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Abstract

In this paper we describe flexible competing risks regression models using the
comp.risk() function available in the timereg package for R based on Scheike et al.
(2008). Regression models are specified for the transition probabilities, that is the cumu-
lative incidence in the competing risks setting. The model contains the Fine and Gray
(1999) model as a special case. This can be used to do goodness-of-fit test for the subdis-
tribution hazards’ proportionality assumption (Scheike and Zhang 2008). The program
can also construct confidence bands for predicted cumulative incidence curves.

We apply the methods to data on follicular cell lymphoma from Pintilie (2007), where
the competing risks are disease relapse and death without relapse. There is important
non-proportionality present in the data, and it is demonstrated how one can analyze these
data using the flexible regression models.

Keywords: binomial modelling, competing risks, goodness of fit, inverse-censoring probability
weighting, nonparametric effects, non-proportionality, R, regression effects, timereg.

1. Introduction

Competing risks data often arise in biomedical research when subjects are at risk of failure
from K different causes. When one event occurs, it precludes the occurrence of any other
event. In cancer studies, one common example of competing risks involves disease relapse and
death in remission. The cumulative incidence curve, i.e., the probability of failure of a specific
type is a useful summary curve when analyzing competing risks data. Unfortunately this is
not widely known in the biomedical world, and a very common error is that people report one
minus the Kaplan-Meier estimate for each competing cause as a probability of cause-specific
free survival. This is not a correct procedure and this estimator overestimates the incidence
rates of a particular cause in the presence of all other competing causes (see Klein et al. 2001
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for details).

The aim of this work is to estimate and model the cumulative incidence probability of a specific
cause of failure. Estimating and modelling the cause-specific hazards has been considered as
a standard approach for analyzing competing risks data. Assuming two types of failures
k = 1, 2, the cumulative incidence function for cause 1 given a set of covariates x is given by

P1(t;x) = P(T ≤ t, ε = 1|z) =

∫ t

0
λ1(s;x) exp

[
−
∫ s

0
{λ1(u;x) + λ2(u;x)} du

]
ds, (1)

where T is the failure time, ε indicates the cause of failure and λk(t;x) is the hazard of the
kth cause failure conditional on x, which is defined as

λk(t;x) = lim
∆t→0

1

∆t
P {t ≤ T ≤ t+ ∆t, ε = k|T ≥ t} .

Here, the cause-specific hazards for all causes need to be properly modeled. Cox’s proportional
hazards model is the most popular regression model in survival analysis and here the hazard
function is given by

λk(t;x) = λk0(t) exp{x>β},

where λk0(t) is a cause-specific baseline and β are regression coefficients. Using Cox’s regres-
sion model to model the cause-specific hazards with the purpose of estimating the cumulative
incidence function (1) was considered by Lunn and McNeil (1995) and Cheng et al. (1998).
Shen and Cheng (1999) considered Lin and Ying’s special additive model for the cause-specific
hazards and Scheike and Zhang (2002, 2003) considered a flexible Cox-Aalen model. The lat-
ter model allows some covariates to have time-varying effects. Modelling of the cause-specific
hazards gives a complex nonlinear modelling relationship for the cumulative incidence curves.
It is therefore hard to summarize the covariate effect and hard to identify the time-varying
effect on the cumulative incidence function for a specific covariate. Recently, it has been
suggested to directly model the cumulative incidence function. Fine and Gray (1999, FG)
developed a direct Cox regression approach to model the subdistribution hazard function of
a specific cause. The cumulative incidence function based on the FG model is given by

P1(t;x) = 1− exp{−Λ1(t) exp(x>β)},

where Λ1(t) is an unknown increasing function and β is a vector of regression coefficients.
FG proposed using an inverse probability of censoring weighting technique to estimate β and
Λ1(t). This approach is implemented in the crr() function in the cmprsk package (Gray
2010) for R (R Development Core Team 2010).

Recently, we considered a class of flexible models of the form

h{P1(t;x, z)} = x>α(t) + g(z, γ, t) (2)

where h and g are known link functions and α(t) and γ are unknown regression coefficients
(see Scheike et al. 2008, SZG). FG’s proportional regression model, Lin and Ying’s special
additive model and Aalen’s full additive regression model are special sub-models of our model.
Any link function can be considered and used here. In this study we focus on two classes of
flexible models: proportional models

cloglog{1− P1(t;x, z)} = x>α(t) + z>γ (3)
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and additive models

− log{1− P1(t;x, z)} = x>α(t) + (z>γ)t. (4)

The regression coefficients α(t) and γ are estimated by a simple direct binomial regression
approach. We have developed a function, comp.risk(), available in the R package timereg,
that implements this approach. In addition we have proposed a useful goodness-of-fit test to
identify whether time-varying effect is present for a specific covariate.

In medical studies physicians often wish to estimate the predicted cumulative incidence prob-
ability for a given set of values of covariates. The predict() function of timereg computes the
predicted cumulative incidence probability and an estimate of its variance at each fixed time
point, and constructs (1− α)100% simultaneous confidence bands over a given time interval.
One further advantage is that the software can deal with cluster structure, see Scheike et al.
(2010).

The estimation procedure and goodness-of-fit test will be presented in Section 2. In Section 3
we will show how the comp.risk() function in the R package timereg can be used to fit
our newly proposed flexible models (3) and (4) through a worked example. The package
is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/

package=timereg.

2. Estimation and goodness-of-fit test

2.1. Estimation

Let Ti and Ci be the event time and right censoring time for the ith individual, respectively.
εi ∈ {1, . . . ,K} indicates the cause of failure. Let T̃i = min(Ti, Ci) and ∆i = I(Ti ≤ Ci). We
observe n independent identically distributed (i.i.d.) realizations of {T̃i,∆i,∆iεi, Xi, Zi} for
i = 1, . . . , n, where Xi = (1, Xi1, . . . , Xip)

> and Zi = (Zi1, . . . , Ziq)
> are associated covariates.

We assume that (Ti, εi) are independent of Ci given covariates. Let Ni(t) = I(Ti ≤ t, εi = 1)
be the underlying counting processes associated with cause 1, which are not observable for
all t. However, ∆iNi(t) are computable for all t and we can show that E{∆iNi(t)/G(Ti ∧
t|Xi, Zi)} = P1(Ti ∧ t;Xi, Zi), where G(t|X,Z) is the survival distribution for the censoring
time given the covariates. We therefore considered the inverse probability censoring weighted
response ∆iNi(t)/G(Ti ∧ t|Xi, Zi) in the estimating equations and proposed to estimate the
regression coefficients α(t) and γ by solving the estimating equations simultaneously. We
denote the estimates as α̂(t) and γ̂. Under regularity conditions we showed that

√
n(γ̂ − γ)

and
√
n{α̂(t)−α(t)} are jointly asymptotically Gaussian and have the same limit distribution

as
√
nĈ−1

γ

∑
i

{
Ŵ1i(τ)Gi

}
and

√
nÎ−1

α (t)
∑
i

{
Ŵ2i(t)Gi

}
,

respectively, where (G1, ..., Gn) are i.i.d. standard normals, τ is the of study time point, and
explicit expressions for Ĉγ , Îα(t), Ŵ1i(t) and Ŵ2i(t) are given in Scheike and Zhang (2008).

For a given set values of covariates, (x, z), the predicted cumulative incidence function can be

estimated by P̂1(t;x, z) = h−1
{
x>α̂(t) + g(z, γ̂, t)

}
, and we showed in SZG that

√
n{P̂1(t;x, z)−

http://CRAN.R-project.org/package=timereg
http://CRAN.R-project.org/package=timereg
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P1(t;x, z)} has the same limit as

√
n
∂h−1P̂1(t;x, z)

∂t

∑
i

{
Ŵ3i(t;x, z)Gi

}
,

where (G1, ..., Gn) are standard normals and Ŵ3i(t;x, z) is a residual that can be estimated
based on the data (see Scheike and Zhang 2008 for details).

Resampling techniques can be applied to construct (1−α)100% confidence bands for αj(t), j =
1, . . . , p, and P1(t;x, z), and to compute the p value of testing H0 : αj(t) = 0 for all t ∈ [0, τ ]
based on supt∈[0,τ ] |α̂j(t)/σ̂(t)|, where σ̂(t) is an estimated standard error of α̂(t).

2.2. Goodness-of-fit test

The FG model is commonly used for analyzing competing risks data and this model assumes
that all covariates have constant effects over time (Beyersmann et al. 2009). Recently, we
developed a goodness-of-fit test (Scheike and Zhang 2008) for testing whether or not this is a
reasonable assumption. We consider an extended version of the FG model

P1(t;x, z) = 1− exp
{
− exp

(
x>α(t) + z>γ

)}
,

where some effects are proportional as in the FG model (γ) and some effects are allowed to
change their effects on the cumulative incidence function over time (α(t)). Therefore testing
for example H0 : αj(t) = βj , for all t ∈ [0, τ ] will determine whether the effect of xj is
constant. Further, plotting the estimated α̂j(t) with its confidence band will give a good idea
about whether or not the proportionality assumption is satisfied or violated.

To test H0 there are many possibilities, a simple test that relies only on α̂j(t) is to look at

Tj(t, α̂j) = α̂j(t)−
1

τ

∫ τ

0
α̂j(s)ds, (5)

for j = 1, . . . , p. We derived the asymptotic distribution of this test process and pro-
posed to compute the p value of the test based on a Kolmogorov-Smirnov type test-statistic
supt∈[0,τ ] |Tj(t, α̂j)| or by a Cramer von Mises type test-statistic

∫ τ
0 {Tj(s, α̂j)}

2 ds. The
Cramer von Mises test is an alternative to the Kolmogorov-Smirnov test. Anderson (1962)
showed that in the case of the two sample test, the Cramer von Mises test is more powerful
than the Kolmogorov-Smirnov test. We compute both tests in the comp.risk() function.

In addition, we can plot the observed test process (5) and simulated test processes under the
null hypothesis to visually examine whether a specific covariate has a time-varying effect.

All large sample properties and resampling techniques used for the test statistics are given in
SZG and Scheike and Zhang (2008).

3. Worked example: Follicular cell lymphoma study

We consider the follicular cell lymphoma data from Pintilie (2007) where additional details
also can be found. The data set can be downloaded from http://www.uhnres.utoronto.ca/

labs/hill/datasets/Pintilie/datasets/follic.txt, and consists of 541 patients with
early disease stage follicular cell lymphoma (I or II) and treated with radiation alone (chemo

http://www.uhnres.utoronto.ca/labs/hill/datasets/Pintilie/datasets/follic.txt
http://www.uhnres.utoronto.ca/labs/hill/datasets/Pintilie/datasets/follic.txt
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= 0) or a combination treatment of radiation and chemotherapy (chemo = 1). Disease relapse
or no response and death in remission are the two competing risks. The patients ages (age:
mean = 57 and sd = 14) and haemoglobin levels (hgb: mean = 138 and sd = 15) were also
recorded. The median follow-up time was 5.5 years.

First we read the data, compute the cause of failure indicator and code the covariates:

R> fol <- read.table("follic.txt", sep = ",", header = TRUE)

R> evcens <- as.numeric(fol$resp == "NR" | fol$relsite != "")

R> crcens <- as.numeric(fol$resp == "CR" & fol$relsite == "" & fol$stat == 1)

R> cause <- ifelse(evcens == 1, 1, ifelse(crcens == 1, 2, 0))

R> table(cause)

cause

0 1 2

193 272 76

R> stage <- as.numeric(fol$clinstg == 2)

R> chemo <- as.numeric(fol$ch == "Y")

R> times1 <- sort(unique(fol$dftime[cause == 1]))

There are 272 (no treatment response or relapse) events due to the disease, 76 competing risk
events (death without relapse) and 193 censored individuals. The event times are denoted as
dftime. The variables times1 gives the distinct event times for causes "1".

We first estimate the nonparametric cumulative incidence curve using the timereg package and
the cmprsk for comparison. We specify the event time and the censoring variable in timereg’s
comp.risk() function as Surv(dftime,cause == 0). The regression model contains only
an intercept term (+ 1). The cause variable gives the causes associated with the different
events. causeS = 1 specifies that we consider type 1 events, and the censoring code is given
by the cens.code variable. The times at which the estimates are computed/based can be
given by the argument times = times1, the default is to use all cause "1" time points that
are numerically stable.

The cumulative incidence curve estimations based on the cmprsk’s cuminc() function and
the timereg’s comp.risk() function are both identical to the product-limit estimator in the
case without covariates (Figure 1 a and b). Figure 1 (a) shows the cumulative incidence
curves for the two causes estimated by the cmprsk package. In Figure 1 (b) we show that the
comp.risk() function can also be used to construct 95% confidence intervals (dotted lines)
and 95% confidence bands (broken lines) based on resampling which is not available in the
cuminc() function. The R packages etm (Allignol et al. 2011) and mstate (de Wreede et al.
2010, 2011) can also be used to compute the cumulative incidence curve with 95% confidence
intervals, but they do not provide confidence bands.

R> library("timereg")

R> library("cmprsk")

R> out1 <- comp.risk(Surv(dftime, cause == 0) ~ + 1, data = fol,

+ cause, causeS = 1, n.sim = 5000, cens.code = 0, model = "additive")

R> pout1 <- predict(out1, X = 1)
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Figure 1: (a) Cumulative incidence curves based on the cuminc() function for the two causes
and (b) cumulative incidence curve based on comp.risk() function for relapse (solid line)
with 95% confidence intervals (dotted lines) and 95% confidence bands (broken lines) based
on resampling.

R> group <- rep(1, nrow(fol))

R> fit <- cuminc(fol$dftime, cause, group, cencode = 0)

R> par(mfrow = c(1, 2))

R> plot(fit,main = "cmprsk", xlab = "Years (a)")

R> plot(pout1,xlim = c(0, 30), xlab = "Years (b)", main = "timereg",

+ uniform = 3, se = 2)

Both the subdistribution hazard approach and the direct binomial modelling approach are
based on an inverse probability of censoring weighting technique. When applying such weights
it is crucial that the censoring weights are estimated without bias, otherwise the estimates of
the cumulative incidence curve may also be biased. In this example, we find that the censoring
distribution depends significantly on the covariates hgb, stage and chemo and is well described
by Cox’s regression model. The fit of the Cox model was validated by cumulative residuals, see
Martinussen and Scheike (2006) for further details. As a consequence using a simple Kaplan-
Meier estimate for the censoring weights may lead to severely biased estimates. We therefore
add the option cens.model = "cox" in the function call, this uses all the covariates present
in the competing risks model in the Cox model for the censoring weights. More generally it
has been established that regression modelling for the inverse probability censoring weights
can be used to improve the efficiency (Scheike et al. 2008).
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We now use prop in the model option to fit the model

P1(t;x, z) = 1− exp
{
− exp

(
x>α(t) + z>γ

)}
. (6)

We first fit a general proportional model allowing all covariates to have time-varying effects.
Only the covariates x in model (6) are defined in the function call below. The covariates z in
model (6) are specified by a const operator.

R> outf <- comp.risk(Surv(dftime, cause == 0) ~ stage + age + chemo + hgb,

+ data = fol, cause, causeS = 1, n.sim = 5000, cens.code = 0,

+ model = "prop", cens.model = "cox")

R> summary(outf)

OUTPUT:

Competing risks Model

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 3.29 0.0150

stage 5.08 0.0000

age 4.12 0.0002

chemo 2.79 0.0558

hgb 1.16 0.8890

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 8.6200 0.0100

stage 1.0400 0.0682

age 0.0900 0.0068

chemo 1.7200 0.0004

hgb 0.0127 0.5040

Cramer von Mises test p-value H_0:constant effect

(Intercept) 3.69e+01 0.0170

stage 2.52e+00 0.0010

age 4.26e-03 0.0014

chemo 1.50e+00 0.0900

hgb 2.64e-04 0.4220

Call:

comp.risk(Surv(dftime, cause == 0) ~ stage + age + chemo + hgb,

data = fol, cause, causeS = 1, n.sim = 5000, cens.code = 0,

model = "prop", cens.model = "cox")

The tests of significance based on the nonparametric tests show that stage and age are clearly
significant, chemo is borderline significant (p = 0.056) and hgb is not significant (p = 0.889)
in the fully nonparametric model.
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Figure 2: Estimates of time-varying effects in proportional model (solid lines) with 95%
confidence intervals (dotted lines) and 95% confidence bands (broken lines).

Plot options of sim.ci and score can be used to plot estimated regression coefficients αj(t)
with its 95% confidence bands and to plot the observed test process for constant effects and
simulated test processes under the null, respectively.

R> plot(outf, sim.ci = 2)

R> plot(outf, score = 1)

Figure 2 shows the time-varying covariate effects (α(t) of model (6)). It is evident that these
effects are not constant over time, effects are considerably pronounced in the early time-
period. The 95% pointwise confidence intervals, as well as 95% confidence bands (sim.ci=2
in the plot call, 2 for broken lines).

Figure 3 shows the related test-processes for deciding whether the time-varying effects are
significantly time-varying or whether H0 : αj(t) = βj can be accepted. The summary of these
graphs are given in the output, and we see that stage, age and chemo are clearly time-varying,
and thus not consistent with the Fine-Gray model. The p values related to these plots are
given in the above output, and we see that the Kolmogorov-Smirnov (supremum) test leads
to p values of 0.068, 0.007, and 0.000, for stage, age and chemo, respectively. Similarly,
the Cramer von Mises test statistics based on the same score processes are 0.001, 0.001, and
0.090, respectively. These test statistics are described in detail in Section 2. Note that the
two different summaries of the test processes by the Kolmogorov-Smirnov and Cramer von
Mises tests statistics are consistent with the figures, and the overall conclusion is that none of
the three variables have proportional Cox type effects. In reality the command plot(outf,
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Figure 3: Observed test process (black line) and simulated test processes under the null (gray
lines).

score = 1) that produces Figure 3 also leads to a similar plot for the baseline, but we
have only plotted the covariate components of the models. To plot, for example, the second
covariate (after the intercept), stage, of the model we give the command plot(outf, score

= 1, specific.comps = 2).

We see that hgb is well described by a constant and we therefore consider the model with hgb
having a constant effect and the remaining covariates having time-varying effects.

This final model is fitted with the call

R> outf1 <- comp.risk(Surv(dftime, cause == 0) ~ stage + age + chemo +

+ const(hgb), data = fol, cause, causeS = 1, n.sim = 5000, cens.code = 0,

+ model = "prop", cens.model= "cox")

R> summary(outf1)

OUTPUT:

Competing risks Model

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 5.46 0

stage 5.18 0
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age 4.20 0

chemo 3.89 0

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 10.100 0.000

stage 1.190 0.048

age 0.101 0.004

chemo 1.860 0.000

Cramer von Mises test p-value H_0:constant effect

(Intercept) 79.90000 0.000

stage 1.84000 0.006

age 0.00583 0.000

chemo 2.53000 0.000

Parametric terms :

Coef. SE Robust SE z P-val

const(hgb) 0.00195 0.00401 0.00401 0.486 0.627

Call:

comp.risk(Surv(dftime, cause == 0) ~ stage + age + const(hgb) +

chemo, fol, cause, times = times1, model = "prop")

The covariate hgb has a constant effect over time with β̂ = 0.00195. Note that hgb is non-
significant (p = 0.627), as in the nonparametric model (p = 0.889) as well as in the FG model
(p = 0.534) where all effects are constant over time (see below). The covariates stage, age
and chemo all have significantly time-varying effects, and the estimates of the effects of stage,
age and chemo are very similar to those of the fully non-parametric model shown in Figure 2.

To make a comparison of the predictions based on the FG model we also fit this model:

R> outfg <- comp.risk(Surv(dftime, cause == 0) ~ const(stage) + const(age) +

+ const(chemo) + const(hgb), data=fol, cause, causeS = 1,

+ n.sim = 5000, cens.code = 0, model = "prop", cens.model = "cox")

R> summary(outfg)

Competing risks Model

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 6.32 0

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 1.93 0

Cramer von Mises test p-value H_0:constant effect

(Intercept) 14.3 0
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Parametric terms :

Coef. SE Robust SE z P-val

const(stage) 0.45200 0.13500 0.13500 3.340 0.000838

const(age) 0.01450 0.00459 0.00459 3.150 0.001610

const(chemo) -0.37600 0.18800 0.18800 -2.000 0.045800

const(hgb) 0.00249 0.00401 0.00401 0.622 0.534000

Call:

comp.risk(Surv(dftime, cause == 0) ~ const(stage) + const(age) +

const(chemo) + const(hgb), data = fol, cause, causeS = 1,

n.sim = 5000, cens.code = 0, model = "prop", cens.model = "cox")

We note that the effect of hgb is almost equivalent with that based on the more appropriate
model (shown above). But the estimate could be severely biased due to lack of fit of the other
covariates in the model, and could thus misrepresent important features of the data.

Finally, we compare the prediction for the FG model with that of the semiparametric model
that gives a more detailed description of the effects. We consider predictions for two different
patients defined by the newdata assignment below. Patient type I: disease stage I (stage
= 0), 40 years old and without chemotherapy treatment (chemo = 0), and patient type II:
disease stage II (stage = 1), 60 years old and the radiation plus chemotherapy combination
treatment (chemo = 1).

R> newdata <- data.frame(stage = c(0, 1), age = c(40, 60), chemo = c(0, 1),

+ hgb = c(138, 138))

R> poutf1 <- predict(outf1, newdata)

R> poutfg <- predict(outfg, newdata)

R> par(mfrow = c(1, 2))

R> plot(poutf1, multiple = 1, se = 0, uniform = 0, col = 1:2, lty = 1:2)

R> title(main = "Flexible model predictions")

R> plot(poutfg, multiple = 1, se = 0, uniform = 0, col = 1:2, lty = 1:2)

R> title(main = "Fine-Gray model predictions")

To specify the data at which the predictions are computed, one can either specify a newdata
argument or more robustly, specify the specific forms of X and Z (const), in the above
situation, one could thus equivalently do the following

R> poutf1 <- predict(outf1, X = cbind(1, c(0, 1), c(40, 60), c(0, 1)),

+ Z = cbind(c(138, 138)))

The predictions based on the model may not be monotone. The plot() function plots a
pool-adjacent-violators estimate (Robertson et al. 1988) based on the simple direct estimate
based on α̂(t) and γ̂.

We plot the predictions without pointwise confidence intervals (se = 0) and without confi-
dence bands (uniform = 0). The predictions shows in Figure 4 (a) are based on the flexible
model, and the predictions in Figure 4 (b) are based on the FG model. The cumulative
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Figure 4: (a) Predictions of the cumulative incidence curves based on flexible model and (b)
model assuming constant effects.

incidence curves of relapse for a type I and a type II patient are plotted in solid and dotted
lines, respectively.

Figure 5 (a) compares the predictions for a type I patient based on the flexible model and on
the FG model. Similarly, Figure 5 (b) compares the predictions for a type II patient. The
broken lines around the two predictions represent the confidence band based on the flexible
model. Figure 5 is produced by the following code.

R> par(mfrow = c(1, 2))

R> plot(poutf1, se = 0, uniform = 1, col = 1, lty = 1, specific.comps = 1)

R> plot(poutfg, new = 0, se = 0, uniform = 0, col = 2, lty = 2,

+ specific.comps = 1)

R> title(main = "Type I patients")

R> legend(1, 1.0, c("Flexible model", "Fine-Gray model"), lty = 1:2,

+ col = 1:2)

R> plot(poutf1, se = 0, uniform = 1, col = 1, lty = 1, specific.comps = 2)

R> plot(poutfg, new = 0, se = 0, uniform = 0, col = 2, lty = 2,

+ specific.comps = 2)

R> title(main = "Type II patients")

R> legend(1, 1.0, c("Flexible model", "Fine-Gray model"), lty = 1:2,

+ col = 1:2)

Higher disease stage, increased age and with combination treatment lead to higher cumulative
incidence and the effect of this is more pronounced in the early part of the time-period
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Figure 5: Predictions of the cumulative incidence curves based on flexible model and FG
model for given type I patient (a) and type II patient (b).

(Figure 4 (a) and Figure 2). Chemo on the other hand increases the cumulative incidence
in the initial part of the time period, and subsequently lowers the incidence (Figure 4 (a)
and Figure 2). Figure 5 shows that the FG model does not model the time-varying effect
accurately. Despite these differences the overall predictions are in this case somewhat similar,
especially when the uncertainty of the estimates is taken into account. However, this does
not change the fact that the time-varying behavior of the covariates is clearly significant and
that the knowledge of this structure in the data is preferred.

4. Discussion

The flexible competing risks regression model for the cumulative incidence curves are imple-
mented in the comp.risk() function in the timereg package for R. These models are useful
for a detailed analysis of how covariate effects predicts the cumulative incidence, and allows
for a time-varying effect of the covariates. This is particularly useful for examining the fit of
simpler models where covariate effects are assumed constant. The goodness-of-fit procedure
leads to an asymptotically justified p value. Another nice feature is that the comp.risk()

can deal with cluster structure.

The predict() function yields predictions with confidence intervals as well as confidence
bands which are useful for the researchers.
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