
JSS Journal of Statistical Software
July 2011, Volume 43, Code Snippet 1. http://www.jstatsoft.org/

fmixed: A SAS Macro for Smoothing-Spline-Based

Functional Mixed Effects Models

Ziyue Liu
Indiana University, Indianapolis

Wensheng Guo
University of Pennsylvania

Abstract

In this article we implement the smoothing-spline-based functional mixed effects mod-
els (Guo 2002) by a SAS macro by exploiting the connection between mixed effects models
and smoothing splines. The macro can handle flexible design matrices and is easy to use.
Input parameters and output results are described and explained. A numeric example
and a real data example are used for illustration.
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1. Introduction

Functional mixed effects models (see Guo 2002; Morris and Carroll 2006, among others) are
extremely powerful tools in modeling longitudinal profiles. Among them, the smoothing-
spline-based functional mixed effects model (SSFMM; Guo 2002) has been gaining attentions
in recent years. For example Stacey et al. (2009) used SSFMM to fit the subject specific curves
of cytokines in human immunodeficiency virus infections, and Fagiolini et al. (2009) used
SSFMM to evaluate the temporal differences of treatment effects in bipolar disorder patients.
However, the lack of a corresponding software package still limits the general accessibility
of SSFMM. In this article, we implement SSFMM in SAS and demonstrate how to use the
resultant macro fmixed by a numeric example and a data example.

In literature, there are several approaches in functional mixed effects modeling, and some of
them have public-accessible softwares implemented. Rice and Wu (2001) used B-spline basis
and the mixed effects modeling is on the B-spline coefficients. James et al. (2000) used a
combination of B-spline and functional principal components to reduce the number of param-
eters required for the mixed effect modeling of the B-spline coefficients. Guo (2002) modeled
both the functional fixed effects and random effects as smoothing splines, which only requires
limited number of parameters. Wu and Zhang (2002) used local polynomial, the mixed ef-
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fects modeling is on the polynomial coefficients and this method has been implemented in
the companion MATLAB softwares to Wu and Zhang (2006). Morris and Carroll (2006) used
wavelets which can handle abrupt and spiky signals, Bayesian approach was adopted for the
mixed effects modeling on the wavelet coefficients and free software is available as indicated
in their paper. Di et al. (2009) and Aston et al. (2010) used functional principal components
as the basis and this approach has been implemented in Crainiceanu and Goldsmith (2010).
The goal of this article is to implement Guo (2002) by a SAS macro, which adds one alter-
native among the large selection of different tools. A thorough comparison of those different
approaches in functional mixed effects modeling, however, is beyond the scope of this article.

The key of the implementation is the equivalence between a smoothing spline and its Bayesian
model (Wahba 1978). By utilizing this equivalence, Wang (1998) showed that a smoothing
spline can be represented as a mixed effects model and consequently it can be implemented
by SAS PROC MIXED. He also showed that the restricted maximum likelihood (REML) based
on the Bayesian model outperforms generalized cross validation in selecting the smoothing
parameters. Following this approach, Guo (2002) showed that SSFMM can also be represented
as a mixed effects model and subsequently inference can be carried out based on REML such
as likelihood ratio test. The implementation in this article follows the approach of Guo
(2002). The SAS macro fmixed is written using SAS/STAT and SAS/IML (SAS Institute Inc.
2008a,b), and can handle flexible design matrices. The items needed for fitting the mixed
effects model representation of SSFMM are calculated by SAS/IML, the model fitting is done
by PROC MIXED, and the estimates and 95% confidence intervals of the fixed functions and the
individual fittings are obtained by rearranging the PROC MIXED output using SAS data steps.

This article is organized as follows. In Section 2 we review the methodological background
of SSFMM. In Section 3 we introduce the input parameters for fmixed and its output data
sets. In Section 4 we illustrate fmixed by a numeric example. In Section 5 we apply fmixed

to a data example. And in Section 6 we give some discussions on the issue of computational
burdens.

2. Methodological background

In this section we briefly review SSFMM proposed by Guo (2002).

2.1. The general model

For subject i = 1, . . . , n and time point j = 1, . . . ,mi, the observed value yij is modeled as

yij = Xijβ (tij) + Zijαi (tij) + eij , eij ∼ N
(
0, σ2e

)
, (1)

where β(t) = {β1(t), . . . , βp(t)}> is a p×1 vector of fixed functions, αi(t) = {α1i(t), . . . , αqi(t)}>
is a q× 1 vector of random functions that are modeled as realizations from the same stochas-
tic processes, Xij and Zij are design matrices which contain the information of experimental
designs and covariates, andeij is the independent and identically distributed error term.

Each element of β(t) is modeled as a cubic smoothing spline with the equivalent Bayesian
model as

βk (t) = b1k + b2kt+ λ
−1/2
bk

∫ t

0
Wk (s) ds, k = 1, . . . , p, (2)
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where {b1k, b2k}> ∼ N(0, τI), τ →∞ and Wk(s) is a standard Wiener process. Each element
of αi(t) is modeled as independent across subjects and as realizations from the same stochastic
process

αl (t) = a1l + a2lt+ λ
−1/2
αl

∫ t

0
Wl (s) s ds, l = 1, . . . , q, (3)

where {a1l, a2l}> ∼ N(0, D) and Wl(s) is also a standard Wiener process. And βk(t) and
αil(t) are mutually independent and are independent across k and l.

The reproducing kernels corresponding to (2) and (3) are usually difficult to calculate and we
will use an alternative Hilbert space on [0, 1], where the reproducing kernels are specified in
terms of Bernoulli polynomials (Gu 2002, Section 2.3.3). These kernels are easier to calculate
and more numerically stable in the equivalent mixed effects model estimation.

We define the corresponding reproducing kernel through direct sum: R = R0⊕R1 (Gu 2002,
Section 2.3.3). We first define the Bernoulli polynomials and then the reproducing kernels:

k1 (t) = t− 0.5, , k2 (t) =
1

2
{k21 (t)− 1

12
},

k4 (t) =
1

24
{k41 (t)− 1

2
k21 (t) +

7

240
},

R0 (t1, t2) = 1 + k1 (t1) k2 (t2) ,

R1 (t1, t2) = k2 (t1) k2 (t2)− k4 (t1 − t2) . (4)

A cubic spline f(t) can be expanded as the following(Gu 2002, Section 2.3.3)

f (t) =

∫ 1

0
f (s) ds+ k1 (t)

∫ 1

0
f (1) (s) ds+

∫ 1

0
(k2 (t)− k2 (t− s)) f (2) (s) ds. (5)

Using this expansion, we can remodel the functional fixed effects and random effects in (2)
and (3) as

βk (t) = bk1 + b2k (t− 0.5) + λ
−1/2
bk

∫ 1

0
(k2 (t)− k2 (t− s))Wk (s) ds, (6)

αl (t) = a1l + al2 (t− 0.5) + λ
−1/2
αl

∫ 1

0
(k2 (t)− k2 (t− s))Wl (s) ds, (7)

where Wk(s), Wl(s) and other coefficients are the same as before.

2.2. The mixed effects model representation

Similar to Wang (1998), Equation 6 and Equation 7 can be represented as equivalent mixed
effects model at the design points ti = {ti1, . . . , ti,mi}. We define Ti as an n× 2 matrix with
the first column as one and the second as ti − 0.5, dk = {b1k, b2k}>, and cli is a realization
of {a1l, a2l}> ∼ N(0, D). Each element of β(t) and αi(t) can be represented as mixed effects
models

βk (ti) = Tidk + uk (ti) , uk (ti) ∼ N
(
0, R1 (ti, ti) /λbk

)
, (8)

αli (ti) = Ticli + vli (ti) , vli (ti) ∼ N
(
0, R1 (ti, ti) /λαk

)
. (9)
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Collecting items in β(t) and αi(t), we have the mixed effects model representation for Equa-
tion 1

yi = X̃id̃+ Z̃iα̃i + ei, i = 1, . . . , n, (10)

where

yi = {yi1, . . . , yi,mi}>,

X̃i =
[
{X>i1, . . . , X>i,mi

}>
]

(Ip ⊗ Ti) ,

Z̃i = {{X>i1, . . . , X>i,mi
}>,

[
{Z>i1, . . . , Z>i,mi

}>
]

(Iq ⊗ Ti) , {Z>i1, . . . , Z>i,mi
}>},

d̃ = {d>1 , . . . ,d>p }>,

α̃i = {u1 (ti)
> , . . . , up (ti)

> , c>1i, . . . , c
>
qi, v1i (ti)

> , . . . , vqi (ti)
>}>,

ei = {ei1, . . . , ei,mi}>,

and ⊗ denotes the Kronecker product. In this representation, d̃ are the fixed effects and α̃i
are the random effects as in the conventional sense, and this model can be fitted with existing
softwares such as SAS PROC MIXED.

2.3. Estimation and inference

The smoothing parameters and other variance components are estimated by REML. This
approach is justified by two results: for correlated errors Wang (1998) showed that REML
outperforms other methods such as generalized cross validation in selecting the smoothing
parameters and in estimating other variance components, for independent errors Kohn et al.
(1991) had a similar result. Based on REML, inference can be performed by likelihood ratio
test and the null distribution of the test statistic can be approximated by simulation.

The spline estimates on the design points are the empirical best linear unbiased predictions
(EBLUPs) conditional on the REML estimates. The function values other than at the design
points can also be estimated as EBLUPs

β̂k (s) =
(

1 s− 0.5
)( b̂1k

b̂2k

)
+ ûk (t)>R1 (t, t)−R1 (t, s) , (11)

α̂li (s) =
(

1 s− 0.5
)( â1li

â2li

)
+ v̂li (ti)

>R1 (ti, ti)
−R1 (ti, s) , (12)

where t = {t>1 , . . . , t>n }>, ûk(t) and v̂li(t) are EBLUPs of uk(t) and vli(t), A
− is the Moore

Penrose inverse of A, and s ∈ [0, 1]. Their confidence intervals can be constructed similarly.

3. The input parameters and the output data sets

3.1. Input parameters

The following is a list of the input parameters for fmixed.

%fmixed(data = , response_var = , t_var = , sid = ,

fixed_effects = %bquote(), random_effects = %bquote(),

random_int_slope_type = %bquote(), save_location = %bquote())
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where

� data: Specifies the working data set with the same format as for PROC MIXED, except
that all the variables are required to be numeric. Character variable is not allowed.
Hence, preprocessing is necessary by the user to convert character variables to numeric.

� response_var: Specifies the dependent variable, or the “y” variable.

� t_var: Specifies the independent variable, or the “time” variable.

� sid: Specifies the variable that identifies the subjects in the model.

� fixed_effects = %bquote(): Specifies the design matrix for the functional fixed ef-
fects, or the “X ” matrix. There are three scenarios:

– fixed_effects = %bquote(0): A fixed linear trend will be fitted.

– fixed_effects = %bquote(1): A fixed cubic smoothing spline will fitted for all
the subjects.

– fixed_effects = %bquote(x1,x2): One fixed cubic smoothing spline for effect
x1 and one for x2. x1 and x2 are separated by a comma.

� random_effects = %bquote(): Specifies the design matrix for the functional random
effects, or the “Z ” matrix. There are three scenarios:

– random_effects = %bquote(0): A random linear trend will be used.

– random_effects = %bquote(1): A random cubic smoothing spline will be fitted
with subjects defined by sid.

– random_effects = %bquote(x1,x2): One random cubic smoothing spline will be
fitted for effect x1 and one for x2. x1 and x2 are separated by a comma.

� random_int_slope_type = %bquote(): Specifies the covariance structure for the ran-
dom intercept and slope of the random splines. This parameter can be either “vc”,
which stands for variance component, or “un”, which stands for unstructured. If this
parameter is left blank, the macro will use the default setting as “vc”. Note that by
using “vc”, the random intercept and the random slope will be independent and each
will have its own variance.

� save_location = %bquote(): Specifies a library name to save the output data sets.
If this parameter is left blank, the macro will save the output data sets to the default
library “work”.

3.2. Output data sets

Besides the default output from PROC MIXED and the intermediate data sets, macro fmixed

generates four data sets containing the results. In the following names of the data sets,
“response_var” will be replaced by the actual name of the dependent variable. Those output
data sets will be stored at the directory specified by save_location = %bquote() or at the
“work” library if no save location is given.
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� fit_stat_response_var: Contains the fit statistics such as -2 Res Log Likelihood.

� cov_parms_response_var: Contains the estimated covariance parameters as follows.

– Fixed Spline:$xk$: The estimated smoothing parameter 1/λbk for the fixed
spline corresponding to variable xk.

– Random Spline:intercept: The estimated variance for the intercept part in the
random spline.

– Random Spline:slope: The estimated variance for the slope part in the random
spline.

– Random Spline:spline: The estimated variance, 1/λα, for the smooth part in the
random spline.

– Residual: The estimated variance for the error terms.

� blup_response_var: Contains BLUPs for all the data points and the 95% confidence
intervals with variables

– pred: Point estimates.

– l_bound: Lower bounds.

– u_bound: Upper bounds.

� fun_fixed_response_var: Contains the estimated functional fixed effects. Corre-
sponding to the three scenarios in specifying the functional fixed effects, this data set
can have variables as the following.

– fixed_effects = %bquote(0): Data fun_fixed_response_var is not created.
The results about the linear trend are available in the default output.

– fixed_effects = %bquote(1): There are three variables.

* t_var: The independent variable, or the “time” variable.

* fun1: The estimated function values.

* StdErr_fun1: The standard errors of the estimated function values.

– fixed_effects = %bquote(x1,x2): There are three types of variables.

* t_var: The independent variable, or the “time” variable.

* fun_xi: The estimated function values for effect xi where i = 1,2.

* StdErr_fun_xi: The standard errors of the above estimated function values.

4. A numeric example

In this section we demonstrate how to use fmixed by a numeric example. For subject i =
1, . . . , 20, and equally spaced time points j = 1, . . . , 30 on [0, 1], we generate data as

yi (t) = 5xi1sin (2πt) + 5xi2sin (πt) + ri (t) + ei,

where t = {t1, . . . , t30}. For each subject, xi1 is assigned by a draw from a uniform distribution
on [−0.5, 0.5] and xi2 is assigned as 0 or 1 equally likely, ri(t) is a draw from N(0, σ21Σ(t))
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Figure 1: Numeric example; estimated functional effects. The left panel is for x1 and the
right panel is for x2. The black solid lines are for the true values and the red lines are for the
estimated values with their 95% confidence intervals.

Figure 2: Numeric example; individual fittings. The gray lines are for the data points, the
blue lines are for the true values without observational errors, and the red lines are for BLUPs
with their 95% confidence intervals.
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with σ21 = 900 and Σ = R1(t, t), ri(t)s are independent across different subjects, and ei is a
draw from N(0, σ22I) with σ22 = 1. To mimic real applications that subjects usually do not
have the same number of observations, the generated data points are then subject to random
missing with a probability of 0.2.

We call fmixed as

%fmixed(data = dat_gen, response_var = y, t_var = visit, sid = sid,

fixed_effects = %bquote(x1,x2), random_effects = %bquote(1),

random_int_slope_type = %bquote(), save_location = %bquote());

The estimated variance components are σ̂21 = 718.80 and σ̂22 = 0.85, both of which are slightly
under-estimated. The estimated population effects are shown in Figure 1, and the individual
fittings are shown in Figure 2. Those two figures show that both the population effects
estimations and the individual fittings are reasonably good.

5. Hormone dynamic example

In this section we illustrate fmixed by modeling the dynamics of cortisol in patients with
both chronic fatigue syndrome and fibromyalgia syndrome (see Crofford et al. 2004, and ref-
erences therein). Chronic fatigue syndrome is characterized with unexplained fatigue which
leads to substantial reduction in daily performance, and fibromyalgia syndrome is character-
ized with persistent chronic pain conditions. Both syndromes are stress related and therefore
by studying the dynamics of cortisol, a stress related hormone, we may gain a better under-
standing of the pathophysiological pathways. Guo (2002) compared the cortisol levels between
fibromyalgia patients and healthy controls and he found that the fibromyalgia patients have
significantly higher cortisol levels. In this section we concentrate on patients diagnosed with
both syndromes compared to healthy controls, and we are interested in comparing the group
averages and in obtaining subject specific fittings.

Figure 3 displays the raw data. There are 12 subjects for each of the patient group and
the control group, and each subject has hourly cortisol measurements for a 24-hour period.
As shown in the figure, both groups exhibit 24-hour cycles which are difficult to capture by
parametric models, and the subject specific deviations also need to be flexibly accounted.
Therefore we adopt the same approach as in Guo (2002) and fit the following SSFMM to the
data:

yij = Xijβ (tij) + αi (tij) + eij , eij ∼ N
(
0, σ2e

)
, (13)

where yij is the cortisol concentration for the ith subject and jth hour and i = 1, . . . , 24,
j = 1, . . . , 24; Xij = {xij1, xij2} =

(
1 0

)
for the patient group and

(
0 1

)
for the control

group; β(t) = {β1(t), β2(t)}> where β1(t) is the functional group-average for the patient group
and β2(t) for the control group; αi(t) is the functional subject specific deviation where the
random intercept and slope are modeled with a diagonal covariance matrix; and eij is the
error term. The model fitting is done by calling fmixed as

%fmixed(data = both, response_var = cort, t_var = time, sid = subject,

fixed_effects = %bquote(x1,x2), random_effects = %bquote(1),

random_int_slope_type = %bquote(), save_location = %bquote());
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Figure 3: Hormone example; raw data. The left panel is the control group and the right
panel is the patient group. The vertical axis indicate cortisol levels as µg/dl. Each group has
12 subjects, and each subject has hourly cortisol measurements for 24 hours.

Figure 4: Hormone example; estimated group average curves with their 95% confidence
intervals. The gray dashed lines are for the control group, and the blue solid lines are for the
patient group.

The estimated group average curves are displayed in Figure 4. The figure shows that the
patient group has higher cortisol levels from 3pm to 10pm and lower cortisol levels from
11pm to 8am compared to the control group. This suggests that patients tend to have higher
cortisol levels from middle afternoon until early night and lower cortisol levels during sleep.

To test if the group averages are the same, we reformulate the models so that the reduced
model is nested in the full model. The full model is

yij = f1 (tij) + f2 (tij) + αi (tij) + eij , for patients, (14)

yij = f1 (tij) + αi (tij) + eij , for controls, (15)
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Figure 5: Hormone example: Individual fittings. The gray lines are for the observed data,
and the red lines are for BLUPs with their 95% confidence intervals. 1–12 are the patients,
and 13–24 are the controls.

where both f1(t) and f2(t) are smoothing splines. The reduced model is thus that f2(t) ≡ 0.
Note that under the mixed effects model representations the working covariance structure of
the model defined in Equation 13, which has zero blocks for the covariance between the patient
group and the control group, does not include this reduced model’s covariance structure, which
has nonzero blocks for the covariance between the patient group and the control group, as a
reduced form. With the reformulation, however, the reduced model is special case of the full
model defined in Equation 14 and Equation 15 by setting d2 = 0 and λ−1b2 = 0.

The full model is fitted as

%fmixed(data = both, response_var = cort, t_var = time, sid = subject,

fixed_effects = %bquote(x1,x3), random_effects = %bquote(1),

random_int_slope_type = %bquote(), save_location = %bquote());

where x3 ≡ 1 for all the subjects, and the reduced model is fitted as

%fmixed(data = both, response_var = cort, t_var = time, sid = subject,

fixed_effects = %bquote(x3), random_effects = %bquote(1),

random_int_slope_type = %bquote(), save_location = %bquote());

The difference of -2 log REML between the full model and the reduced model is 5.92. For
the null distribution of the test statistic, Crainiceanu and Ruppert (2004) showed that more
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weight should be put on the Chi-square distribution with smaller degrees of freedom rather
than the conventional 50 : 50 mixture of χ2

2 and χ2
3. But even with a 100 : 0 mixture, the p-

value 0.0518 is still not significant at the 0.05 level. The null distributions of the test statistics,
on the other hand, can be approximated by simulation. Implementation of the simulation
based approach, however, is beyond the scope of this article.

The individual fittings are displayed in Figure 5 which shows that the individual profiles are
captured pretty well. To test if a functional random deviation is necessary, we set λ−1a = 0 by

%fmixed(data = both, response_var = cort, t_var = time, sid = subject,

fixed_effects = %bquote(x1,x2), random_effects = %bquote(0),

random_int_slope_type = %bquote(), save_location = %bquote());

to fit a reduced model. The difference of -2 log REML between the full model and the reduced
model is 17.18, which is highly significant even under the conservative 50 : 50 mixture of χ2

1

and zero. Therefore the smooth random component cannot be dropped from the model.

6. Discussion

By utilizing the mixed effects model representations, we have implemented SSFMM in a
SAS macro. This macro is easy to use and it can handle complex experimental designs and
include covariates. The computational burden of this approach, however, is heavy. The mixed
effects model representations of the functional fixed effects essentially introduce correlations
among all the data points, both within and across subjects. Therefore we need to work with
matrices with dimension nm for n subjects and m time points. This requires O(n2m2) for
storage and O(n3m3) for calculating the inverse and the determinant. When the number
of total observations is in the hundreds such as the numeric example and the hormone data
example, it only takes 10 to 15 minutes for the model fitting on a personal computer with 2.40
GHz Intel i5 CPU and 3.42 GB RAM. But the computational time increases quickly as the
number of total observations increases. For example it takes about 8 hours for nm = 1500 for
the same model as the numeric example. Grid computing or mainframe computer are able to
handle larger data sets, but the computing resources will still be quickly consumed because
of the cubic relationship. An alternative is to adopt the state space approach as suggested in
Guo (2002). This approach only requires O(n2m) for storage and O(n2m) for calculating the
inverse and the determinant. Qin and Guo (2006) implemented this approach for periodic
SSFMM without covariates. Unfortunately a general software package for SSFMM based on
the state space approach is still unavailable.
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