
JSS Journal of Statistical Software
May 2011, Volume 41, Issue 11. http://www.jstatsoft.org/

State Space Methods in gretl

Riccardo Lucchetti
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Abstract

gretl is a general-purpose econometric package, whose most important characteristic is
being free software. This ensures that its source code is freely available under the general
public license (GPL) and, like most GPL software, that it can be used free of charge. As
of version 1.8.1 (released in May 2009), it offers a mechanism for handling linear state
space models in a reasonably general and efficient way. This article illustrates its main
features with two examples.
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1. Introduction

1.1. gretl and the free software movement

gretl (Cottrell and Lucchetti 2011) is an econometric package which aims to implement the
widest possible array of statistical procedures. One of its main characteristics is that gretl is
free software, in the sense that it is released under the general public license (GPL), like more
famous software projects such as the Linux kernel, other statistical software such as R, or the
GNU project. In fact, gretl is part of the GNU project; for details on the GPL and the GNU
project, see Yalta and Lucchetti (2008) or Deek and McHugh (2008).

As most GPL-licensed software, gretl is available free of charge (it can be downloaded from
http://gretl.sourceforge.net/), which explains at least in part its growing popularity
(see Lucchetti 2009 for some statistics). Allin Cottrell, the founder and leader of the project,
provides a history of gretl and its future prospects in Cottrell (2009).

To the end user, it may seem that the main consequence of gretl being free software is that its
price is zero; however, there are many more aspects to take into consideration. For example,
free software projects can (and, as a rule, do) benefit from one another in terms of code
re-use: parts of gretl’s source code were taken and adapted from several other free projects,
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2 State Space Methods in gretl

such as R (R Development Core Team 2011) and Gnumeric (The Gnumeric Team 2010) and
in the same way other free projects (R, for one) incorporate some of gretl’s code. gretl uses
a number of free libraries which spare the development team from re-implementing some
algorithms: for example, gretl employs the FFTW library (itself a GPL-licensed project —
see Frigo and Johnson 2005) for the discrete Fourier transform, which ensures not only that
the algorithms are among the best available, but also that any future improvement in FFTW
will be automatically passed to gretl.

Apart from code reuse, another common trait which gretl shares with the rest of the free soft-
ware world is the extreme friendliness and vivacity of the online community, which effectively
acts as a 24/7 online helpdesk.

1.2. State-space modelling

Since its 1.8.1 version, which was released on 2009-05-21, gretl offers a mechanism for handling
linear state space models in a reasonably general way. Given that gretl’s friendly and intuitive
graphical user interface (GUI) is commonly considered as one of its strongest points (see for
example Smith and Mixon 2006), the reader may find it surprising that the only way to
access the program’s features discussed here is through scripting. In fact, creating a GUI
which is intuitive yet general enough is not trivial and there has been some debate among the
developers as to the best way to expose the state space modelling functionalities through the
GUI, but a consensus has not been found.1

As a consequence, in order to describe the facilities that gretl offers for working with state
space models, it is best to think of gretl as a programming language. The main idea behind
gretl’s implementation of state space models is that the user can define a state space model
which becomes “the” model within the context in which it is defined and all subsequently
called functions. The kalman environment is used to set it up and two specialized functions,
kfilter() and ksmooth(),2 are used to perform the actual filtering.

As an example, consider this very minimal script:

nulldata 10

set seed 12345

y = normal()

kalman

obsy y

obsymat 1

obsvar 1

statemat 1

statevar 1

end kalman

series v

kfilter(&v)

print y v -o

1In fact, the gretl development team would welcome suggestions.
2An additional function, ksimul() is available for using state space models to generate simulated data, but

will not be described here. See Cottrell and Lucchetti (2009) for details.
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Leaving details aside for a moment, the structure of the script should be rather clear. The
first three lines of code generate a white noise process 10 observations long. The next seven
lines of code set up the state space model, which in this example is

yt = αt + εt, εt ∼ NID(0, 1), (1)

αt+1 = αt + ηt, ηt ∼ NID(0, 1), t = 1, . . . , 10. (2)

The last three lines of code perform a forward pass of the filter, store the prediction errors,
and print them together with the original data. Running the code above produces3:

y v

1 1.954669 1.954669

2 0.652640 -1.302028

3 -0.168688 -1.255338

4 0.394389 0.092325

5 -0.055069 -0.414286

6 -1.658005 -1.761118

7 -0.464892 0.520464

8 1.832629 2.496318

9 1.530098 0.650977

10 1.711905 0.430458

If a more “structural” programming approach is needed, so that the algorithm is split into
subprograms, it is important to note that a kalman environment is local to a function. So for
example, suppose that the basic structure of a gretl script is as follows:

function do_stuff()

...

kfilter()

...

end function

function ss1()

kalman

...

end kalman

do_stuff()

end function

function ss2()

kalman

...

end kalman

3The actual numerical results for this example were produced with gretl version 1.9.1. Earlier versions of
gretl may produce different output, since the algorithm for generating pseudo-random normal variates has been
changed, switching from the Box-Muller algorithm to the ziggurat method (see Marsaglia and Tsang 2000)
since gretl 1.8.7; a compatibility mode is provided for replicating results obtained with earlier versions.
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do_stuff()

end function

When function ss1 is called (which fits state space model 1, say), the do_stuff function
(which does the filtering, estimation, and so forth) will act on the state space model defined
in that function, which may be completely different from the one specified in the function ss2

(which fits state space model 2, say). The implementation of the forwards and backwards
filtering algorithm is completely written in C (like the rest of gretl), which ensures excellent
numerical performance.4 If parameter estimation is necessary, it can be performed via the
mle command, which uses numerical methods to maximize a likelihood function.

Hence, a highly idealized flowchart for implementing a statistical model amenable to a state
space representation (such as (V)AR(I)MA, structural time series models and others) in gretl
runs like this:

1. set up the model by defining its state space representation in a kalman block;

2. set up an mle block, in which the system matrices are filled with the unknown parameters
and the likelihood, computed by running the forward pass filter via the kfilter()

function, is maximized;

3. after estimation is done, the function ksmooth() can be used to perform fixed-interval
smoothing and the quantities of interest, such as states, can be accessed by the user.

The two main ingredients, the kalman block and the mle block, can be briefly illustrated as
follows.

1.3. The kalman block

A kalman block is a series of statements that describe the system matrices of the state space
model. For example, the code snippet

kalman

...

obsymat foo

...

end kalman

would tell gretl that a matrix called foo should be used as the system matrix which premulti-
plies the states in the observation equation (Zt in the terminology adopted in Commandeur,
Koopman, and Ooms 2011). The contents of the matrix foo can then be modified via or-
dinary gretl commands, without the need for re-declaring the whole model. Any element of
the system matrices can therefore be assigned a value at any time in a very convenient and
intuitive way, simply by modifying the corresponding matrix. Special syntax constructs are
also available for specifying time-varying matrices. Table 1 translates gretl keywords into the
notation adopted here.

4A handy way to explore gretl’s source code is through its web-based CVS access: http://gretl.cvs.

sourceforge.net/gretl/gretl/. Most of the code for the state space algorithms discussed here is in the
lib/src/kalman.c file.

http://gretl.cvs.sourceforge.net/gretl/gretl/
http://gretl.cvs.sourceforge.net/gretl/gretl/
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Keyword Symbol

obsy yt
obsymat Zt
obsvar Ht

statemat Tt
statevar Qt
inistate a1
inivar P1

Table 1: Kalman block keywords.

Note that gretl’s syntax does not provide the equivalent of the Rt matrix; however, this is not
a serious limitations, since the statevar matrix needs not be invertible, so it is more accurate
to say that the keyword statevar is used to specify RtQtR

>
t .5

Moreover, the additional keywords obsx and obsxmat can be used for introducing exoge-
nous variables in the observation equation. Some defaults are available: for example, if the
inistate keyword is omitted, a1 is understood to be a zero vector (see Cottrell and Lucchetti
2009 for a complete list).6 As of version 1.9.1, it is also possible to introduce an “intercept”
into the state transition equation via the stconst keyword: that is, the term ct in models for
which the state transition equation can be written as

αt+1 = ct + Ttαt + ηt;

of course, this could have been accomplished without a special keyword by re-defining the
state vector appropriately, so that it includes one or more zero-variance states, but this could
be rather inefficient numerically.

Once the model is set up, the kfilter() function performs a forward pass and several quan-
tities of interest become available: the one-step-ahead prediction errors vt with associated
variances Ft and also a series containing the individual contributions to the log-likelihood

`t = −p
2

ln(2π)− 0.5
(

ln |Ft|+ v>t F
−1
t vt

)
,

which may be accessed via the $kalman_llt keyword; their sum is available via the $lnl

accessor.

In Section 2 we provide commented estimation of the local level model on the Nile dataset.
Section 3 contains a more complex model.

1.4. The mle block

The mle command is gretl’s generic procedure for maximum likelihood estimation. By default,

5Special syntax is available for state space models in which ηt and εt are contemporaneously correlated, so
to match the general notation used, for example, in Harvey and Proietti (2005). For reasons of space, it will
not be illustrated here; the interested reader will find more details in the gretl’s User Guide.

6As the state space code is a relatively recent addition, the precise details of the syntax may change
somewhat in the future, to accommodate new features or simplify its syntax. If they do, the gretl development
team will make every effort to minimize the inconvenience of backward-incompatible changes.
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it uses the quasi-Newton BFGS algorithm, although an option is available to use L-BFGS as
an alternate algorithm (see Liu and Nocedal 1989).7

Although the user can supply analytical derivatives, gretl can use a numerical approximation
which is based on a 4-step Richardson extrapolation algorithm. This algorithm choice ensures
that the numerically computed score is remarkably accurate for standard problems.

A miniature example of the usage of mle can be given as follows. Consider the estimation of
an AR(1) model by conditional ML. The log-likelihood for one observation can be written as

`t = lnϕ

(
yt − ρyt−1

σ

)
− ln(σ),

where ϕ() is the standard normal density function. This translates into the following code:

sigma = 1

rho = 0

mle loglik = ln(dnorm(e/sigma)) - ln(sigma)

e = y - rho * y(-1)

params rho sigma

end mle

Once the parameters are initialized, the mle code block comprises an expression for the log-
likelihood, an indication of which parameters have to be estimated, via the params keyword,
and any intermediate computation (in this case calculation of the forecast errors, e).

The mle command offers the user three choices for the computation of the covariance matrix
of the estimate: the outer product of gradients (the default), the inverse Hessian (numerical),
or the robust“sandwich”estimator (see for example Gourieroux, Monfort, and Trognon 1984).

2. Case 1: The local level model applied to the Nile data

gretl does not provide a built-in command for estimation of the local level model. However,
such a model is reasonably simple to set up. In order to show a possible way to implement the
local level model in gretl and use the Nile data as an example, we will first write a function
performing the “core” task of estimating the model, and then call it from a “main” file.

2.1. The core model function

The local level model (described in more detail in the introductory article Commandeur et al.
2011 of this volume) can be written as

yt = µt + εt, εt ∼ NID(0, σ2ε), (3)

µt+1 = µt + ξt, ξt ∼ NID(0, σ2ξ ), (4)

where the only two parameters that must be estimated are the two variances σ2ε and σ2ξ .

7Although some additional methods are used internally for several estimators (Newton-Raphson, BHHH,
simulated annealing), gretl’s mle command does not currently give the user the choice of maximization algo-
rithms other than BFGS or L-BFGS. However, since BFGS is widely regarded as the method of choice for
regular estimation problems, the mle command is already quite powerful as is.
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In practice, a gretl script for estimating a local level model would have at its core a function
more or less like the following (with comments interspersed):

function matrix local_level (series y, series *u[null], series *v[null])

This is the standard way of defining a function in gretl: in this case, the function
local_level returns a matrix holding the estimated variances and takes three
arguments. The first one, y, contains a data series. The other two should contain
pointers8 to data series (as indicated by the * modifier) and are used to return
the one-step-ahead prediction error vt and its variance Ft, respectively. The null

keyword indicates that they may be omitted, in which case the two series are
discarded.

scalar ss1 ss2 scale

sy = init_y(y, &ss1, &ss2, &scale)

Here, the user-defined function init_y (not shown here, but available in the ac-
companying files) is used to compute a preliminary estimate of the variances and
to rescale y so to facilitate numerical maximization of the log-likelihood.9

kalman

obsy sy

obsymat 1

obsvar ss1

statemat 1

statevar ss2

end kalman --diffuse

Here the state space representation is set up. The --diffuse option is used to
indicate that a diffuse-prior algorithm will be used when filtering, setting P1 =
107 · I. The gretl manual states:

[Diffuse i]nitialization of the Kalman filter [. . . ] has been the subject
of much discussion in the literature—see for example de Jong (1991);
Koopman (1997). At present gretl does not implement any of the more
elaborate proposals that have been made.

8The usage of pointers in gretl is a much simplified application of the concept of pointers in the C program-
ming language. gretl’s concept of pointers is quite similar to the one found in the Ox programming language
(see Doornik 2007). Usage of pointers is the standard way in gretl to have a function return more than a single
object.

9The algorithm used for initializing the two variances is based on the reduced form of the local level model:

∆yt = ξt−1 + ∆εt,

so that ∆yt is a MA(1) process; by a standard method-of-moments reasoning, consistent estimators of the two
variances can be obtained from γ0 and γ1, the sample autocovariances of ∆yt, as follows:

σ̃2
ε = −γ1 and σ̃2

ξ = γ0 − 2γ1.

These two estimators can then be used as initial values.
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However, the P1 matrix can be set by the user via the inivar keyword, so more
sophisticated alternatives are possible if necessary.

Note that the scalars ss1 and ss2 are specified as σ2ε and σ2ξ , respectively, via
the obsvar and statevar. Assigning new values to these scalars would (and, in
fact, will) modify the contents of the relevant system matrices in the state space
representation.

matrix theta = {ln(ss1),ln(ss2)}

mle loglik = ERR ? NA : misszero($kalman_llt)

ss1 = exp(theta[1])

ss2 = exp(theta[2])

ERR = kfilter()

params theta

end mle --hessian --quiet

Here ML estimation of the parameters is performed. Since gretl does not provide
a constrained optimization routine, the actual parameters that are used for nu-
merical maximization of the log-likelihood are the two natural logarithms of the
variances, which in this example are contained in the vector theta.10 Points to
note:

� the construct loglik = ERR ? NA : misszero($kalman_llt) must be in-
terpreted as follows11: the kfilter() returns a scalar (0 for no error, non-
zero otherwise) and fills a series called $kalman_llt which contains the per-
observation likelihood contributions. So, in case of error, the loglikelihood is
set to missing, which would force mle to abort; otherwise, missing values in
the loglikelihood contributions (because of missing values in yt) are set to 0.

� The scalars ss1 and ss2 get filled with exp(θ1) and exp(θ2). The optimiza-
tion is performed in terms of the vector theta, as indicated by the params

keyword.

� The --hessian option instructs mle to compute the variance-covariance ma-
trix of θ̂ from the numerical Hessian.

matrix variances = exp(theta)'

matrix ret = scale * variances

series ll = $kalman_llt

T = sum(ok(ll))

matrix V = $vcv .* (variances*variances')

print_results(variances~V, scale, T, $lnl)

10In fact, estimation may be based on the so-called “concentrated likelihood” (see Durbin and Koopman
2001, p. 31) to make estimation numerically more efficient; however, given the aim of this paper, I chose not
to complicate the code.

11Perhaps a few readers may be unfamiliar with the syntax y = A ? x0 : x1. This construct is used in
several programming languages and sets y to x0 if A is nonzero and to x1 otherwise.
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Here, the results obtained with ML estimation are re-transformed to the scale of
the original yt variable and stored into the ret matrix, to make them available to
the caller function; the variance-covariance matrix of the estimated parameters is
computed via the delta method: The Jacobian is

J =
∂

∂θ

[
σ2ε
σ2ξ

]
=

[
exp(θ1) 0

0 exp(θ2)

]
=

[
σ2ε 0
0 σ2ξ

]
,

so

V

(
σ̂2ε
σ̂2ξ

)
= JV (θ̂)J> = V (θ̂)�

([
σ2ε
σ2ξ

] [
σ2ε σ2ξ

])
where � indicates the Hadamard product (the corresponding gretl operator is .*)
and the scalar T, the actual sample size, is computed as the number of non-missing
observations via gretl’s internal function ok(). The $vcv matrix is automatically
generated after successful completion of the mle command. Then, the user-written
function print_results formats the estimation output and prints it out.

matrix f_err f_var

kfilter(&f_err, &f_var)

series u = f_err * sqrt(scale)

series v = f_var * scale

return ret

end function

Finally, the forward pass filter is run once more to retrieve the one-step-ahead
prediction error vt and its variance Ft. These are rescaled, and stored into the
two series u and v. As a last step, the estimates are returned.

2.2. The main script

Data input

The “main” script would look something like

open nile.gdt

series uhat Ft

matrix Vars = local_level(nile, &uhat, &Ft)

where first the dataset is opened, next the series for the prediction error and its variance are
declared, and then parameter estimation is performed.

Estimation

After reading the data, the function local_level defined in Section 2.1 is called and the
estimation performed, yielding the results shown in Table 2. The estimated parameters are
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coefficient std. error z-stat p-value

----------------------------------------------------------

sigma^2_eps 15098.5 2859.67 5.280 1.29e-07 ***

sigma^2_eta 1469.19 1238.34 1.186 0.2355

sample size = 100

log-lik = -646.013

Table 2: Maximum likelihood estimates.
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Figure 1: Standardized prediction errors.

saved into the Vars matrix for later use. A plot of the observation equation standardized
prediction errors (that is, vt/

√
Ft) is visible in Figure 1.

Smoothing

The next step is the computation of the smoothed state vector: the relevant line in the main
input file is

sm_nile = loclev_sm(nile, Vars[1], Vars[2], &smv)

in which the task is delegated to the user-written function loclev_sm, which is also provided
in the accompanying files, but is worth showing here. The function first sets up a new kalman

block with the estimated variances (in the first seven lines of code), and then invokes the
ksmooth function to obtain and return the estimate of the smoothed states µt (and optionally
their variances):

function series loclev_sm (series y, scalar s1, scalar s2, series *v[null])
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Figure 2: Original data and smoothed state with 90% confidence band.

kalman

obsy y

obsymat 1

statemat 1

statevar s2

obsvar s1

end kalman --diffuse

if isnull(v)

series ret = ksmooth()

else

matrix V

series ret = ksmooth(&V)

series v = V

endif

return ret

end function

The ksmooth() function returns the smoothed states. If given a matrix-pointer to an argu-
ment, as shown, this is filled with the variance for the smoothed state. Figure 2 shows the
original data and the estimated µt series, together with a 90% confidence band.

Auxiliary residuals

At present, gretl lacks a native algorithm for performing disturbance smoothing, so an au-
tomatic mechanism for retrieving generalized residuals and their variances is not provided
yet. However, they can be computed quite easily since all the necessary building blocks are



12 State Space Methods in gretl

-4

-3

-2

-1

 0

 1

 2

 3

 1880  1900  1920  1940  1960

epshat

-4

-3

-2

-1

 0

 1

 2

 3

 1880  1900  1920  1940  1960

etahat

Figure 3: Auxiliary residuals with 95% confidence bands.

available. The relevant formulae are

ε̂t = yt − µ̂t (5)

ξ̂t = µ̂t+1 − µ̂t (6)

For the variance of ξ̂t, it is necessary to compute the quantity Nt as defined in (Durbin and
Koopman 2001, Equation 2.29), namely as a function of the variance of the prediction errors
Ft and the Kalman gain Kt. These quantities can be obtained by running the kfilter()

with pointer arguments. Again, this is not shown here for space reasons, but an example is
available in the accompanying files. The code used for the computation and plotting of the
auxiliary residuals is:

epshat = (nile - sm_nile)

etahat = diff(sm_nile)

nt = Nt(Ft, kgain)

Dt = 1/Ft + nt * kgain^2

Dt[1] = NA

seps = Vars[1] * sqrt(Dt)

auxres1 = (nile - sm_nile) / seps

seta = Vars[2] * sqrt(nt)

auxres2 = etahat / seta

series up = 1.96

series lo = -1.96

plot3a <- gnuplot auxres1 up lo time --with-lines --single-yaxis

plot3b <- gnuplot auxres2 up lo time --with-lines --single-yaxis

The thus obtained plots of the auxiliary residuals are shown in Figure 3.

Forecasts

For the local level model, forecasts can be obtained quite simply by appending missing ob-
servations at the end of the sample and re-running the smoother. Since gretl automatically
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Figure 4: Forecast with 50% confidence band.

takes missing data into account, the necessary code is:

dataset addobs 10

sm_nile = loclev_sm(nile, Vars[1], Vars[2], &smv)

series fore = NA

series fctop = NA

series fcbot = NA

smpl 1971 ;

confint(sm_nile, smv, 0.50, &fctop, &fcbot)

series fore = sm_nile

smpl full

Here the user function loclev_sm (described above) was used again to extract the smoothed
states from the kalman structure. The confint function (provided in the accompanying files
as well) is mainly a convenience function to compute the “top” and “bottom” limits of the
confidence interval. The forecasts and their 50% confidence band are shown in Figure 4.

3. Case 2: A multivariate unobserved components model

3.1. The model

In this section, we will use a labour market model to exemplify how the setup examined in the
previous section extends very naturally to the multivariate case. This model was first used
in Lucchetti and Staffolani (1996) and later revisited in Russo and Veredas (2000). It is a
bivariate unobserved-components model whose purpose is to provide an empirical counterpart
to the “buffer stock” theory on working hours.
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The theoretical model on which the empirical model is based is a derivation of the ideas in
Bentolila and Bertola (1990) and can be briefly sketched as follows: the total demand for
labour can be written as Lt = NtHt, where Nt is the number of employees and Ht is the
number of hours worked. Firms face hiring and firing costs, so when a firm’s desired use of
labour factor changes, it may be advantageous to spread ∆Nt through time and vary the
amount of hours worked while adjustment is taking place. In other terms, if a firm needs to
increase its usage of labour, it will increase working hours per worker while new workers are
recruited.

Assuming there is a standard weekly working time H̄, if no adjustment costs were present,
an increment in the demand for labour would lead to a parallel increase in Nt simultaneously.
If, however, the adjustment takes place through time, Ht will deviate temporarily from H̄ in
order to compensate for the extra workers. If we assume that firms optimize their level of
labour input intertemporally, then it makes sense to treat the relative variation in the desired
level of labour as an unanticipated shock with constant variance ∆ ln(Lt) = ηt ∼ NID(0, σ2η).
Upon defining ht ≡ ln(Ht/H̄) and nt ≡ ln(Nt), the relation ∆ ln(Lt) = ∆ht + ∆nt = ηt holds
by definition. If adjustment takes place over time, then, the time path of the hours and of
the variation in labour force can be described as:

∆nt = B(L)ηt,

ht = A(L)ηt,

where B(L) = 1 − ∆A(L), so the parameters of the two polynomials A(L) and B(L) are
linked via bi = bi−1 − ai. A firm which faces an unanticipated labour demand shock ηt will
adjust Lt instantaneously by varying ht while hiring; in the long term, ht goes back to 0 and
nt is fully adjusted. The polynomial A(L) is assumed to be of some finite order p, so full
adjustment takes place in a finite time12.

In order to match the actual features of observed data series, these two equations must be
modified to take three additional facts into account: first, the size of the economy and capi-
tal/labour composition of the production technology vary exogenously through time, so ∆nt
must contain some additional term to account for long-term trends. Moreover, institutional
factors introduce sizeable seasonality in both ht and ∆nt. Finally, the actual number of
hours worked per week could deviate from the firm’s plan because of random factors, such as
weather, power cuts and so forth.

The first effect will not be modelled explicitly, but can be captured via a local level component;
seasonality is modelled via two separate seasonal unobserved components (see Durbin and
Koopman 2001, p. 40). As a consequence, the empirical model can be cast as follows:

∆nt = µt +B(L)ηt + γnt , (7)

ht = A(L)ηt + γht + εt, (8)

where µt is the local level component, γt are the seasonal factors and εt is the noise component

12Note that neither A(0) nor B(0) are assumed to equal 1; identification is attained via the conditions
B(1) = 1 and a0 = 1 − b0.
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in the hours equation. In matrix notation,

[
∆nt
ht

]
=

[
1 b> e>1 0
0 a> 0 e>1

]
µt
ηt
γnt
γht

+

[
0
εt

]
, (9)


µt+1

ηt+1

γnt+1

γht+1

 =


1 0 0 0
0 L 0 0
0 0 C 0
0 0 0 C



µt
ηt
γnt
γht

+


ut
ηte1
ωnt e1
ωht e1

 , (10)

where a and b are vectors containing the parameters of the polynomials A(L) and B(L) in
equations (8) and (7), respectively; ηt is the vector [ηt · · · ηt−p]; e1 is a vector containing 1 as
its first element and 0 elsewhere (with appropriate size depending on context). The L and C
matrices are

L =

[
0 0
I 0

]
, C =

[
−u> −1
I 0

]
,

and u is a vector of ones.

The five structural disturbance terms refer to the local level component (ut), the“buffer stock”
component (ηt), the seasonal terms (ωnt and ωht ) and the transitory hours shock (εt); they
are assumed to be jointly normal and mutually uncorrelated. The unknown parameters are
the coefficients of the polynomial B(L) (or, equivalently, A(L)) and the five variances of the
structural disturbances.

3.2. Implementation and results

To exemplify the actual implementation of the above model, I used Australian data from
February 1978 to June 2009. To be specific, the raw data were taken from the Australian
Bureau of Statistics database, cat no. 6291.0.55.001, Table 09. For the employment series and
hours series, I used the monthly seasonally unadjusted data series labelled A84378T (average
weekly actual hours worked) and A84376L (total employment in thousands).

After compacting the data to a quarterly frequency through averaging, logs were taken. To
take into account institutional factors that have driven H̄ down through time, the log hours
series was then regressed against a constant and a linear trend and the residuals were used
as ht.

13 The basic infrastructure for estimating the parameters in equations (9) and (10) is
given by the following function14:

function matrix Giuditta_estimate(series dn, series h, scalar order)

bhat = ones(order,1)/order

vars = ones(5,1)

theta = bhat | vars

13This is equivalent to assuming that the time path of ln(H̄) can be adequately described by a linear time
trend; alternative choices were also possible, including the joint estimation of the constant and trend parameters
together with the rest of the model, or the incorporation of ln(H̄) into the model as an additional element of
the state vector, but in my opinion they would have complicated the example without yielding a real benefit.

14At the time of its conception, this model was nicknamed the “Giuditta” model by its creators, with a
reference to the film “The Little Devil”, by Roberto Benigni. As often happens, the name has stuck.
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matrix H R F Q P

nstates = make_matrices(theta, $pd, &H, &R, &F, &Q, &P)

matrix Y = { dn h }

kalman

obsy Y

obsymat H

obsvar R

statemat F

statevar Q

inivar P

end kalman

series LL

mle LL = errcode ? NA : $kalman_llt

nstates = make_matrices(theta, $pd, &H, &R, &F, &Q, &P)

errcode = kfilter()

params theta

end mle --hessian

theta[order+1:] = abs(theta[order+1:])

print_results(theta, $vcv, $nobs, $kalman_lnl)

return theta

end function

Comments:

� Initialization in the first three lines of code is kept intentionally näıve: the coefficients
of the B() polynomial are set to 0 and all variances to 1.

� The make_matrices function (not described here, but provided in the accompanying
files) in the next three lines of code simply fills the system matrices with the elements
of the vector θ. In this case, we initialize P1 to 1000 · I, as diffuse initialization causes
numerical problems.

� Estimation is carried out by using the kalman block in the next eight lines of code and
an mle block in the following six lines of code in a manner very similar to the Nile
example in Section 2.

� The function print_results in the last three lines of code, apart from printing out the
estimates, computes the variance matrix of the estimated parameters.

� Estimates for the Australian data are shown in Table 3. The pattern of the buffer stock
adjustment appears to be quite reasonable: 53.3% of the adjustment seems to occur in
the same quarter as the shock (parameter b_0) and a year after the shock the effect on
working hours is small (7.3%, parameter a_4), but still significant.
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coefficient std. error z-stat p-value

-------------------------------------------------------

a_0 0.466131 0.0547856 8.508 1.77e-17 ***

a_1 0.187928 0.0426714 4.404 1.06e-05 ***

a_2 0.132266 0.0268418 4.928 8.32e-07 ***

a_3 0.113411 0.0314670 3.604 0.0003 ***

a_4 0.0731748 0.0286753 2.552 0.0107 **

s_eps 1.59895 0.124880 12.80 1.56e-37 ***

s_u 0.115993 0.0616542 1.881 0.0599 *

s_eta 0.965748 0.125454 7.698 1.38e-14 ***

s_gdn 0.0281485 0.0258615 1.088 0.2764

s_gh 0.107907 0.0591376 1.825 0.0681 *

coefficient std. error z-stat p-value

-------------------------------------------------------

b_0 0.533869 0.0547856 9.745 1.94e-22 ***

b_1 0.345942 0.0719262 4.810 1.51e-06 ***

b_2 0.213676 0.0666455 3.206 0.0013 ***

b_3 0.100265 0.0431129 2.326 0.0200 **

b_4 0.0270898 0.0171383 1.581 0.1140

T = 124

log-likelihood = -368.025

Table 3: Giuditta model estimates.

The main file contains a few obvious commands for reading the data, performing basic trans-
formations and other trivial tasks. Then, there is the following code block:

theta = Giuditta_estimate(dn, h, 5)

series eta mu sdn sh bufdn bufh

S = Giuditta_sm(theta, dn, h, &mu, &eta, &sdn, &sh, &bufdn, &bufh)

where the function Giuditta_sm is structurally very similar to Giuditta_estimate: the
elements of the vector θ are used to fill up the system matrices and, after having set the
model up, instead of using mle to perform estimation, ksmooth is run to return the smoothed
estimates of the quantities of interest15 (shown in Figure 5).

3.3. Diagnostics

Diagnostic tests based on standardized prediction errors can be implemented in a similar vein

15Of course, it is possible to enrich the example by computing confidence intervals for these series, but this
has been skipped for the sake of conciseness.
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Figure 5: Giuditta model: Smoothed estimates.
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Figure 6: Giuditta model: Correlogram and QQ plot for standardized prediction errors.

as in Section 2.2.4. Here we concentrate on the disturbances to (8), the equation for hours
worked (the equation for ∆nt does not have a disturbance term).

The computations are delegated to a function called Giuditta_prederr (provided in the
accompanying files), which produces the standardized prediction errors. These are, in turn,
analysed16 via internal gretl commands, as follows:

series speh = Giuditta_prederr(theta, V)

smpl +4 ;

qqplot speh

corrgm speh 12

normtest speh --all

and the output reads:

Test for normality of speh:

Doornik-Hansen test = 3.72497, with p-value 0.155286

Shapiro-Wilk W = 0.983974, with p-value 0.165903

Lilliefors test = 0.0570351, with p-value ~= 0.43

Jarque-Bera test = 4.23413, with p-value 0.120384

The correlogram and QQ-plot are shown in Figure 6. As can be seen, the correlogram does
not show significant persistence of the residuals; non-normality seems not to be a problem
either.

16The first four observations are discarded.
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4. Conclusions

In addition to the examples reported here, gretl offers several other facilities to deal with state
space models: for example, it is possible to specify a model with time-varying system matrices
with little more effort than shown in the examples above, so techniques like the univariate
treatment of multivariate time series (see Durbin and Koopman 2001, Chapter 6) is possible.

Moreover, it is also possible to set up a state space model and use it to simulate data, rather
than filter existing time series. This may be very useful in those situations when inference
via simulation is required.

Of course, gretl’s implementation is still rather young, and there are several areas which offer
room for improvement:

1. The syntax may benefit from some revision: some keywords may not be necessary
for simulation; moreover, it would be useful if auxiliary residuals could be obtained
automatically.

2. Native methods for disturbance smoothing or simulation smoothing are not provided
yet. Since gretl provides access to all the system matrices and the state vectors, those
methods can be implemented via user-level functions. However, the gretl development
team is considering the possibility of adding native functions in the interest of compu-
tational speed in the future.

3. Structural time series models are known to have likelihoods with potential multiple
maxima. An enlargement of the algorithm menu offered by the mle command could
prove extremely useful in those cases.

However, the current implementation of state space models in gretl is already capable of
handling the large majority of situations currently faced by practitioners. Most importantly,
the source is open to inspection, as scientific software should be (some say all software). This
ensures, at a minimum, that possible bugs or other shortcomings are, at least in principle,
spotted and eradicated quickly. Ideally, the improvement in quality of gretl’s state space
modelling apparatus may become an effort undertaken by the scientific community at large,
with all the obvious benefits that this would entail.
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