R with the function vignette, as in vignette("dlm", package = "dlm").

4 State Space Models in R

stats. This function, together with other tools for time series analysis included in base R, is
described in detail in Ripley (2002). StructTS has the advantage of being of simple usage
and quite reliable. It gives the main tools for fitting a structural model for a time series by
maximum likelihood; the options "level", "trend", "BSM" are used to fit a local level model,
a local linear trend, or a local trend with an additional seasonal component (“basic structural
model”). The Nile river data are included in any standard distribution of R as a time series
object (i.e., a vector containing the data together with information about start/end time and
sampling frequency); a detailed description of the data is given in the help file, ?Nile. Thus,
there is no need to read them in and one can proceed to fit the model.

R> fitNile <- StructTS(Nile, "level")

R> fitNile

Call:

StructTS(x = Nile, type = "level")

Variances:

level epsilon

1469 15099

The maximum likelihood estimates (MLEs) of the level and observation error variances, 1469
and 15099, respectively, are included in the output, fitNile as fitNile$coef. However,
asymptotic standard errors are not provided. StructTS is quite reliable; yet, in the help
file (?StructTS), Ripley underlines that “optimization of structural models is a lot harder
than many of the references admit.” The time series of the filtered estimates of the level,
at|t = E(αt|y1:t), t = 1, . . . , n, is obtained by applying the fitted method function2 to the
object fitNile (of class StructTS). For the local level model, these coincide with the one-step-
ahead forecasts ŷt+1 = E(yt+1|y1:t). Similarly, smoothed estimates are obtained by applying
the method function tsSmooth; however, standard errors of the estimates, and auxiliary
residuals, are not provided. Filtered and smoothed estimates are shown in Figure 1.

R> plot(Nile, type = "o")

R> lines(fitted(fitNile), lty = "dashed", lwd = 2)

R> lines(tsSmooth(fitNile), lty = "dotted", lwd = 2)

The function tsdiag can be called on an object of class StructTS to obtain diagnostic plots
based on the standardized one-step-ahead forecast errors.

Forecasts for structural time series, as objects of class StructTS, can be obtained by either
the method function predict or forecast in package forecast (Hyndman 2011; Hyndman
and Khandakar 2008). This package provides also a convenient plot method function for the
resulting object of class forecast. Figure 2, obtained with the code below, shows the forecasted
Nile river data until 1980, togeher with 50% and 90% probability intervals.

R> plot(forecast(fitNile, level = c(50, 90), h = 10), xlim = c(1950, 1980))

2We recall that objects in R may have a class attribute. Functions may have different methods to handle
objects of different classes. A method function is a function designed to work on objects of a specific class.

Journal of Statistical Software 5

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

filtered
smoothed

Figure 1: Nile river data, with filtered and smoothed estimates, obtained with StructTS.

Forecasts from Local level structural model

1950 1955 1960 1965 1970 1975 1980

60
0

80
0

10
00

12
00

14
00

Figure 2: Forecasted Nile river level, with 50 and 90% probability intervals, obtained with
StructTS and forecast.

2.2. The local level model with package dlm

A polynomial DLM (a local level model is a polynomial DLM of order 1, a local linear trend
is a polynomial DLM of order 2), is easily defined in dlm through the function dlmModPoly.
For example, a local level model, with known variances equal to 0.3 and 0.01, say, is obtained
as

R> mod <- dlmModPoly(1, dV = 0.3, dW = 0.01)

The arguments dV and dW are used to specify the diagonal of the observation and evolution
covariance matrices respectively (both 1× 1 in this case). As it will be discussed in the next

6 State Space Models in R

section, further functions are provided in package dlm to create DLMs of standard types, such
as, besides the basic structural components, a dynamic regression model or an ARMA model.

MLEs are computed in package dlm by the function dlmMLE, which is a wrapper to optim,
the general-purpose optimizer included in package stats. The main arguments are the data,
a starting value for the unknown (vector) parameter, and a function that sets up a dlm
object using the unknown parameter. This is internally combined with a call to dlmLL,
which evaluates the negative log likelihood, and passed to optim, which performs the actual
optimization. For a local level model with unknown variances a build function can be defined
as

R> buildNile <- function(theta) {

+ dlmModPoly(order = 1, dV = theta[1], dW = theta[2])

+ }

The MLEs are then obtained by calling dlmMLE as follows:

R> fit <- dlmMLE(Nile, parm = c(100, 2), buildNile, lower = rep(1e-4, 2))

Note the argument lower, used to specify a lower bound for the possible value of the parame-
ters, which is passed directly to optim. The output fit is simply the one produced by optim,
so the user familiar with that function can easily interpret the different components of the
returned list. In particular, the component par contains the value of the (vector) argument at
which the optimum is achieved, while the component convergence is set to zero if and only
if the algorithm converged successfully. As a minimal check, we encourage the user to make
sure that convergence is actually zero in the output from dlmMLE. If this is the case, the user
can proceed to set up the estimated model and to examine the MLE of the parameter. To set
up the model it is advisable to use the very same build function used in the call to dlmMLE,
as shown in the code below.

R> modNile <- buildNile(fit$par)

R> drop(V(modNile))

[1] 15099.79

R> drop(W(modNile))

[1] 1468.438

The inverse of the Hessian matrix of the negative loglikelihood function evaluated at the
MLEs is, by standard maximum likelihood theory, an estimate of the asymptotic variance
matrix of the maximum likelihood estimators. The default optimization algorithm used by
optim when called inside dlmMLE is BFGS (for details, see Monahan 2001, Section 8.7), which
can also return an estimated Hessian at the optimum. However, such an estimate is generally
unreliable, resulting sometimes in a matrix which is not even positive definite. In order to
obtain a numerically accurate evaluation of the Hessian at the MLEs, it is better to use the
function hessian in package numDeriv (Gilbert 2011). From the Hessian, standard errors
can then be estimated in the usual way.

Journal of Statistical Software 7

Le
ve

l

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

● data
smoothed level
90% probability limits

Figure 3: Smoothed Nile river level, with 90% probability limits.

R> hs <- hessian(function(x) dlmLL(Nile, buildNile(x)), fit$par)

R> all(eigen(hs, only.values = TRUE)$values > 0)

[1] TRUE

R> aVar <- solve(hs)

R> sqrt(diag(aVar))

[1] 3146.003 1280.180

The reader will certainly notice the large uncertainty associated with the MLEs, summarized
by the two standard errors. The asymptotic correlation between the estimates of the two
variances is −0.61. We can conclude that the likelihood function does not allow to accurately
estimate the two variances.

The Kalman smoother can be run on the estimated model using the function dlmSmooth.

R> smoothNile <- dlmSmooth(Nile, modNile)

The output consists of a list with three components: the first, named s, is the time series of
smoothed estimates of the state, from time t = 0 to time t = n, the second and third, U.S and
D.S, contain the singular value decomposition of the corresponding smoothing variances. The
variances themselves can be obtained using the utility function dlmSvd2var and employed, for
example, to evaluate probability limits for the state vector, as illustrated in the code below.

R> hwidth <- qnorm(0.05, lower = FALSE) *

+ sqrt(unlist(dlmSvd2var(smoothNile$U.S, smoothNile$D.S)))

R> sm <- cbind(smoothNile$s, as.vector(smoothNile$s) + hwidth %o% c(-1, 1))

8 State Space Models in R

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

S
ta

nd
ar

di
ze

d
pr

ed
ic

tio
n

er
ro

r

1880 1900 1920 1940 1960

−
3

−
2

−
1

0
1

2

Figure 4: Standardized one-step prediction errors for the Nile river level.

The object sm is now a three-variate time series whose components are the smoothing state
estimates, lower 90% probability limits, and upper 90% probability limits. A plot of the
smoothing estimates is provided in Figure 3.

Kalman filter can be run by calling the function dlmFilter. This produces an object of
class dlmFiltered, a list containing, most notably, predicted states and filtered estimates of
state vectors together with their variances. Method functions residuals and tsdiag can be
used to compute the one-step forecast errors and plot several diagnostics based on them. For
example, Figure 4 was obtained with the following code.

R> filterNile <- dlmFilter(Nile, modNile)

R> plot(residuals(filterNile, sd = FALSE), type = "o",

+ ylab = "Standardized prediction error")

R> abline(h = 0)

Smoothed observation and state disturbances can be easily computed from the output of
dlmSmooth. However, in package dlm there is no easy way to compute their variances, which
makes it hard to obtain auxiliary residuals. Simulating from the model (using dlmForecast)
to compute a Monte Carlo estimate of the smoothed disturbance variances is an option.

Forecasting future state vectors or observations is easily done in dlm using the function
dlmForecast. For example, the code below was used to produce Figure 5.

R> foreNile <- dlmForecast(filterNile, nAhead = 10)

R> attach(foreNile)

R> hwidth <- qnorm(0.25, lower = FALSE) * sqrt(unlist(Q))

R> fore <- cbind(f, as.vector(f) + hwidth %o% c(-1, 1))

R> rg <- range(c(fore, window(Nile, start = c(1951, 1))))

R> plot(fore, type = "o", pch = 16, plot.type = "s", lty = c(1, 3, 3),

+ ylab = "Nile level", xlab = "", xlim = c(1951, 1980), ylim = rg)

R> lines(window(Nile, start = c(1951, 1)), type = 'o')

Journal of Statistical Software 9

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

N
ile

 le
ve

l

1950 1955 1960 1965 1970 1975 1980

70
0

80
0

90
0

10
00

11
00

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

observed level
smoothed level
forecasted level
50% probability limits

Figure 5: Nile river level: forecasts and 50% probability limits.

R> lines(window(smoothNile$s, start = c(1951,1)), lty = 5)

R> abline(v = mean(c(time(f)[1], tail(time(Nile), 1))),

+ lty = "dashed", col = "darkgrey")

R> legend("topleft", lty = c(1, 5, 1, 3), pch = c(1, NA, 16, 16), bty = "n",

+ legend = c("observed level", "smoothed level", "forecasted level",

+ "50% probability limits"))

R> detach(foreNile)

In addition to point forecasts and forecast variances, dlmForecast can provide a sample from
the joint forecast distribution of future states and observations. This feature can also be used
to simulate data from a specific model, by calling dlmForecast on an object of class dlm
instead of one of class dlmFiltered.

2.3. The local level model with package KFAS

The basic function for Kalman filtering, kf, returns, among other things, the value of the
log likelihood of a specified model, for a particular data set. This makes it easy to write a
function that returns the negative log likelihood and pass it to optim.

R> logLik <- function(theta) {

+ lik <- kf(yt = Nile, Zt = 1, Tt = 1, Rt = 1, Ht = theta[1],

+ Qt = theta[2], a1 = 0, P1 = 1e7)

+ return(-lik$lik)

+ }

R> fit <- optim(par = c(100, 2), fn = logLik, lower = rep(1e-4, 2))

To allow comparisons with the other packages, we set the initial variance to a finite, large
value, even if kf can deal with diffuse initial conditions. The Hessian matrix can be evaluated
using numDeriv::hessian, as we did in Section 2.2.

10 State Space Models in R

Smoothed values of the level, together with their variances, can be obtained calling the two
functions kf (Kalman filter) and ks (Kalman smoother) in this order. The plot shown in
Figure 3 can be obtained using KFAS with the code below.

R> filterNile <- kf(yt = Nile, Zt = 1, Tt = 1, Rt = 1, Ht = fit$par[1],

+ Qt = fit$par[2], a1 = 0, P1 = 1e7)

R> smoothNile <- ks(filterNile)

R> attach(smoothNile)

R> hwidth <- qnorm(0.05, lower = FALSE) * sqrt(drop(Vt))

R> sm <- cbind(drop(ahat), as.vector(ahat) + hwidth %o% c(-1, 1))

R> sm <- ts(sm, start = start(Nile))

R> plot(sm, plot.type = "s", type = "l", lty = c(1, 5, 5),

+ ylab = "Level", xlab = "", ylim = range(Nile))

R> lines(Nile, type = "o", col = "darkgrey")

R> legend("bottomleft", col = c("darkgrey", rep("black", 2)),

+ lty = c(1, 1, 5), pch = c(1, NA, NA), bty = "n", legend =

+ c("data", "smoothed level", "90% probability limits"))

R> detach(smoothNile)

There is no predefined function in package KFAS to compute standardized prediction errors,
and one-step-ahead forecasts for the observations are not returned by kf: in order to compute
standardized prediction errors the user needs to evaluate them based on the arrays containing
the at, Pt, and Ht. In the univariate case only, the vt and their variances Ft happen to
coincide with the components vtuni and Ftuni of the list returned by kf. Therefore, for the
Nile level one can easily compute standardized prediction errors as follows.

R> residNile <- drop(filterNile$vtuni / sqrt(filterNile$Ftuni))

A time series plot of residNile would look like Figure 4 (except for the time labeling, as
time series attributes are lost in the output of kf).

Forecasts of the Nile level up to and including 1980, together with 50% probability limits can
be computed with package KFAS as follows.

R> foreNile <- forecast(filterNile, fc = 9)

R> attach(foreNile)

R> hwidth <- qnorm(0.25, lower = FALSE) * sqrt(drop(Pt.fc))

R> fore <- ts(cbind(drop(at.fc), drop(at.fc) + hwidth %o% c(-1, 1)),

+ start = 1 + end(Nile)[1])

R> rg <- range(c(fore, window(Nile, start = c(1951, 1))))

R> detach(foreNile)

2.4. Bayesian inference for the local level model

The standard practice of fitting a state-space model by maximum likelihood, plugging the
MLEs into the model, and considering state estimates and forecasts, together with their
variances, obtained from the Kalman filter does not account in any way for the uncertainty
about the true values of the model parameters. This may be an issue, since precise parameter

Journal of Statistical Software 11

estimates in state-space models are the exception rather than the rule, even in simple models
like the local level model – recall the large standard errors of the variances obtained in
Section 2.2 for the Nile river data. Moreover, maximum likelihood estimation in state space
models can be numerically hard. The Bayesian approach offers a natural way of dealing with
parameter uncertainty in a state space model. Given the observations y1:n, Bayesian inference
on the unknown parameter vector, say ψ, and on the states history α0:n, is simply solved,
in principle, by computing their posterior distribution, π(ψ, α0:n|y1:n). However, except for a
few particular cases with conjugate priors, this distribution is not computable in closed form,
and one has to resort to approximation techniques, the most popular being Markov chain
Monte Carlo (MCMC). The difficulty in implementing a user friendly software for Bayesian
analysis in state space models is that MCMC is prior- and model- specific, so that it is not
possible to provide an algorithm that works in all cases. However, auxiliary tools can be
provided. A Gibbs sampler for π(ψ, α0:n|y1:n) can be obtained by iteratively sampling from
the full conditional distribution of the states given the parameters and the data, and from
the full conditional of the parameters, given the states and the data. Although the latter is
problem specific, sampling from π(α0:n|ψ, y1:n) can be generally implemented by the Forward-
Filtering Backward-Sampling algorithm (FFBS), see Früwirth-Schnatter (1994); Carter and
Kohn (1994); Shephard (1994), or the simulation smoother, see de Jong and Shephard (1995);
Durbin and Koopman (2002).

Several tools for Bayesian smoothing in state space models are provided in the package dlm.
The function dlmBSample implements FFBS (the simulation smoother is not available in dlm).
The complete Gibbs sampling is provided for the basic case of a univariate state space model
with unknown observation variance and unknown, diagonal, evolution covariance matrix, with
independent Inverse-Gamma priors (function dlmGibbsDIG). Tools for the analysis of MCMC
output are also provided.

Let us illustrate Bayesian estimation and smoothing with package dlm for the local level model,
applied to the Nile data. Here the unknown parameters are the error variances ψ = (σ2ε , σ

2
ξ).

We assume independent Inverse-Gamma prior distributions, i.e., (σ2ε)
−1 ∼ Gamma(αε, βε)

and (σ2ξ)
−1 ∼ Gamma(αξ, βξ), where α· and β· are the shape and the rate parameters of the

gamma distribution. A Gibbs sampling from the joint posterior π(σ2ε , σ
2
ξ , α0:n|y1:n) (for more

details, see Petris et al. 2009, Section 4.5.1) is implemented by the function dlmGibbsDIG.
The user must be aware that the function may be slow, and has been included in the package
mostly for didactical purposes.

R> set.seed(123)

R> gibbsOut <- dlmGibbsDIG(Nile, mod = dlmModPoly(1), shape.y = 0.1,

+ rate.y = 0.1, shape.theta = 0.1, rate.theta = 0.1, n.sample = 10000,

+ thin = 9)

The code above runs 100000 MCMC iterations, saving the results of one out of every 10 iter-
ations (thin=9) in order to reduce the autocorrelation in the saved MCMC samples. Package
dlm includes some tools to facilitate basic convergence diagnostics of the MCMC output.
Figure 6 shows running sample means and empirical autocorrelation functions for the MCMC
samples of the variances, after discarding the first 1000 draws as burn-in; the plots are ob-
tained with the code below.

R> burn <- 1:1000

12 State Space Models in R

obs variance

iterations

er
go

di
c

m
ea

n

0 2000 4000 6000 8000

15
50

0
17

00
0

18
50

0 evolution variance

iterations

er
go

di
c

m
ea

n

0 2000 4000 6000 8000

50
0

10
00

20
00

0 10 20 30 40

0.
0

0.
4

0.
8

A
C

F

Series dV[−burn]

0 10 20 30 40

0.
0

0.
4

0.
8

A
C

F

Series dW[−burn]

Figure 6: Nile data. Diagnostic plots for MCMC output: Running sample means and auto-
correlation function for the MCMC samples of σ2ε (first column) and of σ2ξ .

R> attach(gibbsOut)

R> ts.plot(ergMean(dV[-burn]), ylab = "sample mean", xlab = "iterations",

+ main = "obs variance")

R> ts.plot(ergMean(dW[-burn]), ylab = "sample mean", xlab = "iterations",

+ main = "evolution variance")

R> acf(dV[-burn])

R> acf(dW[-burn])

Figure 7 shows the MCMC estimates of the posterior densities of the observation variance
and of the evolution variance, respectively. The last panel plots the MCMC samples from
their joint posterior density; a high correlation is evident, reflecting a rather slow mixing of
the Gibbs sampler.

R> plot(density(dV[-burn]), xlim = c(2000, 34000), ylab = "", main = "")

R> hist(dV[-burn], prob = TRUE, add = TRUE)

R> curve(dgamma(1/x, shape = 0.1, rate = 0.1) / x^2, lty = "dashed",

+ add = TRUE)

R> plot(density(dW[-burn]), ylab = "", xlim = c(0, 16000), main = "")

R> hist(dW[-burn], prob = TRUE, add = TRUE)

R> curve(dgamma(1/x, shape = 0.1, rate = 0.1) / x^2, lty = "dashed",

+ add = TRUE)

R> plot(dV[-burn], dW[-burn], pch = ".", cex = 1.5, ylab = "")

The Bayesian estimates of the unknown variances, with respect to quadratic loss, are given
by their posterior expectations, whose MCMC estimate, together with Monte Carlo standard

Journal of Statistical Software 13

5000 15000 25000

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

0 2000 4000 6000 8000
0e

+
00

2e
−

04
4e

−
04

5000 15000 25000

0
50

00
10

00
0

15
00

0

Figure 7: Nile data. Posterior density of the evolution variance and of the observation variance
(MCMC approximation). The dashed line in the first two panels is the prior density. The
third panel shows MCMC samples from the joint posterior of σ2ε and σ2ξ .

errors, are given below. The code also shows how to obtain 95% posterior probability intervals
for the unknown parameters.

R> mcmcMean(dV[-burn])

dV[-burn]

15456.6

(57.6)

R> mcmcMean(dW[-burn])

dW[-burn]

1800.6

(37.9)

R> quantile(dV[-burn], c(0.025, 0.975))

2.5% 97.5%

9759.739 22318.972

R> quantile(dW[-burn], c(0.025, 0.975))

2.5% 97.5%

237.0324 5805.1629

Note the big difference between the 95% probability interval (237, 5805) for σ2ξ (W , in the
notation used by dlm) and the 95% confidence interval (-1040, 3977) that can be obtained
from the MLE (found in Section 2.2) using its standard error and Normal asymptotic theory.
The most plausible explanation is that the Normal asymptotic distribution of the MLE is not
a good approximation of its actual sampling distribution. To support this conjecture, one can

14 State Space Models in R

1880 1900 1920 1940 1960 1980

60
0

80
0

10
00

12
00

14
00

Figure 8: Nile data. Bayesian forecasts and 50% probability limits.

observe that both the posterior distribution and the sampling distribution of the MLE are
asymptotically Normal, but Figure 7 clearly shows that the actual posterior distribution of
σ2ξ is far from Normal, suggesting that this may be the case also for the sampling distribution

of the MLE of σ2ξ . A quantile-quantile plot (not shown) of the MCMC draws of a logarith-

mic transformation of σ2ξ shows, on the other hand, a very good agreement with a Normal
distribution, suggesting that, in this example, a logarithmic transformation of the parameter
σ2ξ could provide more reliable confidence intervals based on asymptotic maximum likelihood
theory.

k-step-ahead state and observation forecasts can be obtained by sampling from the condi-
tional distributions of (αn+k, yt+k)|{αn, y1:n}. As an illustration, we provide below the 50%
probability intervals for the observation forecasts, plotted in Figure 8.

R> lastTheta <- theta[length(Nile) + 1, ,]

R> levelSim <- matrix(0, nr = 10, nc = 10000)

R> for (it in 1:10000) {

+ innovSim <- rnorm(10, sd = sqrt(dW[it]))

+ levelSim[, it] <- cumsum(innovSim) + lastTheta[it]

+ }

R> ySim <- matrix(0, nr = 10, nc = 10000)

R> for (it in 1:10000) {

+ innov <- rnorm(10, sd = sqrt(dV[it]))

+ ySim[, it] <- innov + levelSim[, it]

+ }

R> yInts <- apply(ySim, 1, function(x) quantile(x, c(0.25, 0.75)))

For Bayesian on-line filtering and forecasting, however, MCMC is not efficient, since the
Gibbs sampling has to be run all over again as new data become available. Closed form
solutions are possible with some restrictive assumptions and conjugate priors, usually jointly
with discount factors techniques (West and Harrison 1997, Section 6.3). R functions for

Journal of Statistical Software 15

Function Model

dlmModARMA ARMA process in state space form
dlmModPoly nth order polynomial state space model
dlmModReg Linear regression
dlmModSeas Periodic – Seasonal factors
dlmModTrig Periodic – Trigonometric form

Table 3: Creator functions for special models with dlm.

implementing Bayesian conjugate analysis with discount factors that rely on the package dlm
are available at http://definetti.uark.edu/~gpetris/dlm/, but they are not included in
the package itself. Bayesian on-line analysis for state-space models is generally implemented
through sequential Monte Carlo algorithms, see for example Doucet, de Freitas, and Gordon
(2001), Liu (2001), Migon, Gamerman, Lopes, and Ferreira (2005), Gamerman and Lopes
(2006), Prado and West (2010). The contributed package SMC (Goswami 2008) provides
basic building blocks to implement sequential Monte Carlo simulation techniques for state
space models.

3. Additional univariate and multivariate examples

3.1. Intervention variables

In addition to dlmModPoly, illustrated in Section 2.2, dlm provides other functions to create
state space models of standard types, which are summarized in Table 3. With the exception of
dlmModARMA, which handles also the multivariate case, the other creator functions are limited
to the case of univariate observations.

As an illustration, with a time-varying state space model, let us consider again the Nile
river data, and suppose one wants to take into account a structural break in the level of
Nile river flow, following the construction of the Ashwan dam in 1899. This can be done
by introducing an intervention variable xt that is zero until 1898 and one thereafter. As
discussed in Commandeur et al. (2011, Section 2.2), a local level model with an intervention
variable xt is defined as yt = µt+λtxt+εt, with state vector αt = (µt, λt)

> and state equation
µt = µt−1 + ξt, λt = λt−1 + ζt, where (ξt, ζt)

> ∼ N (0,diag(σ2ξ , σ
2
ζ)). If σ2ζ = 0, the regression

coefficient λt is in fact constant; we assume so in the code that follows. This model is a
dynamic linear regression, that can be estimated with package dlm as shown below. Note
that, when accounting for the drop in the river flow following the dam construction, the
estimated evolution variance of the level is essentially zero. Figure 9 shows the resulting
smoothed estimates of the level; the structural break in 1899 is evident.

R> x <- matrix(c(rep(0, 27), rep(1, length(Nile) - 27)), ncol = 1)

R> modNileReg <- dlmModReg(x, dW = c(1, 0))

R> buildFun <- function(theta) {

+ V(modNileReg) <- exp(theta[1])

+ diag(W(modNileReg))[1] <- exp(theta[2])

+ return(modNileReg)

+ }

http://definetti.uark.edu/~gpetris/dlm/

16 State Space Models in R

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Figure 9: Nile river data: smoothed level, with a local level model and intervention variable.
The evolution variance of the level is practically zero.

R> fit <- dlmMLE(Nile, parm = rep(0, 2), build = buildFun)

R> modNileReg <- buildFun(fit$par)

R> drop(V(modNileReg))

[1] 16928.26

R> W(modNileReg)[1]

[1] 0.0001575277

R> modSmooth <- dlmSmooth(Nile, mod = modNileReg)

R> plot(Nile, type = "o")

R> lines(ts(modSmooth$s[-1, 1] + modSmooth$s[-1, 2] * x, start = 1871),

+ lty = 2)

3.2. Structural time series and model composition

In many applications, the actual observation at time t is conveniently represented as the sum

of independent components, i.e., yt = y
(1)
t + · · ·+ y

(k)
t , where the ith one is defined by a state

space model with its own state vector and system and covariance matrices, and describes a

specific aspect of the time series (Commandeur et al. 2011, Section 2.3). If the series y
(i)
t

(i = 1, . . . , k) is described by a state space model with matrices Z
(i)
t , H

(i)
t , T

(i)
t , R

(i)
t , Q

(i)
t , it is

easy to see that the resulting series yt is also described by a state space model, with matrices

Zt =
[
Z

(1)
t | . . . | Z(k)

t

]
,

Ht = H
(1)
t + · · ·+H

(k)
t ,

Journal of Statistical Software 17

Tt =

T
(1)
t

. . .

T
(k)
t

 ,

Rt =

R
(1)
t

. . .

R
(k)
t

 ,

Qt =

Q
(1)
t

. . .

Q
(k)
t

 .
Combining component state space models can be easily implemented in package dlm. As said
above, dlm provides functions to create state space models of standard types. Moreover, a
method function is provided for the generic + for objects of class dlm, so that more elaborate
state space models can be easily specified by “summing” basic ones as described above. For
example, the code dlmModPoly(order = 1) + dlmModSeas(frequency = 12) can be used to
specify the DLM representation of a local level model plus a seasonal component for monthly
data.

As a simple illustration, let us consider the well known series of quarterly UK gas consumption
from 1960 to 1986, available in R as UKgas. Suppose that we want to describe the series,
on a logarithmic scale, by a state space model containing a quarterly seasonal component
and a local linear trend, in the form of an integrated random walk (i.e., in the notation of
expression (4) in Commandeur et al. (2011), σ2ξ = 0). The model, and the MLE of the
unknown parameters, can be obtained by dlm as follows.

R> lGas <- log(UKgas)

R> dlmGas <- dlmModPoly() + dlmModSeas(4)

R> buildFun <- function(x) {

+ diag(W(dlmGas))[2:3] <- exp(x[1:2])

+ V(dlmGas) <- exp(x[3])

+ return(dlmGas)

+ }

R> fit <- dlmMLE(lGas, parm = rep(0, 3), build = buildFun)

R> dlmGas <- buildFun(fit$par)

R> drop(V(dlmGas))

[1] 0.1206739

R> diag(W(dlmGas))[2:3]

[1] 0.06258571 0.02775090

The smoothed estimates, based on the fitted model, provide a decomposition of the data
into a smooth trend plus a stochastic seasonal component, plus measurement error. These
components are plotted in Figure 10.

18 State Space Models in R

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.
5

5.
5

6.
5

G
as

●●

5.
0

6.
0

Tr
en

d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
0.

5
0.

5

1960 1965 1970 1975 1980 1985

S
ea

so
na

l

Time

UK Gas Consumption

Figure 10: UK gas data. Smoothed estimates of trend and stochastic seasonal component.

R> gasSmooth <- dlmSmooth(lGas, mod = dlmGas)

R> x <- cbind(lGas, dropFirst(gasSmooth$s[, c(1, 3)]))

R> colnames(x) <- c("Gas", "Trend", "Seasonal")

R> plot(x, type = "o", main = "UK Gas Consumption")

3.3. Multivariate models

Multivariate state space models can be analyzed in R using package dlm and package KFAS.
Package dlm provides a convenient function (dlmSum, or its alias %+%) to combine several

univariate models into a comprehensive multivariate model. Suppose that the series y
(i)
t

(i = 1, . . . , k) are described by state space models as in Section 3.2. One can write yt =

(y
(1)
t , . . . , y

(k)
t). Assuming that the components y

(i)
t are independent, the k-variate series yt is

described by a state space model with

Zt =

Z
(1)
t

. . .

Z
(k)
t

 ,

Ht =

H
(1)
t

. . .

H
(k)
t

 ,
and where Tt, Rt, Qt are the same as in Section 3.2. We can interpret this operation as an

outer sum of the models representing y
(1)
t , . . . , y

(k)
t . Using this notion of outer sum we see that,

Journal of Statistical Software 19

for example, seemingly unrelated time series equations (SUTSE) models can be effortlessly
set up in dlm by “adding” p copies of the corresponding univariate model. For instance, a
multivariate local level model for three time series series can be defined as

R> modUni <- dlmModPoly(1)

R> modUni %+% modUni %+% modUni

Clearly, the assumption of independence among the components will be unrealistic in most

interesting applications. Correlation among the y
(i)
t can be introduced by changing the values

of the observation and system covariance matrices (using the replacement function V() and
W()) or, as is more often the case, by estimating those matrices. For higher-dimensional time
series, it may be convenient to use dlmSum together with do.call. The following produces a
multivariate local level model for 13 time series at once.

R> do.call(dlmSum, rep(list(modUni), 13))

In the rest of the section we will consider a dynamic version of the capital asset pricing
model (CAPM), illustrating how to fit it and estimate the unobservable betas using KFAS.
Simplifying a bit, the CAPM assumes that the excess return (relative to a risk-free asset) on
an asset in any time period is proportional, on average, to the excess return on a portfolio
representing the entire market. The proportionality constants will be referred to as the betas.
Considering several assets at once, and allowing the betas to vary over time, one can set up
the following multivariate dynamic regression model:

αt = (β1t, . . . , βmt)
>, Tt = Rt = Im, Zt = xtIm,

Ht = Σε, Qt = Σβ,

where xt is the market excess return in period t. Note that here Σε and Σβ are m × m
variance matrices accounting for correlated observation errors and correlated changes of the
betas, respectively. The data we will use for this example are monthly returns on four stocks
(Mobil, IBM, Weyer, and Citicorp) from January 1978 to December 1987, together with the
30-day Treasury Bill as a proxy for the risk-free asset. The value-weighted average returns for
all the stocks listed at the New York and American Stock Exchanges will be used as a proxy
for the market returns. The data, originally used in Berndt (1991), are now available on the
internet.

R> tmp <- ts(read.table("http://shazam.econ.ubc.ca/intro/P.txt",

+ header = TRUE), start = c(1978, 1), frequency = 12) * 100

R> y <- tmp[, 1:4] - tmp[, "RKFREE"]

R> colnames(y) <- colnames(tmp)[1:4]

R> market <- tmp[, "MARKET"] - tmp[, "RKFREE"]

R> rm("tmp")

R> m <- NCOL(y)

To estimate the unknown parameters, we are going to parameterize each variance matrix in
terms of its log Choleski decomposition. The code below shows how to find the MLEs of Σε

and Σβ, assuming a diffuse prior for α1 with infinite variances in P1. The first two lines are
just a convenient way to set up, using the standard functions sapply and seq_along, the
three-way (m×m×n) array required by kf containing the matrix Zt at each time t = 1, . . . , n.

20 State Space Models in R

be
ta

s

1978 1980 1982 1984 1986 1988

0.
4

0.
6

0.
8

1.
0

MOBIL
IBM
WEYER
CITCRP

Figure 11: Multivariate dynamic capital asset pricing model: betas for four assets.

R> Zt <- sapply(seq_along(market), function(i) market[i] %x% diag(m))

R> dim(Zt) <- c(m, m, length(market))

R> Rt <- diag(nr = m)

R> logLik <- function(theta) {

+ a <- diag(exp(0.5 * theta[1:m]), nr = m)

+ a[upper.tri(a)] <- theta[(m + 1):k]

+ Ht <- crossprod(a)

+ a <- diag(exp(0.5 * theta[1:m + k]), nr = m)

+ a[upper.tri(a)] <- theta[-(1:(k + m))]

+ Qt <- crossprod(a)

+ lik <- kf(yt = t(y), Zt = Zt, Tt = diag(nr = m), Rt = Rt, Ht = Ht,

+ Qt = Qt, a1 = rep(0, m), P1 = matrix(0, m, m),

+ P1inf = diag(rep(1, m)), optcal = c(FALSE, FALSE, FALSE, FALSE))

+ return(-lik$lik)

+ }

R> fit <- optim(par = rep(0, 2 * k), fn = logLik, method = "BFGS",

+ control = list(maxit = 500))

R> fit$conv

[1] 0

With the MLEs of the unknown parameters one can compute the smoothing estimates of the
betas (Figure 11), as the following code illustrates.

R> theta <- fit$par

R> a <- diag(exp(0.5 * theta[1:m]), nr = m)

R> a[upper.tri(a)] <- theta[(m+1):k]

R> Ht <- crossprod(a)

R> a <- diag(exp(0.5 * theta[1:m + k]), nr = m)

Journal of Statistical Software 21

R> a[upper.tri(a)] <- theta[-(1:(k + m))]

R> Qt <- crossprod(a)

R> smoothCAPM <- ks(kf(yt = t(y), Zt = Zt, Tt = diag(nr = m), Rt = Rt,

+ Ht = Ht, Qt = Qt, a1 = rep(0, m), P1 = matrix(0, m, m),

+ P1inf = diag(rep(1, m))))

R> betas <- ts(t(smoothCAPM$ahat), start = start(market),

+ freq = frequency(market))

As one can see, while the beta of Mobil did not change much, those of the other three stocks
did change considerably over the period considered, suggesting that a dynamic framework
may be more appropriate than a static one for this type of analysis.

4. Conclusions

Without aiming at being exhaustive, we have tried to guide the reader through the main
tools and contributed packages available in R for the analysis of Gaussian, linear state space
models. Continuing in R leads to extensions for non-linear, non-Gaussian state space models,
and for discretely evolving, or hidden Markov, models. In fact, while the user can find
reliable functions and packages for linear Gaussian state space processes, the choice appears
more limited for other classes of state space models. It is worth however to underline that
the open source philosophy of R allows to easily take existing packages and extend those for
one’s purposes, when a full package is not available.

There are in fact many ways of extending the standard linear Gaussian state space model
discussed in the previous sections. One possibility is to keep the general form of the state
evolution unchanged, and assume that the observation depends on the current state in a
nonlinear and/or non-Gaussian way. The two most popular classes of models obtained by
relaxing the assumptions in this way (discussed in Commandeur et al. 2011, Section 5) are
stochastic volatility (SV) models and dynamic generalized linear models (DGLM). Support
for both in R is still fairly limited. Package sspir allows to perform extended Kalman filter and
smoother for univariate DGLMs having Poisson or Binomial distribution of the observations.
There are functions for approximate Kalman filtering and smoothing for these types of models
also in package KFAS; unfortunately, when trying a very simple Poisson example the returned
approximate loglikelihood resulted consistently to be NaN, making it impossible to estimate
model parameters.

Many SV models can be analyzed with the help of package sde (Iacus 2009, 2008), although
the focus of the package is on continuous time models. A Bayesian analysis of SV can be done
using the integrated nested Laplace approximation (INLA); see Rue, Martino, and Chopin
(2009). The R package INLA Rue and Martino (2011) (not on CRAN) can be used to perform
INLA in R.

Hidden Markov models (HMMs) are another important class of state space models, where the
state αt follows a Markov chain with a finite number of states, while the observations can have
any distribution depending on the current state, although Gaussian and other exponential
family distributions are the most commonly used in practice. Book-length treatments of
HMMs can be found in Frühwirth-Schnatter (2006); MacDonald and Zucchini (2009). Several
packages are available on CRAN for the analysis of HMMs. In addition, one can use package
repeated (Lindsey 2009), not available on CRAN. Contributed packages are also available for

22 State Space Models in R

the analysis of state space models in more specific applied contexts; one recent example is the
package Stem (Cameletti 2009), for spatio-temporal models.

While the analysis of general state space models with R is beyond the scope of this work, we
hope that the overview of the basic Gaussian, linear case provided here can be helpful also
as a starting point for the reader interested in analysing more general and complex models
with R.

Acknowledgments

We would like to thank an anonymous referee and the special volume editors for their com-
ments and suggestions. They all helped us to communicate our thoughts more clearly in
the final version of this paper. We would also like to thank the special volume editors for
extending the invitation to contribute to this volume of the Journal of Statistical Software on
state space models.

References

Berndt RE (1991). The Practice of Econometrics. Addison-Wesley.

Cameletti M (2009). Stem: Spatio-Temporal Models in R. R package version 1.0, URL
http://CRAN.R-project.org/package=Stem.

Carter CK, Kohn R (1994). “On Gibbs Sampling for State Space Models.” Biometrika, 81,
541–553.

Commandeur JJF, Koopman SJ, Ooms M (2011). “Statistical Software for State Space Meth-
ods.” Journal of Statistical Software, 41(1), 1–18. URL http://www.jstatsoft.org/v41/

i01/.

de Jong P, Shephard N (1995). “The Simulation Smoother for Time Series Models.”
Biometrika, 82(2), 339–350.

Dethlefsen C, Lundbye-Christensen S (2006). “Formulating State Space Models in R with
Focus on Longitudinal Regression Models.” Journal of Statistical Software, 16(1), 1–15.
ISSN 1548-7660. URL http://www.jstatsoft.org/v16/i01/.

Dethlefsen C, Lundbye-Christensen S, Luther Christensen A (2009). sspir: State Space
Models in R. R package version 0.2.8, URL http://CRAN.R-project.org/package=sspir.

Doucet A, de Freitas N, Gordon N (eds.) (2001). Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York.

Durbin J, Koopman SJ (2001). Time Series Analysis by State Space Methods. Number 24 in
Oxford Statistical Science Series. Oxford University Press, Oxford.

Durbin J, Koopman SJ (2002). “A Simple and Efficient Simulation Smoother for State Space
Time Series Analysis.” Biometrika, 89(3), 603–615.

http://CRAN.R-project.org/package=Stem
http://www.jstatsoft.org/v41/i01/
http://www.jstatsoft.org/v41/i01/
http://www.jstatsoft.org/v16/i01/
http://CRAN.R-project.org/package=sspir

Journal of Statistical Software 23

Frühwirth-Schnatter S (2006). Finite Mixture and Markov Switching Models. Springer-Verlag,
New York.

Früwirth-Schnatter S (1994). “Data Augmentation and Dynamic Linear Models.” Journal of
Time Series Analysis, 15, 183–202.

Gamerman D, Lopes HF (2006). Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Texts in Statistical Science, 2nd edition. Chapman & Hall/CRC Press,
London.

Gilbert P (2011). numDeriv: Accurate Numerical Derivatives. R package version 2010.11-1,
URL http://CRAN.R-project.org/package=numDeriv.

Gilbert PD (2009). Brief User’s Guide: Dynamic Systems Estimation. URL http://CRAN.

R-project.org/package=dse.

Goswami G (2008). SMC: Sequential Monte Carlo (SMC) Algorithm. R package version 1.0,
URL http://CRAN.R-project.org/package=SMC.

Graves S, Dorai-Raj S, Francois R (2010). sos: SOS. R package version 1.3-0, URL http:

//CRAN.R-project.org/package=sos.

Harrison PJ, Stevens CF (1976). “Bayesian Forecasting.” Journal of the Royal Statistical
Society B, 38, 205–247.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman filter. Cam-
bridge University Press, Cambridge.

Helske J (2010). KFAS: Kalman filter and Smoothers for Exponential Family State Space
Models. R package version 0.5.1, URL http://CRAN.R-project.org/package=KFAS.

Hyndman RJ (2011). forecast: Forecasting Functions for Time Series. R package ver-
sion 2.17, URL http://CRAN.R-project.org/package=forecast.

Hyndman RJ, Khandakar Y (2008). “Automatic Time Series Forecasting: The forecast Pack-
age for R.” Journal of Statistical Software, 27(3), 1–22. URL http://www.jstatsoft.

org/v27/i03/.

Iacus SM (2008). Simulation and Inference for Stochastic Differential Equations – With R
Examples. Springer-Verlag, New York.

Iacus SM (2009). sde: Simulation and Inference for Stochastic Differential Equations. R pack-
age version 2.0.10, URL http://CRAN.R-project.org/package=sde.

Lindsey JK (2009). repeated: Non-Normal Repeated Measurements Models. R package ver-
sion 1.0, URL http://www.commanster.eu/rcode.html.

Liu J (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York.

MacDonald IL, Zucchini W (2009). Hidden Markov Models for Time Series: An Introduction
Using R. Monographs on Statistics & Applied Probability. Chapman & Hall/CRC, London.

http://CRAN.R-project.org/package=numDeriv
http://CRAN.R-project.org/package=dse
http://CRAN.R-project.org/package=dse
http://CRAN.R-project.org/package=SMC
http://CRAN.R-project.org/package=sos
http://CRAN.R-project.org/package=sos
http://CRAN.R-project.org/package=KFAS
http://CRAN.R-project.org/package=forecast
http://www.jstatsoft.org/v27/i03/
http://www.jstatsoft.org/v27/i03/
http://CRAN.R-project.org/package=sde
http://www.commanster.eu/rcode.html

24 State Space Models in R

Migon HS, Gamerman D, Lopes HF, Ferreira MAR (2005). “Bayesian Dynamic Models.” In
D Day, C Rao (eds.), Handbook of Statistics, volume 25, chapter 19, pp. 553–588. Elsevier
B.V.

Monahan J (ed.) (2001). Numerical Methods of Statistics. Cambridge University Press,
Cambridge.

Petris G (2010a). dlm: Bayesian and Likelihood Analysis of Dynamic Linear Models. R pack-
age version 1.1-2, URL http://CRAN.R-project.org/package=dlm.

Petris G (2010b). “An R Package for Dynamic Linear Models.” Journal of Statistical Software,
36(12), 1–16. URL http://www.jstatsoft.org/v36/i12/.

Petris G, Petrone S, Campagnoli P (2009). Dynamic Linear Models with R. Springer-Verlag,
New York.

Prado R, West M (2010). Time Series: Modeling, Computation, and Inference. Chapman &
Hall/CRC Press, London.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Ripley BD (2002). “Time Series in R 1.5.0.” R News, 2(2), 2–7. URL http://CRAN.

R-project.org/doc/Rnews/.

Rue H, Martino S (2011). INLA: Functions Which Allow to Perform a Full Bayesian Analysis
of Structured Additive Models Using Integrated Nested Laplace Approximaxion. R package
version 0.0, revision ef2284e0b8, URL http://www.R-INLA.org/.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaussian
Models Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical
Society B, 71, 319–392.

Shephard N (1994). “Partial Non-Gaussian State Space Models.” Biometrika, 81, 115–131.

Tusell F (2011). “Kalman Filtering in R.” Journal of Statistical Software, 39(2), 1–27. URL
http://www.jstatsoft.org/v39/i02/.

West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. 2nd edition. Springer-
Verlag, New York.

Affiliation:

Giovanni Petris
Department of Mathematical Sciences
University of Arkansas
Fayetteville, AR 72701, United States of America
E-mail: GPetris@uark.edu

http://CRAN.R-project.org/package=dlm
http://www.jstatsoft.org/v36/i12/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-INLA.org/
http://www.jstatsoft.org/v39/i02/
mailto:GPetris@uark.edu

Journal of Statistical Software 25

Sonia Petrone
Department of Decision Sciences
Università Bocconi
Milano, Italy
E-mail: sonia.petrone@unibocconi.it

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 41, Issue 4 Submitted: 2010-01-26
May 2011 Accepted: 2010-11-10

mailto:sonia.petrone@unibocconi.it
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The local level model
	The local level model in R
	The local level model with package dlm
	The local level model with package KFAS
	Bayesian inference for the local level model

	Additional univariate and multivariate examples
	Intervention variables
	Structural time series and model composition
	Multivariate models

	Conclusions

