-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Research Papers in Economics

Journal of Statistical Software

June 2011, Volume 42, Issue 2. http:/ /www.jstatsoft.org/

Nineteen Ways of Looking at Statistical Software

Micah Altman Simon Jackman
Harvard University Stanford University

Abstract

We identify principles and practices for writing and publishing statistical software with
maximum benefit to the scholarly community.

Keywords: statistical computation, programming methods.

1. Introduction

People who read journals like this are continually creating snippets of code. We can hardly
avoid it. Anyone who performs statistical analysis on a regular basis naturally encounters
repetitive tasks that beg for automation, data that needs to be prepared in new ways for
analysis, and models that cannot be estimated well with canned statistical packages. So we
write code — to automate tasks, manipulate data, extend existing methods of analyses, and
to create new ones.

Most of this code is never seen by anyone else. Much of it evaporates soon after its task is
completed. Without doubt, a good portion of code deserves this fate. However the rest is
useful, and in general continues to persist for a time, while gradually ossifying or mutating
until eventually, either lifeless or monstrous, it is buried in an unmarked grave. This is a lost
opportunity — with a small additional effort this code could be shared, and lead long healthy
lives in service to the community.

Exemplifying the potential value of statistical software, many of the packages included in this
special volume, and the work they enabled, have already received substantial scholarly recog-
nition: wnominate (Poole et al. 2011) is a modern port and update of Poole and Rosenthal’s
NOMINATE package, which won the Statistical Software Award from the Society for Political
Methodology in 2009, has been used for hundreds of published articles. The authors of Synth
(Abadie et al. 2011) received the Gosnell Prize from the Society for Political Methodlogy for
the development and application of the methods that are implemented in that package. The
authors of MatchIt (Ho et al. 2011) won the Warren Miller Prize for their article describing


https://core.ac.uk/display/6287937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Nineteen Ways of Looking at Statistical Software

the method implemented in that package. BARD (Altman and McDonald 2011) received the
Best Research Software from the Information Technology and Politics section of the American
Political Science Association in 2009, and is now being used to support public redistricting
contests to promote transparency in government. And the other packages in this volume have
supported many other research articles and other software development efforts.

We write this article to identify some principles for writing statistical code that benefits the
community. This is based on our own experience writing statistical code professionally, our
study of practices in the field of software engineering, and having directly observed many
others creating software. These principles represent good practice, not necessarily common
practice.

2. Six motivations for writing statistical software

1. Understand your problem. When you solve a problem by writing software you test both
your knowledge of both the problem and the adequacy of your proposed method of
solving it. As Knuth (1974) put it: “It has been often said that a person does not really
understand something until he teaches it to someone else. Actually a person does not
really understand something until he can teach it to a computer, i.e., express it as an
algorithm.”

2. Solve a problem. Start from a real problem that you need to solve. It doesn’t have
to be a big problem, but it should be one for which a good solution does not already
exist. Before you write code do some research: Check books, documentation, and
software archives that could contain solutions to your problem. It is tempting to start
writing immediately, or to dismiss existing solutions as inadequate, and many developers
follow this impulse. (This is one of the reasons why the majority of software projects
started with in SourceForge and other software archives are abandoned before reaching
a stable a release.) But take a long look. Software development tends to involve hidden
complexities that are revealed only after a substantial amount of design work has been
done, and code has been written. And it is common to find if you’ve studied the code
and documentation closely, and communicated with the code’s maintainers, that existing
open-source solutions can be adapted or extended. So, avoid building a solution from
scratch if an adequate solution exists, which can be used or improved: When existing
software fails to do what you want, or is too inaccurate, slow, tedious to use, or awkward
to integrate into your larger research workflow, it is then time to build.

3. Do good. Code that solves your problem could often be useful to others. This is
especially likely whenever you implement a statistical analysis that is not available in
canned statistical packages. Think about the problem that your code solves — is it
unique, or are there other problems like it that real people are actively trying to solve?
Can your code solve these problems too? Can it be extended easily? Change your code
if you can easily solve more real problems for real people by doing so.

4. Get credit. For many of us, credit is our most valued currency. Making your code useful
to and available to others is an excellent way of making it possible for people to try a
method that you have developed, and to aid in the replication and extension of work



Journal of Statistical Software

with which you are involved. And work that is replicable is more likely to be used and
cited more (Gleditsch et al. 2003).

For example, King et al.’s (2000) tremendously influential article, which eloquently
advocated the use of simulation to improve the interpretation and presentation of sta-
tistical analyses, comprised simulation methods already well-known by methodologists.
It had a striking impact in large part because the authors simultaneously developed,
discussed, demonstrated, and distributed the CLARIFY package, which made it easy
for other members of the discipline to apply these techniques; the software was later
published separately as Tomz et al. (2003).

Citing software, particularly when using more complex models, is a best practice, and is
essential to ensuring the replicability of research results (Altman et al. 2004). Encourage
users to cite your software directly by supplying a clear citation for your work. For
instance, when programming in R (R Development Core Team 2011), you should provide
a CITATION file that clearly documents how your package should be cited.

5. Make money. Greed is good. Most of us, however, will not get rich selling statistical
software. (And we are more interested in doing good research than in making money —
which weighs against obscuring our analytic methods in a closed-source product.) But
statistical programming can contribute to your economic well-being in other ways: it
can allow you more easily to fulfill consulting requests which involve applying a method,
market services based on new methods, teach commercial courses, enhance or constitute
the goal of a grant proposal, and so forth.

6. Do reproducible research. Many details of research are embedded in the preparation of
data and implementation of methods. When one publishes an article about empirical
research, or an article about a new or complex method without a corresponding open
implementation, one leaves much of the underlying scholarship hidden. Buckheit and
Donoho (1995) — summarizing the insights in Schwab et al. (2000) — have formulated
this principle pithily: “An article about computational science in a scientific publication
is not the scholarship itself, it is merely advertising of the scholarship. The actual
scholarship is the complete software development environment and the complete set
of instructions which generated the figures.” de Leeuw (1996) dubs this “Claerbout’s
principle” and notes that the same principle can be applied to all forms of teaching and
publications that rely on computations.

Tools such as Sweave (Leisch 2002), odfWeave (Kuhn 2006), SASweave (Lenth and
Hgjsgaard 2007), VIStrails (Silva et al. 2007), StatWeave (Leisch 2002), and The Data-
verse Network System (King 2007) are particularly useful for binding together data,
software, and publications in support of reproducible research.

3. Eight ways to wake your code more useful

Zeileis (2006) succinctly summarizes many of the desirable features of implementation of an
econometric procedure: numerically reliable, computational efficient, flexible, extensible, and
reflecting the features of the conceptual model. To this we would add transparency, usability,
and robustness as goals for your software development.



4 Nineteen Ways of Looking at Statistical Software

Applied in moderation, all of the following techniques will aid in obtaining these goals, and
in the prevention of ossification, confusion, and uncontrolled mutation. These techniques are
taken from recognized best practices in the field of software engineering, and some are still
far from common in statistical code. These techniques will make your code easier to use,
lend more confidence to the results, and enable others to add to it without disruption. And
even if you never share it with anyone outside of your office — your code will still benefit from
becoming more reliable, easier to understand, to maintain and to extend.

1. Choose algorithms appropriately. To make correct inferences requires the convergence
of relevant statistical theory, informative data, well-chosen algorithms, and correct en-
coding of those algorithms using a programming language. The most sophisticated
algorithm need not be used to solve the problem, as long as it is not horribly inefficient,
and is demonstrably accurate enough to produce an answer to the required tolerances.
However, avoid algorithms with known performance and numerical problems, algorithms
with unknown accuracy, and software libraries using unknown algorithms.

Most of the time, it is both convenient and less error-prone to use algorithms already
implemented in well-tested software libraries. A good guide in general to choosing
both algorithms and libraries is Skienna (2008); see Cormen et al. (2001) for a broad
overview of general algorithms; Gentle (2005) and Galassi et al. (2009) on general al-
gorithms for statistical programming (also see http://maltman.hmdc.harvard.edu/
numal/resources/ for a list of useful software libraries); Gentle (2007) for algorithms
involving matrix algebra and statistics; and Nocedal and Wright (2000) for optimization
algorithms used in statistical programming).

2. Design programs for use and reuse. A number of programming techniques are well-
understood to lead to more durable, reusable code: Modular organization of files, clean
separation of functionality into components and classes, interface encapsulation, naming
& style conventions, and consistency applied to all levels of design and implementation.
See Gamma et al. (1994), Booch et al. (2007) and McConnell (2004) for a detailed
summary of methods relevant to (respectively) high, medium, and low-level software
design.

Furthermore, you will benefit by becoming familiar with the conventions and idioms
that have been developed within the communities that will be using your work. A
little time spent in preparation for writing code, skimming previous discussions on the
developers’ and users’ mailing lists, and examining the code from other projects, will
save a great deal of time later in debugging, rewriting, and documentation.

3. Program defensively. Users (and other programmers) are imperfect. They don’t always
read documentation, and when they do they don’t always understand it. At some point,
your program is going to be asked to do the impossible. When the impossible happens,
your program should not explode, or worse, produce plausible nonsense, but should
instead complain noticeably and informatively. In particular, you should adopt at least
the following defensive programming techniques:

Check all inputs values received by every external interface (this includes any public
library procedure or object method you supply). Provide reasonable default values for
inputs where possible. Document the valid range of inputs for your code, and check


http://maltman.hmdc.harvard.edu/numal/resources/
http://maltman.hmdc.harvard.edu/numal/resources/

Journal of Statistical Software 5

these. Explicitly check that the output your program or function is producing is itself
valid. (Check outputs even if you know this should be true by construction. Sometimes
limits in theory, algorithm, or implementation causes the ‘impossible’ to occur.).

Report any problems the code encounters. For non-fatal problems, warn the user
through the system’s standard warning facility. For fatal problems, throw an excep-
tion (and document which exceptions your code will throw).

Avoid coding for a single system. Although outside of large-scale commercial develop-
ment and large open-source projects with an extensive build and testing environment, it
is probably not possible to make sure your program runs correctly on all other platforms
and system configurations (such as the Estonian version of Windows XP Home Edition,
service pack 3a) one should avoid inasmuch as possible the assumption that system
on which your program runs is identical to your own. Avoid using system-dependent
values, and make full use of system-independent interfaces.

For more detail on these techniques see McConnell (2004). A major finding of applied
research in software engineering research is that these techniques lead to the production
of code with drastically fewer errors. Not only will following these methods prevent
problems from being falsely attributed to you and your code, they will protect you from
many of your own errors.

4. Write tests early. You should provide tests that verify correct output based on known
input. This makes it possible for others to use and extend the code with confidence. A
number of modern software engineering techniques go so far as to advocate that complete
sets of tests should be developed prior to any coding, then used as an indicator of the
completeness of the implementations; e.g., Martin (2002).

Tests can be designed for different purposes. Most tests of software falls into one of four
categories. The first category tests “high-level” functionality of the program as it appears
in the domain of use. Such “high-level” tests supply the software with known inputs
and compare the results to output known (or defined) to be correct.! “Unit” tests are
similar, except they are defined in terms of smaller operational units within the software,
such as components, classes, methods, or functions. “Load” tests are designed to reveal
the operation of software under inputs of increasing size in the domain of use (e.g.,
increasing numbers of variables, bytes, observations, number of connections). These
three tests evaluate external behavior of the program, In addition, “lint” tests detect
constructs in the source code that are generally associated with defects.

Testing tools make it easier to find defects and to identify the source of aberrant be-
havior. As important they make it easier to write code in the first place. They do this
by helping to more rigorously define and verify the behavior of the program. And by
catching defects earlier in the development process.

There are many tools available for automating tests. For example, in R writing can be as
easy as specifying a set of code to run, and then providing a copy of the expected output,
and putting these in the appropriate package directory. Valuable tools for testing and

'High level tests are also known as “benchmark”, “acceptance”, and “regression” tests when the known inputs
correspond to canonical inputs, a set of inputs pre-defined by a requirements document, or the inputs that
provoke a previously recognized bug.



6 Nineteen Ways of Looking at Statistical Software

debugging in R include codetools (Tierney 2011), debug (Bravington 2011), and RUnit
(Burger et al. 2010).

5. Measure accuracy (“trust but verify”). Unlike most software, which simply fails to pro-
duce results when broken or used improperly, statistical code almost always produces
output with some gloss of plausibility. Thus, stable algorithms, conservative implemen-
tation, and full documentation are vital to producing trustworthy statistical software.
Formal benchmarks, testing in extended precision environments, and sensitivity analy-
ses are critical. For details on testing and programming for numerically reliable software
see Altman et al. (2004) and Higham (2002). Users of R may find accuracy (Altman
et al. 2007) and GMP (Granlund 2010) useful tools in this regard.

6. Provide an open-source license. To put it simply, give people permission to use your
software. Code that you write is automatically copyrighted, and without a license others
cannot have confidence that they can reuse the code, or even share the results that it
produces. We recommend using the standard GPL license for most statistical code,
since it since it allows others to use, reuse, and extend the code itself. For a guide to
the other types of open source licenses see Rosen (2004). Using an open-source license
maximizes the usefulness and influence of your work. And, after doing all of the work
we describe above, you want people to use your code, don’t you?

7. Document your software, and how it changes. Insufficiently documented software is
indistinguishable from magic.? It also goes without saying (although we’ll say it anyway)
that if you expect others (or yourself, after you have moved on to future projects, and,
inevitably, forgotten the details of the current one) to use your software, you should
document how and why to use it. What is often overlooked, is documentation that
systematically explains when not to use the software. Documentation should include
known limitations of the output and implementation, such as degradation in accuracy
outside a certain range of inputs. All algorithms and implementations are limited, and
experienced (or hard-bitten) users are justly suspicious of programs that do not admit
to their own limitations. See Altman et al. (2004) for dramatic examples of what can
go wrong when these considerations are omitted.

Using a version control system is a complement to external documentation — it allows you
to document changes to your software, and to easily revisit earlier versions. Inevitably,
at some point in your project you are going to discover that because of some change
that was made to your software, something important that used to work no longer does.
Version control provides a safety net, since you can use it to restore any previous version
— particularly those that worked. Version control also provides a diagnostic tool, since
you can use it to see exactly what was changed between the working and non-working
versions. Finally, version control supports replication — since it ensures that any version
of the code used to produced a published analysis remains available.

8. Listen to users of your software. Pay close attention to whether people use it, what
they do with it, and where they encounter problems. Release incrementally in order to
respond to and gather user feedback; see Martin (2002) for one effective strategy along
these lines. Listen to other developers. Pay attention to suggestions your users and

2Magic is no longer generally viewed as sound basis for inference, although see Abramson (1997) for an
opposing view.



Journal of Statistical Software 7

make it easy for them to use the software and to contact you about it. Use the standard
mechanisms for the community, and “go” to where users are already: e.g., rather than
forcing them to use your registration mechanism, etc, you should subscribe to existing
forums where users and potential users already go to ask questions.

4. Two places to share statistical software

While posting the code to your personal web site is the simplest way to share your code, and
has the virtue of making preliminary work quickly available, there are better alternatives:

1. Deposit your program in a high-quality software repository. Programs distributed through
ad-hoc (individual, or institutional) web sites are analogous to self-circulated drafts of
manuscripts. High-quality software repositories, while not equivalent to peer review,
provides a number of features that together establish a higher level of reliability and au-
thority. Code repositories make it easier to find your software; frequently require some
minimal degree of standardization in packaging and documentation; prevent the soft-
ware from being withdrawn arbitrarily once deposited; require that the source code be
supplied whenever a binary is distributed; and require that a software license be clearly
indicated (and often that that license be in conformance with open-source standards).
In addition, code archives generally provide a common infrastructure for versioning
code and accessing previous versions, for reporting bugs, and for recording and making
available the comments from other users on the software.

Repositories providing the most extensive programming support, of which CRAN and
CPAN are shining examples, also provide an infrastructure for installing building and
testing your software on a variety of platforms: This eases installation, expands use of
your software, increases portability, and can help to uncover software flaws.

2. Publish your software in a peer-reviewed outlet. In addition to the Journal of Statistical
Software, journals such as Computational Statistics & Data Analysis, Journal of Statis-
tical Computation and Simulation, ACM Transactions on Mathematical Software and
more than a dozen others regularly publish statistical software or algorithms, and related
articles. (See http://www.hmdc.harvard.edu/micah_altman/numal/resources/ for a
regularly maintained list of publication outlets.)

5. Three ways software contributes to the study of politics

1. Contributions to substantive understanding of political science. Although methodology
is a large and important component of political science, political science remains a
substantively oriented field. The point of methodology is to contribute to our collective
efforts to develop a science of politics. Software written by and for political scientists is
an increasingly important component of that which we call “political methodology”. And
like other methodological innovations, the utility of our efforts with respect to software
development is measured in terms of how it contributes to the scientific understanding


http://www.hmdc.harvard.edu/micah_altman/numal/resources/

8 Nineteen Ways of Looking at Statistical Software

of politics. To this end, statistical software can be considered valuable in so far as it
enables political scientists to better extract substantive content from data.

2. Contributions to methodology. Models are not fully useful until there exists a way
for non-methodologists in the relevant discipline to apply them. Often, seeing how a
theoretical statistical model can be applied to real data, and how that statistical model
can be implemented, is neither obvious nor easy. Software is the vehicle through which
new statistical models are made operational, or how existing models can be made to
run better, faster, or to shed more light on substantive problems of interest.

3. Contributions to teaching and learning. Open software does more than enable applica-
tion of methods, it also opens a window into the black box of computing. Students are
given an opportunity to more deeply understand what is involved in analysis.

Furthermore, open software provides another valuable way of communicating complex
statistical and methodological concepts. Software packages are rapidly becoming an
expected accompaniment for new books in these area. For example, car (Fox and
Weisberg 2011), BaM (Gill 2010), and AER (Kleiber and Zeileis 2008) as well as being
useful in their own right, were all created to accompany recent books. These, and more
than a dozen more, are all available on CRAN.

Political methodology has grown from an almost unacknowledged niche to a robust field
of political science. This is attested to by the existence of a top-ranked journal, Political
Analysis; a high-quality annual conference; tremendous growth in the number of teaching
and research positions devoted to it; and continued support from a large group of APSA
members (Box-Steffensmeier and Sokhey 2007).

Statistical software seems poised to grow in a similar way. Commercial software has often
fallen far short of keeping up with advances in political methodology (or with statistical
methods in general). Commercial software vendors can be slow to add methods that while
perhaps statistically more appropriate, are not in current demand, or that trade performance
for robustness and accuracy (Stromberg 2004). In contrast, communities of methodologies,
developing open code — sometimes in partnership with commercial companies such as Stata —
have begun to fill the gap.

Writers of statistical software for political analysis contribute to a number of different commu-
nities. Other political scientists benefit from having sophisticated statistical models available
for their own research. Students benefit from the opportunity to see examine precisely how
results are generated. And the applied statistics community benefits from the development of
new algorithms for statistical analysis. These can be large contributions, and a movement is
well underway to recognize these contributions with the academic incentives of citation and
peer review.

Acknowledgments

We thank Achim Zeileis and Thomas Yee for their helpful comments, and we apologize to
Eliot Weinberger for parodying his title “19 Ways of Looking at Wang Wei” and to Arthur C.
Clarke for paraphrasing his famous maxim in our recommendation on documentation.



Journal of Statistical Software 9

References

Abadie A, Diamond A, Hainmueller J (2011). “Synth: An R Package for Synthetic Control
Methods in Comparative Case Studies.” Journal of Statistical Software, 42(13), 1-17. URL
http://www.jstatsoft.org/v42/i13/.

Abramson PR (1997). “Probing Well Beyond the Bounds of Conventional Wisdom.” American
Journal of Political Science, 41, 675—-682.

Altman M, Gill J, McDonald MP (2004). Numerical Issues in Statistical Computing for the
Social Scientist. John Wiley & Sons, New York.

Altman M, Gill J, McDonald MP (2007). “accuracy: Tools for Accurate and Reliable Sta-
tistical Computing.” Journal of Statistical Software, 21(1), 1-30. URL http://www.
jstatsoft.org/v21/i01/.

Altman M, McDonald MP (2011). “BARD: Better Automated Redistricting.” Journal of
Statistical Software, 42(4), 1-28. URL http://www. jstatsoft.org/v42/i04/.

Booch G, Maksimchuk RA, Engel MW, Young BJ, Conallen J, Houston KA (2007). Object-
Oriented Analysis and Design with Applications. 3rd edition. Addison-Wesley Professional,
Boston.

Box-Steffensmeier JM, Sokhey AE (2007). “A Dynamic Labor Market: How Political Science is
Opening up to Methodologists, and How Methodologists are Opening up Political Science.”
PS: Political Science and Politics, 15, 125-129.

Bravington MV (2011). debug: MVB’s Debugger for R. R package version 1.2.4, URL
http://CRAN.R-project.org/package=debug.

Buckheit JB, Donoho DL (1995). “WaveLab and Reproducible Research.” In A Antoniadis,
G Oppenheim (eds.), Wavelets in Statistics, Lecture Notes in Statistics, pp. 55-82. Springer-
Verlag, New York.

Burger M, Juenemann K, Koenig T (2010). RUnit: R Unit Test Framework. R package
version 0.4.26, URL http://CRAN.R-project.org/package=RUnit.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001). Introduction to Algorithms. 2nd
edition. MIT Press, Cambridge.

de Leeuw J (1996). “Reproducible Research: The Bottom Line.” Technical Report 301, De-
partment of Statistics, University of California, Los Angeles. URL http://repositories.
cdlib.org/uclastat/papers/2001031101/.

Fox J, Weisberg S (2011). An R Companion to Applied Regression. 2nd edition. Sage, Thou-
sand Oaks, CA.

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi F (2009).
Gnu Scientific Library Reference Manual. 3rd edition. Network Theory Limited, Bristol.
ISBN 978-0-9546120-7-8, URL http://www.gnu.org/software/gsl/.


http://www.jstatsoft.org/v42/i13/
http://www.jstatsoft.org/v21/i01/
http://www.jstatsoft.org/v21/i01/
http://www.jstatsoft.org/v42/i04/
http://CRAN.R-project.org/package=debug
http://CRAN.R-project.org/package=RUnit
http://repositories.cdlib.org/uclastat/papers/2001031101/
http://repositories.cdlib.org/uclastat/papers/2001031101/
http://www.gnu.org/software/gsl/

10 Nineteen Ways of Looking at Statistical Software

Gamma E, Helm R, Johnson R, Vlissides JM (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Boston.

Gentle JE (2005). Elements of Computational Statistics. Springer-Verlag, New York.

Gentle JE (2007). Matriz Algebra: Theory, Computations, and Applications in Statistics.
Springer-Verlag, New York.

Gill J (2010). BaM: Functions and Datasets for Books by Jeff Gill. R package version 0.99,
URL http://CRAN.R-project.org/package=BaM.

Gleditsch NP, Metelits C, Strand H (2003). “Posting Your Data: Will You Be Scooped or
Will You Be Famous?” International Studies Perspectives, 4, 89-97.

Granlund T (2010). GMP: The GNU Multiple Precision Library, Version 5.0.1. URL http:
/GMP1ib.org/.

Higham NJ (2002). Accuracy and Stability of Numerical Algorithms. 2nd edition. SITAM Press,
Philadelphia.

Ho DE, Imai K, King G, Stuart EA (2011). “MatchlIt: Nonparametric Preprocessing for
Parametric Causal Inference.” Journal of Statistical Software, 42(8), 1-28. URL http:
//www.jstatsoft.org/v42/108/.

King G (2007). “An Introduction to the Dataverse Network as an Infrastructure for Data
Sharing.” Sociological Methods and Research, 32(2), 173-199.

King G, Tomz M, Wittenberg J (2000). “Making the Most of Statistical Analyses: Improving
Interpretation and Presentation.” American Journal of Political Science, 44, 241-55.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York.

Knuth DE (1974). “Computer Science and Its Relation to Mathematics.” American Mathe-
matical Monthly, 81, 323-343.

Kuhn M (2006). “Sweave and the Open Document Format — The odfWeave Package.” R
News, 6(4), 2-8. URL http://CRAN.R-project.org/doc/Rnews/.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Hérdle, B Ronz (eds.), COMPSTAT 2002 — Proceedings in Computational Statistics,
pp. 575-580. Physica Verlag, Heidelberg.

Lenth RV, Hgjsgaard S (2007). “SASweave: Literate Programming Using SAS.” Journal of
Statistical Software, 19(8), 1-20. URL http://www. jstatsoft.org/v19/108/.

Martin RC (2002). Agile Software Development, Principles, Patterns, and Practices. Prentice
Hall, New Jersey.

McConnell S (2004). Code Complete. 2nd edition. Microsoft Press, Redmond.
Nocedal J, Wright S (2000). Numerical Optimization. Springer-Verlag, New York.

Poole K, Lewis J, Lo J, Carroll R (2011). “Scaling Roll Call Votes with wnominate in R.”
Journal of Statistical Software, 42(14), 1-21. URL http://www. jstatsoft.org/v42/i14/.


http://CRAN.R-project.org/package=BaM
http:/GMPlib.org/
http:/GMPlib.org/
http://www.jstatsoft.org/v42/i08/
http://www.jstatsoft.org/v42/i08/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v19/i08/
http://www.jstatsoft.org/v42/i14/

Journal of Statistical Software

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Rosen L (2004). Open Source Licensing: Software Freedom and Intellectual Property Law.
Prentice Hall, New Jersey.

Schwab M, Karrenbach N, Claerbout J (2000). “Making Scientific Computations Repro-
ducible.” Computing in Science & Engineering, 2, 61-67. URL http://sepwww.stanford.
edu/research/redoc/.

Silva C, Freire J, Callahan S (2007). “Provenance for Visualizations: Reproducibility and
Beyond.” IEEE Computing in Science & Engineering, 9(1), 82-89.

Skienna SS (2008). Algorithm Design Manual. 2nd edition. Springer-Verlag, New York.

Stromberg A (2004). “Why Write Statistical Software? The Case of Robust Statistical Meth-
ods.” Journal of Statistical Software, 10(5), 1-8. URL http://www.jstatsoft.org/v1i0/
i05.

Tierney L (2011). codetools: Code Analysis Tools for R. R package version 0.2-8, URL
http://CRAN.R-project.org/package=codetools.

Tomz M, Wittenberg J, King G (2003). “CLARIFY: Software for Interpreting and Pre-
senting Statistical Results.” Journal of Statistical Software, 10, 1-30. URL http:
//www.jstatsoft.org/v08/1i01.

Zeileis A (2006). “Implementing a Class of Structural Change Tests: An Econometric Com-
puting Approach.” Computational Statistics € Data Analysis, 50(11), 2987-3008.

Affiliation:

Micah Altman

Institute for Quantitative Social Science

Harvard University

1737 Cambridge Street, K 325

Cambridge, MA, 02138, United States of America
E-mail: micah_altman@harvard.edu

URL: http://www.hmdc.harvard.edu/micah_altman/

Simon Jackman
Department of Political Science
Encina Hall, Stanford University

11


http://www.R-project.org/
http://www.R-project.org/
http://sepwww.stanford.edu/research/redoc/
http://sepwww.stanford.edu/research/redoc/
http://www.jstatsoft.org/v10/i05
http://www.jstatsoft.org/v10/i05
http://CRAN.R-project.org/package=codetools
http://www.jstatsoft.org/v08/i01
http://www.jstatsoft.org/v08/i01
mailto:micah_altman@harvard.edu
http://www.hmdc.harvard.edu/micah_altman/

12 Nineteen Ways of Looking at Statistical Software

Stanford, California 94305-6044, United States of America
E-mail: jackman@stanford.edu
URL: http://jackman.stanford.edu/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 42, Issue 2 Submitted: 2007-02-07

June 2011 Accepted: 2008-04-30



mailto:jackman@stanford.edu
http://jackman.stanford.edu/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Six motivations for writing statistical software
	Eight ways to wake your code more useful
	Two places to share statistical software
	Three ways software contributes to the study of politics

