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Monkeying with the Goodness-of-Fit Test
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Abstract

The familiar
∑

(OBS − EXP)2/EXP goodness-of-fit measure is commonly used to
test whether an observed sequence came from the realization of n independent identically
distributed (iid) discrete random variables. It can be quite effective for testing for identical
distribution, but is not suited for assessing independence, as it pays no attention to the
order in which output values are received.

This note reviews a way to adjust or tamper, that is, monkey-with the classical test
to make it test for independence as well as identical distribution—in short, to test for
both the i’s in iid, using monkey tests similar to those in the Diehard Battery of Tests of
Randomness (Marsaglia 1995).
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1. Introduction

We begin with an example that will illustrate the problem and suggest a solution. A general
discussion will follow in Section 2.

Suppose you want to demonstrate use of the goodness-of-fit test on a sequence x1, x2, . . . , xn

purported to be iid, that is, independent, identically distributed discrete random variables
taking values 0, 1, 2, . . . , 25 with equal probabilities, 1/26. You use a computer to generate
such a sequence with n = 2600, using, say, the random number generator provided by your
programming language’s function library.

If vi is the number of times that the value i appears in the sequence of length 2600, then
E[vi] = 100 and Q1 =

∑
(vi − 100)2/100 is the standard goodness-of-fit statistic, viewed as a

χ2
25 variate (25 degrees of freedom) if the process providing the 26 possible values is choosing

them with equal probabilities. But the value of Q1 is invariant under permutations of the
2600 elements in the test sequence. That Q1 value provides no assessment for independence,
only for identical distribution—the second, but not the first, i in iid.

To consider means for assessing independence, suppose we change the values 0,1,2,. . . ,25
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2 Monkeying with the Goodness-of-Fit Test

produced by our random variates to A,B,C,...,Z, in order to have a single symbol for each
realization. Then the output of a sequence of realizations might look like that from the fabled
monkey at a typewriter, randomly striking 26 keys. After n keystrokes, the whimsical output
from the monkey might begin, then end, like this:

DCJFAVSPPFWMFHFCVYFMLNBQFNFSGCDQFLSZOIVLPTHEQDIIZSGNWJCJRY...
...LUQMAJMLQJHKKOJXOPOYMLFWWKNEDXDOKMNQOLYBJPZZYPP

A satisfactory value for Q1 =
∑

(vi − n/26)2/(n/26) will suggest that the frequencies of
A’s,B’s,. . . ,Z’s are satisfactorily close to their expected values of n/26. But we might ask:
how many times does CAT appear in that sequence? DOG? PDQ? TIT?—or, more generally,
how many times does each of the possible 3-letter words appear, or, a favorite when using
this as a classroom example, which forbidden 4-letter words appear, and how often?

If n = 100× 263 = 1757600, and if we have independent realizations, then we should expect
around 100 instances of each of the possible 3-letter words, and we might be tempted to
use the classical

∑
(OBS − EXP)2/EXP as a test statistic. But that will not work, because

successive (overlapping) 3-letter words cannot reasonably be assumed to have come from a set
of identically distributed, id, variates. It turns out, as we shall see in the next section, that
the following is the proper way to test the 3-letter word counts, and thus extend to a full iid
test, that is, test for independence as well as identical distribution: Let wijk be the number
of times the word IJK appears in the sequence, and form Q3 =

∑
i,j,k(wijk − 100)2/100, the

naive Pearson form. Also, with wij the number of times the word IJ appears in the sequence,
set Q2 =

∑
i,j(wij − 2600)2/2600, the form for pairs of letters.

Then, if the monkey is randomly and independently striking the typewriter keys, Q3 − Q2
should follow a χ2 distribution with 263 − 262 = 16900 degrees of freedom, (d.o.f.).

For such a large d.o.f. we can take Q3 − Q2 to be normal with mean 16900 and variance
33800, so the question reduces to: how many sigmas is Q3−Q2 from its mean, i.e., what is
the value of the standard normal variate (Q3 −Q2 − 16900)/183.85?.

For a truly iid sequence of 263 × 100 uniform variates from a set of 26, we should certainly
expect (Q3−Q2− 16900)/183.85 to be within ±3. For the rand() function of the C compiler
I used, (a congruential RNG), Q3 −Q2 was -1.27 sigmas from its mean, quite satisfactory.

However, we get a different story if we change the rand() function to a LFSR generator based
on the primitive polynomial x31 + x3 + 1, the very generator Whittlesey (1969) touted after
I had established the lattice structure of congruential RNGs (Marsaglia 1968). The standard
goodness-of-fit measure, which we might call Q1, passed well; the letters are apparently pro-
duced with the proper frequencies. But are they produced independently? No, not even close:
Q3 −Q2 was over 62000 sigmas from its mean, and Q2 −Q1 was worse, over 136000 sigmas
from its mean.

Monkey tests such as these and others from Marsaglia (1995) have been be used for many
RNGs. A more extensive summary, and further references relating to monkey tests are in
that CDROM, mostly in the file monkey.pdf, a copy of which is available from http://www.
jstatsoft.org/v14/i13/monkey.pdf. See also Knuth (1999, pp. 62, 78, 565) for discussion
of the Qr−Qr−1 approach. The main purpose of this note is to merely point out to interested
readers that extending the standard

∑
(OBS − EXP)2/EXP to more than just individual

frequencies, (e.g., to Q2−Q1 or Q3−Q2), can provide a better assessment of a purported iid
sequence. Using overlapping pairs, triples, quadruples and the resulting χ2 distributions for
Q2 −Q1, Q3 −Q2 or Q4 −Q3, can provide means to test for both of the i’s in iid.

http://www.jstatsoft.org/v14/i13/monkey.pdf
http://www.jstatsoft.org/v14/i13/monkey.pdf
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2. A sketch of background theory

If x1, x2, . . . , xn is a sequence of iid discrete variates taking values v1, v2, ..., vk with proba-
bilities p1, p2, . . . , pk, and if V1, V2, . . . , Vk are counts for the number of times vi appears in
the sequence of x’s, then V1, . . . , Vk are, as n →∞, asymptotically jointly normal with mean
vector (np1, . . . , npk) and a certain covariance matrix C. That covariance matrix will have
rank k − 1 because V1 + · · · + Vk = n. For such a jointly normal distribution, if C− is any
weak inverse of C, (CC−C = C), then the mean-adjusted quadratic form in the V ’s, with
matrix C−, will be reduced to the sum of squares of k− 1 standard normal variates, and thus
have a χ2

k−1 distribution. This quadratic form can be expressed as
∑

(Vi − npi)2/(npi) in the
above case, the familiar

∑
(OBS− EXP)2/EXP.

Now let zi be the value taken by xi, and consider the concatenation z1z2z3 · · · zn, as though it
were the output of our monkey randomly hitting k different keys with probabilities p1, p2, . . . , pk.

From the assumptions, the probability that any particular 3-letter ‘word’ in this string will
take a specific value, say v7v4v3, is the product p7p4p3, and the number of appearances of that
particular word will have an (asymptotically) normal distribution, part of the jointly normal
distribution for the counts of all 3-letter words. Thus, if we could find the covariance matrix
C for the joint 3-letter word counts, and find a weak inverse C− for C, then we could take a
mean-adjusted quadratic form in the joint 3-letter word counts, with matrix C−, and have a
χ2

r distribution, with r the rank of C.

When I first tried this, I was stuck with an awkward covariance matrix for the joint 3-letter
word counts, because the first 3-letter word has no left neighbor, the last has no right neighbor,
the second has only one left neighbor, and so on, while the more central 3-letter words have
two left- and two-right neighbors that contribute to finding the joint covariances.

I was able to overcome this difficulty by assuming the output was circular, so that each 3-
letter word had two left- and two right-neighbors. The resulting covariance matrix had a
complicated form for which I was able to find a weak inverse, and then discover a remarkable
fact: The mean-adjusted quadratic form in the weak inverse for that covariance matrix can be
represented as the difference, Q3 − Q2, between two familiar

∑
(OBS − EXP)2/EXP forms,

Q3 for 3-letter and Q2 for 2-letter words.

The general result is readily inferred from that for 3-letter words, which we use to simplify
notation: If z1z2z3 · · · zn is the (circular) concatenated output of a sequence x1, x2, . . . , xn of
iid discrete variates taking values v1, v2, . . . , vk with probabilities p1, p2, . . . , pk, and if Q3 is
the naive Pearson form for 3-letter words:

Q3 =
∑
i.e.

(Vijk − npipjpk)2

npipjpk
,

where Vijk is the count for the number of appearances of the 3-letter word zizjzk, and if Q2

is the naive Pearson form for 2-letter words,

Q2 =
∑
i,j

(Vij − npipj)2

npipj
,

then Q3 − Q2 is (asymptotically) χ2 distributed with k3 − k2 degrees of freedom, and more
generally, for example, Q5 −Q4 will be asymptotically χ2 distributed with k5 − k4 degrees of
freedom, Q4 −Q3 will be χ2

k4−k3 distributed, and so on.



4 Monkeying with the Goodness-of-Fit Test

In practice, Q2−Q1, Q3−Q2, Q4−Q3, etc. are themselves discrete variates whose distributions
get closer to the χ2 limiting forms as n increases. In particular, expected counts such as
npipjpk may require a large value of n in order to reach the lower limit of ten or so that we
often require for expected cell counts. Otherwise, the distributions of forms such as Q3−Q2,
Q4−Q3, etc., may not be close enough to the limiting χ2 distribution, and extensive simulation
may be required for more accurate hypothesis testing.

References

Knuth D (1999). The Art of Computer Programming, volume II. Addison-Wesley, Reading,
Massachusets, third edition.

Marsaglia G (1968). “Random Numbers Fall Mainly in the Planes.”Proceedings of the National
Academy of Sciences, 61, 25–28.

Marsaglia G (1995). “The Marsaglia Random Number CDROM, including the Diehard Bat-
tery of Tests of Randomness.” Developed at Florida State University under a grant from
The National Science Foundation. The original 1000 free CD’s are long gone, but access to
a master copy is available at http://stat.fsu.edu/pub/diehard/. An improved version
of the Diehard battery is at http://www.cs.hku.hk/~diehard/.

Whittlesey J (1969). “On the Multidimensional Uniformity of Pseudorandom Number Gen-
erators.” Communications of the ACM, 12, 247.

Affiliation:

George Marsaglia
Professor Emeritus, Statistics
Florida State University
Mail address: 1616 Golf Terrace Drive
Tallahassee FL 32301, United States of America
E-mail: geo@stat.fsu.edu

Journal of Statistical Software Submitted: 2005-05-01
October 2005, Volume 14, Issue 13. Accepted: 2005-09-20
http://www.jstatsoft.org/

http://stat.fsu.edu/pub/diehard/
http://www.cs.hku.hk/~diehard/
mailto:geo@stat.fsu.edu
http://www.jstatsoft.org/

	Introduction
	A sketch of background theory

