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Abstract

The population attributable fraction (PAF) is a useful measure for quantifying the
impact of exposure to certain risk factors on a particular outcome at the population
level. Recently, new model-based methods for the estimation of PAF and its confidence
interval for different types of outcomes in a cohort study design have been proposed. In
this paper, we introduce SAS macros implementing these methods and illustrate their
application with a data example on the impact of different risk factors on type 2 diabetes
incidence.

Keywords: PAF, cohort study, risk factor, mortality, disease incidence, censoring, effect mod-
ification, piecewise constant hazards model.

1. Introduction

Quantification of the impact of exposure to modifiable risk factors on a particular outcome,
such as death or disease occurrence, at the population level is a fundamental public health
issue. Population attributable fraction (PAF) assesses the proportion of the outcome at-
tributable to exposure to such modifiable risk factors in a given population by estimating the
proportion of outcome that would not have occurred if all individuals had belonged to the
low-risk reference category of those factors (for example, what proportion of deaths would not
have occurred if nobody had started smoking). Both relative risk (RR) and the prevalence
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2 Calculation of Population Attributable Fraction in SAS

of risk factors are taken into account in the calculation of PAF. Relative risk measures the
strength of association between the risk factors and the outcome using a ratio of the proba-
bility of the outcome occurring in the exposed group to the probability of the non-exposed
group outcome. The prevalence of the risk factors is the proportion of individuals with the
risk factor in a population.

So far, the estimates of PAF and its confidence interval have been mainly obtained from
cross-sectional and case-control studies (Benichou 1991; Coughlin, Benichou, and Weed 1994;
Benichou 2001). Programs for the estimation of these static PAF estimates in different pro-
gramming languages (e.g., SAS, Stata, and R/S-PLUS) are available (Mezzetti, Ferraroni, De-
carli, La Vecchia, and Benichou 1996; Brady 1998; Kahn, O’Fallon, and Sicks 1998; Grömping
and Weimann 2004; Eide 2006; Lehnert-Batar 2006; Rückinger, von Kries, and Toschke 2009;
Rämsch, Pfahlberg, and Gefeller 2009). Three different approaches for estimating PAF and
its confidence interval from cohort studies have been proposed. In the first approach, only the
occurrence of the event of interest is observed whereas the timing of the event is ignored, i.e.,
the event outcomes are treated as binary (Benichou 2001). In this case, the only difference
to the cross-sectional study is that the outcome is not observed simultaneously with the risk
factors but after a fixed follow-up, and thus the same methods (i.e., the logistic model) and
programs as for the estimation of PAF and its confidence interval in cross-sectional studies
can be applied. This approach, however, may lose information and produces reliable esti-
mates only in case of no censoring during follow-up. In the second approach, the time of the
event or censoring time is observed, i.e., censored time-to-event data is used, but the effect
of the hypothetical risk factor modification to the low-risk level is estimated at the instan-
taneous time point t (Chen, Hu, and Wang 2006; Samuelsen and Eide 2008). The estimate
obtained thus describes the approximate proportion of events that could be prevented by the
risk factor modification in question in a small time interval [t, t + ∆t] , where ∆t → 0 . As
far as the authors of this paper know, one publicly available SAS macro for the estimation
of this “instantaneous PAF” has been provided (Spiegelman, Hertzmark, and Wand 2007).
Usually, however, it is more useful to demonstrate the effect of the risk factor modification
during a longer time interval (0, t] as is done in the third, most recently suggested, approach
(Chen et al. 2006; Samuelsen and Eide 2008; Cox, Chu, and Muñoz 2009; Laaksonen, Knekt,
Härkänen, Virtala, and Oja 2010b; Laaksonen, Härkänen, Knekt, Virtala, and Oja 2010a).
For example, in case of an outcome, such as death, that is inevitable in time and can only be
delayed, it would be useful to calculate PAF estimates for time intervals of different length
in order to demonstrate the effect of the risk factor modification in the long run (Laaksonen
et al. 2010b). When the outcome is disease occurrence, potential censoring due to death
needs to be considered and the impact of censoring on the results can be observed in a longer
follow-up (Laaksonen et al. 2010a). Furthermore, due to the inevitability of death the PAF
in both cases will eventually approach zero as time goes to infinity and thus become mean-
ingless, which further signifies the importance of specifying a certain time interval. Despite
its importance, the last approach has, apparently due to difficulty in computation, received
little theoretical attention. To the best of authors’ knowledge, there are no publicly available
programs which estimate the PAF for a time interval of (0, t].

In this paper, we will present macros for the estimation of PAF for a time interval (0, t] and
its confidence interval in a cohort study design both for total mortality and disease incidence,
adjusted for potential confounding factors and accounting for potential effect modifying fac-
tors. Proportional hazards models with a piecewise constant baseline hazard functions for
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death and disease occurrence are assumed. In Section 2, we give a definition of PAF for
a time interval (0, t]. In Section 3, we propose an estimate of PAF for total mortality and
disease incidence and derive its asymptotic variance, both in the total population and in sub-
populations. In Section 4, we explain the SAS macros for the estimation of PAF for total
mortality and disease incidence in the presence of potential effect modification. In Section 5,
we illustrate the application of these macros. Finally in Section 6, we discuss the strengths
and weaknesses related to our program and its application.

2. Concept of PAF in cohort study design

Consider the occurrence of an outcome A in a population of n individuals with risk factor
values Xi = (xi1, . . . , xim)>, i = 1, . . . , n. In a cohort study design, PAF is defined to be the
proportion of the outcome occurrence that could be avoided during a certain follow-up time
(T ), which is determined as the time from baseline (t = 0) to the time of the event of interest
or censoring (whichever comes first), if it was possible to change some risk factor values to
their chosen target values, Xi = (xi1, . . . , xim)> → X∗i = (x∗i1, . . . , x

∗
im)> (Laaksonen et al.

2010b). In this notation, Xi is the vector of all risk factors of the ith individual considered
relevant (modifiable, non-modifiable, and confounding factors), and thus only the modifiable
risk factors whose effect we wish to measure will have a different value in X∗i while the rest
of the factors retain their values. The PAF is then

PAF(A) =

∑n
i=1 P{Ai|Xi} −

∑n
i=1 P{Ai|X∗i }∑n

i=1 P{Ai|Xi}
= 1−

∑n
i=1 P{Ai|X∗i }∑n
i=1 P{Ai|Xi}

,

where P{Ai|Xi} is the probability of the occurrence of outcome (A) for the ith individual
with the risk factors Xi.

In this study, we are interested in calculating PAF both for occurrence of a terminal outcome,
such as death, and for order of occurrence of two terminal outcomes, such as occurrence of a
chronic disease before death, during a time interval (0, t]. If the outcome of interest is death,
PAF is the proportion of mortality that could hypothetically be avoided during a time interval
(0, t] if its risk factors were modified (Laaksonen et al. 2010b). Let TM denote the time of
death. Then the proportion of excess mortality up to time t due to certain modifiable risk
factors in Xi is given by

PAF(TM ≤ t) = 1−
∑n

i=1 P{TMi ≤ t|X∗i }∑n
i=1 P{TMi ≤ t|Xi}

, (1)

where P{TMi ≤ t|Xi} is the probability of death up to time t, given the risk factor values Xi.
If, however, the outcome of interest is incidence of disease, PAF is the proportion of disease
cases that could hypothetically be avoided during a time interval (0, t] if its risk factors were
modified. In this case, mortality before contracting the disease of interest causes selection in
the population during follow-up (Laaksonen et al. 2010a). If the risk factors that are related
to the incidence of the disease of interest are also related to mortality, the modification of
these risk factors is likely to affect both the risk of the disease and the risk of death. Therefore,
censoring due to death needs to be taken into account in the definition of PAF for disease
incidence. The importance of considering censoring due to death in the estimation of PAF for
disease incidence has been demonstrated elsewhere (Laaksonen et al. 2010a). Let TD denote



4 Calculation of Population Attributable Fraction in SAS

the time of the occurrence of the disease. Then the proportion of excess disease incidence up
to time t due to certain modifiable risk factors in Xi is given by

PAF(TD ≤ min(TM , t)) = 1−
∑n

i=1 P{TDi ≤ min(TMi , t)|X∗i }∑n
i=1 P{TDi ≤ min(TMi , t)|Xi}

, (2)

where P{TDi ≤ min(TM , t)|Xi} is the probability of the disease incidence up to time t, given
the risk factor values Xi.

We thus need two different definitions of PAF, PAF(TM ≤ t) and PAF(TD ≤ min(TM , t)),
depending on the outcome of interest. Furthermore, to analyze the impact of some potential
effect modifying factor on the relationship between the risk factor and the outcome of interest
at the population level, we can calculate PAFs in the subpopulations defined by different
categories of the effect modifying factor. By calculating the differences between these PAF
estimates and their confidence intervals we can further assess the statistical significance of
the effect modification.

3. Estimation of PAF in cohort study design

3.1. General model assumptions

The following assumptions in the calculation of PAF for total mortality or for disease incidence
in the cohort study design are made in this study. Proportional hazards models are applied.
The hazard of death is hM (t) and the hazard of disease incidence hD(t). The corresponding
cumulative hazard functions are then HM (t) =

∫ t
0 h

M (u) du and HD(t) =
∫ t
0 h

D(u) du, and
the conditional survival functions SM (t) = exp

{
−HM (t)

}
and SD(t) = exp

{
−HD(t)

}
. For

each individual, the hazard functions are assumed to depend on all relevant risk factors (X)
for both mortality and disease incidence: hM (t) := hM (t;X) and hD(t) := hD(t;X). The time
of death TM and the time of the occurrence of disease TD are assumed to be conditionally
independent given X. The hazard function for disease-free survival at time t, min(TM , TD) >
t, is assumed to be hM (t;X) + hD(t;X). Then, the probability that the first event is disease
is P{min(TM , TD) = TD|min(TM , TD) > t} = hD(t;X)/

(
hM (t;X) + hD(t;X)

)
.

There may still be right-censoring by TC which is assumed to be conditionally independent of
TM and TD given X. If the outcome of interest is death, we then observe TC = min{TC , TM}
in case of right-censoring or TM = min{TC , TM} in case of death. If the outcome of interest
is incidence of disease, we observe TC = min{TC , TM , TD}, TM = min{TC , TM , TD}, TD <
TC = min{TC , TM}, or TD < TM = min{TC , TM}. It is important to note that the definition
of PAF does not depend on TC .

3.2. Piecewise constant hazards model

In the calculation of PAF, the times TD and TM are assumed to follow a proportional hazards
model with piecewise constant baseline hazard functions, given X. A parametric piecewise
constant hazards model is chosen due to its flexibility in accommodating to the shape of
the underlying survival curve and ease of computation (Laaksonen et al. 2010a,b). In a
parametric piecewise constant hazards model, the follow-up time is partitioned into J intervals
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(0 = a0, a1], . . ., (aj−1, aj ], . . ., (aJ−1, aJ ], where aj−1 < aj for all j and the hazard for the ith
individual

h(t;Xi) = eX
>
i β

J∏
j=1

λ
1{aj−1<t≤aj}
0j

is allowed to depend on time by letting the baseline hazard λ0j change at times aj (Friedman
1982). A log-linear function between the risk factors and the hazard function is thus assumed.
The effect of age can be taken into account by dividing the range of individual dates of birth
into B− 1 birth cohorts (v1, v2], . . ., (vb−1, vb], . . .,(vB−1, vB], and then further stratifying the
baseline hazard by them (λ0jbi), where bi is the birth cohort for the ith individual (Korn,
Graubard, and Midthune 1997).

Let us thus denote the hazard of death at time t for the ith individual given the birth cohort
bi and the risk factors Xi = (xi1, . . . , xim)> as

hM (t; bi, Xi) =

J∏
j=1

(
λMij
)1{aj−1<t≤aj}

,

and the hazard of disease incidence as

hD(t; bi, Xi) =

J∏
j=1

(
λDij
)1{aj−1<t≤aj}

,

where

λMij = λM0jbie
X>i β

M
= e

αM
jbi

+X>i β
M

= eZ
>
ijγ

M

, (3)

and

λDij = λD0jbie
X>i β

D
= e

αD
jbi

+X>i β
D

= eZ
>
ijγ

D

. (4)

In this notation, αMjbi = log λMojbi is the logarithm of the baseline hazard of death (λM0jbi)

and αDjbi = log λDojbi the logarithm of the baseline hazard of disease incidence (λD0jbi). Sim-

ilarly, βM and βD are the vectors of regression coefficients for death and disease incidence,
respectively, for the covariates Xi, which can be either categorical, continuous or their inter-
actions. Furthermore, Zij is the vector with length J×B + m including J×B indicators of
time interval and birth cohort and the covariates corresponding to the regression coefficients
γM = (αM11 , . . . , α

M
JB, β

M
1 , . . . , βMm )> and γD = (αD11, . . . , α

D
JB, β

D
1 , . . . , β

D
m)>. The λ∗Mij and

λ∗Dij follow similarly by replacing Xi by X∗i in (3) and (4).

3.3. PAF for total mortality

The estimation of PAF for total mortality is described in detail elsewhere (Laaksonen et al.
2010b) and is only briefly summarized here.

The probability of death during (0, aj ] for the ith individual given the birth cohort bi and the
risk factors Xi can be calculated as

P{TMi ≤ aj |bi, Xi} = 1− SMij ,
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where SMij = e−
∑j

k=1 λ
M
ik (ak−ak−1) is the survival up to time aj and j ∈ {1, . . . , J}. The S∗MiJ

follows similarly by replacing Xi by X∗i in this formula. Thus, according to Equation 1 the
PAF for total mortality during (0, aJ ], PAFM(0,aJ ], can be calculated as

PAF(TM ≤ aJ) = 1−
∑n

i=1

(
1− S∗MiJ

)∑n
i=1

(
1− SMiJ

) . (5)

The PAF for total mortality at any chosen interval (aj−1, aj ], PAFM(aj−1,aj ]
, can be calculated

similarly by using probabilities P{aj−1 < TMi ≤ aj |bi, Xi} = SMi,j−1 − SMij .

In order to estimate the PAF for total mortality, written briefly PAF in here, we first need to
estimate the model parameters γM . Estimation of these parameters is based on data of the
individual follow-up times until death or censoring, whichever comes first: Ti = min(TMi , TCi ).
In this study, maximum likelihood estimation is used and the SAS procedure LIFEREG is used
to compute these maximum likelihood estimates γ̂M and their estimated covariance matrix
Σ̂M . The point estimate of PAF, P̂AF, is then obtained by replacing the unknown param-
eter values γM in Equation 5 by their maximum likelihood estimates γ̂M . A symmetrizing
monotone strictly increasing complementary logarithmic transformation of PAF, g(PAF) =
log (1− PAF), is used to obtain an approximate 95% confidence interval of PAF. According
to the delta method √

n(g(P̂AF)− g(PAF))
D→ N(0, σ2g(PAF)).

The confidence interval of the transformation of PAF is then obtained by

g(P̂AF)± 1.96×
√
σ̂2g(PAF), (6)

where the limiting variance of g(PAF) can be consistently estimated by

σ̂2g(PAF) =

(
∂g(PAF)

∂γM

)>
Σ̂M

(
∂g(PAF)

∂γM

) ∣∣∣
γM=γ̂M

. (7)

The confidence interval is finally transformed back to the original scale using the inverse of
the complementary logarithmic transformation

g−1
(
g(P̂AF)± 1.96×

√
σ̂2g(PAF)

)
. (8)

3.4. PAF for disease incidence

The estimation of PAF for disease incidence is described in detail elsewhere (Laaksonen et al.
2010a) and is only briefly summarized here.

The probability of disease occurrence, when also the time of death is taken into account, for
the ith individual given the birth cohort bi and the risk factors Xi, can be calculated as

P{TDi ≤ min(TMi , aj)|bi, Xi}

=

j∑
k=1

P{Ti = TDi |ak−1 < Ti ≤ ak, bi, Xi}P{ak−1 < Ti ≤ ak|bi, Xi}

=

j∑
k=1

λDik
λDik + λMik

(Si,k−1 − Sik) ,
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where Ti = min(TDi , T
M
i ) and Sij = SDijS

M
ij = e−

∑j
k=1(λ

D
ik+λ

M
ik )(ak−ak−1) is the disease-free

survival up to time aj . Thus, according to Equation 2 the PAF for the incidence of disease
during (0, aJ ], PAFD(0,aJ ], can be calculated as

PAF(TD ≤ min(TM , aJ)) = 1−

∑n
i=1

∑J
j=1

λ∗Dij
λ∗Dij +λ∗Mij

(
S∗i,j−1 − S∗ij

)
∑n

i=1

∑J
j=1

λDij
λDij+λ

M
ij

(Si,j−1 − Sij)
. (9)

In order to estimate the PAF for disease incidence, written briefly PAF in here, we first need
to estimate the model parameters γD and γM . Estimation of these parameters is based on
data of the individual follow-up times until the occurrence of the disease, death or censoring,
whichever comes first: Ti = min(TDi , T

M
i , TCi ). Similarly to the Section 3.3, the maximum

likelihood estimation method is used. The maximum likelihood estimates γ̂D and γ̂M are
asymptotically independent (the Fisher information matrix is block-diagonal). The asymp-
totic distribution of

√
n

(
γ̂D − γD
γ̂M − γM

)
is then N

((
0
0

)
,

(
ΣD
n 0
0 ΣM

n

))
.

The point estimate of PAF, P̂AF, is obtained by replacing the unknown parameter values γD

and γM in Equation 9 by their maximum likelihood estimates γ̂D and γ̂M . The approximate
95% confidence interval of the transformation g(PAF) = log (1− PAF) is then obtained as in
Equation 6, where the limiting variance of g(PAF) can be consistently estimated by

σ̂2g(PAF) =
(
∂g(PAF)
∂γD

)>
Σ̂D

(
∂g(PAF)
∂γD

) ∣∣∣
γD=γ̂D

+
(
∂g(PAF)
∂γM

)>
Σ̂M

(
∂g(PAF)
∂γM

) ∣∣∣
γM=γ̂M

.
(10)

The confidence interval is finally transformed back to the original scale according to Equa-
tion 8.

3.5. PAF in the presence of potential effect modification

In the calculation of PAF, we may want to consider the potential effect modification, i.e.,
whether the relationship between the risk factor and the outcome of interest, and thus poten-
tially also PAF, varies according to the values of a potential effect modifying factor. Here, the
potential effect modifying factor is assumed to be categorical. To analyze the impact of the
potential effect modifying factor, an interaction term between the risk factor and the potential
effect modifying factor is included in the model, giving separate estimates for the risk factor
in the different categories of the potential effect modifying factor. Separate PAF estimates
are then calculated in the subpopulations defined by the categories of the effect modifying
factor. The statistical significance of interaction can be determined by calculating the 95%
confidence intervals for the differences between these PAF estimates. If the confidence interval
does not cover zero the difference between the PAF estimates is considered to be statistically
significant. For example, in case of an effect modifying factor with two categories, we calculate
two separate PAF estimates PAF1 and PAF2 and estimate the difference P̂AF1 − P̂AF2 and
its 95% confidence interval(

P̂AF1 − P̂AF2

)
± 1.96×

√
σ̂2(PAF1−PAF2)

,
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where PAF is used to denote either PAF for total mortality or PAF for the incidence of disease.
The variance of PAF difference is obtained using the delta method, where the limiting variance
of PAF1 − PAF2 can be consistently estimated by

σ̂2(PAF1−PAF2)
=

(
∂(PAF1 − PAF2)

∂γD

)>
Σ̂D

(
∂(PAF1 − PAF2)

∂γD

) ∣∣∣
γD=γ̂D

+

(
∂(PAF1 − PAF2)

∂γM

)>
Σ̂M

(
∂(PAF1 − PAF2)

∂γM

) ∣∣∣
γM=γ̂M

.

Similarly, we can also use main effect models and calculate and compare PAF estimates in
subpopulations defined by some other factor of interest (such as sex) included in the model
concerned.

4. SAS modules

The estimation procedure of PAF for total mortality or disease incidence, in the presence of
confounding factors and effect modification, is organized as a sequence of SAS macros. This
section outlines the functionality of these macros so that an advanced user can make use of
them. The use of these macros requires SAS 9.2 procedures LIFEREG, LOGISTIC, TRANSPOSE,
SQL, and IML (SAS Institute Inc. 2010).

To perform PAF analysis, a data preparation procedure is required to create input data
files for the main SAS macro, PAF_M for total mortality or PAF_D for disease incidence (see
Figure 1). The main macros, PAF_M and PAF_D, are composed of the following steps:

1. The main macro calls the macro EST_MATRIX to prepare the design matrices (Z and Z∗

in Equation 3 or Equation 4), obtained using the LOGISTIC procedure, and to produce
the parameter estimates (γ̂M in Equation 3 or γ̂D in Equation 4) and their estimated
covariances (Σ̂M in Equation 7 or Σ̂M and Σ̂D in Equation 10), obtained using the
LIFEREG procedure.

2. The main macro calls the macro EST_PAF_M for total mortality or EST_PAF_D for disease
incidence to calculate the PAF estimates, their standard errors and 95% confidence
intervals (the IML procedure) using the formulas provided in Sections 3.3 and 3.4.

3. The main macro prints out the relative risks and PAF estimates together with their
95% confidence intervals for the risk factors of interest (a more comprehensive output
from the LIFEREG procedure is optional).

When subpopulation analyses with respect to a certain factor of interest are made, the design
matrices (Z, Z∗) created at Step 1 are divided into separate design matrices (Z1, Z

∗
1 , . . .,

ZK , Z∗K) according to the K categories of this factor. Then, the macros at Step 2 are
called K times, and the K(K − 1)/2 differences between the subpopulation-specific PAF
estimates are analyzed by calling yet another macro (EST_PAF_DIFF_M for total mortality
and EST_PAF_DIFF_D for disease incidence) in which the formulas given in Section 3.5 are
implemented. A more detailed description of the functioning of all these macros is given in
Section 4.2 after the description of the data preparation in Section 4.1.
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ORIGINAL DATA
       MATRIX

PREPARATION

DATASET_M

DATASET_D

EST_MATRIX

EST_PAF_M

EST_PAF_D

PAF_M \ PAF_D

1.

2. 3.
γ̂M , Σ̂M

γ̂M , Σ̂M

γ̂D, Σ̂D

Z,Z∗

Z,Z∗

P̂AF
M
, σ̂PAFM

P̂AF
D
, σ̂PAFD

Figure 1: Estimation procedure of PAF.

4.1. Preparation of data for PAF analysis

In the original data matrix, the rows usually correspond to individuals. On the other hand, the
columns correspond to individual attributes: identification number (ID), birth year (BYEAR,
birth cohorts (B_COHORT), and risk factors of interest. The categorical risk factors include:
gender (SEX), blood pressure status (BP), smoking status (SMOKE), age group (AGEGRP) and
body mass index (BMI_2, indicating whether BMI is less than (= 1) or greater than or equal
to (= 2) 25kg/m2). The risk factors can also be continuous; for example, age (AGE) and body
mass index (BMI). Refer to the SAS data set example. If the outcome of interest is death, a
binary variable (0/1) indicating whether the person died during the follow-up (DEATH) and the
follow-up time to the occurrence of death or censoring (DEATH_FT) should be included in the
data matrix (see SAS data set example). If the outcome of interest is disease, also a binary
variable (0/1) indicating whether the disease occurred during the follow-up (DIAB) and the
follow-up time to the occurrence of the disease or censoring (DIAB_FT) should be included in
the data matrix (see SAS data set example). When the order of the occurrence of the disease
and death is followed for a certain time, for each individual we observe one of the four possible
combinations demonstrated, theoretically, in Table 1 and, in practice, in Table 2 which shows
a sample of four individuals from the SAS data set example.

For the PAF analysis, the original data matrix must be duplicated according to the number
of follow-up time intervals used in the piecewise constant hazards model, to create input data

Observed event DEATH_FT DEATH DIAB_FT DIAB

1. TM < min(TD, TC) TM 1 TM 0

2. TD < TM < TC TM 1 TD 1

3. TD < TC < TM TC 0 TD 1

4. TC < min(TM , TD) TC 0 TC 0

Table 1: Four different possible types of observed events and notation related to them.
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Table 2: Selected sample from SAS data example (four individuals).

Table 3: Selected sample from SAS data example_death (four individuals).

matrix in which one row corresponds to one follow-up time interval. The total follow-up
time must be divided into these intervals (F_TIME). The input data matrix must also con-
tain a categorical variable which indicates the cumulative follow-up time by the beginning
of each follow-up time interval (F_PERIOD). If the baseline hazard in the piecewise constant
hazards model is stratified by the birth cohort, a categorical variable, birth cohort indicator
(B_COHORT), should be included in the input data matrix. Note that it is the user’s responsibil-
ity to ensure that the choice of the follow-up time intervals and birth cohorts leads to sufficient
cases in all strata of the baseline hazard variables (no zero cells) for reliable estimation of
PAF.

If the outcome of interest in the PAF analysis is death, the follow-up is continued until the
occurrence of death or censoring, and the follow-up time until the first event must be divided
into the chosen follow-up time intervals. Thus, if the length of follow-up time intervals is
chosen to be 5 years and the length of birth cohorts 20 years, the original data matrix in
Table 2 needs to be modified to appear as the data matrix in Table 3 for the estimation of
PAF for total mortality.

If the outcome of interest in the PAF analysis is disease incidence, the follow-up is continued
until the occurrence of the disease, death or censoring, and if the first event is disease, then
the follow-up time until death or censoring (DEATH_FT) needs to be set equal to the time of
the occurrence of disease (DIAB_FT) and the indicator of death (DEATH) to zero (if it originally
was one indicating that death would have occurred later during the follow-up). Two separate
input data files for disease and death, in which the follow-up time intervals and birth cohorts
are of the same length, must be created. The original data matrix in Table 2 thus needs to
be modified to appear as the data matrices for death in Table 4 and for disease in Table 5
(where the length of follow-up time intervals is chosen to be 5 years and the length of birth
cohorts 20 years) for the estimation of PAF for disease incidence.
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Table 4: Selected sample from SAS data example_death_2 (four individuals).

Table 5: Selected sample from SAS data example_disease (four individuals).

The original data matrix (example) can be transformed into the required input data matrices
(example_death, example_death_2, example_disease) by calling GEN_DATA:

%GEN_DATA(INDATA = , IDVARIABLE = ,

CENSORVARIABLE_1 = , CENSORVALUE_1 = , FTVARIABLE_1 = ,

CENSORVARIABLE_2 = , CENSORVALUE_2 = , FTVARIABLE_2 = ,

FTLENGTH = , PERIODLENGTH = , DROPVARIABLES = , OUTDATA = ,

PERIODVARIABLE = , TIMEVARIABLE = );

Input arguments of GEN_DATA are defined as follows:

� INDATA = SAS data set
specifies original data set.

� IDVARIABLE = variable
identifies each individual (see variable ID in data set example).

� CENSORVARIABLE_1 = variable
indicates whether censoring before the outcome of event 1 occurred. Must be a binary
variable (0/1).

� CENSORVALUE_1 = 0 or 1
specifies value of the CENSORVARIABLE_1 = variable (default value is 0).

� FTVARIABLE_1 = variable
indicates the individual length of follow-up until the outcome of event 1 or censoring.
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� CENSORVARIABLE_2 = variable
indicates whether censoring before the outcome of event 2 occurred. Must be a binary
variable (0/1).

� CENSORVALUE_2 = 0 or 1
specifies value of the CENSORVARIABLE_2 = variable (default value is 0).

� FTVARIABLE_2 = variable
indicates the individual length of follow-up until the outcome of event 2 or censoring.

� FTLENGTH = number
indicates the maximum length of follow-up time.

� PERIODLENGTH = number
indicates the length of follow-up time intervals. Must be the same in the input data ma-
trices for death (example_death_2) and disease (example_disease) for the estimation
of PAF for disease incidence.

� DROPVARIABLES = variables
specifies the variables to be dropped out from the output data set (the variables related
to disease when preparing the input data matrix for death, the indicator variable for the
disease occurrence during the follow-up (DIAB) and the follow-up time until the disease
occurrence (DIAB_FT), and the follow-up time to the occurrence of death (DEATH_FT),
and vice versa).

� OUTDATA = SAS data set
specifies output data set.

If PAF for total mortality is to be estimated, the outcome of interest is death and only
censoring variable (CENSORVARIABLE_1), censoring value (CENSORVALUE_1) and follow-up time
variable (FTVARIABLE_1) related to death need to be given in the GEN_DATA macro call to
prepare the required input data set. In the preparation of this data set, a new follow-up period
variable (F_PERIOD) indicating the cumulative follow-up time by the beginning of each follow-
up time interval is created, the total follow-up time until the occurrence of death or censoring
is divided into different follow-up time intervals (F_TIME), the information not needed (related
to disease incidence or total follow-up time) is dropped, and the information that remains
the same from one interval to another (birth year (BYEAR) and cohort (B_COHORT), and the
risk factors of interest measured at baseline) are dropped (see SAS data set example_death

in Table 3).

If PAF for disease incidence is to be estimated, the outcome of interest is disease, but also
censoring due to death is taken into account, and thus separate input data sets for disease and
death are prepared for the PAF analysis. When the input data set for disease is prepared (see
SAS data set example_disease in Table 5) only censoring variable (CENSORVARIABLE_1), cen-
soring value (CENSORVALUE_1) and follow-up time variable (FTVARIABLE_1) related to disease
need to be given in the GEN_DATA macro call. When the input data set for death is prepared
(see SAS data set example_death_2 in Table 4) both censoring variable (CENSORVARIABLE_1),
censoring value (CENSORVALUE_1) and follow-up time variable (FTVARIABLE_1) related to
death and censoring variable (CENSORVARIABLE_2), censoring value (CENSORVALUE_2) and
follow-up time variable (FTVARIABLE_2) related to disease need to be given in the GEN_DATA
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macro call. If the first event is disease (CENSORVALUE_2 = 1), then the follow-up time until
death or censoring is set equal to the time of the occurrence of disease and the indicator of
death (DEATH) is set to zero .

A more detailed description of the function of the GEN_DATA macro is given in the SAS program
gen_data.sas.

4.2. PAF analysis

When the input data matrices have been prepared as described in previous Section 4.1, a SAS
macro, PAF_M, for the estimation of PAF for total mortality:

%PAF_M(DATASET_M = , CENSORVARIABLE_M = , CENSORVALUE_M = ,

TIMEVARIABLE_M = , PERIODVARIABLE_M = , IDVARIABLE = ,

COHORTVARIABLE = , DELTALENGTH = , CLASSVARIABLES = ,

CLASSORDER = , COVARIATE_MODEL = , GROUPVARIABLE = ,

MODIFICATIONS = , PRINT = );

or a SAS macro, PAF_D, for the estimation of PAF for disease incidence:

%PAF_D(DATASET_M = , CENSORVARIABLE_M = , CENSORVALUE_M = ,

TIMEVARIABLE_M = , PERIODVARIABLE_M = , DATASET_D = ,

CENSORVARIABLE_D = , CENSORVALUE_D = , TIMEVARIABLE_D = ,

PERIODVARIABLE_D = , IDVARIABLE = , COHORTVARIABLE = ,

DELTALENGTH = , CLASSVARIABLES = , CLASSORDER = ,

COVARIATE_MODEL = , GROUPVARIABLE = , MODIFICATIONS = ,

PRINT = );

is called depending on the outcome of interest. Input arguments of PAF_M and PAF_D are
defined as follows:

� DATASET_M = SAS data set
specifies input data set for death. Must be of the form explained in the previous Sec-
tion 4.1 (see data sets example_death and example_death_2 in Tables 3 and 4).

� CENSORVARIABLE_M = variable
indicates whether censoring before death occurred. Must be a binary variable (0/1) (see
variable DEATH in data sets example_death and example_death_2 in Tables 3 and 4 in
Section 4.1).

� CENSORVALUE_M = 0 or 1
specifies value of the CENSORVARIABLE_M = variable (default value is 0).

� TIMEVARIABLE_M = variable
indicates the individual length of follow-up until death or censoring within each follow-
up time interval (see variable F_TIME in data sets example_death and example_death_2

in Tables 3 and 4 in Section 4.1).

� PERIODVARIABLE_M = variable
indicates the cumulative follow-up time by the beginning of each follow-up time interval



14 Calculation of Population Attributable Fraction in SAS

in input data set for death (see variable F_PERIOD in data sets example_death and
example_death_2 in Tables 3 and 4 in Section 4.1).

� DATASET_D = SAS data set
specifies input data set for disease. Must be of the form explained in the previous
Section 4.1 (see data set example_disease in Table 5).

� CENSORVARIABLE_D = variable
indicates whether censoring before incidence of disease occurred. Must be a binary
variable (0/1) (see variable DIAB in data set example_disease in Table 5 in Section 4.1).

� CENSORVALUE_D = 0 or 1
specifies value of the CENSORVARIABLE_D = variable (default value is 0).

� TIMEVARIABLE_D = variable
indicates the individual length of follow-up until disease occurrence or censoring (due
to death or end of follow-up) within each follow-up time interval (see variable F_TIME

in data set example_disease in Table 5 in Section 4.1).

� PERIODVARIABLE_D = variable
indicates the cumulative follow-up time by the beginning of each follow-up time interval
in input data set for disease (see variable F_PERIOD in data set example_disease in
Table 5 in Section 4.1).

� IDVARIABLE = variable
identifies each individual (see variable ID in data sets example_death, example_death_2
and example_disease in Tables 3, 4, and 5 in Section 4.1).

� COHORTVARIABLE = variable
indicates to which birth cohort the individual belongs (see variable B_COHORT in data
sets example_death, example_death_2 and example_disease in Tables 3, 4, and 5 in
Section 4.1). If this is omitted the baseline hazard in the piecewise constant hazard
model is only stratified according to the follow-up time intervals.

� DELTALENGTH = variable
indicates the maximum length of follow-up time.

� CLASSVARIABLES = variables
specifies categorical variables included in the model, separated by blanks (such as the
variables SEX, BMI_2, BP, and SMOKE in data sets example_death, example_death_2

and example_disease in Tables 3, 4, and 5 in Section 4.1).

� CLASSORDER = DESC or ASC
specifies descending (DESC) or ascending (ASC) order of the categories of the variables
in the LIFEREG analysis (affects the reference category).

� COVARIATE_MODEL = variables
specifies all variables (categorical, continuous, and their interactions) included in the
model, separated by blanks. Interactions between categorical or continuous variables are
denoted by an asterisk between the variables (VARIABLE1*VARIABLE2).
The COVARIATE_MODEL = variables correspond to the right-hand variables in MODEL

statement.
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� GROUPVARIABLE = variable
defines a categorical variable of interest that constitutes the subgroups in which the
PAF estimates are calculated separately. If the variable is considered to be a potential
effect modifying factor, an interaction term between the variable and the risk factor
of interest must be included in the COVARIATE_MODEL statement. If GROUPVARIABLE is
omitted, the PAF estimate is computed using the entire sample.

� MODIFICATIONS = variable=value
determines the reference category value for the risk factors of interest to which individ-
uals are hypothetically moved in the calculation of PAF. If individuals from only some
of the categories of the risk factor are moved to the reference category, then the restric-
tion statement is denoted using the IF-THEN statement of the SAS language. If several
risk factors are modified simultaneously, they are separated by slashes. The variables
included in the COVARIATE_MODEL statement but not in the MODIFICATIONS statement
are treated as confounding factors.

� PRINT = YES or NO
defines what is printed out from the LIFEREG procedure: PRINT = YES requests all
output results while the PRINT = NO option prints only the relative risks (RR) and
their 95% confidence intervals (CI; formed with the help of the PROC LIFEREG output).
The default is PRINT = NO.

4.3. PAF_M macro

If the outcome of interest is death, input data matrix (DATASET_M), censoring variable
(CENSORVARIABLE_M) and censoring value (CENSORVALUE_M) related to death are given in the
PAF_M macro call. A more detailed description of the function of this macro is given in the
SAS program paf_m.sas. First, the PAF_M macro calls another macro, EST_MATRIX, which
prepares the design matrices, vector of parameter estimates and covariance matrix of param-
eter estimates related to death needed for the calculation of PAF and its confidence interval
for total mortality. In addition, the macro produces the relative risks (RR) of death and their
95% confidence intervals for the risk factors of interest given in the COVARIATE_MODEL= option
of the PAF_M macro call (a more comprehensive output from the LIFEREG procedure can also
be obtained using the PRINT option of the PAF_M macro). Also the convergence status of the
LIFEREG analysis is provided. Outputs of PAF_M are listed as follows:

� the data set DESIGN_1 which indicates to which categories of the baseline hazard vari-
ables (follow-up time intervals, birth cohorts, and their interactions) each individual
belongs on each follow-up time interval and which values of the risk factors each indi-
vidual has (matrix Z in (3)).

� the data set DESIGN_2 which indicates to which categories of the baseline hazard vari-
ables (follow-up time intervals, birth cohorts, and their interactions) each individual
belongs on each follow-up time interval and which values of the risk factors each indi-
vidual has after their hypothetical change to the chosen reference categories indicated
in the MODIFICATIONS statement of the PAF_M macro call (matrix Z∗).
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� the data set &CENSORVARIABLE_M._EST which contains the column vector of parameter
estimates for the baseline hazard variables (α̂M ) and the risk factors (β̂M ) related to
death, where &CENSORVARIABLE_M is substituted with the name of the censoring variable
given in the PAF_M macro call (γ̂M in (3)).

� the data set &CENSORVARIABLE_M._COVB which contains the covariance matrix of the
parameter estimates for the baseline hazard variables and the risk factors related to
death, where &CENSORVARIABLE_M is substituted with the name of the censoring variable
given in the PAF_M macro call (Σ̂M in (7)).

� the data set &CENSORVARIABLE_M._RR which contains relative risks of death and their
95% confidence intervals for the risk factors given in the COVARIATE_MODEL statement
of the PAF_M macro call, where &CENSORVARIABLE_M is substituted with the name of the
censoring variable given in the PAF_M macro call.

� the data set &CENSORVARIABLE_M._CONV which indicates the convergence status of the
model estimation of PROC LIFEREG.

The function of this macro is described in more detail in est_matrix.sas. Second, the PAF_M
macro calls a macro EST_PAF_M which calculates the point estimate, standard error and 95%
confidence interval of PAF for total mortality using the formulas described in Section 3.3.
A more detailed description of these calculations in the SAS/IML language is provided in
est_paf_m.sas. Finally, the PAF_M macro prints out both the relative risks of death and
their 95% confidence intervals for the risk factors specified in the COVARIATE_MODEL= option
of the macro call as well as the piecewise and cumulative point estimates, standard errors and
95% confidence intervals of PAF for total mortality. If there is a problem in the convergence
of the model chosen, an error message is generated.

4.4. PAF_D macro

If the outcome of interest is disease, input data matrices (DATASET_M, DATASET_D), censor-
ing variables (CENSORVARIABLE_M, CENSORVARIABLE_D) and censoring values (CENSORVALUE_M,
CENSORVALUE_D) related to both death and disease are given in the PAF_D macro call. In this
case, the follow-up time must be divided into time intervals of the same length
(TIMEVARIABLE_M, TIMEVARIABLE_D) and birth cohorts (B_COHORT) must be of the same length
in both input data matrices (see SAS data sets example_death_2 and example_disease in
Tables 4 and 5 in Section 4.1). Furthermore, the variables specified in the IDVARIABLE=,
CLASSVARIABLES=, and COVARIATE_MODEL= options must be identical in both input data ma-
trices. A more detailed description of the function of this macro is given in paf_d.sas. First,
the PAF_D macro calls the macro EST_MATRIX separately for death and disease to prepare the
design matrices (Z and Z∗), vectors of parameter estimates (γ̂M and γ̂D) and their covariance
matrices (Σ̂M and Σ̂D) in (3), (4) and (10) needed for the calculation of PAF and its con-
fidence interval for disease incidence (see est_matrix.sas). Second, the PAF_D macro calls
the macro EST_PAF_D which using these outputs as its inputs calculates the point estimate,
standard error and 95% confidence interval of PAF for disease incidence using the formulas
described in Section 3.4. A more detailed description of these calculations in the SAS/IML
language is provided in est_paf_d.sas. Finally, the PAF_D macro prints out both the rela-
tive risks of both death and incidence of disease and their 95% confidence intervals for the
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risk factors specified in the COVARIATE_MODEL= option of the macro call as well as the point
estimate, standard error and 95% confidence interval of PAF for disease incidence. If there is
a problem in the convergence of the model chosen, an error message is delivered.

If the GROUPVARIABLE is given in the PAF_M or PAF_D macro call, the point estimate, stan-
dard error and 95% confidence interval of PAF either for total mortality or disease incidence
are calculated separately in the subgroups defined by this variable. To do this the design
matrices DESIGN_1 and DESIGN_2 prepared by the EST_MATRIX macro are divided into sepa-
rate design matrices according to the categories of the GROUPVARIABLE. Then, depending on
the outcome of interest, either the PAF_M macro calls the macro EST_PAF_M (death) or the
PAF_D macro calls the macro EST_PAF_D (disease) as many times as there are categories of the
GROUPVARIABLE to calculate the separate point estimates, standard errors and 95% confidence
intervals of PAF (see paf_m.sas and paf_d.sas for a more detailed description). After this,
either the PAF_M macro calls the macro EST_PAF_DIFF_M (death) or the PAF_D macro calls
the macro EST_PAF_DIFF_D (disease) which calculates the differences between these PAF
estimates, their 95% confidence intervals as well as a p value to determine the statistical
significance of these differences using the formulas described in Section 3.5. More detailed
descriptions of these calculations in the SAS/IML language are given in est_paf_diff_m.sas

and est_paf_diff_d.sas. Finally, the PAF_M and PAF_D macros print out the groupwise
point estimates, their standard errors and 95% confidence intervals of PAF either for total
mortality or disease incidence as well as the differences between these groupwise PAF esti-
mates, their standard errors and 95% confidence intervals, and a p value for the statistical
significance of these differences.

5. Data example

This data example demonstrates the importance of certain modifiable risk factors, alone and
in interaction, on type 2 diabetes incidence through calculation of PAF for disease incidence
using the SAS modules presented in Section 4 previously. It is based on data from the Mini-
Finland Health Survey cohort study carried out in 1978–1980 (Aromaa, Heliövaara, Impivaara,
Knekt, and Maatela 1989). Altogether 4,517 men and women aged 40–79, who participated in
a health examination and were free of type 2 diabetes and cardiovascular diseases at baseline,
were included in this study. Their height and weight were measured at the health examination,
and their body mass index (BMI) was calculated. Casual blood pressure was measured and
hypertensive medication self-reported. Also smoking was self-reported. The follow-up time
was defined as days from the baseline examination to the date of type 2 diabetes occurrence,
death, or end of follow-up, whichever came first. During a 17-year follow-up, a total of 227
individuals developed type 2 diabetes. The categorisation of the risk factors of interest (BMI,
blood pressure, and smoking) and the distribution of the individuals as well as the type 2
diabetes cases across these categories is presented in Table 8.

The original data matrix, in which the rows correspond to individuals and the columns to
information related to them (such as the total follow-up time), is shown in example. In this
example, the follow-up time is divided into 5-year intervals. The original data matrix is then
modified into two separate input data matrices (example_death_2 and example_disease),
in which there is one row for each follow-up time interval for each individual, by making the
following GEN_DATA macro calls (see data preparation in Section 4.1):
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%GEN_DATA(INDATA = X.EXAMPLE, IDVARIABLE = ID,

CENSORVARIABLE_1 = DEATH, CENSORVALUE_1 = 0, FTVARIABLE_1 = DEATH_FT,

CENSORVARIABLE_2 = DIAB, CENSORVALUE_2 = 0, FTVARIABLE_2 = DIAB_FT,

FTLENGTH = 20, PERIODLENGTH = 5, DROPVARIABLES = DIAB DIAB_FT DEATH_FT,

OUTDATA = X.EXAMPLE_DEATH_2, PERIODVARIABLE = F_PERIOD,

TIMEVARIABLE = F_TIME);

and

%GEN_DATA(INDATA = X.EXAMPLE, IDVARIABLE = ID,

CENSORVARIABLE_1 = DIAB, CENSORVALUE_1 = 0, FTVARIABLE_1 = DIAB_FT,

CENSORVARIABLE_2 = , CENSORVALUE_2 = , FTVARIABLE_2 = ,

FTLENGTH = 20, PERIODLENGTH = 5, DROPVARIABLES = DEATH DEATH_FT DIAB_FT,

OUTDATA = X.EXAMPLE_DISEASE, PERIODVARIABLE = F_PERIOD,

TIMEVARIABLE = F_TIME);

After the preparation of input data matrices, the PAF_D macro for the analysis of PAF for
disease incidence described in paf_d.sas is called. To calculate PAF, for example, for smoking
(SMOKE) so that the current smokers (categories 3 and 4 in Table 8) are hypothetically moved
to the reference category of never smokers (category 1 in Table 8), the following PAF_D macro
call is made (see paf_example_d.sas):

%PAF_D(DATASET_M = X.EXAMPLE_DEATH, CENSORVARIABLE_M = DEATH,

CENSORVALUE_M = 0, TIMEVARIABLE_M = F_TIME, PERIODVARIABLE_M = F_PERIOD,

DATASET_D = X.EXAMPLE_DISEASE, CENSORVARIABLE_D = DIAB,

CENSORVALUE_D = 0, TIMEVARIABLE_D = F_TIME, PERIODVARIABLE_D = F_PERIOD,

IDVARIABLE = ID, COHORTVARIABLE = B_COHORT, DELTALENGTH = 17,

CLASSVARIABLES = SEX SMOKE, CLASSORDER = DESC,

COVARIATE_MODEL = SEX SMOKE, GROUPVARIABLE = ,

MODIFICATIONS = IF SMOKE IN(3,4) THEN SMOKE=1,

PRINT = NO);

where X is the path to the current working directory. Note that the results are sex- and
age-adjusted as sex is included in the model (variable SEX in the CLASSVARIABLES= and
COVARIATE_MODEL= option), and age is taken into account through birth cohort (variable
B_COHORT in the COHORTVARIABLE= option), according to which the baseline hazard of the
piecewise constant hazards model is stratified. In this example, 20-year birth cohorts are
used (see example_death_2 and example_disease) since there are no diabetes cases among
the youngest and the oldest, and thus shorter birth cohort intervals of, for example, 10 years
would lead to zero cells and make the convergence of the model questionable. The results of
this analysis are shown in Table 6 (and are also presented in Table 8):

Note that although the relative risk (RR) of type 2 diabetes incidence for the individuals
belonging to the highest smoking category (category 4: ≥ 30 cigarettes/day) is quite high
(RR = 2.79, 95% CI = 1.25, 6.20) (Table 6b), the PAF for the hypothetical modification of
the individuals, belonging to this category or to the previous category of the second highest
smoking, to the reference category is very low (PAF = 0.02, 95% CI = -0.05, 0.09) (Table 6c).
This is due to the low prevalence (1.7%) of the individuals belonging to the highest smoking
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(a) Relative risks of death and convergence status of the estima-
tion algorithm.

(b) Relative risks of incidence of disease and convergence status
of the estimation algorithm.

(c) PAF for disease incidence.

Table 6: PAF for disease, modification of smoking.

category (Table 8), as the PAF measure accounts for both the strength of the association
between the risk factor and the outcome (RR) and the prevalence of the risk factor. The
corresponding PAF_D macro calls for calculating PAF for BMI and blood pressure are demon-
strated in paf_example_d and the results related to them in Table 8. Here, the PAF estimates
for the hypothetical modification of BMI (BMI_2) or blood pressure (BP), from category with
the higher risk (category 2) to reference category (category 1), are much higher (PAF = 0.68,
95% CI = 0.55, 0.77, and PAF = 0.31, 95% CI = −0.06, 0.55, respectively) than that for
smoking as the prevalence of the individuals belonging to the modified categories is much
higher (59.9% and 85.5%, respectively).

If we have reason to believe that some factors (e.g., blood pressure BP) modify the relationship
between a risk factor, such as BMI (BMI_2), and the outcome, we can analyze this by com-
paring the PAF results obtained in the subgroups defined by the categories of this potential
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(a) Relative risks of death and convergence status of the estima-
tion algorithm.

(b) Relative risks of incidence of disease and convergence status
of the estimation algorithm.

(c) PAF for disease incidence.

(d) PAF for disease incidence in subgroups of BP.

Table 7: PAF for Disease, modification of BMI in subgroups defined by blood pressure.
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effect modifying factor. To perform this subgroup PAF analysis, the following PAF_D macro
call can be made:

%PAF_D(DATASET_M = X.EXAMPLE_DEATH, CENSORVARIABLE_M = DEATH,

CENSORVALUE_M = 0, TIMEVARIABLE_M = F_TIME, PERIODVARIABLE_M = F_PERIOD,

DATASET_D = X.EXAMPLE_DISEASE, CENSORVARIABLE_D = DIAB,

CENSORVALUE_D = 0, TIMEVARIABLE_D = F_TIME, PERIODVARIABLE_D = F_PERIOD,

IDVARIABLE = ID, COHORTVARIABLE = B_COHORT, DELTALENGTH = 17,

CLASSVARIABLES = SEX BP BMI_2, CLASSORDER = DESC,

COVARIATE_MODEL = SEX BP BP*BMI_2,

GROUPVARIABLE = BP, MODIFICATIONS = BMI_2=1, PRINT = NO);

where X is the path to the current working directory. Thus, an interaction term between the
risk factor and potential effect modifying factor must be included in the COVARIATE_MODEL

statement and the potential effect modifying factor in the GROUPVARIABLE statement. The
results of this analysis are shown in Table 7 (and are also presented in Table 8):

In this case, the effect modification by blood pressure turned out to be statistically significant
(p value = 0.02) (Table 7d) and the PAF for the hypothetical modification of BMI was much
higher for those with elevated blood pressure (PAF = 0.73, 95% CI = 0.60, 0.82) than for
those with normal blood pressure (PAF = 0.25, 95% CI = −0.27, 0.55) (Table 7c).

The estimation and statistical inference of total mortality PAF with the GROUPVARIABLE =

BP option are carried out in a similar fashion to the other examples of PAF for total mortality
in paf_example_m.sas. The only difference is that in case of the estimation of PAF for total
mortality both piecewise and cumulative PAF estimates and their standard errors and 95%
confidence intervals are produced.

6. Discussion

The methods for the estimation of PAF in a cohort study design, taking adequately into
account the follow-up time, have been developed during recent years (Chen et al. 2006;
Samuelsen and Eide 2008; Cox et al. 2009; Laaksonen et al. 2010a,b). As far as these authors
know, no publicly available program to implement these methods has, however, yet been pro-
vided, apparently hindering their wider application. The SAS macros based on the recently
developed methods (Laaksonen et al. 2010a,b) presented in this paper close the gap between
theory and application. Using these macros it is now possible to estimate PAF and its con-
fidence interval in a cohort study design both for total mortality (Laaksonen et al. 2010b)
and for disease incidence (Laaksonen et al. 2010a), taking into account the different sources
of censoring. The PAF macros are very flexible in that both categorical and continuous risk
factors and confounding factors as well as their interactions can be included in the model, as
long as the estimation algorithm still converges. In addition, the estimation of PAF in the
presence of potential effect modification and analysis of its statistical significance are possible.
However, as both the prevalence of the risk factors and the strength of the association between
the risk factors and the outcome affect PAF, both of these components should be taken into
account when analyzing the potential effect modification to make sure that it is due to the
difference in strength of the association between the risk factor and outcome and not just
due to different prevalences. Different prevalences can also prevent a difference in strength
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of association from becoming significant in the analysis of effect modification. Furthermore,
although in this paper it was assumed that the parameter estimates and PAF estimates were
calculated based on the same data, it is also possible to calculate the parameter estimates
from external data and apply them to the data of interest by using the macros: for the total
mortality case, EST_MATRIX and EST_PAF_M; for the disease case, EST_MATRIX and EST_PAF_D.

The time-to-event data is modeled based on a proportional hazards model with a piecewise
constant baseline hazard function. The baseline hazard in the piecewise constant hazard model
can be stratified with respect to both follow-up time and birth cohort. With a judicious choice
of the cut-points in the piecewise constant hazard model almost any baseline hazard can be
well approximated in large data sets. It should be noticed, however, that it is the user’s
responsibility to ensure that the choice of the cut-points for follow-up time intervals and birth
cohorts results in at least one case at each time interval and birth cohort to guarantee a
reliable estimation of PAF. The macro provides information on the convergence status of the
model chosen. In addition to the number of the cut-points, the computation time of the
macro depends also on the number and type of variables included in the model. In general,
however, the computation time is very fast, even with quite closely-spaced cut-points, partly
due to the analytic variance estimation.
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