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Abstract

As larger sets of high-throughput data in genomics and proteomics become more read-
ily available, there is a growing need for fast algorithms designed to compute exact p values
of distribution-free statistical tests. We present a program for computing the exact distri-
bution of the two-sample Cramér-von Mises test statistic under the null hypothesis that
the two samples are drawn from the same continuous distribution. The program makes it
possible to handle substantially larger sample sizes than earlier proposed computational
tools. The C++ source code for the program is published with this paper, and an R
package is under development.
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1. Introduction

High-throughput technologies such as gene expression microarrays and proteomics are opening
up a new era in biology and medicine. Such technologies yield an abundance of valuable
quantitative information posing new challenges to the statistician. It has become common
practice to use microarray technology for selecting“interesting”genes by comparing expression
levels of thousands of genes in two different phenotypes. Modern methods for finding such
differentially expressed genes typically employ two-sample statistical tests combined with
multiple testing procedures to guard against Type 1 errors (see Dudoit et al. 2003; Simon et al.
2003; Speed 2003; McLachlan et al. 2004; Lee 2004; Wit and MacClure 2004, for reviews). As
larger sets of microarray gene expression data become more readily available, nonparametric
methods for testing multiple two-sample hypotheses in microarray data analysis are beginning
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to be more appreciated (Stamey et al. 2001; Grant et al. 2002; Troyanskaya et al. 2002; Xiao
et al. 2004; Guan and Zhao 2005; Lee et al. 2005; Qiu et al. 2006, to name a few). For example,
the Cramér-von Mises test appears to be quite competitive with the t test even when its power
is assessed by simulating normally distributed log-expression levels under location alternatives
(Qiu et al. 2006), conditions under which the t test is known to be optimal. The Cramér-von
Mises test can provide a substantial gain in power as compared to the t test under some other
departures from the null hypothesis.

In applications to microarrays and other types of high-throughput data, distribution-free sta-
tistical tests call for fast algorithms for computing exact p values because relevant asymptotic
results (see Csörgö and Faraway 1996, for the Cramér-von Mises test) do not provide the re-
quired accuracy of approximation in the tail region of the corresponding limiting distribution.
The reason is that the widely-used multiple testing procedures controlling the family-wise
error rate (FWER) are focused on the region of very small p values. To illustrate this point,
consider the following example. Suppose that one wishes to find changes in the marginal
distributions of expression levels of 12558 genes when comparing two groups of patients of
equal size n = m = 43 as in the application reported by Qiu et al. (2006). In other words,
there are 12558 two-sample hypotheses to be tested in this setting. Consider a particular
gene for which the observed Cramér-von Mises statistic value equals A = 2.2253921 with the
exact and asymptotic p values being equal to 2.115×10−6 and 3.994×10−6, respectively. The
Bonferroni-adjusted p values are, therefore, equal to .02656 and .05015 respectively. Let the
statistic value for another gene be equal to B = 2.1193889 so that the exact and asymptotic
Bonferroni-adjusted p values are .0493 and .0866, respectively. As a result, all the genes with
values of the Cramér-von Mises test statistic falling in the interval (B,A) will be declared
differentially expressed when using exact p values, but they will not be selected if asymptotic
p values are used at the same FWER level of 0.05. This example shows that the development
of efficient numerical algorithms for computing exact p values has no sound alternative. Such
algorithms should be designed to handle large sample sizes, that is situations where direct
rearrangement methods are computationally prohibitive. In this paper, we present a C++
software that implements a numerical algorithm for computing the exact distribution of the
two-sample Cramér-von Mises test statistic.

The Cramér-von Mises two-sample test is one of the best-known distribution-free two-sample
tests. It is based on the statistic T2 defined below. Suppose two independent samples
x1, x2, . . . , xm and y1, y2, . . . , yn are drawn independently from two distributions with contin-
uous cumulative distribution functions F (·) and G(·), respectively. Based on those samples,
we want to test the null hypothesis H0 : F = G against the two-sided alternative H1 : F 6= G.
The Cramér-von Mises test statistic T2 is given by

T2 =
mn

(m + n)2


m∑

i=1

(Fm(xi)−Gn(xi))2 +
n∑

j=1

(Fm(yj)−Gn(yj))2

 , (1)

where Fm and Gn are the empirical distribution functions associated with the respective
samples (xi) and (yj). This statistic and the test based on it (rejecting H0 if the value of T2 is
“too large”) were first studied by Anderson (1962) as a 2-sample variant of the goodness-of-fit
test introduced by Cramér (1928) and von Mises (1931).

The statistic (1) has a simple meaning. Move the m+n points x1, x2, . . . , xm and y1, y2, . . . , yn,
without changing their mutual order, to their new positions, which are 1/(m + n), 2/(m +
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n), . . . , (m + n)/(m + n) = 1. Let {ξ1, . . . , ξm} and {η1, . . . , ηn} be two subsets of the set
{1/(m+n), 2/(m+n), . . . , 1} formed by the xi’s and yj ’s, respectively, and let F ∗

m and G∗
n be

the corresponding empirical distribution functions. Then T2 equals, up to a constant factor
depending only on m and n, the squared L2-distance between F ∗

m and G∗
n.

Anderson (1962) and Burr (1963) studied the distribution of T2 under H0 (which, obviously,
does not depend on the distribution F = G) and provided some tables. In particular, An-
derson (1962) listed some percentiles for T2 when m, n ≤ 7. Burr (1964) did the same for
m + n ≤ 17. However, the methods they used rely on the listing of all splittings of the set
{1, 2, . . . ,m + n} into a pair of subsets of cardinalities m and n (such splittings are often
imprecisely called “permutations”). As a result, these methods are only applicable to small
samples.

Burr (1963) proposed an iterative method, which does not use permutations and is less com-
putationally intensive. Using it, he found the exact distribution of T2 for m = n = 10. Burr
presented his algorithm for the case m = n only, but it works for the general case as well
(Hájek and Šidák 1967). It is worth mentioning that the set of selected quantiles for T2 with
m = n ≤ 23 by Zajta and Pandikow (1977) are still based on permutations. The software
proposed in the present paper makes it possible to handle substantially larger sample sizes m
and n.

The paper is organized as follows. In section 2, the necessary technical details of the basic
numerical algorithm (based on Burr’s idea) are given. Section 3 describes the usage of the
software. The C++ source code for the software is published with this paper and an R package
is under development.

2. Basic ideas behind the design of the software

As we have mentioned in the Introduction, the design of the software is based on ideas
originally explored by Burr (1963). The recurrence relations we use are akin to those given
by Hájek and Šidák (1967).

2.1. Tabulating the distribution function

Let z1, z2, . . . , zm+n be the pooled and ordered sample of x1, x2, . . . , xm and y1, y2, . . . , yn. Un-
der the assumption that each sample is drawn from a continuous population, the pooled sample
almost surely has no ties. The test statistic only depends on the differences Fm(zt)−Gn(zt) of
the two empirical distribution functions at the observed values. Let ht = L[Fm(zt)−Gn(zt)],
where L is the least common multiple of m and n. It follows that ht’s (t = 0, 1, 2, . . . ,m + n)
are integers and T2 differs only by a constant factor from the integer-valued random variable

ζ =
m+n∑
t=1

h2
t . (2)

Specifically, T2 = (mn/(m + n)2L2)ζ. Then, the purpose is to find the distribution of ζ. To
do that, it suffices to find the frequency function of ζ.

Throughout the paper, by a frequency function we understand a non-negative integer-valued
function f on the set Z of all integers, such that the set {i ∈ Z : f(i) 6= 0} is non-empty and
finite.
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In computer, such a frequency function can be represented either by an array of values f(i)
on a sufficiently long “interval” {0, 1, 2, . . . , I} (with I so large that f(i) = 0 if i > I), or by
an array of pairs of integers (i, f(i)), where we may only store the pairs with f(i) 6= 0. We
will call an array of either kind a frequency table and will use the terms “frequency function”
and “frequency table” interchangeably. Note that in the actual program the second method
of storage of frequency tables is used.

Let B be a finite set with the uniform probability measure on it, so that every element b ∈ B
has probability 1/|B|. (Note that | · |, for a finite set ·, stands for its cardinality.) Let η be
an integer-valued random variable on B, i.e., a mapping η : B → Z. Then by the frequency
function of η (over B) we understand the function fη : Z→ Z+ defined by

fη(i) = |{b ∈ B : η(b) = i}|.

Obviously, the probability of the event η = i, i ∈ Z, equals fη(i)/|B|. Note that if the random
variable η is non-negative (which will always be the case in this paper), then fη(i) = 0 for all
i < 0.

Since Fm(zm+n) = Gn(zm+n) = 1, we have hm+n = 0. Let h0 = 0, then the sequence (ht)m+n
t=0 ,

for a given pair of samples (xi) and (yj), satisfies the following relation:

ht =
{

ht−1 + a, if zt = xi for some i,
ht−1 − b, if zt = yj for some j,

(3)

for 1 ≤ t ≤ m + n, where a = L/m and b = L/n.

The sequence (ht)m+n
t=0 can be represented by a broken line (or, briefly, a path) on the plane

R2 (see Figure 1), joining the points (t, ht), t = 0, 1, 2, . . . ,m + n (see Figure 1). Note that
the path starts at the point (0, 0), ends at the point (m+n, 0), and all of its m+n+1 vertices
belong to the lattice Z2; m legs of the path are parallel translations of the vector (1, a), and
the other n legs – translations of the vector (1,−b) (see Figure 1). There are totally

(
m+n

m

)
such paths, and under the null hypothesis all of them are equally likely.

It follows from (3) and h0 = hm+n = 0 that the possible values of ht (for a fixed t, 0 ≤ t ≤
m + n), form a finite arithmetic progression Ht with the common difference a + b:

Ht = {lt, lt + (a + b), lt + 2(a + b), . . . , ut}, (4)

where
lt = max{−bt, −L + a(t− n)} (5)

and
ut = min{at, L− b(t−m)}.

The set Ht contains at most s = min(m,n) + 1 points (exactly s points if t is between m and
n) and Hm+n = H0 = {0} (see Figure 1).

For t ∈ {0, 1, 2, . . . ,m + n} and d ∈ Ht, let f+
t,d denote the frequency function of

t∑
i=0

h2
i (6)

over all paths joining the points (0, 0) and (t, d). In other words, f+
t,d(s) is the number of

paths from (0, 0) to (t, d), such that the sum (6) equals s.
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Figure 1: The paths (m = 4, n = 6; a = 3, b = 2)

Apparently, f+
m+n,0 is the frequency function of (2), and the sum of all its values (frequencies)

is the total number of paths joining (0, 0) and (m + n, 0), i.e.,
(
m+n

m

)
. Hence, the probability

mass function of (2) at point i ∈ Z (i.e., the probability that ζ = i) equals(
m + n

m

)−1

f+
m+n,0(i). (7)

For z ∈ Z, denote by I[z] the frequency function which is one at z, and zero elsewhere. It is
obvious that f+

0,0 = I[0]. More generally,{
f+

t,lt
≡ f+

t,−bt = I[b2t(t + 1)(2t + 1)/6], t = 0, 1, 2, · · · , n;
f+

t,ut
≡ f+

t,at = I[a2t(t + 1)(2t + 1)/6], t = 0, 1, 2, · · · , m,
(8)

because there is exactly one path joining the points (0, 0) and (t,−bt), and similarly for the
points (0, 0) and (t, at).

Any path joining the points (0, 0) and (t, d) (1 ≤ t ≤ m + n) should pass one of the two
points (t− 1, d− a) and (t− 1, d + b). Therefore,

f+
t,d(i) = f+

t−1,d−a(i− d2) + f+
t−1,d+b(i− d2), i ∈ Z, (9)

which can also be rewritten as:

f+
t,d = Sd2 [f+

t−1,d−a + f+
t−1,d+b]. (10)
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Here Sr, r ∈ Z, is the right shift operator: given a function f(·) on Z, the function Srf may
be defined as follows:

(Srf)(i) = f(i− r) for all i ∈ Z.

Recurrence relation (9), together with equations (8), allows to compute frequency functions
f+

t,d recursively, starting from f+
0,0 = I[0] and ending up with the function f+

m+n,0. However,
the algorithm can be simplified if we change the “coordinates” t, d in the parallelogram formed
by all paths from (0, 0) to (m+n, 0) (see Figure 1) to new coordinates u, v. These coordinates
are defined as follows.
For a given path hi, i = 0, 1, . . . , t, from (0, 0) to (t, d), let u := |{j : 1 ≤ j ≤ t, ht−ht−1 = −b}|
and v := |{j : 1 ≤ j ≤ t, ht−ht−1 = a}| (in other words, u and v are the number of y’s and x’s,
respectively, among the first t z’s). It follows that, given t and d, we have v+u = t, av−bu = d,
which implies that u and v are uniquely determined by t and d. It is also clear that the pair
(u, v) takes all values in Z2, such that

0 ≤ u ≤ n, 0 ≤ v ≤ m.

We can use the new coordinates u and v to label the frequency functions f+
t,d, putting

g+
u,v(i) := f+

u+v,av−bu(i), i ∈ Z,

for all u, v, such that 0 ≤ u ≤ n, 0 ≤ v ≤ m. Then (10) becomes

g+
u,v = Sd2(g+

u−1,v + g+
u,v−1), where d = av − bu, (11)

while (8) transforms into equalities

g+
u,0 = I[b2u(u + 1)(2u + 1)/6], 0 ≤ u ≤ n (12)

and
g+
0,v = I[a2v(v + 1)(2v + 1)/6], v ≤ u ≤ m. (13)

Note that g+
n,m = f+

m+n, 0. Relations (11), (12) and (13) lead to the following algorithm for
computing the frequency functions g+

u,v.

Algorithm 1.

for (v ← 0; v ≤ m; v ← v + 1)

g+
0,v ← I[a2v(v + 1)(2v + 1)/6]

for (u← 1; u ≤ n; u← u + 1)

g+
u,0 ← I[b2u(u + 1)(2u + 1)/6]

for (v ← 0; v ≤ m; v ← v + 1)

g+
u,v ← S(av−bu)2 [g

+
u−1,v + g+

u,v−1]

Note that, as soon as the inner v-loop is complete, the frequency tables g+
u−1,v, 0 ≤ v ≤ m,

are not needed any longer, and the memory they occupy can be freed.
In the case m = n, the following algorithm allows to store only half of necessary frequency
tables using the identity f+

t,−d ≡ f+
t,d.
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Algorithm 1* (case m=n).

f+
0,0 ← I[0]

for (t← 1; t ≤ 2n; t← t + 1)

x← min(t, 2n− t)

for (d← x; d ≥ 0; d← d− 2)

if (d = t)

f+
t,d ← I[t(t + 1)(2t + 1)/6]

else

f+
t,d ← f+

t−1,d+1 + f+
t−1,|d−1|

We have conducted numerical experiments to compare the computed tail probabilities with
those tabulated by Burr (1963). In Burr’s tables, the values of the probability mass function
are represented as ordinary fractions and they are in complete agreement with the results of
our computations.

2.2. Computing p values

In practice, one usually needs tail probabilities of the test statistic (p values), rather than
probabilities of individual values. Of course, we can compute the individual probabilities and
then find the tail probabilities by summation. In this subsection, we describe an alternative
way of computing them, which allows larger sample sizes.

For t = 0, 1, . . . ,m + n and d ∈ Ht, denote by f−t,d the frequency function of

m+n∑
i=t

h2
i (14)

over all paths connecting the points (t, d) and (m + n, 0). In view of symmetry,

f−t,d = f+
m+n−t,−d. (15)

Proposition . Let M = [(m + n)/2] ([z] stands for the integer part of z). If m + n is even,
the frequency function f+

m+n,0 is

f+
m+n,0 =

∑
d∈HM

S−d2 [f+
M,d ∗ f+

M,−d]. (16)

If m + n is odd,

f+
m+n,0 =

∑
d∈HM

f+
M,d ∗ f+

M,−d−a +
∑

d∈HM

f+
M,d ∗ f+

M,−d+b. (17)

Here ∗ denotes the convolution of frequency functions: (g ∗ h)(i) =
∑

k∈Z g(k)h(i− k).

Remark. Note that f+
M,d ≡ 0 if d < lM or d > uM (see (4)).



8 A C++ Program for the Cramér-von Mises Two-Sample Test

Proof. Let fM
d (d ∈ HM ) stand for the frequency function of (2) over all paths that connect

the points (0, 0) and (m + n, 0) through the point (M,d). Any path connecting the points
(0, 0) and (m + n, 0) should pass one and only one of the points (M,d), d ∈ HM . Therefore,
the function f+

m+n,0 can be decomposed into the sum of functions fM
d , d ∈ HM :

f+
m+n,0 =

∑
d∈HM

fM
d . (18)

Suppose m + n is even, so that m + n = 2M ; since the path’s part connecting (0, 0) with
(M,d) and the part connecting (M,d) with (m + n, 0) can be chosen independently, we have

fM
d (i− d2) =

∑
j∈Z

f+
M,d(j) f−M,d(i− j) ≡ (f+

M,d ∗ f−M,d)(i).

(The argument i− d2, rather than i, of fM
d is due to the fact that, adding the two sums (6)

and (14), we “almost” obtain the sum (2), but take h2
t into accout twice.) Equivalently, we

have Sd2fM
d = f+

M,d ∗ f−M,d, or

fM
d = S−d2 [f+

M,d ∗ f−M,d]. (19)

Applying (18), (19) and (15), we obtain (16).

Suppose now that m + n is odd, so that m + n = 2M + 1. Any path joining the points (0, 0)
and (m + n, 0) through (M,d) should pass exactly one of the two points (M + 1, d + a) and
(M + 1, d− b); therefore,

fM
d = f+

M,d ∗ f−M+1,d+a + f+
M,d ∗ f−M+1,d−b . (20)

Applying (18), (20) and (15), we obtain (17). �

From now on we will assume that
m ≤ n. (21)

Formulas (16) and (17) show that, in order to tabulate the probability mass function of (2),
it is sufficient to have the frequency tables f+

M,d, d ∈ HM . Since f+
M,d = f+

u+v,av−bu = g+
u,v

for some pair (u, v) with u + v = M and av − bu = d, these frequency tables actually are
{g0,M , g1,M−1, . . . , gm,M−m}. Therefore, they can be obtained using the following algorithm.

Algorithm 2.

for (v ← 0; v ≤ m; v ← v + 1)

g+
0,v ← I[a2v(v + 1)(2v + 1)/6]

for (u← 1; u ≤M ; u← u + 1)

g+
u,0 ← I[b2u(u + 1)(2u + 1)/6]

for (v ← 0; v ≤ min(m,M −u); v ← v +1)

g+
u,v ← S(av−bu)2 [g

+
u−1,v + g+

u,v−1]
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Algorithm 2* (case m=n).

f+
0,0 ← I[0]

for (t← 1; t ≤ n; t← t + 1)

x← min(t, 2n− t)

for (d← x; d ≥ 0; d← d− 2)

if (d = t)

f+
t,d ← I[t(t + 1)(2t + 1)/6]

else

f+
t,d ← f+

t−1,d+1 + f+
t−1,|d−1|

It follows from the assumption (21) that lM = −bM (see (5)), so that each integer d ∈ HM

equals one of the numbers
dv = −bM + (b + a)v (22)

with some v ∈ {0, 1, . . . ,m}. Consequently, dm−v + dv equals 0 or b, if m + n is even or
odd, respectively. Therefore, −dv = dm−v in the former case, while −dv + b = dm−v and
−dv − a = dm−1−v in the latter case.

Using these facts, we can re-write (16) as

f+
m+n,0 =

m∑
v=0

S−d2
v
[f+

M,dv
∗ f+

M,dm−v
] (m + n is even) (23)

and (17) as

f+
m+n,0 =

m−1∑
v=0

f+
M,dv

∗ f+
M,dm−v−1

+
m∑

v=0

f+
M,dv

∗ f+
M,dm−v

(m + n is odd) (24)

Convoluting large frequency tables is computationally intensive. However, if we need to
compute only several p values, this can be done fast.

Associate with each frequency function f its tail function f≥ defined as

f≥(i) =
∑
j≥i

f(j), i ∈ Z.

We have
(f + g)≥ = f≥ + g≥; (25)

(Srf)≥ = Sr[f≥]; (26)

(f ∗ g)≥ = f ∗ g≥ = g ∗ f≥, (27)

where
f ∗ g≥(i) =

∑
k∈Z

f(k)g≥(i− k).
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Assume Q is a given value of (2),then the corresponding p value, P , is

P = Pr{ζ ≥ Q} =
(

m + n

m

)−1 ∑
i≥Q

f+
m+n,0(i) =

(
m + n

m

)−1

(f+
m+n,0)

≥(Q). (28)

Using (25) and (26), we can derive from (23) and (24) that

(f+
m+n,0)

≥(Q) =
m∑

v=0

(f+
M,dv

∗ f+
M,dm−v

)≥(Q + d2), (29)

if m + n is even, and

(f+
m+n,0)

≥(Q) =
m−1∑
v=0

(f+
M,dv

∗ f+
M,dm−v−1

)≥(Q) +
m∑

v=0

(f+
M,dv

∗ f+
M,dm−v

)≥(Q), (30)

if m + n is odd.

Now, the only need is to efficiently evaluate quantities of the following type:

R = (f ∗ g)≥(c),

where f and g are two frequency functions and c an integer. We proceed further along the
lines of the work by van de Wiel (2001).

Let fi = f(ui), i = 1, 2, . . . , k, be all the non-zero values of the frequency function f , and
gj = g(vj), j = 1, 2, . . . , l, be those of g. We assume that both sequences ui and vj are strictly
increasing. By the definition of R,

R =
∑
q≥c

[f ∗ g](q) =
∑
q≥c

∑
u+v=q

f(u)g(v) =
∑

u+v≥q

f(u)g(v),

or

R =
∑

ui+vj≥c

figj =
k∑

i=1

fiGi, (31)

where Gi =
∑

j : vj≥c−ui
gj . For i = 1, 2, . . . , k, let ri = min{j : vj ≥ c − ui} (ri = l + 1 if no

such j exist, i.e., vl < c − ui). Then 1 ≤ rk ≤ rk−1 ≤ . . . ≤ r1 ≤ k + 1. Note that all ri can
be found using one linear run through both arrays ui and vj : we put i = 1, j = k + 1 and
decrease j until the inequality vj ≥ c−ui fails or j = 0; the previous j is r1. We increase i by
1 and continue to decrease j until the same inequality fails or j = 0; the previous j is r2; etc.

Now we can compute the Gi’s recursively:{
G1 =

∑k
j=r1

gj ,

Gi = Gi−1 +
∑ri−1−1

j=ri
gj , for i = 2, 3, . . . , k − 1, k.

(32)

In view of equations (29) and (30), the p value P = Pr{ζ ≥ Q} can now be computed using
the following algorithm.
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Algorithm 3e (even m + n).

s = 0

for (v ← 0; v ≤ m; v ← v + 1)

w ← m− v

q ← (f+
M,dv
∗f+

M,dw
)≥(Q+d2)

s← s + q

P ←
(
m+n

m

)−1
s

Algorithm 3o (odd m + n).

s = 0

for (v ← 0; v ≤ m−1; v ← v+1)

w ← m− v − 1

q ← (f+
M,dv

∗ f+
M,dw

)≥(Q)

s← s + q

for (v ← 0; v ≤ m; v ← v + 1)

w ← m− v

q ← (f+
M,dv

∗ f+
M,dw

)≥(Q)

s← s + q

P ←
(
m+n

m

)−1
s

We have made some additional improvements in the code to increase its efficiency. We do
not describe these small modifications at length, lest the exposition become too cumbersome.
Technical details are available from the corresponding author upon request.

3. Usage

The XCVMTest program allows to compute the exact null distribution of the Cramér-von Mises
test statistic, as well as p values corresponding to given values of the statistic. The program
works in command line mode, its C++ source code is available along with this paper. There
are four ways to use the program.

A. XCVMTest m n

The program computes the distribution of the Cramér-von Mises statistic: its values, their
probabilities and the corresponding p values. In addition, the output contains the related
integers (see Section 2.1): ζ (the scaled statistic), f(ζ) (the frequency) and

∑
j≥ζ f(j) (the

cumulative frequency). The command line arguments m and n are the sample sizes. E.g.,
typing XCVMTest 10 10 gives Table 2 in Burr (1963). The output is self-explanatory.
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B. XCVMTest [-d|-f] m n t1 t2 . . . tr

The arguments m and n are the sample sizes; t1, . . . , tr (r ≥ 1) are the given values of the
Cramér-von Mises statistic. The output contains pairs consisting of the statistic values and
the corresponding p values. (More precisely, the given values are first re-scaled to the ζ-scale
(see Section 2.1) and rounded to the nearest integer, then the corresponding p values are
computed.) The values -d and -f of the optional parameter have the following meaning:
the option -d implies computing the full distribution of the Cramér-von Mises statistic (see
Section 2.1), the p values being then obtained by summation. The option -f implies a more
efficient computation using convolutions (see Section 2.2), which reduces the memory load
and, therefore, extends the range of pairs (m,n) for which the computation is possible. The
default option is -f.

C. XCVMTest [-d|-f] m n StatFileName

The only difference from B is that the given values of the Cramér-von Mises statistic are being
read from a text file (whose name is the last argument of the command) rather than from
the command line. The file consists of the statistic values separated with delimiters; possible
delimiters are: the space, the tab character, and the end-of-line character. The values -d and
-f of the optional parameter have the same meaning as in B.

D. XCVMTest [-d|-f] DataFileName

The program evaluates the Cramér-von Mises statistic and the corresponding p value for each
pair of samples contained in the text file whose name is the last argument of the command.
Here is the format of the file:

m n
X1,1 X1,2 . . . X1,m Y1,1 Y1,2 . . . Y1,n

X2,1 X2,2 . . . X2,m Y2,1 Y2,2 . . . Y2,n

. . . . . . . . . . . . . . . . . . . . . . . .
Xr,1 Xr,2 . . . Xr,m Yr,1 Yr,2 . . . Yr,n

The first line of the file contains the sample sizes m and n separated by a space. Any other
line of the file consists of m + n numbers separated by spaces or tab characters: the first
sample (m numbers) followed by the second sample (n numbers).

The values -d and -f of the optional parameter have the same meaning as in B.

If the program, at some step of computation, cannot allocate enough memory, it displays a
message to this effect and stops.

Our computation experiments were carried out on a UNIX workstation (Sunfire V480) with
16.3GB RAM, 4×8.0MB Cache and 4×1200MHz CPU. The computation was still successful
for the following sample sizes m and n in the extreme cases m = n (L = n) and m = n−1 (L =
n(n− 1)):

• A: m=n=200 and m=60, n=61;

• B, C, D with optional parameter -d: m=n=200 and m=64, n=65;



Journal of Statistical Software 13

• B, C, D with optional parameter -f: m=n=250 and m=80, n=81.

The following table presents the computing time for various pairs of sample sizes (m, n) for
each option.

m = n 1 2 m = n 1 2 m, n 1 2
40 1.00 0.15 100 160.93 17.39 10, 11 0.01 0.00
50 3.21 0.44 110 282.00 29.14 20, 21 1.19 0.12
60 9.29 1.12 120 476.17 46.42 30, 31 23.63 2.60
70 21.94 2.48 130 774.07 71.28 40, 41 193.25 22.56
80 45.98 5.10 140 1212.94 107.19 50, 51 833.79 119.12
90 87.58 9.72 150 1792.01 154.98 60, 61 4053.00 435.77

Table 1: The CPU time used by the program. For mode A, or modes B, C, D with option
-d, the time is in column 1; for modes B, C, D with option -f, the time is in column 2. The
CPU time is measured in seconds.
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Hájek J, Šidák Z (1967). Theory of Rank Tests. Academic Press, New York.

Lee MLT (2004). Analysis of Microarray Gene Expression Data. Kluwer, Boston.

Lee MLT, Gray R, Björkbacka H, Freeman MW (2005). “Generalized Rank Tests for Repli-
cated Microarray Data.” Statistical Applications in Genetics and Molecular Biology, 4(11).
Article 3.

McLachlan GL, Do KA, Ambroise C (2004). Analyzing Microarray Gene Expression Data.
Wiley, New Jersy.

Qiu X, Xiao Y, Gordon A, Yakovlev A (2006). “Assessing Stability of Gene Selection in
Microarray Data Analysis.” BMC Bioinformatics, 7. Article 50.

Simon RM, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y (2003). Design
and Analysis of DNA Microarray Investigations. Springer, New York.

Speed TP (ed.) (2003). Statistical Analysis of Gene Expression Microarray Data. Chapman
& Hall/CRC, Boca Raton, Florida.

Stamey TA, Warrington JA, Caldwell MC, Chen Z, Fan Z, Mahadevappa M, McNeal JE,
Nolley R, Zhang Z (2001). “Molecular Genetic Profiling of Gleason Grade 4/5 Prostate
Cancers Compared to Benign Prostatic Hyperplasia.” The Journal of Urology, 166, 2171–
2177.

Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB (2002). “Nonparametric
Methods for Identifying Differentially Expressed Genes in Microarray Data.” Bioinformat-
ics, 18, 1454–1461.

van de Wiel MA (2001). “The Split-up Algorithm: A Fast Symbolic Method for Computing
P -Values of Rank Statisitcs.” Computational Statistics, 16, 519–538.

von Mises R (1931). Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und
Theoretischen Physik. Deuticke, Leipzig.

Wit E, MacClure J (2004). Statistics for Microarrays. Wiley, Chichester.

Xiao Y, Frisina R, Gordon A, Klebanov L, Yakovlev A (2004). “Multivariate Search for
Differentially Expressed Gene Combinations.” BMC Bioinformatics, 5. Article 164.

Zajta AJ, Pandikow W (1977). “A Table of Selected Percentiles for the Cramér-von Mises-
Lehmann Test: Equal Sample Sizes.” Biometrika, 64(1), 165–167.



Journal of Statistical Software 15

Affiliation:

Yuanhui Xiao
Department of Biostatistics and Computational Biology
University of Rochester, and
Department of Mathematics and Statistics
Georgia State University
30 Pryor Street
Atlanta, GA 30303, United States of America
E-mail: matyxx@langate.gsu.edu

Alexander Gordon
Department of Biostatistics and Computational Biology
University of Rochester, and
Department of Mathematics and Statistics
University of North Carolina at Charlotte
9201 University City Blvd
Charlotte, NC 28223, United States of America
E-mail: aygordon@uncc.edu

Andrei Yakovlev
Department of Biostatistics and Computational Biology
University of Rochester
601 Elmwood Avenue, Box 630
Rochester, NY 14642, United States of America
E-mail: andrei_yakovlev@urmc.rochester.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 17, Issue 8 Submitted: 2006-03-17
January 2007 Accepted: 2006-12-18

mailto:matyxx@langate.gsu.edu
mailto:aygordon@uncc.edu
mailto:andrei_yakovlev@urmc.rochester.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Basic ideas behind the design of the software
	Tabulating the distribution function
	Computing p values

	Usage

