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Abstract:  An algorithm for the computation of multivariate normal and multivariate t
probabilities over general hyperellipsoidal regions is given. A special case is the calculation of
probabilities for central and noncentral F and χ2 distributions. A FORTRAN 90 program
MVELPS.FOR incorporates the algorithm.
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1. INTRODUCTION
Somerville (1998) developed procedures for calculation of the multivariate normal and
multivariate-t distributions over convex regions bounded by hyperplanes.  This paper extends the
procedures to general ellipsoidal regions.  There are a number of potential applications.  One is in
the field of reliability, and in particular relating to the computation of tolerance factors for
multivariate normal populations. Krishnamoorthy, K. and Mathew, Thomas (1999) discussed a
number of approximation methods in the their calculation.  Another relates to the calculation of
probabilities for linear combinations of  central and noncentral chisquare and F.  Again a number
of authors, including Farebrother (1990) have studied the problem.  A number of approximation
methods exist, including those of Satterthwaite-Welsh, Satterthwaite, F.E. (1946) and Hall-
Buckley-Eagleson, Buckley, M. J. and Eagleson, G. K. (1988).  Other  potential applications are in
factor and discriminant analysis.

The program, of course, can also be used for the special case of calculating probabilities for a
central or noncentral chisquare or F distribution.

2.  EVALUATION OF MULTIVARIATE-T AND MULTIVARIATE
NORMAL INTEGRALS

Let xT = (x1, x2, ... ,xk) have the distribution f(x) = MVN(µµµµ, Σσ2), where Σ is a known positive
definite matrix and σ2 is a constant.  We wish to evaluate f(x) over A, an ellipsoidal region given
by

(x - m*)T U (x - m*) = 1.
That is, we wish to obtain

P =  ∫ A  f(x) dx.

If σ2 is known, then without loss of generality, set µµµµ = 0, σ = 1, and let Σ be the correlation matrix.
If σ2 is estimated by s2 with ν degrees of freedom such that νs2 / σ2  is a chi-square variate, then,
without loss of generality we may assume f(x) has the central multivariate-t distribution and Σ is
the correlation matrix.

Let Σ = TTT (Cholesky decomposition) and set
x = T w.

The random variables w1, w2, ... ,wk are independent standard normal or spherically symmetric t
variables.  Without loss of generality we may assume that the axes of the ellipsoid are parallel to
the coordinate axes and the ellipsoid has the equation

(w - m)T B-1 (w - m) = 1. (2.1)
where B is a diagonal matrix with diagonal elements given by bi.
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If the elements bi are equal, we have the special case of a spheroidal region.  (We show in section
5. that evaluation of multivariate normal and multivariate t distributions over spheroidal regions is
equivalent to evaluating noncentral chisquare and noncentral F distributions respectively.)

Case a) σ2 is known (Multivariate Normal)
Let r2 = wTw.  Since σ2 is known, r2 is distributed as chi-square with k degrees of freedom.  The
procedure is to choose random directions in the w coordinate system (say mocar of them).  Using
the “nonbinning” or “direct” method, an unbiased estimate of the probability content
corresponding to each direction is obtained based on the distance of the boundary of the ellipsoid
from the origin.  Their arithmetic mean is an estimate of the probability content.  To obtain a
standard error, the process is repeated (say irep times), and a standard error calculated for the
mean of the means.

Using the binning method, an empirical estimate of the distribution of the distances is obtained,
and quadrature is used to estimate the probability content of the ellipsoid.  As before, the process is
repeated so as to provide a standard error.

i) “Nonbinning” method:
If the ellipsoid contains the origin, then for each random direction there is a unique distance (say
r(i)) to the boundary.  An unbiased estimate of the probability content of the ellipsoid is given by

Pr[r < r(i)] = Pr[χ2 < (r(i))2].
If P(σ) is the probability content of the ellipsoid when σ is assumed known, then

P(σ) ≈ Σ Pr[χ2 < r(i)2]/N
where N is the number of unbiased estimates.

If the ellipsoid does not contain the origin, then for a random direction, a line from the origin in
that direction intersects the boundary of the ellipsoid in two points (say r(i) > r*(i)) or does not
intersect the ellipsoid.  If the line intersects the boundary, then an unbiased estimate of the
probability content of the ellipsoid is given by

Pr[r < r(i)] - Pr[r < r*(i)] = Pr[χ2 < r(i)2] - Pr[χ2 < r*(i) 2].
If the line does not intersect the ellipsoid, an unbiased estimate is 0.
For N unbiased estimates,

P(σ) ≈ Σ {Pr[χ2 < r(i)2] - Pr[χ2 < r*(i) 2]}/N
where the summation is over all cases where the line intersects the boundary.

In both cases it is convenient to let N = 2∗mocar where having chosen a random direction we use
also the opposite direction.

ii) “Binning” method:
For the case where the origin is in the ellipsoid, let H(r) be the cumulative distribution function of
r, the distance from the origin to the boundary in a randomly chosen direction. The probability
content of the ellipsoid is

P(σ) =  ∫ab (1-H(r)) Pr[χ2 < r2] dr + Pr[χ2 < a2]
where a and b are respectively the smallest and largest distances of the boundary of the ellipsoid
from the origin.  Using Gauss-Legendre quadrature,

P(σ) ≈ Σ wti (1-H(ri)) Pr[χ2 < ri
2] + Pr[χ2 < a2]

where ri and wti  are the abscissae and weights respectively for the Gauss-Legendre quadrature and
the values  ri are used in the binning process to obtain the empirical estimates H(ri) of the
cumulative distribution function of r.

If the origin is not in the ellipsoid,
P(σ)  = p1  [ ∫ab (1-H1(r)) Pr[χ2 < r2] dr - ∫ab (1-H2(r)) Pr[χ2 < r2] dr]



         = p1  [ ∫ab {H2(r) - H1(r)} ∗Pr[χ2 < r2] dr]
where p1 is the probability that a line through the origin in a random direction goes through the
ellipsoid, and H1(r) and H2(r) are respectively the cumulative distribution functions of the larger
and smaller distances from the origin to the boundary for intersecting lines.  Using Gauss-
Legendre quadrature we obtain

P(σ) ≈ p1 Σ wti  {H 2(ri) - H1(ri)} ∗Pr[χ2 < ri
2].

where ri and wti  are the abscissae and weights respectively for the Gauss-Legendre quadrature and
the values for ri are used in the binning process to obtain the empirical estimates H1(ri) and H2(ri)
of the cumulative distribution functions H1(r) and H2(r).  The value p1 is simultaneously estimated.
Again mocar random directions are used for the estimates H1(ri) and H2(ri).  The procedure is
repeated irep times, with the estimate of P being the mean of the irep estimates, and the repetitions
used to obtain a standard error.

We summarize the results for the case where σ is known in the following Table 2.1:

ORIGIN NONBINNING         BINNING
IN ELLIPSOID Σ Pr[χ2 < r(i)2]/N         Σ wti∗(1-H(ri))∗Pr[χ2 < ri

2] +Pr[χ2 < a2]

NOT IN Σ{Pr[χ2 < r(i)2]-Pr[χ2 < r*(i) 2]}/N          p1 Σ wti∗{H 2(ri) - H1(ri)} ∗Pr[χ2 < ri
2]

TABLE 2.1
Estimate of P(σ) when σ is known

Case b) σ2 is not known (Multivariate-t)

The ellipsoid is given by (w - m)T B-1 (w - m) = 1.  Suppose  s = σ.  Then the probability content of
the ellipsoid is P(σ) as given in the previous section.  Let g(s) be the frequency function for s  (νs2/
σ2 has the χ2 distribution with ν degrees of freedom).  Then the unconditional probability content
of the ellipsoid is given by

    P  = ∫0∞  P(s) g(s) ds.
Using Gauss-Laguerre quadrature, we obtain

    P   ≈ Σ wgi∗P(si)∗g(si)
where si and wgi  are the quadrature abscissae and weights respectively.  We use the formulae for
P(σ) given in the table above.

3. DISTANCE OF ORIGIN FROM BOUNDARY
If the equation of the ellipsoidal region is given by  (w - m)T B-1 (w - m) < g, then the origin will
be in the region if mT B-1 m - g  < 0.  Let d be a random (normalized) direction.  Then the equation
of the line from the origin in the direction d is given by w = t d. Substituting in the equation for the
ellipsoidal boundary we obtain

t2 aa -2 t bb + cc = 0
where aa = dT B-1 d, bb = mT B-1 d and cc= mT B-1 m - g.  Let b2ac = bb∗bb - aa∗cc.  Then, if the
origin is in the ellipsoid, the distances from the origin to the ellipsoid boundary in the directions d
and -d are |bb + sqrt(b2ac)| and |bb - sqrt(b2ac)|.  If the origin is not in the ellipsoid, then if b2ac <
0, for both directions d and -d the line does not cross the ellipsoid.  If b2ac > 0,  the line crosses the
boundary in one of the directions d or -d at distances from the origin r(i) = |bb| + sqrt(b2ac) and
r*(i) = ||bb| - sqrt(b2ac)|. The line does not cross the boundary in the other direction.

4. EXTREMAL DISTANCES FROM ORIGIN TO BOUNDARY
The author has written a Fortran 90 program to calculate the largest and smallest distances from
the origin to a general hyper-ellipsoid in k dimensions. The program is called BOUND.FOR and a
paper describing the program will be submitted for publication.  The program can also be used to



find all local extrema which may exist.  The present program MVELPS.FOR uses the program
BOUND.FOR as a subroutine.

5. NONCENTRAL CHISQUARE AND F PROBABILITIES
The methodology can be used to obtain cumulative probabilities for chisquare and F distributions.
If w is MVN(0, I) with dimension k, and u has the noncentral chisquare distribution with k degrees
of freedom and noncentrality parameter λ, it is not difficult to show that Pr[u < f0] is equal to the
probability content  of w over a spheroid with radius sqrt(f0) and center a distance λ from the
origin.

To show this, put z = w + λλλλ, where λλλλ is a constant.  By Theorem 3.3.5 of Anderson (1984) u = zTz
has the chisquare distribution with k degrees of freedom and noncentrality parameter λ =
sqrt(λλλλTλλλλ).  Then u = Σ (wi + λi)

2, and Pr[u < f0]  = Pr[Σ (wi + λi)
2 < f0] which is the probability

content of a spheroid with radius sqrt(f0) and center a distance λ from the origin.

We now modify our procedure for the special case of calculating noncentral chisquare probabilities.
Without loss of generality, let λλλλ = (λ, 0, ... ,0).  Then

Pr[χ2(λ) < c] = Pr[Σwi
2 + 2 λ w1 + λ2 - f0 < 0].

Let d be a random (normalized) direction in the k-space, and set wi = t d. To find the intersection
of this line with the spheroid boundary, we substitute wi = t d in

Σwi
2 + 2 λ w1 + λ2 - f0 = 0

obtaining t2 + 2 λ d1 t + λ2 - f0 = 0.
Solving for t, we have

t = -λ d1 + sqrt(λ2 d1
2 - (λ2 − f0)).

When λ2 - f0 < 0, the origin is in the spheroid. If the origin is not in the spheroid, and λ2 d1
2 - (λ2 −

f0) > 0, the line crosses the boundary of the spheroid in two points. If the origin is not in the
spheroid, and λ2 d1

2 - (λ2 − f0) < 0, the line does not cross the boundary. The distance from the
origin to the boundary is |t|.  Since only one component, d1, of d is used in computing t, the
program uses each element of d and also its negative (total of 2*k) as d1 as a means of increasing
efficiency.

We next modify the procedure for the special case of calculating noncentral F probabilities.
Suppose s2 is an estimate of σ2 (assumed to be equal to 1 with no loss of generality) with ν degrees
of freedom such that ν s2/ σ2 has the χ2 distribution.  Then using Theorem 5.4.1 of Anderson
(1984),

F(k, ν; λ) = (zTz /k) / ([ν s2/ σ2]/ ν
  = (zTz /k) / s2

has the noncentral F distribution with degrees of freedom k and ν, and noncentrality parameter λ.
Thus F(k, ν; λ)  = Σ(wi + λi)

2/(k s2),
and Pr[F(k, ν; λ) < c| s2] = Pr[Σ(wi + λi)

2 < c k s2|s].
This is the probability content of a spheroid with center a distance λ from the origin and with
radius sqrt(c∗k∗s2), for any fixed value of s.  To obtain the unconditional probability, we integrate
over s

Pr[F(k, ν; λ) < c] = ∫ Pr[F(k, ν; λ) < c| s] g(s) ds
where g(s) is the frequency function for s, and the integration is from 0 to ∞.
Having a procedure for calculating Pr[F(k, ν; λ) < c| s] (noncentral χ2), it is convenient to use
Gauss Laguerre quadrature to calculate the unconditional probability.

The program MVELPS.FOR has a special shortcut for calculation of noncentral chisquare and F
distribution probabilities which takes advantage of the special case of a spheroidal region.  There
are existing programs for the above distributions and no claims are made as to the superiority or
inferiority of any of the programs.



6. ACCURACY AND COMPUTATION TIMES
To assess the accuracies attainable using MVELPS.FOR, runs were made for k = 3, 6 and 10, with
ellipsoid centers both inside and outside of the ellipsoidal region, and for both the multivariate
normal and the multivariate-t distribution.  The lengths of the semiaxes and centers, in
standardized units are given in Table 6.1.  All runs were made using a PC with an AMD 800
processor and a Lahey 95 compiler.

k = 3 k = 6 k = 10
Axes (4,2,1) (1,2,2,3,3,4) (1,2,2,2,2,3,3,3,3,4)
Center (inside) (0,1,0) (0,2,0,0,0,0) (0,1,0,0,0,0,0,0,0,0)
Center (outside)(0,3,0) (0,3,0,0,0,0) (0,3,0,0,0,0,0,0,0,0)

Table 6.1
Input for Accuracy Runs

Using 10 replications, each with 1000 random directions, runs were made using both the binning
and nonbinning methods. For the binning procedure 20 point quadrature was used for both Gauss-
Legendre and Gauss-Laguerre. Standard errors were essentially the same for the binning and
nonbinning methods.  Table 6.2 gives standard errors and run times in seconds.

k = 3 k = 6 k = 10
df = 10 df = ∞ df = 10 df = ∞ df = 10 df = ∞

Center in .00050 .00031 .00033 .00026 .00030 .00012
.82 (.38).55(.17).55 (.28).44 (.27).77 (.38).71 (.39)

Center out .00044 .00021 .00033 .00017 .00016 .00007
.44 (.16).22 (.11).50 (.27).22 (.22).61 (.38).38 (.30)

Table 6.2
Accuracies and Run Times

First line gives standard errors.  Second line gives run times in seconds (first number for binning
method and number in parentheses for nonbinning)

To ascertain the effect of run size on standard error and running times, further runs were made
with result given in Table 6.3.   20 points were used for both Gauss-Legendre and Gauss-Laguerre
quadrature for the binning procedure.  Semiaxes of (4,2,1) with center (0,1,0) for k = 3 were used.
The following table gives the calculated standard errors and times. Times are in seconds with the
numbers in parentheses for the nonbinning procedure.

      df = 20       df = ∞
mocar irep     se  time     se  time
100 10 .008 259 .05 (.00) .003 631 .00 (.00)
1000 10 .001 444 .06 (.11) .000 735 .00 (.06)
10000 10 .000 565 .43 (.99) .000 311. 17 (.49)
1000000 10 .000 196 1.93 (5.65) .000 093 1.81 (5.25)
10000000 10 .000 063 16.91 (55.97) .000 044 17.8 (51.79)

Table 6.3
Run times and standard errors

for binning and nonbinning procedures

Regression analyses showed near perfect linear relationships between running times and number of
random directions, and between the logarithms of standard errors and number of random



directions.  For example, for the binning procedure, the approximate linear relationship between
running time and number of random directions is

time = .00316 + 5.78E-6 ∗ (# random directions).
It may be noted that except for total random directions of 1000 for the multivariate normal case,
the binning procedure consistently requires less running time than the nonbinning procedure.   The
binning procedure is thus recommended.

It needs to be emphasized that the standard error of the estimate is a function of the shape and
position of the ellipsoid (after the “standardizing” transformations).  If the ellipsoid is a spheroid
centered at the origin, the accuracy is independent of the number of random directions and is a
function of the processor and the computer program.  The standard error, in general, is a function
of the degree of departure of the ellipsoid from a spheroid centered at the origin.

Special runs were made to ascertain the accuracy and running times of the shortcut method for the
noncentral F distribution.  A total of 180 runs were made, with k = 2, 3, 5, 10 and 20, λ and f0
equal to .1, .2, .5, 1, 2, 5 and 10.  For each run, 10 estimates, each using 1000 random directions
were used.  The estimates and standard errors were consistent with existing software programs, e.g.
from the M. D. Anderson Cancer Center Statistical Archives (see also http://www.stat.ucla.edu/
statistical calculator).  Some results follow.  When λ2 − f0 was less than zero (axes origin was
inside ellipsoid), the largest standard error estimate was .0001 (estimated probability of .804650 for
λ = 2 and f0 = 5).  When λ2 − f0 was greater than zero  (axes origin was outside ellipsoid), the
largest estimated standard error was .000584 (estimated probability of .059056 for k = 2, λ = 1 and
f0 = .1).  Of the 57 cases where the estimated probability was greater than .5,  and λ2 − f0 was less
than zero, 42 cases had estimated standard errors less than 10-6.  Estimated standard error tended
to decrease both for increasing values of k and increasing  values for the estimated probability.
The ratio of the estimated standard error divided by the estimated probability tended to increase
with increasing values of λ2 − f0 and decrease with increasing values of the estimated probability.

Average running times ranged from 0.075 and .109 seconds for k= 2 and 3 respectively to .379 and
.843 seconds for k=10 and 20 respectively.

The same runs were made for the noncentral chisquare with modestly higher estimated accuracies
and modestly smaller running times.

Running times and accuracies for the general ellisoid case should be well approximated by those
for the special spheroid case above.  Some examples are given in section 8.

7. USING MVELPS.FOR
MVELPS.FOR is a FORTRAN 90 program which calculates the probability content of a general
ellipsoid:

(x - m*)T U (x - m*) = ellipg
when x is MVN(µµµµ, ΣΣΣΣ σσσσ2). The element σ2 may be known or estimated with νννν degrees of freedom.
The program requires that the files ELIP.IN and ELIP.OUT exist before the program is run.
ELIP.IN contains the required input parameters and the program returns the output from the
program in the file ELIP.OUT.

Except for the “shortcut method” used for the special case of calculation of noncentral χ2 and
noncentral F probabilities (described later), the file ELIP.IN requires six “lines” of input.  A “line”
may actually be a vector or matrix.  The six “lines” are:

LINE 1: k  seed  ν  mocar  irep  meth
LINE 2: ellipg
LINE 3: Σ
LINE 4: µµµµ



LINE 5: U
LINE 6: m*

LINES 1 and 2: The elements k, mocar, irep and ellipg have already been discussed.  The degrees
of freedom ν for the estimate of σσσσ2 is given the value “-1” when σσσσ2 is assumed to be known.  The
seed for the random generator is “seed”.  To calculate the probability using the binning method, set
“meth” = 1.  To calculate the probability using the non-binning or direct method, set “meth” = 0.

LINES 3 and 5: Σ and U are symmetric matrices.  It is permissible to input only the lower
triangular portion of these matrices.  Each row occupies a separate line.

If a matrix is a diagonal with all diagonal elements equal to “d”, then one line containing the
single element “-d” is sufficient.

LINES 4 and 6: The k elements of the vector make up the line.

The “shortcut method”, used for calculating noncentral χ2 and noncentral F probabilities, requires
two lines:

LINE 1: k  seed  ν  mocar  irep  meth
LINE 2: λ  f0.

LINE 1 is the same as before, except that now “meth” is set to -1.
The noncentrality parameter λ has previously been defined, and f0 is the upper limit of the
noncentral χ2 or noncentral F function as in Prob[ F < f0].

ELIP.IN can contain several sets of instructions.  After the last set of instructions, the program
expects  a line of four or more -1’s.

8. EXAMPLES
Example 1.
Let x have the multivariate t distribution with k = 3, all correlations equal to .5, mean vector 0, and
with 20 degrees of freedom. We want to find the probability content of the ellipsoidal region

(x - m*)T U (x - m*) = 1,
where U is a diagonal matrix with diagonal (.25, .2, .1) and m* is (1, .5, .25).  Choose 357 as seed
and make 10 preliminary estimates each using 10,000 random directions.  We would like to first
use the binning method and then the nonbinning method.  ELIP.IN could be as follows:
3 357 20 10000 10 1
1
1
.5 1
.5 .5 1
0 0 0
.25
0 .2
0 0 .1
1 .5 .25

3 357 20 10000 10 0
1
1
.5 1
.5 .5 1
0 0 0
.25
0 .2
0 0 .1
1 .5 .25



-1 -1 -1 -1 -1 -1

 The  following output (in ELIP.OUT) is obtained:

 date and time 20010620222229.380
 Binning method used
 elapsed time in seconds is     .440
 no of pops is           3 seed is        357
  df for var est is         20
 value of integral is calculated         10 times
 mean value is    6.80487812E-01
 standard error of mean is    5.13384177E-04
 --------------------
 date and time 20010620222229.82
 elapsed time in seconds is     .830
 no of pops is           3 seed is        357
  df for var est is         20
 value of integral is calculated         10 times
 mean value is    6.80493176E-01
 standard error of mean is    5.23232622E-04
 --------------------
Example 2
Find the probability content of the ellipsoidal region (x - m*)T U (x - m*) = 1, where k = 4, m* =
(1, 1, 1, 1) and U is diagonal with diagonal elements equal to .2.  Assume x is MVN(0, I).   Using
the binning method with 10 estimates each with 1000 random directions and seed of 297, ELIP.IN
may be given by
4 297 -1 1000 10 1
1
-1
0 0 0 0
-.2
1 1 1 1
-1 -1 -1 -1

The output from ELIP.OUT is:
 date and time 20010620222230.650
 Binning method used
 elapsed time in seconds is      .050
 no of pops is           4 seed is        297
  variance assumed known
 no of random dir. is    2000.000000
 value of integral is calculated         10 times
 mean value is    3.08498234E-01
 standard error of mean is    6.20856299E-04
 --------------------
Example 3
Find Pr[F < 3] where F is the noncentral F distribution with degrees of freedom 4 and 25 for the
numerator and denominator respectively, and the noncentrality parameter is 1.2.  Make 12
estimates with 1200 random directions each.  ELIP.IN may be given by

4 9133 25 1200 12 -1
1.2 3
-1 -1 -1 -1 -1 -1

The output from ELIP.OUT is:
 Noncentrality parameter is       1.200000



 date and time 20010620222230.700
 elapsed time in seconds is      .220
 no of pops is           4 seed is       9133
  df for var est is         25
 value of integral is calculated         12 times
 mean value is    .905823290
 standard error of mean is   9.21626452E-06
 --------------------
Example 4
Find Pr[χ2 < 2.5 ] where χ2 is the noncentral chisquare distribution with 5 degrees of freedom and
noncentrality parameter 1.6.  Use a single estimate (no error estimate will be given) with 10,000
random directions.  ELIP.IN may be given by
5 9571 -1 10000 1 -1
1.6 2.5
The output from ELIP.OUT is:

 Noncentrality parameter is       1.600000
 date and time 20010620222230.920
 elapsed time in seconds is      .110
 no of pops is           5 seed is       9571
  variance assumed known
 no of random dir. is  100000.000000
 value of integral is calculated          1 times
 mean value is    9.27048028E-02
 --------------------

9. SUMMARY AND CONCLUSIONS

A methodology has been developed and a Fortran 90 program written to find the probability
content of an hyperellipsoid when the underlying distribution is multivariate normal or
multivariate-t.  The methodology has been used by the author for two applications.  In the
computation of tolerance factors for multivariate populations there are four parameters: N, α, β
and γ (Krishnamoorthy, K. and Mathew, Thomas (1999)).  The author is writing a Fortran 90
program which will be submitted for publication which calculates any one of the four parameters,
given the other three.  The author has a Fortran 90 program in an advanced state of development
which calculates cumulative probabilities for linear combinations of central and noncentral linear
combinations of chisquare and F.

The present program (MVELPS) can be used to calculate probabilites for the special case where
the ellipsoids are actually spheroids, namely for central noncentral F and χ2 distributions.  No
claims are made regarding superiority or inferiority to other existing programs for this case.
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