
JSS Journal of Statistical Software
May 2011, Volume 41, Issue 3. http://www.jstatsoft.org/

State Space Methods in Ox/SsfPack

Matteo M. Pelagatti
Università degli Studi di Milano-Bicocca

Abstract

The use of state space models and their inference is illustrated using the package
SsfPack for Ox. After a rather long introduction that explains the use of SsfPack and
many of its functions, four case-studies illustrate the practical implementation of the
software to real world problems through short sample programs.

The first case consists in the analysis of the well-known (at least to time series analysis
experts) Nile data with a local level model. The other case-studies deal with ARIMA and
RegARIMA models applied to the (also well-known) Airline time series, structural time
series models applied to the Italian industrial production index and stochastic volatility
models applied to the FTSE100 index. In all applications inference on the model (hyper-)
parameters is carried out by maximum likelihood, but in one case (stochastic volatility)
also an MCMC-based approach is illustrated. Cubic splines are covered in a very short
example as well.

Keywords: ARIMA, Kalman filter, state space methods, unobserved components, Gibbs sam-
pling, Ox, SsfPack.

1. Introduction

SsfPack (Koopman, Shephard, and Doornik 1999, 2008) is a library of routines for state space
modelling and inference written in C and linked to Ox, the efficient matrix language developed
by Doornik (2007)1. SsfPack is written by Siem Jan Koopman, one of the most prolific
researchers and developers of state space algorithms, and comes in two different versions.
One is free for academic use (the same policy as Ox console) and it is referred to as SsfPack
Basic, while the other is commercial and its name is SsfPack Extended. The latter version
includes the functionalities of SsfPack Basic plus a set of algorithms that are computationally

1At the moment of writing this article the current version of SsfPack is 3.0, while that of Ox is 5.1. For
SsfPack refer to the web page http://www.ssfpack.com/, while for Ox the relevant site is http://www.doornik.
com/

http://www.jstatsoft.org/
http://www.ssfpack.com/
http://www.doornik.com/
http://www.doornik.com/


2 State Space Methods in Ox/SsfPack

more efficient and allow for exact treatment of the diffuse conditions for the initial state vector.
Here only SsfPack Basic will be discussed, but the reader may be interested in knowing that
for benefitting from the higher computational efficiency of SsfPack Extended the state space
representation of the model must have orthogonal measurement errors (Ht diagonal) and the
disturbances in the transition equations must be uncorrelated with the measurement errors
(Eηtε

>
t = 0). The book by Koopman et al. (2008) contains the complete documentation for

both versions of the package, but the reader only interested in SsfPack Basic may also refer
to Koopman et al. (1999).

SsfPack can handle both time-homogeneous and time-varying state space models, and contains
various routines for (Kalman) filtering, prediction and smoothing, functions for computing
the likelihood, in some cases with analytical scores, and algorithms for generating random
sequences from the smoothed distribution of the state vector process. Furthermore, there are
functions that facilitate the construction of the system matrices for some classes of frequently
used models such as ARIMA, structural time series models (STSM), linear regressions and
splines.

The package is usually installed in the folder package\ssfpack in the Ox installation directory,
and throughout this article it will be assumed so. In order to use the package in an Ox program
the line #include <packages/ssfpack/ssfpack.h> must be present in the program header2.

In order to lighten the exposition of the features of SsfPack, we introduce slight modifications
to the state space notation used in this Journal of Statistical Software volume: for t = 1, . . . , n,

yt = ct + Ztαt + εt, εt ∼ NID(0, Ht),

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt), Ct = Eηtε
>
t

where yt, ct and εt are (p × 1) vectors, αt, dt and ηt are (m × 1) vectors, Zt is the (p ×m)
observation matrix, Tt is the (m × m) transition matrix, Ht is (p × p), Qt is (m × m) and
Ct is (m × p). With respect to the notation used in this special issue, we added the two
system vectors ct and dt, imposed the restriction3 R = Im and assigned the symbol Ct to the
covariance matrix of ηt with εt. The system is completed by the initial state specifications

α1 ∼ N(a1, P1), α1 ⊥ εt, α1 ⊥ ηt, for t = 1, 2, . . . , n.

2Those not acquainted with Ox, should take notice of the following:

◦ // denotes a line comment;
◦ statements end with a semicolon;
◦ & is used for pointers, that is, for passing a variable through its address;
◦ if pointer is a pointer, the pointed variable can be read or assigned using the syntax pointer[0];
◦ matrix indexing begins with 0;
◦ <1,2,3;4,5,6> defines a matrix constant: , switches to the next column and ; to the next row;
◦ the operator ~ joints two matrices by columns (side by side), while | stacks two matrices;
◦ arithmetic and logic operators on matrices follow linear algebra conventions (e.g., * is matrix product),

elementwise operators are preceded by a dot (e.g., .* is Hadamard product).

3This is actually not a restriction: indeed, if the reader prefers the original form, he/she can redefine the
state equation disturbance as η̃t = Rηt and use this in the rest of the paper.



Journal of Statistical Software 3

1.1. Formulating the state space system

SsfPack represents the state space system through one vector and three matrices:

δt =

[
dt
ct

]
, Φt =

[
Tt
Zt

]
, Ωt = E

[[
ηt
εt

]
·
[
η>t ε>t

]]
=

[
Qt Ct
C>t Ht

]
, Σ =

[
P1

a>1

]
.

The matrices Φt and Ωt must always be assigned, while δt and Σ are optional. The default
assignments for the latter two matrices are

δt = 0, Σ =

[
kIm
0>

]
,

where k is a very large constant.

In the rest of the article we will refer to the Ox variables containing the system matrices as,
respectively, mDelta, mPhi, mOmega and mSigma.

In SsfPack both homogeneous (i.e., time invariant) and inhomogeneous systems can be imple-
mented. In the first case a state space must be defined through either the pair mPhi, mOmega,
or the triplet mPhi, mOmega, mSigma, or the quartet mPhi, mOmega, mSigma, mDelta. Since the
user is free to chose any one of these forms, we will use the notation {Ssf} to refer to any of
the three state space system definitions.

Defining an inhomogeneous system is slightly more complex. For the matrices with time-
varying elements additional index matrices of the same dimensions have to be defined. For
these matrices, we will use the self-explanatory notation mJ_Phi, mJ_Omega, mJ_Delta. Fur-
thermore, a matrix with the time-varying elements in its rows, say mXt, has to be assigned.
The elements of the index matrices are all set to −1 except those elements for which the
corresponding elements in Φt, Ωt, δt are time varying. For those elements that change with
time the row numbers of mXt, in which the needed time-varying elements are stored, must be
indicated in the corresponding position of the relative index matrix.

For example, suppose that only the first element of a (3 × 2) Φ matrix is time varying, and
the time varying coefficient is stored in the third row of mXt. Then, the index matrices have
to be declared as4

mJ_Phi = <2, -1; -1, -1; -1, -1>; mJ_Omega = <>; mJ_Delta = <>;

where <> is the empty matrix. As the reader may have noticed from the example, index
matrices relative to time-homogeneous system matrices can be set to <>.

The four alternative ways to define a state space model in SsfPack are summarized below:

mPhi, mOmega

mPhi, mOmega, mSigma

mPhi, mOmega, mSigma, mDelta

mPhi, mOmega, mSigma, mDelta, mJ_Phi, mJ_Omega, mJ_Delta, mXt

The data matrix, that we will denote as mYt, must have the series in rows and the time points
in columns. Thus, using the above indexing notation, mYt is a (p × n) matrix. SsfPack has
no problem to work with data matrices with missing values.

4Recall that in Ox arrays and matrices are indexed starting with 0.



4 State Space Methods in Ox/SsfPack

1.2. Generating the system matrices for common classes of models

The system matrices of a state space model can be directly assigned by the user, but for some
common classes of models there are functions that simplify their assignment.

ARIMA models One of the most used classes of time series models is the ARMA family.
If a non-seasonal stationary and invertible ARMA(p,q) model is needed, the function to be
used is

GetSsfArma(vAr, vMa, dStDev, &mPhi, &mOmega, &mSigma)

where vAr and vMa are vectors containing, respectively, the AR and MA coefficients, dStDev
is the standard deviation of the white noise processes and the system matrices are passed
through their addresses. This function implements the ARMA model in the form

αt+1 = Tαt + hξt, ξt ∼ NID(0, σ2ξ ),

yt = Zαt

with

T =


φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
...

. . .
...

φm−1 0 0 . . . 1
φm 0 0 . . . 0

 , h =


1
θ1
...

θm−2
θm−1

 , Z =
[
1 0 0 . . . 0

]
,

m = max(p, q + 1), φi = 0 for i > p and θj = 0 for j > q. Thus, Q = σ2ξhh
> and

Ω =

[
Q 0
0 0

]
.

The matrix Σ is built using the unconditional moments of the process αt.

In addition to the above function, SsfPack Extended provides GetSsfSarima for seasonal inte-
grated ARMA models (SARIMA). The user of SsfPack Basic can design the SARIMA system
matrices directly, or take advantage of GetSsfArma by opportunely passing the ARMA param-
eters for a multiplicative seasonal model and modifying the output matrices for integrating
the process. As example, the ubiquitous Airline model for monthly data will be discussed in
Section 3.

Structural time series models Another important class of models both for social and
natural sciences is represented by the structural time series models (STSM), also referred to as
unobserved components (UC) time series models. For a short introduction to these models the
reader can refer to the introductory article of this special issue. The books by Harvey (1989),
West and Harrison (1997), Durbin and Koopman (2001) and Commandeur and Koopman
(2007) are all devoted to these kind of models and the interested reader should refer to them
for details.

The SsfPack function for building the system matrices for a STSM is



Journal of Statistical Software 5

GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma)

where mStsm is a matrix of the form

mStsm =<

CMP LEVEL, ση, 0, 0, 0;
CMP SLOPE, σζ 0, 0, 0;
CMP SEAS DUMMY, σω, s, 0, 0;
CMP CYC 0, σψ λc ρ 0
...

...
...

...
...

CMP CYC 9, σψ, λc, ρ, 0;
CMP IRREG, σξ, 0, 0, 0

>;

Notice that CMP_LEVEL, CMP_SLOPE, CMP_SEAS_DUMMY etc. are predefined constants, the no-
tation CMP_SEAS_DUMMY implies a stochastic dummy specification of the seasonality and is
alternative to CMP_SEAS_TRIG, which defines a (stochastic) trigonometric seasonal compo-
nent. Up to ten stochastic cycles may be used in the same model. The ordering of the
components specification may be different, but the system matrices are built according to the
ordering given above (trend, slope, seasonality, cycles, irregular).

The second column of the matrix contains the standard deviations of the components’ distur-
bance with one exception: the standard deviations of the cycle components refer directly to
the square root of the cycle variance σ2ψ = σ2κ/(1− ρ2), where σ2κ is the variance of the cycle
disturbance.

The third column of the matrix is used only for the seasonal and cyclical components and, in
the former case, s is the seasonal periodicity (e.g., 12 for monthly data and 4 for quarterly
series), while in the latter case λc is the modal frequency of the cycle (e.g., if the modal cycle
length is 60 months the corresponding frequency is given by λc = 2π/60).

The fourth column is used only in the specification of cycle components and contains the
damping factors ρ ∈ (0, 1).

The fifth column is not used in the SsfPack Basic implementation, while in SsfPack Extended
it is used to specify higher order cycles of the type proposed by Harvey and Trimbur (2003).

The use of GetSsfStsm is illustrated with an example in Section 4.

Regression models Regression models can be easily represented in inhomogeneous state
space form as

αt+1 = αt, yt = x>t αt + εt,

where xt is a vector of regressors at time t and αt is a vector of regression coefficients. A
regression with time-varying coefficients may be obtained by changing the state equations to
αt+1 = αt + ηt. Unless better information is available, the state vector at time t = 1 is given
a diffuse distribution.

The SsfPack function for building the relevant system matrices is

GetSsfReg(mXt, &mPhi, &mOmega, &mSigma, &mJ_Phi)



6 State Space Methods in Ox/SsfPack

where mXt is the (k × n) data matrix. Notice that the function uses only the row dimension
of mXt and not the content.

Adding regressors to time series models Suppose the matrices mPhi, mOmega and
mSigma have been properly assigned for a time-invariant state space model. If regressors
have to be added to the model, the function

AddSsfReg(mXt, &mPhi, &mOmega, &mSigma, &mJ_Phi)

can be used. Again, the function uses only the row dimension, say k, of mXt and not its
content.

The function call produces

mPhi =

Ik 0
0 T
0 Z

 , mOmega =

0 0 0
0 Q C
0 C> H

 , mSigma =

−Ik 0
0 P1

0 a>1

 ,
where the system matrices T , Z, Q, H, P1 and a1 are extracted from the passed mPhi, mOmega
and mSigma. The returned index matrix mJ_Phi is

mJ Phi =


−1

(k×k)
−1

(k×m)

−1
(m×k)

−1
(m×m)

i
(1×k)

−1
(1×m)

 ,
where −1 denotes a matrix of −1’s with the indicated dimensions and i = (0, 1, . . . , k − 1).

In Section 3 it will be shown how to build a regression model with ARMA errors (generally
referred to as RegARMA or ARMAX ) using the functions GetSsfArma and AddSsfReg jointly.

Nonparametric cubic splines A cubic spline is a function used in interpolation problems
and for the approximation of smooth functions observed with noise (a form of nonparametric
regression). The interested reader should refer to Green and Silverman (1994) for a general
treatment on cubic splines and to Wecker and Ansely (1983) for their relation with signal
extraction.

The SsfPack function for computing cubic splines is

GetSsfSpline(dq, vxt, &mPhi, &mOmega, &mSigma, &mJ_Phi, &mJ_Omega, &mXt)

where dq is the signal to noise ratio, vxt is a (row) vector of abscissa points for which we
have noisy observations of the smooth function: yi = f(xi) + εt.

The approximation to the function can be recovered by passing the system matrices generated
by GetSsfSpline and the ordinate data yi to the smoothing functions discussed below. A
case-study for this function is not covered in the text of this article, but the interested reader
can take a look at the code in Spline.ox, in which a (random) continuous curve is generated
and sampled at a finite number of points, then some noise is added and a cubic spline is fitted.



Journal of Statistical Software 7

1.3. Filtering, smoothing, predicting and forecasting

SsfPack is extremely rich in routines for carrying out predictions, filtering and smoothing.
Here, we will just cover those functions useful to the typical “end-user” of state space models.

Recall that in a Gaussian state space system, conditionally on the observations, the state
variables are normal and the Kalman filter and smoother are algorithms to compute the
conditional moment pairs

at|s = E[αt|Ys], Pt|s = E[(αt − at|s)(αt − at|s)>]

with Ys = {y1, . . . , ys}, which are named predictor, filter or smoother when, respectively,
s < t, s = t, s > t.

The main function for estimating the first two conditional moments of the state variables is

SsfMomentEst(iSel, &mOutput, mYt, {Ssf})

where iSel is a selection variable whose possible values are ST_SMO, ST_FIL, ST_PRED, DS_SMO,
for moment smoothing, filtering, prediction and disturbance smoothing, respectively. The
matrix mOutput, passed to the function by its address, will contain the main output of the
function. Naming the first two conditional moments of the signal st = ct + Ztαt as

θt|s = E[st|Ys], St|s = E[(st − θt|s)(st − θt|s)>],

the matrix mOutput will have the following structure:

mOutput =


a1|· . . . an|·
θ1|· . . . θn|·

diag{P1|·} . . . diag{Pn|·}
diag{S1|·} . . . diag{Sn|·}

 ,
where the subscript t|· must be substituted either with t|t−1, t|t or t|n, and the diag operator
returns the main diagonal of a square matrix as column vector.

For forecasting (multi-step out-of-sample predictions), the analyst can augment the data
matrix with columns of missing values at the end of the observed sample, and then use
the function SsfMomentEst for either smoothing, filtering or prediction. For example, for
forecasting q steps ahead, if the matrix mYt contains the observed data, the following line
of code could be used5: mYt ~= constant(.NaN, p, q); where the Ox function constant

generates a (p × q) matrix with all elements equal to its first argument, that in this case is
the missing value (.NaN, not a number).

1.4. Likelihood evaluation

SsfPack offers the following three functions for evaluating the log-likelihood of a state space
model:

bSuccess = SsfLik(&dLogLik, &dVar, mYt, {Ssf})

bSuccess = SsfLikSco(&dLogLik, &dVar, &mSco, mYt, {Ssf})

bSuccess = SsfLikConc(&dLogLikConc, &dVar, mYt, {Ssf})

5Notice that if @ is any binary operator in Ox, then x @= y is equivalent to x = x @ y.



8 State Space Methods in Ox/SsfPack

All functions return 1 if successful and 0 otherwise. The first two functions evaluate the
log-likelihood, `, and write its value to the variable dLogLik passed through its address.
SsfLikSco computes also the matrix of scores with respect to the elements of the covariance
matrix Ω,

S =
∂`

∂Ω
,

and assign it to mSco through its address.

Suppose that ψi is an unknown parameter associated only with elements of the matrix Ω,
then Koopman and Shephard (1992, equation 3.2) show that the score with respect to ψi is
given by

∂`

∂ψi
=

1

2
tr

(
S
∂Ω

∂ψi

)
.

By all functions the variable dVar is assigned the value σ̂2 = (np−d)−1
∑n

t=1 ν
>
t F
−1
t νt, where

d is the number of state variables with diffuse initial conditions, νt is the innovation vector
and Ft its covariance matrix.

The function SsfLikConc computes the profile log-likelihood where a scale parameter is con-
centrated out, reducing the dimensionality of the estimation problem by one parameter (see
Harvey 1989, pp. 126–127). Notice that, while for SsfLik and SsfLikSco the variable dVar

will be approximately equal to 1 after maximum likelihood (ML) estimation, for SsfLikSco

dVar contains the scale parameter concentrated out of the likelihood.

In order to make the examples in the next sections easily readable by readers who are not
acquainted with Ox, a few lines are now dedicated to the maximization function MaxBFGS,
upon which we rely for ML estimation of models in state space form. The optimization
package is to be imported using #import <maximize> in the header of the program. The
BFGS maximization function in Ox is

iCode = MaxBFGS(func, &vP, &dFunc, 0, bNumDer)

where func is the name of the objective function, vP is the parameter (column) vector (passed
through its address) that contains the initial values at input and the value of the parameters
at maximum at output, dFunc is a variable that will contain the maximum of the objec-
tive function at the end of the maximization process, and bNumDer is a boolean variable
that should be set to 0 if func returns analytical derivatives and to 1 otherwise (numeri-
cal derivatives will then be computed). The fourth argument of the function is not used in
this paper and will always be set to 0. MaxBFGS returns a number that can be passed to
MaxConvergenceMsg(iCode) which returns a human-readable string for assessing the degree
of success of the convergence process.

The function func is expected by MaxBFGS to have the following syntax:

bSuccess = func(vP, &dFunc, &vScore, 0)

where vP is a variable through which the parameter vector is passed, in dFunc the function
func must write the value of the objective function at vP, and if the third argument is different
from 0, then func is expected to write the value of the gradient at vP in the variable vScore.
The function must return 1 in case of success or 0 in case the evaluation failed.



Journal of Statistical Software 9

1.5. Simulation

Since the advent of fast and cheap personal computers, simulation has become a standard tool
in statistics. SsfPack is extremely rich in functions for generating random quantities implied
by models in state space form.

For simulating artificial observations from the joint distribution implied by a state space
model, the SsfPack function is

mD = SsfRecursion(mR, {Ssf})

where

mR =

[
η0 η1 . . . ηn
ε0 ε1 . . . εn

]
is a sequence of random vectors with covariance matrices Ωt to be generated by the user. For
example, in the Gaussian case, i.e., for (η>t ε>t )> ∼ NID(0,Ω), the sequence for t = 1, . . . , n
can be generated using the following line of Ox code: choleski(mOmega)*rann(m+p, n);

Notice that, while ε0 is irrelevant, since no y0 vector will be generated, η0 must have zero
mean and identity covariance matrix, since α1 is generated according to α1 = a + Lη0, and
the mean vector a and the covariance matrix P of α1 must be specified in the initial moments
matrix mSigma as follows:

Σ =

[
L
a>

]
,

where L satisfies LL> = P and can be computed with the function mL = choleski(mP).

The output mD contains a pseudo-random realization of the state variables process and of the
observable variables process:

mD =

[
α1 α2 . . . αn+1

0 y1 . . . yn

]
.

Carrying out Bayesian inference using Markov Chain Monte Carlo methods often requires
generating sample values from the joint distribution of the state variables conditional on the
observed data. If we set Ys = {y1, . . . , ys}, SsfPack has functions to generate from αt|Yn and
ηt|Yn, as well as from st|Yn and εt|Yn.

There are two ways to generate samples from the conditional random processes above: one is
more efficient, but more involved, the other one is straightforward to implement, but somewhat
slower. Here, we cover just the latter method, and refer to the SsfPack manual (Koopman
et al. 2008) for the former.

The function for easily drawing from the smoothed distributions is

mD = SsfCondDens(iSel, mYt, {Ssf})

iSel can be set equal to ST_SIM or DS_SIM and the function returns a sample from, respec-
tively, [

α1|Yn . . . αn|Yn
s1|Yn . . . sn|Yn

]
, or

[
η1|Yn . . . ηn|Yn
ε1|Yn . . . εn|Yn

]
.



10 State Space Methods in Ox/SsfPack

2. Case 1: The local level model applied to the Nile data

In this section it will be shown how the local level model (LLM) can be fit to the volume of
the Nile river at Aswan from 1871 to 1970, using maximum likelihood (ML) estimates for the
two unknown variances in the model. At the end of the section the model will be extended
to allow for a break in the trend.

The SsfPack functions treated are SsfLik, SsfLikSco and SsfMomentEst. The complete code
can be found in the file LLM_Nile.ox, that makes use of the data in Nile.dat.

The code is organized in three functions plus the main(). Furthermore, since the optimization
functions do not allow to pass variables to the objective function other than the parameters
with respect to which the optimization is carried out, a global (static) variable is needed:
static decl s_vYt;

The first function takes the two variances of the LLM (state disturbance first) as arguments
and uses them to write the Φ and Ω system matrices to variables passed by address.

set_llm(const vP, const amPhi, const amOmega) {

amPhi[0] = <1;1>;

amOmega[0] = diag(vP);

}

The ready-to-use function GetSsfStsm could have been used as well, but in this case we found
the direct assignment of the system matrices easier.

The second function is the objective function to be passed to the maximizer and, as noted
above, must have a specific structure (see Section 1.4). Before proceeding with the discus-
sion of the function, two things need to be emphasized. Firstly, since the MaxBFGS optimizer
does not allow constraints on the parameter space, we pass the two variances in their (un-
constrained) logarithms, and take the exponents of these log-variances to ensure their non-
negativity. This implies that the scores for the log-variances have to be obtained from the
scores of the variances. So, if `(σ2) is the log-likelihood and σ2 = exp(p) is the variance, than
the score with respect to p is given by

∂`(σ2)

∂p
= σ2

∂`(σ2)

∂σ2
, (1)

where ∂`(σ2)/∂σ2 is computed by SsfLikSco. Secondly, for numerical reasons we prefer to
return (through the pointer adLogLik) the mean log-likelihood. Of course, this choice does
not affect the estimates.

Notice that in the function below the variable/pointer amHessian is not used, and avScore

will contain the (mean) score if an address is passed, while if equal to 0 only the (mean)
log-likelihood will be computed.

loglik(const vLogP, const adLogLik, const avScore, const amHessian)

{

decl dVar, bSuccess, mPhi, mOmega, mSco;

decl cT = columns(s_vYt); // number of observations

set_llm(exp(vLogP), &mPhi, &mOmega); // builds LLM (see funct. above)

if (avScore) // address passed -> analytical scores required



Journal of Statistical Software 11

{

bSuccess = SsfLikSco(adLogLik, &dVar, &mSco, s_vYt, mPhi, mOmega);

adLogLik[0] /= cT; // mean loglik passed

avScore[0] = (diagonal(mOmega) .* diagonal(mSco))'/cT; // cf. eq.(1)

return bSuccess;

}

else // zero passed -> no scores returned

{

bSuccess = SsfLik(adLogLik, &dVar, s_vYt, mPhi, mOmega);

adLogLik[0] /= cT; // mean loglik passed

return bSuccess;

}

}

The code is rather self-explanatory and illustrates the use of both SsfLik and SsfLikSco.

The third function, acov(const vLogP) (not reported in the text) computes estimates of the
asymptotic covariance matrix of the ML estimators. This function will be used in many other
short programs.

The last function is the main(), which loads the data, calls the maximization routine, prints
the estimates and plots the graphs.

main()

{

s_vYt = loadmat("Nile.dat")'; // loads Nile data and put it in global

decl dVarEtaInit = 10^3; // initial guess for Var(eta)

decl dVarEpsInit = 10^4; // initial guess for Var(eps)

decl vLogP = log(dVarEtaInit|dVarEpsInit); // log variances in vector

decl dLogLik, vScore, mHessian, iRetCode, vP;

decl mPhi, mOmega, mACov;

// Estimation

MaxControl(500, 10, TRUE); // maxiter=500, report every 10 iter,

// compact output

iRetCode = MaxBFGS(loglik, &vLogP, &dLogLik, 0, 0); // maxim. of LogLik

vP = exp(vLogP); // anti-transform of estimates

set_llm(vP, &mPhi, &mOmega); // builds the LL model at ML estimates

mACov = acov(vLogP); // asymptotic variances for vLogP

// textual output

[...]

// smoothing, prediction, auxiliary residuals

decl mSmo, mPred, mResid, mForecast;

SsfMomentEst(ST_SMO, &mSmo , s_vYt, mPhi, mOmega);

SsfMomentEst(ST_PRED, &mPred , s_vYt, mPhi, mOmega);

SsfMomentEst(DS_SMO, &mResid, s_vYt, mPhi, mOmega);

SsfMomentEst(ST_PRED, &mForecast,



12 State Space Methods in Ox/SsfPack

s_vYt~constant(.NaN,1,10), mPhi, mOmega);

// plotting graphs

[...]

}

Notice the different features of the function SsfMomentEst used for smoothing both the state
variables and their disturbances, getting one-step-ahead predictions and forecasts.

Since the optimization has been carried out with respect to log-variances, standard errors for
the variances have been obtained using the delta method6.

By running LLM_Nile.ox the following estimates are obtained, while the graphs are shown in
Figure 1.

Strong convergence using analytical derivatives

Log-likelihood = -632.546

Results for variances using the delta method

Estimate Std.Error

Var(eta) 1469.3 1271.3

Var(eps) 15098. 3139.1

As can be noticed by looking at the auxiliary residuals for the trend and relative CI in Figure 1,
a break occurred at the end of the XIX century.

Atkinson, Koopman, and Shephard (1997, Section 6.3) suggest a break between 1897 and
1900 as well. The file LLM_Nile_Break.ox contains a version of the LLM seen above, where
a further trend-break parameter is to be estimated for a date fixed by the user.

We discuss the main modifications made to the previous code. Now there are two global
variables:

static decl s_vYt; // data

static decl s_iIndex; // index of the break

The function that builds the (now inhomogeneous) system matrices is

set_llm(const vP,

const amPhi, const amOmega, const amSigma, const amDelta,

const amJ_Phi, const amJ_Omega, const amJ_Delta, const amXt)

{

amPhi[0] = <1;1>; amJ_Phi[0] = <>;

amOmega[0] = diag(vP[0:1]); amJ_Omega[0] = <>;

amDelta[0] = <0;0>; amJ_Delta[0] = <0;-1>; // time varying param.

amSigma[0] = <-1;0>;

amXt[0] = zeros(1,columns(s_vYt)); // creates dummy variable

amXt[0][s_iIndex] = vP[2]; // sets impact to vP[2]

}

6Let g : Rk 7→ Rm be a differentiable function with gradient ∇g, then
√
n(θ̂n − θ)

p→ N(0,Σ) implies√
n
(
g(θ̂n)− g(θ)

) p→ N
(
0,∇g(θ)>Σ∇g(θ)

)
.



Journal of Statistical Software 13

1880 1900 1920 1940 1960
500

1000

1500 Nile Smooth with 90% CI 

1880 1900 1920 1940 1960

−2

0

2
Std. Innovations 

1880 1900 1920 1940 1960

−1.96

0.00

1.96
Aux. Resid. for Observation Eq. with 95% CI 

1880 1900 1920 1940 1960

−1.96

0.00

1.96
Aux. Resid. for Trend Eq. with 95% CI  

1960 1965 1970 1975 1980

750

1000

1250 Nile Prediction with 50% CI Forecast with 50% CI 

Figure 1: Nile with smoothed trend, standardized prediction errors, auxiliary residuals for the
observation equation (for outliers), auxiliary residuals for the trend (for breaks), forecasts.

The other functions (not reported) are not too different, even though in the loglik function
we show how to compute analytical scores with respect to the variance and numerical scores
with respect to the break impact. The textual output for a break in year 1897 is:

Strong convergence using analytical derivatives

Log-likelihood = -622.373

Estimate Std.Error

Break -247.78 28.308

Var(eta) 2.1874e-008 1.4679e-005

Var(eps) 16136. 2292.5

Thus, when a break is allowed in the LLM, the trend becomes deterministic since its dis-
turbance variance is virtually zero. The same result was found by Atkinson et al. (1997).
Figure 2 illustrates this finding with a line plot.

3. Case 2: The airline model applied to the airline time series

State space models are often used for carrying out exact ML estimation of ARIMA models.
In this section it will be shown how to cast the airline model (i.e., ARIMA(0,1,1)(0,1,1)s)
into state space form, carry out exact ML estimation of the parameters and forecast future



14 State Space Methods in Ox/SsfPack

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970
500

1000

1500 Nile Smooth with 90% CI 

Figure 2: LLM with a break in year 1897 applied to the Nile series.

realizations. Furthermore, the building of regression models with ARMA errors (RegARMA
or ARMAX) will be demonstrated.

The SsfPack functions treated are GetSsfArma, SsfLikConc, SsfMomentEst and AddSsfReg.

The code we are about to illustrate is contained in the file Airline.ox and uses the data in
airline.xls. The global variables needed in the rest of the code are declared as

static decl s_vYt; // data vector

static decl s_cPeriod; // seasonal periodicity

static decl s_dVar; // innovation variance

The first function we report extends the output produced by GetSsfArma to generate a general
airline model.

airline(const vP, const cPeriod, const amPhi, const amOmega, const amSigma)

// vP (3 x 1) vector of MA(1), SMA(1) coefficients and Innovation Std. Dev.

// cPeriod integer value of seasonal periodicity

{

decl vMA = zeros(cPeriod+1,1); // makes vector of MA coefficients

vMA[0] = vP[0]; // MA(1) coeff

vMA[cPeriod-1] = vP[1]; // SMA(1) coeff

vMA[cPeriod] = vP[0]*vP[1]; // multiplicative "interaction"

// building the ARMA(0,1)(0,1) part

decl mPhi, mOmega, mSigma;

GetSsfArma(<>, vMA, vP[2], &mPhi, &mOmega, &mSigma);

// building the I(1)(1) part

decl mA = zeros(cPeriod+1, cPeriod+1);

decl mB = zeros(cPeriod+1, cPeriod+2);

mB[cPeriod][0] = 1;

mA[0][cPeriod-1:] = 1;

mA[cPeriod][cPeriod] = 1;

mA[1:cPeriod-1][0:cPeriod-2] = unit(cPeriod-1);

// putting the pieces together

amPhi[0] = ( mA~mB )|

( zeros(cPeriod+2,cPeriod+1)~mPhi[:cPeriod+1][:cPeriod+1] )|



Journal of Statistical Software 15

( 1~zeros(1,2*(cPeriod+1)) );

amOmega[0] = diagcat(zeros(cPeriod+1,cPeriod+1), mOmega);

amSigma[0] = diagcat(-unit(cPeriod+1),mSigma);

}

This function produces

mPhi =


A

(s+1)×(s+1)
B

(s+1)×(s+2)

0
(s+2)×(s+1)

T
(s+2)×(s+2)

(1, 0, . . . , 0)
1×(s+1)

0
1×(s+2)

 , mOmega =

 −I
(s+1)×(s+1)

0
(s+1)×(s+2)

0
(s+2)×(s+1)

Q
(s+2)×(s+2)

 ,

mSigma =


−I

(s+1)×(s+1)
0

(s+1)×(s+2)

0
(s+2)×(s+1)

P1
(s+2)×(s+2)

0
1×(s+1)

a>1
1×(s+2)

 ,
where T , Q, P1 and a1 are the state space matrices for the ARMA(0,1)(0,1)s model produced
by GetSsfArma, while

A =


0

1×(s−1)
1

1×2
I

(s−1)×(s−1)
0

1×2
0

1×(s−1)
(0, 1)
1×2

 , B =

 0
(s−1)×1

0
(s−1)×(s−1)

1
1×1

0
1×(s−1)



are responsible for the simple and seasonal integration of the ARMA process.

The following function computes the log-likelihood at the parameters’ value in vP. Notice that
only the two MA parameters are to be passed since the innovation variance is concentrated
out by the function SsfLikConc and assigned to the global variable s_dVar. Indeed, the
function airline is called with arbitrary (unitary) innovation standard deviation.

loglik(const vP, const adLogLik, const avScore, const amHessian)

{

decl cT = columns(s_vYt); // Number of observations

decl iRetCode, dLogLik, dVar, mPhi, mOmega, mSigma;

airline(vP|1, s_cPeriod, &mPhi, &mOmega, &mSigma);

iRetCode = SsfLikConc(adLogLik, &s_dVar, s_vYt, mPhi, mOmega, mSigma);

adLogLik[0] /= cT; // Mean loglik

return iRetCode;

}

The next function produces forecasts given the model’s parameters, the forecast horizon and
the desired confidence level in (0, 1). Moreover, if the airline model is built for data in log,
the function produces forecasts (under log-normality) and confidence bands for the original
data.



16 State Space Methods in Ox/SsfPack

forecast(const vP, const dStDev, const cHorizon, const dConf, const bAntiLog)

{

decl mPhi, mOmega, mSigma, mForecast;

decl cT = columns(s_vYt); // number of observations

airline(vP|dStDev, s_cPeriod, &mPhi, &mOmega, &mSigma);

decl cStDim = columns(mPhi); // dimension of state vector

SsfMomentEst(ST_PRED, &mForecast, s_vYt~constant(.NaN,1,cHorizon),

mPhi, mOmega, mSigma);

decl vExpct = mForecast[0][]; // predictions and forecasts

decl vVar = mForecast[2*cStDim][]; // variance of pred. and forecasts

decl vStDev = sqrt(vVar); // Std. dev. of forecasts

decl vLo, vUp;

decl dZ = quann(1-(1-dConf)/2); // quantile for confidence level

if (bAntiLog) // if data are in log

{

vLo = exp(vExpct - dZ*vStDev); // lower bound for CI

vUp = exp(vExpct + dZ*vStDev); // upper bound for CI

vExpct = exp(vExpct + 0.5*vVar);// expectation of log-normal

}

else // if data are not in log

{

vLo = vExpct - dZ*vStDev; // lower bound for CI

vUp = vExpct + dZ*vStDev; // upper bound for CI

}

return vExpct|vLo|vUp;

}

We omit commenting the function acov, which estimates the asymptotic covariance matrix of
the ML estimates, and the main function, whose role is only the sequential call of the above
functions and the nice organization of the results. The estimates obtained by running the
code are

Maximum likelihood estimation of the Airline model using numerical scores

Estimate Std.error t-ratio p-value

theta -0.40183 0.089669 -4.4813 7.4193e-006

Theta -0.55693 0.073111 -7.6175 2.5757e-014

Innovation Variance: 0.00134827

Mean Log-Likelihood: 1.69921

while one year of predictions and two years of forecasts are depicted in Figure 3.

In order to illustrate the use of the ready-to-use functions of SsfPack for adding regressors to
time series models, we discuss parts of the code in the file Airline_reg.ox, which regresses
the log-airline time series on a linear time-trend, eleven seasonal sinusoids and leaves the
user the option of specifying an ARMA model for the regression errors. The following global
variables storing the AR and MA orders and the regressors are added to the previous ones:

static decl s_cAR=1; // AR order, default 1



Journal of Statistical Software 17

1960 1961 1962 1963

500

700

Data, Fit and Forecasts with 90% confidence interval
Passengers 
L.Bound 

Fit & Pred 
U.Bound 

Figure 3: Forecasts for the Airline time series using the ARIMA(0,1,1)(0,1,1)s model.

static decl s_cMA=0; // MA order, default 0

static decl s_mXt; // regressors' matrix

We just mention that the function regressors(cPeriod, cT, &mXt) in the code fills the
matrix pointed by &mXt (by row) with a constant, a time-counter and cPeriod-1 seasonal
sinusoids. In cPeriod the seasonal periodicity integer must be passed, while the integer in cT

represents the number of time points to be generated.

The function that computes the log-likelihood value for the ARMA parameters in the vector
vP is reported below. The function uses the global variables mentioned above to retrieve the
orders of the AR and MA parts. Since the regression coefficients are specified as (constant)
state variables, they are automatically concentrated out of the likelihood. In our implemen-
tation, the sum of the AR and MA orders must be at least one (otherwise no ARMA is
specified).

loglik(const vP, const adLogLik, const avScore, const amHessian)

{

decl mPhi, mOmega, mSigma, mDelta=<>;

decl mJ_Phi=<>, mJ_Omega = <>, mJ_Delta = <>;

decl iRetCode, vAR = <>, vMA = <>;

if (s_cMA==0) vAR = vP;

else if (s_cAR==0) vMA = vP;

else {

vAR = vP[0:s_cAR-1];

vMA = vP[s_cAR:s_cAR+s_cMA-1];

}

GetSsfArma(vAR, vMA, 1, &mPhi, &mOmega, &mSigma);

AddSsfReg(s_mXt, &mPhi, &mOmega, &mSigma, &mJ_Phi);// add regressors

iRetCode = SsfLikConc(adLogLik, &s_dVar, s_vYt,

mPhi, mOmega, mSigma, mDelta,

mJ_Phi, mJ_Omega, mJ_Delta, s_mXt);

adLogLik[0] /= columns(s_vYt); // Mean loglik

return iRetCode;

}



18 State Space Methods in Ox/SsfPack

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

5.0

5.5

6.0

6.5
Airline Regression 

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

−0.1

0.0

0.1 ARMA errors 

Figure 4: Regression fit and smoothed ARMA errors in the RegARMA model fitted to the
airline data.

We do not report the main function, but we suggest the reader to go through the code therein
to see how the inference on the regression coefficients is obtained through the SsfMomentEst

function. The code produces Figure 4 and the estimates reported below.

AR coefficients:

Lag Estimate Std.Error t-ratio p-value

1 0.8736 0.0612 14.2835 0.0000

MA coefficients:

Lag Estimate Std.Error t-ratio p-value

1 -0.1802 0.1070 -1.6845 0.0921

Regression coefficients:

Estimate Std.Error t-ratio p-value

Const 4.8128 0.0193 249.0651 0.0000

Trend 0.0100 0.0002 43.6591 0.0000

Cos1 -0.1430 0.0097 -14.7221 0.0000

Cos2 -0.0229 0.0056 -4.0961 0.0000

[...]

Fit statistics:

Innovation Variance: 0.00132045

Mean log-likelihood: 1.5082

4. Case 3: A STSM for the Italian industrial production

In this section we show how to fit a complete structural time series model to real data –
the Italian industrial production index (IPI) – using the SsfPack function GetSsfStsm. By
complete STSM it is meant that the data generating process is the sum of a local linear trend,



Journal of Statistical Software 19

a stochastic trigonometric seasonal, a stochastic cycle and an irregular component.

The discussed code is part of the file STSM_ipi_ita.ox, that uses data in IPI_ITA.xls.

The global variables needed in the code are

static decl s_vYt; // data vector

static decl s_cPeriod; // seasonal periodicity

Furthermore, two auxiliary routines that compute the logistic function (logit) and its inverse
(antilogit) are created and used to constrain parameters such as the cycle’s damping factor
ρ and frequency λc. In particular, when a parameter is a variance it is passed in its loga-
rithm from which the non-negative variance can be recovered by taking its exponent, while
for parameters constrained to specific intervals we use scaled versions of the logit function,
logit(x) = [1 + exp(−x)]−1, and its inverse, antilogit(y) = log[y/(1 + y)].

The function that builds the STSM starting from a vector of parameters is really only a call
to GetSsgStsm:

stsm(const vP, const amPhi, const amOmega, const amSigma)

{ // component st.dev. period persistence

decl

mStsm = CMP_LEVEL~ vP[0]~ 0~ 0|

CMP_SLOPE~ vP[1]~ 0~ 0|

CMP_CYC_0~ vP[2]~ vP[3]~ vP[4]|

CMP_SEAS_TRIG~vP[5]~s_cPeriod~ 0|

CMP_IRREG~ vP[6]~ 0~ 0;

GetSsfStsm(mStsm, amPhi, amOmega, amSigma);

}

The function for computing the (mean) log-likelihood takes unrestricted parameters and maps
them into their appropriate subspaces in the way that we just discussed.

loglik(const vTransP, const adLogLik, const avScore, const amHessian)

{

decl vP = exp(vTransP[0:2])| // positivity constrain

(logit(vTransP[3])*M_PI)| // 0-pi constrain

(logit(vTransP[4]))| // 0-1 constrain

exp(vTransP[5:6]); // positivity constrain

decl cT = columns(s_vYt);

decl iRetCode, dLogLik, dVar, mPhi, mOmega, mSigma;

stsm(vP, &mPhi, &mOmega, &mSigma);

iRetCode = SsfLik(adLogLik, &dVar, s_vYt, mPhi, mOmega, mSigma);

return iRetCode;

}

The main function, which we do not report in the text, loads the data, calls the numerical
optimizer MaxBFGS and produces the graphs in Figure 5 and some simple textual output that
we omit. The optimizer achieves only weak convergence (no improvement in line search),
indicating a rather flat log-likelihood in a neighborhood of the maximum, but both parameter



20 State Space Methods in Ox/SsfPack

1990 1995 2000 2005 2010

50

75

100

125 Italian IPI Smoothed Trend 

1990 1995 2000 2005 2010

−40

−20

0

20 Smoothed Seasonal 

1990 1995 2000 2005 2010

−10

0

Smoothed Cycle 

1990 1995 2000 2005 2010

−2.5

0.0

2.5
Smoothed Irregular 

Figure 5: Smoothed components of the Italian industrial production index.

estimates and smoothed components seem quite reasonable and interpretable. For example,
the modal frequency of the cycle (0.1678) corresponds to a period of 37 months, which is not
surprising for the Italian industrial production.

5. Case 4: The stochastic volatility model

The aim of this last case-study is to show how simple it is for an SsfPack user to imple-
ment MCMC methods in a non-Gaussian state space framework. The function we focus on
is SsfCondDens that generates from the state vector distribution conditionally on the obser-
vations.

In financial econometrics there are two popular classes of models that deal with time series
with time-varying variances: the class of GARCH-type models, where the variance ht of the
process yt is measurable with respect to the information set Ft−1 generated by the past of
yt, and the stochastic volatility (SV, also stochastic variance) models, in which the variance
follows a process of its own, which is not measurable with respect to Fs for any s.

The simplest specification of a SV model is

yt = exp(ht/2)ζt ζt ∼ NID(0, 1)

ht+1 = ν + φht + ηt ηt ∼ NID(0, σ2η),

where the two disturbances are independent. This model is a nonlinear state space form, but
can be easily linearized by taking the log of the square of the observable time series:

log y2t = ht + log ζ2t .

Now the state space is linear, but not Gaussian, since the observation error is a logχ2
1 dis-

tribution. Harvey, Ruiz, and Shephard (1994) propose to approximate the observation error
distribution with a normal with the same first two moments of logχ2

1:

log y2t = −1.27 + ht + εt, εt ∼ NID(0, π2/2).



Journal of Statistical Software 21

2005 2006 2007 2008 2009 2010

5

10

Pe
rc

en
t

Absolute FTSE100 returns Smoothed Std.Dev. 

Figure 6: FTSE100 absolute percentage returns and smoothed standard deviation based on
pseudo-ML estimation.

The Gaussian likelihood obtained through prediction error decomposition for this model be-
comes a pseudo-likelihood (also quasi-likelihood) and the Kalman filter and smoother are
no more conditional expectations, but only linear projections. Thus, the relative inference
provides consistent although inefficient estimators.

The code in SV_Harvey_ftse.ox, that makes use of the data in ftse100.xls, implements
the simple SV model for the daily returns of the FTSE100 index. In order to reduce the
dimension of the parameter vector with respect to which the likelihood is maximized, the
model has been implemented in the equivalent state space form

log y2t = −1.27 + µt + h∗t + εt, µt+1 = µt, h∗t+1 = φh∗t + ηt,

where the constant µ = µt plays the role of the marginal expectation of ht and ht = h∗t + µ.
The Ox/SsfPack code for this analysis is very simple and so similar to the previous examples
that we do not discuss it in the text. The returned QML estimates are µ = −0.023, φ = 0.925
and σ2 = 0.289. Figure 6 plots the FTSE100 absolute percentage returns together with their
smoothed standard deviations.

Kim, Shephard, and Chib (1998) consider the same model, but propose a different estima-
tion technique based on Gibbs sampling. Their approach is excellent for demonstrating the
simulation facilities of SsfPack. The code implementing a slight modification of their Gibbs
sampler that we are about to discuss is in the file SV_Kim_ftse.ox, and uses the data in
ftse100.xls.

In Section 3 of their paper, Kim et al. (1998) provide a seven-component Gaussian mixture
that approximates the logχ2

1 distribution very well. In our code the mixture is defined as
the (static) global variable s_mMix, a (7 × 3) matrix, in which the first column contains the
component probabilities, and the second and the third columns contain, respectively, mean
and variance of each component.

The Gibbs sampling recursion for estimating the parameters and the unobservable variance
of the SV model consists of the following three steps:

1. given the {h}nt=1 sampled in the previous recursion, generate the time series of mixture
probabilities {wt}nt=1:

Pr(wt = i|ht, yt) =
φ
(

log y2|ht + µi, σ
2
i

)
Pr(wt = i)∑7

i=1 φ
(

log y2|ht + µi, σ2i
)

Pr(wt = i)
, i = 1 . . . , 7,



22 State Space Methods in Ox/SsfPack

where φ(x|µ, σ2) denotes the normal density with mean µ and variance σ2;

2. given the previously sampled (ν, φ, σ2η, {wt}) generate {ht}nt=1 from the state smoothing
density of the state space

log y2t = µwt + ht + εt, εt ∼ NID(0, σ2wt
)

ht+1 = ν + φht + ηt, ηt ∼ NID(0, σ2t )

(this is achieved using the SsfPack function SsfCondDens);

3. given the previously sampled {ht}nt=1, set β = (ν, φ)>,

z =

log y22
...

log y2n

 , X =

1 log y21
...

...
1 log y2n−1

 , C = (X>X)−1, β̂ = CX>z, v = (z−Xβ̂)>z,

and generate first σ2η and than β using their posterior distributions under noninformative
priors:

σ2η|{yt} ∼ IG((n− 1)/2, v(n− 1)/2),

β|{yt}, σ2t ∼ N (β̂, σ2ηC),

where IG(a, b) denotes the Inverse Gamma distribution with parameters a and b.

Before going through the SV_Kim_ftse.ox routines that carry out the above steps, it is useful
to notice that the following auxiliary functions are therein coded and used:

phi(mX, mMu, mSigma) returns a matrix containing the values of the Gaussian densities of
the points in mX computed for mean and standard deviations, respectively, in mMu and
mSigma;

randiscrete(mProbs) returns a (1×n) vector of random numbers chosen from 0, 1, . . . , k−1,
according to the probabilities specified in the (k×n) matrix mProbs (every column sums
to 1);

ranmvn(vM, mS, c) returns a matrix (k × c) of c random vectors generated from a normal
distribution with mean (k × 1) vector vM and covariance (k × k) matrix mS.

The function that accomplishes step 1 of the Gibbs sampler is w_gen(const vH, const

vLogY2) that generates the indices of the mixture given the variances (vH) and the trans-
fomed observations (vLogY2).

The function for step 2 is

h_gen(const vArPars, const vW, const vLogY2)

{

// parameters' extraction

decl dNu = vArPars[0], dPhi = vArPars[1], dSig2 = vArPars[2];

// builds time-varying system matrices

decl mPhi = dPhi|1, mJ_Phi = <>;



Journal of Statistical Software 23

decl mDelta = dNu|0, mJ_Delta = (-1)|0;

decl mOmega = diag(dSig2|0), mJ_Omega = <-1,-1;-1,1>;

decl mSigma = (fabs(dPhi)<1)? // AR(1) stationary?

(dSig2/(1-dPhi^2))|(dNu/(1-dPhi)) : // yes

(-1)|0; // no

decl mXt = (s_mMix[vW][1]') | (s_mMix[vW][2]');

// generates from the smoothing distribution

decl mD = SsfCondDens(ST_SIM, vLogY2,

mPhi, mOmega, mSigma, mDelta,

mJ_Phi, mJ_Omega, mJ_Delta, mXt);

return mD[0][];

}

This step is really made easy by SsfPack as the function SsfCondDens does all the work very
efficiently.

Step 3 is carried out by arpars_gen(const vH) that generates the autoregression parameters
given the log-variances in vH.

The Gibbs sampler iterations are implemented in the function sv_sim(const vLogY2, const

cN, const amH, const amArPars, const amW), where the transformed data are passed
through vLogY2, the number of simulations is specified in cN and the other three param-
eters are pointers to variables that will host the simulated log-variance time series, the AR
parameters and the mixture weights time series, respectively.

In principle, the initial values for the Gibbs sampler could be arbitrary, since, eventually, the
ergodic Markov chain will start exploring the sample space with the right marginal probabil-
ities, but initial values in a probability-dense neighbor of the sample space will speed up this
convergence. In the function sv_sim we chose to fix the initial {ht} through some kind of
exponential smoothing of log y2t and then generate the AR parameters and weights using the
steps 3 and 1 of the Gibbs sampler. Generally a burn-in sample of simulations is discarded
in order to make the Markov chain “forget” the initial values.

The main function loads the data, calls the Gibbs sampler (sv_sim) and, after 21000 iterations,
the first 1000 of which are discarded, produces the plot in Figure 7 and the following textual
output.

Mean Median 2.5% 97.5%

Nu 0.0002 0.0002 -0.0100 0.0097

Phi 0.9888 0.9892 0.9767 0.9980

Sig2 0.0305 0.0287 0.0160 0.0559

The smoothed variance estimates in Figure 7 are obtained as averages of the 20000 Gibbs
samples for exp{ht/2}. By taking sample quantiles of the same quantities, confidence intervals
(or credible intervals if we take a Bayesian approach) can be computed. The main difference
between these results and our pseudo-ML estimates is the higher persistence of the log-variance
process ht. This can be seen both from the larger value of the AR(1) coefficient φ and in the
smoothed variance graphs.

In order to assess if the Gibbs sample is large enough to sufficiently explore the parameter
space the code in SV_Kim_ftse.ox produces also autocorrelation functions and kernel density
estimates of the MCMC samples (not reported here).



24 State Space Methods in Ox/SsfPack

2005 2006 2007 2008 2009 2010

5

10

Pe
rc

en
t

Absolute FTSE100 returns Smoothed Std.Dev. 

Figure 7: FTSE100 absolute percentage returns and smoothed standard deviation based on
MCMC estimation.

6. Conclusions

In this tour trough the Ox package SsfPack, we visited just the higher-level functions which
are those that the typical user will utilize. Advanced users will find a host of other functions
for simulation and filtering/smoothing purposes that can make these operations even more
efficient and accurate (see Durbin and Koopman 2001; Koopman et al. 2008).

In particular, the commercial version of the software, SsfPack Extended, implements exact
algorithms to deal with diffuse initial conditions for the state variables and efficient routines
to carry out computations in systems with large matrices, in some cases by exploiting the fact
that these are typically sparse (i.e., contain many zeros).

Furthermore, SsfPack Extended works under Windows 32-bit, Windows 64-bit, OS X, Linux
32-bit and Linux 64-bit, while SsfPack Basic is only for Windows 32-bit.

If compared to other software for state space modelling we are acquainted with, SsfPack is
faster and wider-ranging. On the other hand, something that is missing in SsfPack, but present
in software written with engineering in mind, such as MATLAB, is some implementation of
the Extended Kalman Filter (EKF), that is, the possibility of letting the system matrices
depend on predicted state variables.

Any researcher that makes extensive use of models in state space form can only benefit from
trying SsfPack, and after some use he/she will probably find it irreplaceable for the speed and
stability of its algorithms.

Information, updates and other example programs can be found at the official SsfPack Inter-
net site http://www.ssfpack.com/, which is maintained by S. J. Koopman, the author of
SsfPack.

References

Atkinson AC, Koopman SJ, Shephard N (1997). “Detecting Shocks: Outliers and Breaks in
Time Series.” Journal of Econometrics, (80), 387–422.

Commandeur JJF, Koopman SJ (2007). An Introduction to State Space Time Series Analysis.
Oxford University Press, Oxford.

http://www.ssfpack.com/


Journal of Statistical Software 25

Doornik JA (2007). Object-Oriented Matrix Programming Using Ox. 3rd edition. Timberlake
Consultants Press, London.

Durbin J, Koopman SJ (2001). Time Series Analysis by State Space Methods. Number 24 in
Oxford Statistical Science Series. Oxford University Press, Oxford.

Green P, Silverman BW (1994). Nonparametric Regression and Generalized Linear Models:
A Roughness Penalty Approach. Chapman & Hall, London.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press, Cambridge.

Harvey AC, Ruiz E, Shephard N (1994). “Multivariate Stochastic Variance Models.” Review
of Economic Studies, 61(2), 247–264.

Harvey AC, Trimbur T (2003). “General Model-Based Filters for Extracting Cycles and
Trends in Economic Time Series.” Review of Economics and Statistics, 85(2), 244–255.

Kim S, Shephard N, Chib S (1998). “Stochastic Volatility: Likelihood Inference and Compar-
isons with ARCH models.” Review of Economic Studies, 65(3).

Koopman SJ, Shephard N (1992). “Exact Score for Time Series Models in State Space Form.”
Biometrika, 79(4), 823–826.

Koopman SJ, Shephard N, Doornik JA (1999). “Statistical Algorithms for Models in State
Space Using SsfPack 2.2.” Econometrics Journal, 2(1), 113–166.

Koopman SJ, Shephard N, Doornik JA (2008). SsfPack 3.0: Statistical Algorithms for
Models in State Space Form. Timberlake Consultants Press, London.

Wecker WE, Ansely CF (1983). “The Signal Extraction Approach to Nonlinear Regression
and Spline Smoothing.” Journal of the American Statistical Association, 78(381), 81–89.

West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. 2nd edition. Springer-
Verlag, New York.

Affiliation:

Matteo M. Pelagatti
Department of Statistics
Università degli Studi di Milano-Bicocca
Via Bicocca degli Arcimboldi, 8
I-20126 Milano, Italy
E-mail: matteo.pelagatti@unimib.it
URL: http://www.statistica.unimib.it/utenti/p_matteo/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 41, Issue 3 Submitted: 2010-01-15
May 2011 Accepted: 2010-11-11

mailto:matteo.pelagatti@unimib.it
http://www.statistica.unimib.it/utenti/p_matteo/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Formulating the state space system
	Generating the system matrices for common classes of models
	Filtering, smoothing, predicting and forecasting
	Likelihood evaluation
	Simulation

	Case 1: The local level model applied to the Nile data
	Case 2: The airline model applied to the airline time series
	Case 3: A STSM for the Italian industrial production
	Case 4: The stochastic volatility model
	Conclusions

