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ABSTRACT

The paper presents sorne vector optimization problems
to meaSure arbitrage and integration of financial markets.
This new approach may be applied under static or dynamic
asset pricing assumptions and leads to both, numerical and
stochastic integration measures. Thus, the paper provides a
new methodology in a very general setting, allowing many
instruments in each market to test optimal arbitrage portfo­
lios depending on the state of nature and the date. Markets
with frictions are also analyzed, and sorne empirical results
are presented.

RESUMEN

El artículo aplica la optimización vectorial para intro­
ducir nuevos procedimientos que miden el nivel de arbi­
traje e integración de mercados financieros. Las técnicas
son aplicables tanto bajo supuestos estáticos, como bajo
supuestos dinámicos de valoración de activos. Por consi­
guiente el nivel de generalidad es alto, y se proporcionan
instrumentos que permiten determinar estrategias de arbi"
traje óptimas de carácter dinámico y estocástico. Final­
mente, también se analizan los mercados con fricciones y
se presentan los resultados de algunas contrastaciones
empíricas.

1. INTRODUCTION

The main objective of this paper is to present an uni­
fied version of sorne recent results concerning financial
market integration, most of them appeared in Balbás and
Muñoz (2), or Balbás el al (3). Thus, we will just present
the main concepts and theorems with their economic me­
aning, but proofs will be omitted. We will also provide
sorne new lines for future research.

The literature on financial integration has analyzed the
problem under several points of view, but it is a very com-

mon way to study the existence of arbitrage portfolios
composed by securities traded in different markets (from
now on cross-market arbitrage). In such a case cointegra­
tion is the usual topic, and authors very often focus on
simultaneous prices of sorne securities or portfolios in more
than one market (see for instance Brenner and Kroner (4)
or Harris el al (5)) or test sorne well known expressions
frequentIy related to the Law of One Price, like for instan­
ce, the relationship between spot and future prices (Proto­
papadakis and Stoll (6) or Kempf and Korn (7)) or the put­
call parity (Kleidon and Whaley (8), Lee and Nayar (9), or
Kamara and Miller (lO)).

However, although we could ensure that different
markets were giving the same price to sorne specific secu­
rities, portfolios or well known replicas, this is far of being
a sufficient condition to guarantee the absence of cross­
market arbitrage, and therefore, this is far of being a suffi­
cient condition to guarantee high degree of integration.
The existence of discount factors (Chamberlain and Roths­
child (n) or Hansen and Richard (12)) is the only way to
guarantee the absence of cross-market arbitrage, but we
can not compute the degree of market disintegration whe­
never the mentioned existence fails.

Thus, it is important to develop a formal theory in a
more general setting. We first focus on a single market,
deriving a general framework for arbitrage models. Atten­
tion is directed to maximum arbitrage profits assuming
short selling restrictions or relative arbitrage profits
otherwise. In order to focus attention on the main issues,
the model assumes initially a single periodo We apply li­
near and non-linear programming and duality theory to
derive such maximum arbitrage profits. When considering
several markets such an application of linear programming
methods computes discrepancies among prices and among
discount factors (the dual approach).

Two reasons have lead us to measure financial market
integration in monetary terms. First, measures proposed
here give a very useful information to agents-arbitrageurs.
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They allow them to determine how much money they can
win and which actions lead to this maximum arbitrage
profits. Second, although our model does not initially con­
sider the imperfect financial markets case (transaction
costs, shortselling costs, ...), taking proper account of these
transaction costs would be possible under several as­
sumptions. For instance if we assume that transaction costs
are determined by the total price of all the interchanged
assets. In this case, we compute the optimal arbitrage stra­
tegy leading to the maximum profit with respect to the
total price of the interchanged assets. Then, we discount
transaction costs from this maximum relative profit. Ano­
ther possibility is to consider the economy with frictions
defined by Jouini and Kallal (13). In this case, analogous
integration measures can be introduced after minor modi­
fications.

Duality theory of mathematical programming can be
used to present a dual approach that also leads to the in"
tegration measures and extends the risk-neutral valuation
methodology (Chamberlain and Rothschild (11)) even to
no arbitrage free economies. The dual approach also allo­
ws to relate our measures to the one previously introduced
in Chen and Knez (14), and it also leads to new open
problems, since, following sorne ideas appeared in Hansen
and Jagannathan (15), the measures could apply to test the
degree of fulfillment of theoretical asset pricing models in
the real world.

Finally, let us remark that the integration measures here
introduced may be easily tested in practice, and we will
present a brief synopsis of the results obtained for sorne
Spanish financial markets. As we willshow, sorne cross­
market arbitrage portfolios appear in the Spanish case, and
they can be well detected by applying the methodology
provided by the integration measures.

2. PRELIMINARIES

Throughout the paper we will consider a time interval
[O, n (write [O, 1) if T = 00) and n securities denoted by
Al' Az,···, All. The (finite or infinite) set 12 will denote the
states of the world, and L and J.l will respectively be the
usual cr-algebra on.Q, and probability measure on L. The
increasing family of <J-algebras (L t ) [ ] (being Lo = {<1>,

, tE O. T

.o} and L t eL for al! t E [O, T]) provides the information
available in the market at any instant, and the n-dimensio­
nal adapted stochastic process p(OJ, t) = (Pl(OJ, t), pz(OJ,
t), ... Pll(OJ, t)), OJ E 12, t E [O, n will represent the asset
prices. Assuming usual conventions, for every instant t E

[O, n and i = 1, 2, ... , n, the Lcmeasurable random varia­
ble pf given by pf(ro) = p¡(ro, t) (for any ro E 12) will be
the price of A¡ at time t, and it will be assumed to be non
negative and square integrable, Le. pf E LZ (L t ).

The first asset will be a numeraire, and therefore, there
exists a. > °such that for all t E [O, n the inequality PI
(OJ, t) > a. holds almost everywhere (a.e. for short). This is

not a very restrictive assumption since !atter property ho!ds,
for instance, if Al is a riskless asset.

Given t, s E [O, n such that t < s, and given a random
variable g E LZ (Ls)' we denote by E(gIL t ) E L Z (Lt ) the
conditional expectation of g relative to the information
available at date t.

For a fixed t E [O, 1], the feasible portfolios at time t
will be represented by R"-valuedsquare integrable I.t-mea­
surable random variables x = xt = xt(OJ) = x(OJ, t) =

(x¡(ro), x~(w), ..., x~(ro)). If the instant t varies, the corres­
ponding adapted stochastic process will be also denoted by
x or x( OJ, t).

Throughout the paper we will adopt different criteria
for the concepts of arbitrage and free lunch. At the mo"
ment, we will follow a simple extension of Ingersoll (16)
chapter 11.

Definition 2.1. Let us consider two different instants
t < s, and a R"-valued Lrmeasurable square integrable
random variable Xl. Then, Xl is said to be an arbitrage
portfolio between t and s if the following properties hold.

2.1.2. L;~lxi(ro)pf(ro) ~ Oa.e.

2.1.3.

P{CúEQ; I,;=¡xi(Cú)p!(Cú) < o} + P{CúEQ; I,:¡X!(Cú)pf(Cú) > o} > o

Furthermore, assuming that latter conditions hold, xt is
said to be an arbitrage portfolio of the second type if

J.l{ OJ E .o; L:l x;( OJ) Pi( OJ) < O} > O. In other case,

Xl is said to be of the first type.

3. COMPUNTIG THE DISCREPANCY AMONG
PRICES

This section is devoted to measure the arbitrage oppor­
tunities in the sense of definition 2.1, and therefore, we
will consider two fixed instants t < s. If there exists an
arbitrage portfolio between t and s, and agents are not
constrained and can sell or buy any quantity of any secu"
rity, then the arbitrage earns are not limited. As a conse­
quence, there are two possible ways to measure the level
of arbitrage opportunities in monetary terms. First, we can
impose short selling restrictions, and second, we can com­
pute attainable relative arbitrage profits. We will show that
both ways lead to similar measures.

A. Assnming short selling restrictions

Let us analyze the problem under short selling restric­
tions, and consider that short sales are bounded by a por"
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tfolio h(OJ) = (hl(OJ), hiOJ), ... , h,,(OJ)), OJE Q, such that h¡
(i = 1, 2, ... , n) is a non negative square integrable Lr
measurable random variable. Then, the optimal arbitrage
strategy is given by the following vector optimization pro­
blem

Problem (Ph)

Maximize

V" t(OJ) t( ) lV~ xt(OJ) pf(OJ) 2: Oa.e.L..J. p¡ X¡ OJ L..J,=I
1=1 t > _ . _x¡(ro) _ h¡(ro) a.e., 1 - 1,2, ..., n

Denote by m(t, s, h) the optimal objective value of
latter problem. Since the objective function is not scalar,
two important facts must be pointed out in order to clarify
the exposition. First, m(t, s, h) is not a number, but a L t­

measurable random variable that depends on the state of
nature OJ EQ and that will be also denoted by m(t, s, h, OJ).
The reason is clear. At the present moment one observes
sorne uncertainty about the arbitrage opportunities availa­
ble at the future instant t. Second, something very usual in
vector optimization, this random variable is not necessarily
unique and may depend on the concrete optimal solution
achieved. The following result shows that the second diffi­
culty will never appear in our model, and furthermore, the
first caveat has also a simple solution since portfolios that
maximize random arbitrage earns are just those that maxi­
mize expected arbitrage earns. Hence, the arbitrage bet­
ween t and s may be measured by the numerical value
E (m(t, s, h, OJ)), expected value of m(t, s, h, OJ).

Tbeorem 3.1. Let x· be a square integrable Lt-mea­
surable random variable. The following properties hold.

3.1.1. x· solves (Ph) ifand only ifx· solves thefollo­
wing sealar problem denoted by (EPh)

Maximize

_ L;I=J!:(m)x:(m)df.l(m)¡~;'=lX~(m~Pt(m) ~ ~~e.
x¡(m) _ h¡(m) a.e.. l - 1,2, ..., n

3.1.2. Let x· and x·· be two solutions of (Ph). Then

L~=IP:(OJ)X;(OJ) = L~=IP:(OJ)x;· (OJ)a.e.

The aboye result guarantees that m(t, s, h, OJ) is well
defined if problem (Ph) (or (EPh)) is solvable, but the
assumptions are notsufficient to ensure this property.
Anyway, !et us remark that the inequality

- 2:;=1 pt (ro) xt(ro) ~ 2:;~1 pI (ro) h;(ro) a.e. holds in L1(Lt)

for any portfolio x feasible for (Ph). Therefore, since L1

(L t) is an order complete space (see Schaeffer (17)), there
exists an integrable random variable m(t, s, h, 0» E LI(Lt)
supremum for the objective function. Furthermore, Theo­
rem 3.1 can be slight1y extended to show that the expected

value E (m(t, s, h, OJ) coincides with the supremum of
problem (EPh).

To simplify the exposition, from now on we will assu­
me that (Ph) is solvable if h is square integrable, although
the following result provides sufficient conditions to gua­
rantee this fact.

Tbeorem 3.2. Let us assume the following eonditions

3.2.1. There exists k¡ > O (i = 1, 2, ... , n) sueh that
pt(ro) 2: ki a.e.

Then, problems (Ph) and (EPh) are solvable.

The portfolio h has been .considered the upper bound
for short sales, and may be easily interpreted if we assume,
for instance, tbat agents can not sell the assets they do not
have. Thus, if we consider an investor who holds the por­
tfolio h at time t, he/she can obtain at t the arbitrage profits
given by m (t, s, h, OJ). Moreover, it is easy to prove that
m (t, s, h, OJ) 2: Oa.e. and m (t, s, h, OJ) = Oa.e. if and only
if there are no arbitrage portfolios of the second type bet­
ween t and s, bounded from below by -h.

We are now interested in a random measure m (t, s, ro)
without special mention of h. This measure can be obtai~

ned by computing the maximum value of m (t, s, h, OJ)
among the portfolios h with price equal to one dollar in all
the states of nature. Following programs and Theorem 3.3
allow to introduce m (t, s, OJ) with precision.

Program (P)

Maximize

¡
hl(ro) 2: Oa.e., i = 1,2, ... , n

V" 2:~ xt(ro) pfCro) 2: Oa.e.
- L..J¡=1 pt(ro) xt(ro) xt(;) + h¡(ro) 2: Oa.e., i = 1, 2, ..., n

2:;'=1 pt(ro) h¡Cro) = 1 a.e.

Program (EP)

Maximize

j
hi(m) ~ Oa.e., i = 1, 2, ..., n

~" f ·L~' xl(m)pt(m) ~ Oa.e.
- .L.r- J/I(m) xl(m) df1(m) t I=J .

,-1 Q X, (m) + h¡{m) ~ Oa.e., l = 1, 2, ... , n

~:' pJ(m) hi(m) = 1a.e..L., =1

Program (H)

Maximize
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Denote by m(t, s, h) the optimal objective value of
latter problem. Since the objective function is not scalar,
two important facts must be pointed out in order to clarify
the exposition. First, m(t, s, h) is not a number, but a Lr
measurable random variable that depends on the state of
nature ro EQ and that will be also denoted by m(t, s, h, ro).
The reason is clear. At the present moment one observes
sorne uncertainty about the arbitrage opportunities availa­
ble at the future instant t. Second, something very usual in
vector optimization, this random variable is not necessarily
unique and may depend on the concrete optimal solution
achieved. The following result shows that the second diffi­
culty will never appear in our model, and furthermore, the
first caveat has also a simple solution since portfolios that
maximize random arbitrage earns are just those that maxi­
mize expected arbitrage earns. Hence, the arbitrage bet­
ween t and s may be measured by the numerical value
E (m(t, s, h, ro)),expected value of m(t, s, h, ro).

Tbeorem 3.1. Let x· be a square integrable Lr-mea­
surable random variable. The following properties hold.

3.1.1. x· solves (Ph) ifand only ifx· solves thefollo­
wing sealar problem denoted by (EPh)

Maximize

_ L;I=J!:(W)X:(W)df.l(W)¡~;'=lX~(W~Pt(W) ~ ~~e.
x¡(w) _ h¡(w) a.e.. l - 1,2, ..., n

3.1.2. Let x· and x·· be two solutions of (Ph). Then

L~=IPt(ro)X;(ro) = L~=IPt(ro)x;· (ro)a.e.

The aboye result guarantees that m(t, s, h, ro) is well
defined if problem (Ph) (or (EPh) is solvable, but the
assumptions are notsufficient to ensure this property.
Anyway, !et us remark that the inequality

- 2:;=1 pi (ro) xt (ro) ~ 2:;~1 pi (ro) h;(ro) a.e. holds in L1(Lr)

for any portfolio x feasible for (Ph). Therefore, since L1

(Lr) is an order complete space (see Schaeffer (17)), there
exists an integrable random variable m(t, s, h, 0» E LI(Lr)
supremum for the objective function. Furthermore, Theo­
rem 3.1 can be slight1y extended to show that the expected

value E (m(t, s, h, ro) coincides with the supremum of
problem (EPh).

To simplify the exposition, from now on we will assu­
me that (Ph) is solvable if h is square integrable, although
the following result provides sufficient conditions to gua­
rantee this fact.

Tbeorem 3.2. Let us assume the following eonditions

3.2.1. There exists k¡ > O (i = 1, 2, ... , n) sueh that

pt(ro) 2: k¡ a.e.

Then, problems (Ph) and (EPh) are solvable.

The portfolio h has been .considered the upper bound
for short sales, and may be easily interpreted if we assume,
for instance, tbat agents can not sell the assets they do not
have. Thus, if we consider an investor who holds the por­
tfolio h at time t, he/she can obtain at t the arbitrage profits
given by m (t, s, h, ro). Moreover, it is easy to prove that
m (t, s, h, ro) 2: Oa.e. and m (t, s, h, ro) = Oa.e. if and only
if there are no arbitrage portfolios of the second type bet­
ween t and s, bounded from below by -h.

We are now interested in a random measure m (t, s, ro)
without special mention of h. This measure can be obtai~

ned by computing the maximum value of m (t, s, h, ro)
among the portfolios h with price equal to one dollar in all
the states of nature. Following programs and Theorem 3.3
allow to introduce m (t, s, ro) with precision.

Program (P)

Maximize

¡
hl(ro) 2: Oa.e., i = 1,2, ... , n

V" :¿~ xt(ro) pf(ro) 2: Oa.e.

- L..J¡=I Pt(ro)xt(ro) xt(;) + hiero) 2: Oa.e., i = 1,2, ..., n

:¿;'=I pt(ro) hiero) = 1 a.e.

Program (EP)

Maximize

j
h¡(W) ~ Oa.e., i = 1, 2, ..., n

~" f L~' x:(w)pt(w) ~ Oa.e.
-,L..¡. J/:(w) x:(w) df1(w) t I=J .

,=1 Q x,(w) + h¡{w) ~ Oa.e., l = 1,2, ..., n

~:' pJ(w) h¡(w) = 1a.e.
,L..¡,=l

Program (H)

Maximi.ze
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{

. h¡(ro) ~ Oa.e., i ::: 1, 2, OO" n
m(t, s, h, ro) In ¡( )h.( ) ::: 1. P, ro I ro a.e.

,=1

Theorem 3.3. Let h* and x' be two R"-valued square
integrable L¡-measurable random variables. Then, we have
the following properties.

3.3.1. The pair (x', h') solves (P) if and only if it
solves (EP). Jf so, the inequality

n n

~ Ipf(ro) xf(ro) ~ - Ipf(ro) x; (ro) a.e.
¡=1 ¡=1

holds for any pair (x, h) feasible for (P).

3.3.2. The pair (x', h*) solves (P) if and only if h'
solves (l/) and x' solves (Ph')

Although (P) is a vector problem, a result similar to
3.1.2 trivially follows from 3.3.1. Therefore, the random
measure m (t, s, ro) is well defined. We have already said
that, in a market with short selling restrictions, the measure
m (t, s, ro) represents the maximum arbitrage profits avai­
lable at t, when short sales do not exceed one dollar in
total. Furthermore, if (x', h') solves (P), then h' is the
portfolio that an agent must hold in order to obtain the
profits given by m (t, s, ro) (in other case the arbitrage
profits would be lower than m (t, s, ro), and x' is the con­
crete arbitrage strategy that the agent must implement.

Since 'L;=¡ pJ (ro) h*(ro) = 1a.e., it is clear ¡hat O$ m (t, s,

ro) ~ 1 a.e. The following result summarizes another inter­
esting properties of m (t, s, ro).

(ro, t) = Oa.e. It should be pointed out ¡hat m (1, s, OJ) (or
its expected value) might vanish in presence of arbitrage
portfolios of the first type. We willsolve this difficulty in
fifth section. At the moment, we are going to analyze the
measures after relaxing the short selling restrictions.

B. Models without short selling restrictions

The random measure and the numerical measure also
apply in a model without short selling restrictions, since
they are optimal relative arbitrage profits. To prove this
fact we need Lemma 3.5, interesting by itself, because it
shows the relationship between the portfolios x* and h '.
Moreover, the lemma may beeasily interpreted. Since an
investor must hold the initial portfolio h' in order to obtain
the optimal arbitrage earns, this portfolio is composed by
the securities that the investor must sello

Lemma 3.5. Let the pair (x', h*) be a solution of (P).
Then, there exists a null set no e n, no E 1:" such that the
following conditions hold for ro \i!: no and i = 1, 2, ..., n.

3.5.1. Jf x; (ro) > O then h; (ro) ::: O.

3.5.2. Jf x;(ro) $ O. then h¡*(ro) ::: ~x;(ro).

Given any (L¡-measurable and square integrable) por"
tfolio x (::: x( ro, t)) we can define the L(-measurable ran­
dom variable f(x) (or f(x, ro)) as follows.

If pf(ro) xf(ro) ~ O i = 1, 2, .oo, n then f(x, ro) = O.
Otherwise,

Theorem 3.4.

3.4.1. O~ m (l, s, ro) ~ 1 a.e. Thus, m (t, s, ro) E l!
(L,) for all 1 ~ p ~ oo.

f(x, ro)

3.4.2. O ~ E (m (t, s, ro)) ~ 1.

3.4.3. m (t, s, ro) == O a.e. if and only if there are no
arbitrage opportunities of the second type between t and s.

3.4.4. E (m (t, s, ro)) ::: O if and only if there are no
arbilrage opportunities ofthe second type between t and s.

The aboye theorem shows that the random measure
m (t, s, ro) or its expected value E (m (t, s, ro)), provides
the level of arbitrage opportunities of the second type. The
arbitrage does not appear if the measures are zero, and the
arbitrage profits almost vanish if the measures are close to
zero, case in which the arbitrage would probably disappear
after transaction costs or measurementerrors. On the other
hand, the arbitrage opportunities are more clear when the
measures increase, and the limit case E (m (t, s, ro)) = 1
(which holds if and only if m (t, s, ro) = 1 a.e.) corresponds
to unrealistic situations that will never appear in practice.
There exists an asset A¡ such that p/ (ro, t) > O a.e. and p¡

where A(ro, x) ::: {i ::: 1,2, oo., n; pf(ro)xf(ro) < O}

Let us consider an investor who buys the portfolio X. If
x is an arbitrage portfolio between t and s or, more gene­
rally, if the price of x at t is non positive a.e., thenf(x, ro)
represents the ratio between the total income and the price
of the sold assets. Thus, for arbitrage portfolios, f (x, OJ)
provides relative arbitrage earns. The inequality f (x, ro)
~ 1 is c1ear, and f (x, ro) ~ O also holds if the price at t of
x is non positive a.e. Hence,f (x) is always in the space l!
(L() (1 ~ p ~ 00). These facts and the aboye lemma allow
to prove one of the most important results of this paper.

Theorem 3.6. Lel (x', h*) be a solution of (P). Then,

3.6.1. f (x*, OJ) = m (t, s, ro) a.e.

3.6.2. Jf x is an arbitrage portfolio between t and $,

then f (x, ro) ~ m (t, s, ro) a. e.

340 Problemas complejos de decisión: Alejandro Balbás el al. Rev.R.Acad.Cien. Exact. Fis.Nat. (Esp), 1998; 92

{

. h¡(ro) ~ O a.e., i ::: 1, 2, OO" n
m(t, s, h, ro) In ¡( )h.( ) ::: 1. P, ro I ro a.e.,=1

Theorem 3.3. Let h* and x' be two R"-valued square
integrable L¡-measurable random variables. Then, we have
the following properties.

3.3.1. The pair (x', h') solves (P) if and only if it
solves (EP). Jf so, the inequality

11 n

~ Ipf(w) xf(ro) ~ - Ipf(ro) x; (ro) a.e.
¡=1 ¡=I

holds for any pair (x, h) feasible jor (P).

3.3.2. The pair (x', h*) solves (P) if and only if h'
solves (l/) and x' solves (Ph')

Although (P) is a vector problem, a result similar to
3.1.2 trivially follows from 3.3.1. Therefore, the random
measure m (t, s, ro) is well defined. We have already said
that, in a market with short selling restrictions, the measure
m (t, s, ro) represents the maximum arbitrage profits avai­
lable at t, when short sales do not exceed one dollar in
total. Furthermore, if (x', h') solves (P), then h' is the
portfolio that an agent must hold in order to obtain the
profits given by m (t, s, ro) (in other case the arbitrage
profits would be lower than m (t, s, ro), and x' is the con­
crete arbitrage strategy that the agent must implement.

Since I..;=¡ pf(ro) h*(ro) = 1a.e., it is clear ¡hat O~ m (t, s,

ro) ~ 1 a.e. The following result summarizes another inter­
esting properties of m (t, s, ro).

(ro, t) = Oa.e. It should be pointed out ¡hat m (t, s, OJ) (or
its expected value) might vanish in presence of arbitrage
portfolios of the first type. We willsolve this difficulty in
fifth section. At the moment, we are going to analyze the
measures after relaxing the short selling restrictions.

B. Models without short selling restrictions

The random measure and the numerical measure also
apply in a model without short selling restrictions, since
they are optimal relative arbitrage profits. To prove this
fact we need Lemma 3.5, interesting by itself, because it
shows the relationship between the portfolios x * and h '.
Moreover, the lemma may beeasily interpreted. Since an
investor must hold the initial portfolio h' in order to obtain
the optimal arbitrage earns, this portfolio is composed by
the securities that the investor must sello

Lemma 3.5. Let the pair (x', k*) be a solution of (P).
Then, there exists a null set no e n, no E 1:" such that the
following conditions hold for ro \i!: no and i = 1, 2, ..., n.

3.5.1. Jf x; (ro) > O then h; (ro) ::: O.

3.5.2. Jf x;(ro) ~ O. then h¡*(ro) ::: ~x;(ro).

Given any (L¡-measurable and square integrable) por"
tfolio x (::: x( ro, t)) we can define the L(-measurable ran­
dom variable f(x) (or f(x, ro)) as follows.

If pf(ro) xf(ro) ~ O i = 1, 2, .oo, n then f(x, ro) = O.
Otherwise,

where A(w, x) ::: {i ::: 1, 2, oo., n; pf(ro) xf(ro) < O}

Theorem 3.4.

3.4.1. O ~ m (l, s, ro) ~ 1 a.e. Thus, m (t, s, ro) E l!
(L,) for all 1 ~ p ~ oo.

3.4.2. O ~ E (m (t, s, ro)) ~ 1.

f(x, ro)
'" ~ pf (ro) xf (w).L.i,-I

3.4.3. m (t, s, ro) == O a.e. if and only if there are no
arbitrage opportunities of the second type between t and s.

3.4.4. E (m (t, s, ro)) ::: O if and only if there are no
arbitrage opportunities ofthe second type between t and s.

The aboye theorem shows that the random measure
m (t, s, ro) or its expected value E (m (t, s, ro)), provides
the level of arbitrage opportunities of the second type. The
arbitrage does not appear if the measures are zero, and the
arbitrage profits almost vanish if the measures are close to
zero, case in which the arbitrage would probably disappear
after transaction costs or measurementerrors. On the other
hand, the arbitrage opportunities are more clear when the
measures increase, and the limit case E (m (t, s, ro)) = 1
(which holds if and only if m (t, s, ro) = 1 a.e.) corresponds
to unrealistic situations that will never appear in practice.
There exists an asset A¡ such that p/ (ro, t) > O a.e. and p¡

Let us consider an investor who buys the portfolio X. If
x is an arbitrage portfolio between t and s or, more gene­
rally, if the price of x at t is non positive a.e., thenf(x, ro)
represents the ratio between the total income and the price
of the sold assets. Thus, for arbitrage portfolios, f (x, ro)
provides relative arbitrage earns. The inequality f (x, ro)
~ 1 is clear, and f (x, ro) ~ Oalso holds if the price at t of
x is non positive a.e. Hence,f (x) is always in the space l!
(L() (1 ~ p ~ 00). These facts and the aboye lemma allow
to prove one of the most important results of this paper.

Theorem 3.6. Let (x', h*) be a solution of (P). Then,

3.6.1. f (x*, OJ) = m (t, s, ro) a.e.

3.6.2. Jf x is an arbitrage portfolio between t and $,

then f (x, ro) ~ m (t, s, ro) a. e.
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3.6.3. Jf x is an arbitrage portfolio between t and s,
and E (f(x)) = E (f (x, ro)) denotes the expected value of
f (x, ro), then E (f (x)) :::; E (m (t, s, ro)) = E (f (x')).

The aboye paragraph seems to be also important from
a mathematical point of view. In faet, we have shown a
proeedure to solve a non differentiable vector optimization
problem, and a duality theory for this problem has been

Now, it is obvious that the measure m (t, s, ro) (respec­
tively E (m (t, s, m)) represents optimal relative arbitrage
profits (respectively optimal expected relative arbitrage
profits) in a market with, or without short selling restric­
tions. To be precise, x' solves the following programs.

a.e.

a.e.

a.e.

a.e.

2:: O

:::; O

2:: O

:::; O
Maximize g(x,

{
2:n

xf{m) pf (m)
Maximize E(g(x, m)). ~=1

.2:;=1 xf{m) pf(ro)

and

Moreover, x' is a strong solution of (R).

l ( )
m(t, s, m)

t, s, ro =
2-m(t, s, ro)

The objective optimal value of latter problems will be
represented by l (t, s, m) and E (l (t, s, ro)). Once again, we
have a random and a numerical measure respectively and
they vanish if and only if there are no arbitrage portfolios
of the second type.

Thus, O :::; l (t, s, m) :::; m (t, s, m) :::; 1 a.e. and O :::; E
(l (t, s, m)) :::; 1. Both random (or numerical) measures
simultaneously achieve the extreme value 1 and yield ana­
logous information about the level of arbitrage opportuni­
tieso

following result holds.

Latter theorem shows the following relationship

It is cIear that g(x, m) :::; 1 a.e. and, assuming that x is
an arbitrage strategy, g(x, m) 2:: O a.e. and the expression

g(x, m) = f(x, m) may be easily proved. Thus, sin­
2- f(x,m)

ce the real function t -7 __t_ increases for O:::; t:::; 1, the
2-t

-2:n
_ pf(m)xf(m)

g(x) = g(x, ro) = --'===n-,=I:.!....I__--

2:;=1 pf (m )Ixf (m)1

Theorem 3.7. Let x' be a solution of (Q). Then, x'
solves the following problems (R) and (ER)

If p¡(m)x;(m) O, i =1,2, ..., n then g(x) = g (x,
w) = O. Otherwise,

provided. The methodology might apply in more general
situations.

Let us show the last interpretation of m (t, s, ro) and
E (m (t, s, m)), which wiJI be specially useful in markets
with frictions. We are interested in the ratio between the
total income provided by an arbitrage portfolio, and the
value of all the interehanged (bought and sold) securities.
Thus, for any portfolio x= X, we wiJI consider the follo­
wing LI-measurable random variable denoted by both, g
(x, m) or g (x).

a.e.

a.e.

a.e.

a.e.

2:: O

:::; O

Program (Q)

Maximize f(x, w){¿~'1 xf(w) pi (ro) < O

2:;=1 xf (m) pf (ro) 2:: O

Program (EQ)

{
2:~ xf (m) pf(m)

Maximize E(J(x, m)) · ~=1
2:;=1 xf{m) pf(m)

Problems (P), (EP), (Q), and (EQ) are equivalent but
all them are interesting. First, the measures have different
meaning that depends on the problem. Second, the measu­
res do not depend on the short selling restriction assumed
by the model. From the most constrained models (the
agents can not sell the securities they do not have) to the
most relaxed ones (there is nO limit in the short positions
that agents can hold) we obtain the same value for the
measures. Of course, this also happens if one considers
situations not so restrictive or so relaxed. Problem (Q)
perhaps provides the most interesting interpretation, since
it applies for both, models with or without short selling
restrictions, and measures the arbitrage opportunities by
means of random arbitrage earns. However, this problem is
a multiobjective one and the objectives are non differentia­
ble functions. Thus, it can not be solved in practice. On the
other hand, problem rE?) perhaps yields a poor interpreta­
tion (expected but not real arbitrage earns, in a model with
hard assumptions on the short selling restrictions) but it is
a simple scalar linear problem that may be easily solved in
practice, and for which a well known duality theoryhas
been developed. This theory will be very important for us
in future seetions, sinee it will be the key to obtain the
relationship between our measures and the risk neutral
probabilities.

x' is also a strong solution of the vector problem (Q),
Le., a solution that dominates any other arbitrage strategy.
Furthermore, if arbitrage portfolios of the second type
between t and s do exist, then the converse also holds,
since the solutions of (Q) (or (EQ) jointly with Lemma
3.5 provide the solutions of (P) and (EP).
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3.6.3. Jf x is an arbitrage portfolio between t and s,
and E (f(x)) = E (f (x, ro)) denotes the expected value of
f (x, ro), then E (f (x)) :::; E (m (t, s, ro)) = E (f (x')).

The above paragraph seems to be also important from
a mathematical point of view. In fact, we have shown a
procedure to solve a non differentiable vector optimization
problem, and a duality theory for this problem has been

Now, it is obvious that the measure m (t, s, ro) (respec­
tively E (m (t, s, m)) represents optimal relative arbitrage
profits (respectively optimal expected relative arbitrage
profits) in a market with, or without short selling restric­
tions. To be precise, x' solves the following programs.

a.e.

a.e.

a.e.

a.e.

:::; O

2:: O

2:: O

:::; O
Maximize g(x,

{
2:n

xf (m) pf (m)
Maximize E(g(x, m)). ~=1

.2:;=1 xf(m) pf(m)

and

Moreover, x' is a strong solution of (R).

The objective optimal value of latter problems will be
represented by 1(t, s, m) and E (1 (t, s, ro)). Once again, we
have a random and a numerical meaSlire respectively and
they vanish if and only if there are no arbitrage portfolios
of the second type.

Latter theorem shows the following relationship

1( )
m(t, s, m)

t, s, m =
2 - m(t, s, m)

Thus, O :::; 1 (l, s, m) :::; m (t, s, m) :::; 1 a.e. and O :::; E
(1 (t, s, m)) :::; 1. Both random (or numerical) measures
simultaneously achieve the extreme value 1 and yield ana­
logous information about the level of arbitrage opportuni­
tieso

Theorem 3.7. Let x' be a solution of (Q). Then, x'
solves the following problems (R) and (ER)

It is cIear that g(x, m) :::; 1 a.e. and, assuming that x is
an arbitrage strategy, g(x, m) 2:: O a.e. and the expression

g(x, m) = f(x, m) may be easily proved. Thus, sin­
2- f(x,m)

ce the real function t -7 __t_ increases for O:::; t:::; 1, the
2-t

following result holds.

-2:n
_ pf(m)xf(m)

g(x) = g(x, m) = --'===n.!::/:..!...l__--

2:;=1 pi (m )Ixi (m)1

If pi(m)x;(m) O, i =1,2, ..., n then g(x) = g (x,
w) = O. Otherwise,

provided. The methodology might apply in more general
situations.

Let liS show the last interpretation of m (l, s, ro) and
E (m (t, s, m)), which will be specially useful in markets
with frictions. We are interested in the ratio between the
total income provided by an arbitrage portfolio, and the
value of all the interchanged (bought and sold) securities.
Thus, for any portfolio x= X, we will consider the follo­
wing 2/-measurable random variable denoted by both, g
(x,m) or g (x).

a.e.

a.e.

a.e.

a.e.

2:: O

:::; O

Program (Q)

Maximize f(x, w){¿~'1 xf(ro) pi (ro) < O

2:;=1 xf (m) pf (ro) 2:: O

{
2:~ xf (m) pf(m)

Maximize E(J(x, m)) · ~=1
2:;=1 xf{m) pf(m)

Program (EQ)

Problems (P), (EP), (Q), and (EQ) are equivalent but
all them are interesting. First, the measures have different
meaning that depends on the problem. Second, the measu­
res do not depend on the short selling restriction assumed
by the model. From the most constrained models (the
agents can not sell the securities they do not have) to the
most relaxed ones (there is no limit in the short positions
that agents can hold) we obtain the same value for the
measures. Of course, this also happens if one considers
situations not so restrictive or so relaxed. Problem (Q)
perhaps provides the most interesting interpretation, since
it applies for both, models with or without short selling
restrictions, and measures the arbitrage opportunities by
means of random arbitrage earns. However, this problem is
a multiobjective one and the objectives are non differentia­
ble functions. Thus, it can not be solved in practice. On the
other hand, problem rE?) perhaps yields a poor interpreta­
tion (expected but not real arbitrage earns, in a model with
hard assumptions on the short selling restrictions) but it is
a simple scalar linear problem that may be easily solved in
practice, and for which a well known duality theoryhas
been developed. This theory will be very important for us
in future sections, since it will be the key to obtain the
relationship between our measures and the risk neutral
probabilities.

x' is also a strong solution of the vector problem (Q),
i.e., a solution that dominates any other arbitrage strategy.
Furthermore, if arbitrage portfolios of the second type
between t and s do exist, then the converse also holds,
since the solutions of (Q) (or (EQ) jointly with Lemma
3.5 provide the solutions of (P) and (EP).
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C. Applications to static and discrete time dynamic
asset pricing modeIs

Let us particularize the aboye results to static (or one
period) and discrete time dynamic models. We wilI merely
summarize the main resuIts for these special cases. Further
information may be found in Balbás and Muñoz (2) and
Balbás et al (3).

To analyze a static model we only have to consider
that t = O. Let us also assume that s is any arbitrary future
date, and suppose that O and s are the unique trading
moments. Then, since2.o = {el>, Q} and the random varia­
bles m (O, s, ro) and p? must be 2.o-measurable, it is ob­
vious that p? and m (O, s, ro) must be constant values and
do not depend on ro E Q. As a consequence, the measure
m (O, s, ro) coincides with its expected value and may be
denoted by m (O, s). The inequalities O :s; m (O, s) :s; 1 are
clear, and there are no arbitrage portfolios of the second
type if and only if m (O, s) = O. Analogous resuIts hold for
the measure 1 = 1 (O, s).

Consider now a discrete time dynamic model. There
are a finite number of trading dates to = O < tI < ... < tN,

and we can consider the random variables m (t¡, t¡+I' ro).
Thus we measure the arbitrage opportunities by an adapted
stochastic process that can be also denoted by m (t¡, ro), i
= O, 1, ..., N, ro E Q. Since the security Al is a numeraire,
it can be easily proved that the absence of arbitrage of the
second type between any pair of dates is equivalent to the
absence of arbitrage of the second type between consecu~

tive dates. Then, the absence of arbitrage holds if and only
if the stochastic process m (t¡, ro) vanishes. Once again,
similar properties hold if we consider the process
1 (t¡, ro).

Discrete time dynamic models with infinite trading
dates may also be considered. We wilI analyze them and
continuous time models in fifth section. Furthermore, the
theory we wilI develop also applies for static models and
discrete time dynamic models with finite trading dates, and
it wilI extend the resuIts for arbitrage portfolios of the first
type and free lunches in the sense of Harrison and Kreps
(18).

4. COMPUTING THE DISCREPANCY AMONG
DISCOUNT FACTORS

Random and numerical measures have been introduced
by means of optimal arbitrage portfolios because we are
interested in measuring the arbitrage in monetary terms.
NevertheIess, there are many reasons to analyze the pro­
blem from a dual point of view. First, the dual approach
provides a proxy for discount factors (or equivalent con­
cepts, like the risk neutral probabilities, or the state prices)
in no arbitrage free economies, and thus, we extend the
methodology of risk-neutral valuation (see for instance

ChamberIain and Rothschild (11)) and can compute «right
prices» for the assetsand the errors committed by the
agents. Second, the presence of arbitrage may be apparent
but not real. Microstructure constraints, measurement
errors, frictions, etc., might impede to implement the stra­
tegies in practice. Therefore, a theory that provides dis­
count factors under not very ideal asset pricing assumptio­
ns makes the models more flexible and realistic. We wilI
apply these ideas in fifthsection to analyze markets with
frictions, and wilI present some aIternatives to very impor­
tant results appeared in previous ¡iterature {see for instance
Prisman (19) or Jouini and KaIlal (13)). Third, very inter­
esting papers have measured the integration of financial
markets by means of discount factors (see for instance
Chen and Knez (14)). Hence, since the integration of fi­
nancial markets is the present paper main objective, we
need the dual approach to relate our theory to previous
ones. FinaIly, describing m (t, S, ro), E(m(t, s, ro)), 1 (t, s,
ro)) by means of discount factors we get new interpretatio­
ns and properties that improve our knowledge of these
measures.

Consider the foIlowing scalar or vector optimization
problems for which the decision variableshave been deno­
ted by f E L2(2.s), A. E L2(2.t ), and A.¡ E L\2.t) i = 1, 2, ... ,
n.

Program (P')

!
E(.tPfl:q + A¡ = pI i = 1, 2, ..., n

Minimize A(m) .pI (m) A(m) - A;(m) .;,: Oa.e., i =. 1, 2, ..., n

¡(m) ;,: O, A(m), A¡(m) ;,: Oa.e., ¡ = 1, 2, ... , n

Program (EP ')

l
E(MIL t ) + A¡ =pi i = 1, 2, ... , n

Minimize E(A(m)) •pi(m) A(m) - A¡(m);,: Oa.e., i =. 1,2, ..., n

¡(m) ;,: 0, A(m), A¡(m) ;,: °a.e., ¡ = 1, 2, ..., n

Let us remark that constraints can be simplified and
the decision variables .ít¡, i = 1, 2, ..., n eliminated. Then,
we get the aIternative and equivalent set of constraints

o :s; pf - E(.IPtIL t ) :s; pfA., i = 1, 2, ..., n

fíO)) :?: O, .ít(0)) :?: Oa.e.

Latter problems aIlow an interesting economic me­
aning. For each feasible family of variables, f provides a

possible proxy for discount factors, E(JPtlL¡) becomes the

«right price» for the ¡tlt-security, pi - E(JPflLI) the «com­
mitted error» and A. the relative (per dallar) maximum
(among the n securities) «committed error». So, problem
(P') tries to find discount factors in order to minimize the
random «relative maximum committed error", and (EP')
minimizes theexpected value.
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C. Applications to static and discrete time dynamic
asset pricing modeIs

Let us particularize the aboye results to static (or one
period) and discrete time dynamic models. We wilI merely
summarize the main resuIts for these special cases. Further
information may be found in Balbás and Muñoz (2) and
Balbás et al (3).

To analyze a static model we only have to consider
that t = O. Let us also assume that s is any arbitrary future
date, and suppose that O and s are the unique trading
moments. Then, since2.o = {el>, Q} and the random varia­
bles m (O, s, ro) and p? must be 2.o-measurable, it is ob­
vious that p? and m (O, s, ro) must be constant values and
do not depend on ro E Q. As a consequence, the measure
m (O, s, ro) coincides with its expected value and may be
denoted by m (O, s). The inequalities O :s; m (O, s) :s; 1 are
clear, and there are no arbitrage portfolios of the second
type if and only if m (O, s) = O. Analogous resuIts hold for
the measure 1 = 1 (O, s).

Consider now a discrete time dynamic model. There
are a finite number of trading dates to = O < tI < ... < tN,

and we can consider the random variables m (t¡, t¡+I' ro).
Thus we measure the arbitrage opportunities by an adapted
stochastic process that can be also denoted by m (t¡, ro), i
= O, 1, ..., N, ro E Q. Since the security Al is a numeraire,
it can be easily proved that the absence of arbitrage of the
second type between any pair of dates is equivalent to the
absence of arbitrage of the second type between consecu~

tive dates. Then, the absence of arbitrage holds if and only
if the stochastic process m (t¡, ro) vanishes. Once again,
similar properties hold if we consider the process
1 (t¡, ro).

Discrete time dynamic models with infinite trading
dates may also be considered. We wilI analyze them and
continuous time models in fifth section. Furthermore, the
theory we wilI develop also applies for static models and
discrete time dynamic models with finite trading dates, and
it wilI extend the resuIts for arbitrage portfolios of the first
type and free lunches in the sense of Harrison and Kreps
(18).

4. COMPUTING THE DISCREPANCY AMONG
DISCOUNT FACTORS

Random and numerical measures have been introduced
by means of optimal arbitrage portfolios because we are
interested in measuring the arbitrage in monetary terms.
NevertheIess, there are many reasons to analyze the pro­
blem from a dual point of view. First, the dual approach
provides a proxy for discount factors (or equivalent con­
cepts, like the risk neutral probabilities, or the state prices)
in no arbitrage free economies, and thus, we extend the
methodology of risk-neutral valuation (see for instance

ChamberIain and Rothschild (11)) and can compute «right
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tegies in practice. Therefore, a theory that provides dis­
count factors under not very ideal asset pricing assumptio­
ns makes the models more flexible and realistic. We wilI
apply these ideas in fifthsection to analyze markets with
frictions, and wilI present some aIternatives to very impor­
tant results appeared in previous ¡iterature {see for instance
Prisman (19) or Jouini and KaIlal (13)). Third, very inter­
esting papers have measured the integration of financial
markets by means of discount factors (see for instance
Chen and Knez (14)). Hence, since the integration of fi­
nancial markets is the present paper main objective, we
need the dual approach to relate our theory to previous
ones. FinaIly, describing m (t, S, ro), E(m(t, s, ro)), 1 (t, s,
ro)) by means of discount factors we get new interpretatio­
ns and properties that improve our knowledge of these
measures.
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ted by f E L2(2.s), A. E L2(2.t ), and A.¡ E L\2.t) i = 1, 2, ... ,
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Minimize E(A(m)) •pi(m) A(m) - A¡(m);,: Oa.e., i =. 1,2, ..., n

¡(m) ;,: 0, A(m), A¡(m) ;,: °a.e., ¡ = 1, 2, ..., n

Let us remark that constraints can be simplified and
the decision variables .ít¡, i = 1, 2, ..., n eliminated. Then,
we get the aIternative and equivalent set of constraints

o :s; pf - E(.IPtIL t ) :s; pfA., i = 1, 2, ..., n

fíO)) :?: O, .ít(0)) :?: Oa.e.

Latter problems aIlow an interesting economic me­
aning. For each feasible family of variables, f provides a

possible proxy for discount factors, E(JPtlL¡) becomes the

«right price» for the ¡tlt-security, pi - E(JPflLI) the «com­
mitted error» and A. the relative (per dallar) maximum
(among the n securities) «committed error». So, problem
(P') tries to find discount factors in order to minimize the
random «relative maximum committed error", and (EP')
minimizes theexpected value.
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It may be proved that the solution x* of (P) and (EP)
can be talcen in C(í.J Hence, applying the results of An­
derson and Nash (20) chapter I1I, problem (EP') becomes
the dual problem of (EP) This reference also shows several
(alternative) conditions to ensure that there is no duality
gap between (EP) and (E?') (Le., primal and dual proble­
ms are solvable and the optimal objective value is common
for both problems) and, in order to simplify the exposition,
we will assume that the absence of duality gap holds in our
context. Then, it is not difficult to obtain that the solution
of (EP') becomes a strong solution for the vector optimi­
zation problem (P') as wel1. Moreover, manipulating pri­
mal and dual constraints, one can obtain that

m (t, s, ro) = - ~~ x;(ro)p;(ro) = .t(ro) a.e. if (x*,
"""'1=1

h*) solves (P) and (/, A*) solves (P'). The fo11owing result
summarizes these ideas.

Theorem 4.1. Assume that (1, X*) solves (E?'), and
suppose that there is no duality gap between (EP) and
(EP'). Then

4.1.1. A*(ro) = m (t, s, 0)) a.e. and E (m(t, s, ro))
beeomes the optimal value 01 (EP)'.

4.2.2. (j', A.*) is a strong solution 01 (P').

Latter result is important since it yields new interpre­
tations for measures E (m(t, s, ro)) and m (t, s, ro). E (m(t,
s, ro)) represents the average relative committed error when
the market price the assets, while m (t, s, ro) gives us the
random relative committed error. Furthermore, if there are
no arbitrage opportunities of the second type between t and
s, the measures vanish and f gives discount factors in the

sense that EV* pflLt ) = p; i = 1, 2, ... , n (Hansen and
Richard (12). If the arbitrage appears, f gives a proxy for
discount factors, and E(f*pfl!t) may be understood as a
«right» price for the ith_security i = 1, 2, ... , n.

Theorem 4.1 becomes also a duality theorem for vector
optimization problems (P) and (?'). But let us point out
that the natural dual of (P) is far more complex than (P')
with a 1arger feasible set, and a more complex objective
function (see for instance Balbás and Heras (21». Theo­
rem 4.1 shows that ~trong duality between (P) and its
natural dual holds if and only if there is no duality gap
between the scalar problems (EP) and (EP'). Thus, once
again, our results may be interesting in Mathematical Pro­
gramming Theory since this methodology might apply in
more general situations.

5. EXTENDING 'rHE MAIN RESULTS

A. Markets with frictions

The literature on asset pricing has incorporated the
market frictions (transaction costs, taxes, bid-ask spread,...)

under different points of view (see for instance Leland
(23), Davis et al (24), or Toft(25», and these frictions are
specially important when one analyzes the existence of
arbitrage strategies (see Brennan and Schwartz (22».
Throughout this section we will assume three alternative
hypotheses on market frictions.

First, it is simple but realistic and useful to consider
that transaction costs linear1y depend on the total price of
a11 the interchanged (sold and purchased) assets. If an in­
vestor trades the portfolio x (= xt = xt(ro) == x(t, ro)),
the transaction costs will be given by

C(x) = COL;=l P;(ro)lx;(ro)1 whereCo>Oisarbitraryand

depends on the market. Then, since the attainable arbitrage

profits are given by :¿;=1 p; (ro) Ix; (ro)Il(t, s, ro), it is ob­

vious that the existence of arbitrage between t and s holds
after discounting transaction costs if and only if

p{ro E Q; l(t, s, ro) > Col > O

One can slight1y relax the assumptions and suppose
that the relationship between the transaction costs and the
total value of trade is not necessarily linear, but given by

a function C(x) = Co(:¿;=¡ p; (ro) /x;(O))I). Then, the

existence of arbitrage is equivalent to the existence of
V> O (total value of trade) such that

p{ro E Q; l(t, s, ro) V > Co(V)} > O

Market frictions may also be introduced by fo11owing
the approach in 10uini and Ka11al (13), and this is the se­
cond possibility we are interested in. Their ideas are spe­
cia11y useful to incorporate the bid-ask spread because they
consider that frictions imply two prices per security. The­
refore, there are two different adapted stochastic processes
v(t, ro) and e(t, ro) (t E [O, 7J, O) E Q) such that for an
arbitrary t E [O, 71 the inequalities O ~ v(t, ro) ~ e(t, ro)
hold a.e. For a given portfolio x, the price of x is given by

P(x, t, 0)) = :¿;=¡ q¡(t, ro) x¡(t, ro) where q¡(t, ro) =
e/t, ro) whenever x/t, ro) ~ O and q¡(t, ro) = v/t, ro) whe­
never x/t, ro) < O.

Definition 5.1. Let us eonsider two arbitrary trading
dates t < s. A I t - measurable square integrable random
variable x is said to be an arbitrage portfolio 01 the seeond
type between t and s with market Irietions if P(x, t, ro) ~

O a.e., pe-x, s, ro) ~ Oa.e., and
p{ro E Q; P(x, t, ro) < O} > O.

Let us remark that Definitions 2.1 and 5.1 are equiva­
lent if e/t, ro) = v/t, ro) and e/s, 0)) == v/s, ro) a.e., i = 1,
2, ..., n.

The main results of third and fourth sections can be
easily generalized, and thus, we will only summarize the
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It may be proved that the solution x* of (P) and (EP)
can be talcen in C(í.J Hence, applying the results of An­
derson and Nash (20) chapter I1I, problem (EP') becomes
the dual problem of (EP) This reference also shows several
(alternative) conditions to ensure that there is no duality
gap between (EP) and (E?') (Le., primal and dual proble­
ms are solvable and the optimal objective value is common
for both problems) and, in order to simplify the exposition,
we will assume that the absence of duality gap holds in our
context. Then, it is not difficult to obtain that the solution
of (EP') becomes a strong solution for the vector optimi­
zation problem (P') as wel1. Moreover, manipulating pri­
mal and dual constraints, one can obtain that

m (t, s, ro) = - ~~ x;(ro)p;(ro) = .t(ro) a.e. if (x*,
"""'1=1

h*) solves (P) and (/, A*) solves (P'). The fo11owing result
summarizes these ideas.

Theorem 4.1. Assume that (1, X*) solves (E?'), and
suppose that there is no duality gap between (EP) and
(EP'). Then

4.1.1. A*(ro) = m (t, s, 0)) a.e. and E (m(t, s, ro))
beeomes the optimal value 01 (EP)'.

4.2.2. (j', A.*) is a strong solution 01 (P').

Latter result is important since it yields new interpre­
tations for measures E (m(t, s, ro)) and m (t, s, ro). E (m(t,
s, ro)) represents the average relative committed error when
the market price the assets, while m (t, s, ro) gives us the
random relative committed error. Furthermore, if there are
no arbitrage opportunities of the second type between t and
s, the measures vanish and f gives discount factors in the

sense that EV* pflLt ) = p; i = 1, 2, ... , n (Hansen and
Richard (12). If the arbitrage appears, f gives a proxy for
discount factors, and E(f*pfl!t) may be understood as a
«right» price for the ith_security i = 1, 2, ... , n.

Theorem 4.1 becomes also a duality theorem for vector
optimization problems (P) and (?'). But let us point out
that the natural dual of (P) is far more complex than (P')
with a 1arger feasible set, and a more complex objective
function (see for instance Balbás and Heras (21». Theo­
rem 4.1 shows that ~trong duality between (P) and its
natural dual holds if and only if there is no duality gap
between the scalar problems (EP) and (EP'). Thus, once
again, our results may be interesting in Mathematical Pro­
gramming Theory since this methodology might apply in
more general situations.

5. EXTENDING 'rHE MAIN RESULTS

A. Markets with frictions

The literature on asset pricing has incorporated the
market frictions (transaction costs, taxes, bid-ask spread,...)

under different points of view (see for instance Leland
(23), Davis et al (24), or Toft(25», and these frictions are
specially important when one analyzes the existence of
arbitrage strategies (see Brennan and Schwartz (22».
Throughout this section we will assume three alternative
hypotheses on market frictions.

First, it is simple but realistic and useful to consider
that transaction costs linear1y depend on the total price of
a11 the interchanged (sold and purchased) assets. If an in­
vestor trades the portfolio x (= xt = xt(ro) == x(t, ro)),
the transaction costs will be given by

C(x) = COL;=l P;(ro)lx;(ro)1 whereCo>Oisarbitraryand

depends on the market. Then, since the attainable arbitrage

profits are given by :¿;=1 p; (ro) Ix; (ro)Il(t, s, ro), it is ob­

vious that the existence of arbitrage between t and s holds
after discounting transaction costs if and only if

p{ro E Q; l(t, s, ro) > Col > O

One can slight1y relax the assumptions and suppose
that the relationship between the transaction costs and the
total value of trade is not necessarily linear, but given by

a function C(x) = Co(:¿;=¡ p; (ro) /x;(O))I). Then, the

existence of arbitrage is equivalent to the existence of
V> O (total value of trade) such that

p{ro E Q; l(t, s, ro) V > Co(V)} > O

Market frictions may also be introduced by fo11owing
the approach in 10uini and Ka11al (13), and this is the se­
cond possibility we are interested in. Their ideas are spe­
cia11y useful to incorporate the bid-ask spread because they
consider that frictions imply two prices per security. The­
refore, there are two different adapted stochastic processes
v(t, ro) and e(t, ro) (t E [O, 7J, O) E Q) such that for an
arbitrary t E [O, 71 the inequalities O ~ v(t, ro) ~ e(t, ro)
hold a.e. For a given portfolio x, the price of x is given by

P(x, t, 0)) = :¿;=¡ q¡(t, ro) x¡(t, ro) where q¡(t, ro) =
e/t, ro) whenever x/t, ro) ~ O and q¡(t, ro) = v/t, ro) whe­
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Definition 5.1. Let us eonsider two arbitrary trading
dates t < s. A I t - measurable square integrable random
variable x is said to be an arbitrage portfolio 01 the seeond
type between t and s with market Irietions if P(x, t, ro) ~

O a.e., pe-x, s, ro) ~ Oa.e., and
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ideas. So, problems (EP) and (P) become respectively the
folIowing concave problems

Maximize - fo P(x, t, m) dp(m)

h¡(m) ~ Oa.e., i = 1, 2, ..., n

P(-x, s, m) ::; Oa.e.

x;(m) + h¡(m) ~ Oa.e., i = 1,2, ..., n

~~ v; (m) h¡(m) = 1 a.e...L...l =!

and

Minimize A(m)

v; ::; E{tetILt) + A¡ i = 1, 2, , n
E(JVflLt) + A¡ ::; e; i = 1, 2, , n
v;(m) A(m) - A¡(m) ~ Oa.e., i = 1, 2, ... , n

¡(m) ~ O, A(m), A¡(m) ~ O, a.e., i = 1, 2, ... , n

and

Program (EP')

Maximize - P(x, t, ro)

I
h¡(ro) ;;: Oa.e., i = 1, 2, ... , n

P(-x, s, ro) :::; Oa.e.

x!(w) + hiero) ;;: Oa.e., i = 1, 2, ..., n
~Jl t
Lr¡=! v¡(m)h¡(m) = 1 a.e.

Minimize E(A(m))

¡
V; ::; E{tcflLt ) + A¡ i = 1, 2, , n
E(JVflLt) + A¡::; e; i = 1, 2, , n
vi(m) A(m) - A¡(m) ~ Oa.e., i = 1, 2, ... , n

¡(m) ;;: O, A(m), A¡(m) .~ O, a.e., i = 1, 2, ... , n

(write ¡(x, m) = O or g(x, m) = O if denominators vanish).

¡(x, m) = P(x, t, m) and
p(-x-, t, m)

Furthermore, the vector problem admits strong soIu­
tion and both problems are solved by the same strategy x'.
The integration measures are the optimal values and are
given by m (t, s, w) = -P(x', t, m) and E(m (t, s, m)).

Let us now consider the third possibility on the tran­
saction costs. This involves the previous ones since we
assume that frictions are given by two terms. First, there
are two prices per security (specially useful assumption to
incorporate the bid-ask spread) and second, one must add
a function that depends on the total value of trade. The
second term may be interpreted as the total amount paid to
brokers. Under these assumptions we have already introdu­
ced the stochastic measure l (t, s, m), and the existence of
arbitrage after both kind of frictions may be characterized
by the Lt-measurable function

B. Measuring the arbitrage of the first type

l¡ (t, s, m) = Max {O, l (t, s, m) - Cojo

An analogous result to Theorem 4.1 may be establis­
hed, and the economic meaning showed after this theorem,
still holds. Furthermore, in this more general setting, the
dual approach provides the main procedure to compute the
measures in practice. In fact, dual problems become linear
although primal ones do not verify this property, and the­
refore, the scalar program (EP') may be easily solved in
practice. Next, the primal ones are solved by the usual
primal-dual relationship (Balbás and Guerra (26)).

-P(x, t, m)
g(x, m)

Above paragraphs show that four measures E(m (t, s,
m)), m (t, s, m), E(l (t, s, m)), and l (t, s, m) still make sense
under Jouini and Kallal assumptions, and thus, the arbitra­
ge can be also measured in monetary terms. Moreover, the
economic meaning still holds.

The model without short-selling restrictions can be also
extended since x' also solves thecorresponding problems
(Q) and (R) after obvious changes in constraints and slig­
htly modifying¡(x, m) and g(x, m). To be precise, denoting
by x+(t, m) = sup{x(t, m), O} and x-(t, m) = sup{ -x(t, m),
O} then we can redefine

We are now interested in the dual approach, the proxy
for discount factors in no arbitrage free economies, and the
interpretation of our measures in terms of prices. Since (P)
and (EP) are concave, we only have to apply duality resul­
ts for this· kind of Mathematical Programming problems
(see for instance Balbás and Guerra (26)). Denoting the
dual decision variables by ¡ E L2(Ls)' A E LiLt), and A¡ E

L 2(L t ) i = 1, 2, ... , n, it may be proved that (EP') and (P')
become now

Program (P')

The (numerical and stochastic) measures aboye intro­
duced are useful to analyze arbitrage portfolios of the se"
cond type but, as we have already said, there might be
situations for which the measures vanish in presence of
arbitrage of the first type. To solve this difficulty one only
has to consider an optimization problem such that the ob­
jective function incorporates the arbitrage earns attainable
at date s. There are several possibilities and, so for instan­
ce, we can rnaximize the expected value and the conditio­
nal expectation of
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ideas. So, problems (EP) and (P) become respectively the
following concave problems

Maximize - fn P(x, t, m) dp(m)

h¡(m) ~ Oa.e., i = 1, 2, ..., n
P(-x, s, m) ::; Oa.e.

xi(m) + h¡(m) ~ Oa.e., i = 1,2, ..., n

~~ vi(m) h¡(m) = 1 a.e...L...1=!

and

Minimize A(m)

vi ::; E{tetILt) + A¡ i = 1, 2, , n
E(JVilLt) +A¡ ::; e; i = 1, 2, , n
vi(m) A(m) - A¡(m) ~ Oa.e., i = 1, 2, ... , n

¡(m) ~ O, A(m), A¡(m) ~ O, a.e., i = 1, 2, ... , n

and

Program (EP')

Maximize - P(x, t, ro)

I
h/(ro) ;;: Oa.e., i = 1, 2, ... , n
P(-x, s, ro) :::; Oa.e.

xf(ro) + hI(ro) ;::: Oa.e., i = 1, 2, .oo, n

L;~! v:(m)h¡(m) = 1 a.e.

Minimize E(A(m))

vi :::; E{tcilLt) + A¡ i = 1, 2, , n
E(JVflLt) + A¡::; ci i::::: 1, 2, , n
vi(m) A(m) - A¡(m) ~ Oa.e., i = 1, 2, ... , n
¡(m) ;::: O, A(m), A¡(m) .~ O, a.e., i = 1, 2, ... , n

(write ¡(x, m) = O or g(x, m) = O if denominators vanish).

¡(x, m) = P(x, t, m) and
p(-x-, t, m)

Furthermore, the vector problem admits strong solu­
tion and both problems are solved by the same strategy x'.
The integration measures are the optimal values and are
given by m (t, s, w) = -P(x', t, m) and E(m (t, s, m)).

Let us now consider the third possibility on the tran­
saction costs. This involves the previous ones since we
assume that frictions are given by two terms. First, there
are two prices per security (specially useful assumption to
incorporate the bid-ask spread) and second, one must add
a function that depends on the total value of trade. The
second term may be interpreted as the total amount paid to
brokers. Under these assumptions we have already introdu­
ced the stochastic measure l (t, s, m), and the existence of
arbitrage after both kind of frictions may be characterized
by the 2.t-measurable function

B. Measuring the arbitrage of the first type

l¡ (t, s, m) = Max {O, l (t, s, m) - Cojo

An analogous result to Theorem 4.1 may be establis­
hed, and the economic meaning showed after this theorem,
still holds. Furthermore, in this more general setting, the
dual approach provides the main procedure to compute the
measures in practice. In fact, dual problems become linear
although primal ones do not verify this property, and the­
refore, the scalar program (EP') may be easily solved in
practice. Next, the primal ones are solved by the usual
primal-dual relationship (Balbás and Guerra (26)).

-P(x, t, m)
g(x, m)

Above paragraphs show that four measures E(m (t, s,
m)), m (t, s, m), E(l (t, s, m)), and l (t, s, m) still make sense
under Jouini and Kallal assumptions, and thus, the arbitra­
ge can be also measured in monetary terms. Moreover, the
economic meaning still holds.

The model without short-selling restrictions can be also
extended since x' also solves thecorresponding problems
(Q) and (R) after obvious changes in constraints and slig­
htly modifying¡(x, m) and g(x, m). To be precise, denoting
by x+(t, m) = sup{x(t, m), O} and x-(t, m) = sup{ -x(t, m),
O} then we can redefine

We are now interested in the dual approach, the proxy
for discount factors in no arbitrage free economies, and the
interpretation of our measures in terms of prices. Since (P)
and (EP) are concave, we only have to apply duality resul­
ts for this· kind of Mathematical Programming problems
(see for instance Balbás and Guerra (26)). Denoting the
dual decision variables by ¡ E L2(2.s), A E L2(2. t), and A¡ E

L2(2.t ) i = 1, 2, ... , n, it may be proved that (EP') and (P')
become now

Program (P')

The (numerical and stochastic) measures aboye intro­
duced are useful to analyze arbitrage portfolios of the se"
cond type but, as we have already said, there might be
situations for which the measures vanish in presence of
arbitrage of the first type. To solve this difficulty one only
has to consider an optimization problem such that the ob­
jective function incorporates the arbitrage earns attainable
at date s. There are several possibilities and, so for instan­
ce, we can rnaximize the expected value and the conditio­
nal expectation of
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and such that to = t, tk ~ S (tk < s if s = 00). Por a fixed
subset, the adapted stochastic process x(t/ 0)) j = O, 1, ...,
k will represent feasible portfolios which will be called
self-financing if

n.I. pf(O))x¡(0))¡=¡
among the arbitrage portfolios providing at t the random
relative profit m(t, s, 0)). Thus, we can consider the vector
optimization problem

n

.I.xAtj-¡, O))p¡(tj, 0))¡=¡
n

= Ix¡(tj, ro) p¡(tj , 0)) a.e.¡=¡

.I.;=¡ x: (O)) p: (O)) = - m (t, s, 0)) a.e.

.I.;=¡xHO))pf(O)) ~ Oa.e.

.I.;=¡pHO)) h¡(O)) = 1 a.e.

xHO)) + h¡(O)) ~ O a.e., i = 1, 2, ..., n

h¡(O)) ~ Oa.e., i = 1, 2, ..., n

and the scalar problem

Maximize"~ ipf(O)) x¡(O)) df1(O))
~l=¡ Q

I;=¡ xH0)) P: (O)) = - m (t, s, 0)) a.e.

I;=¡ x: (O)) pf(0)) ~ Oa.e.

I;=¡p:(O)) h¡(O)) = 1 a.e.

x:(O)) + h¡(O)) ~ O a.e., i = 1, 2, ..., n

h¡(O)) ~ Oa.e., i= 1, 2, ..., n

It may be easily proved that the solution for both pro­
blems is attained at the same portfolio, and it is also im­
portant to point out that this solution is a strong one for the
vector problem and also solves problem (P). Denoting by
G (t, s, 0)) and E (G (t, s,O))) the optimal values, we can
consider the stochastic and numerical measures

m(t, s, ro) = m (t, s, ro) + G (t, s, ro) and

E(m (t, s, 0))) = E(m (t, s, 0))) + E(G (t, s, 0))).

It trivially follows that m(t, s, ro) and its expected value
are never lower than zero and they vanish if and only if
there are no arbitrage opportunities (of any kind) between
t and s.

C. Free lunches and continuous time models

The theory above developed seems to be suitable in
order to compute the arbitrage earns between any couple
of arbitrary dates t and s. Nevertheless, an implicit as­
sumption is that trading after t and before s is not possible.
The concept of arbitrage portfolio may be extended to
incorporate new possibilities very usual in the literature.
Hence, throughout this section we will consider finite sub­
sets of trading dates {to < t¡ < ... < tk }, included in [O,T],

for j = 1, 2, ... , k. Then, one can maximize the random

value - I;=I x¡(to, ro) p¡(to' ro) among all the finite subsets

of [O, T] and the self-financing portfolios x verifying

.I.;=¡x¡(tk , O))p¡(tk , ro) ~ Oa.e.

x¡(to, ro) + h¡(ro) ~ Oa.e., i = 1, 2, ... , n

h¡(O)) .~ O a.e., i = 1, 2, ..., n

,,~ p:(ro) h¡(O)) = 1 a.e.
~l=¡

11 may be proved that solutions of latter vector problem are
strong solutions, and they also maximize the expected (not
only random) arbitrage profits. Thus, we have extended the
theory and obtained new measures M (t, s, ro) and E (M (t,
s, 0))) such that O ~ m (t, s, 0)) ~ M (t, s, ro) ~ 1 a.e. and
O ::; E (m (t, s, ro)) ~ E (M (t, s, 0))) ~ 1.

6. FINANCIAL MARKET INTEGRATION

Chen and Knez (14) develop a measurement theory of
market integration for two markets whenever there exist
cross-market arbitrage portfolios. They work in a static
setting and assume that both markets separately verify the
arbitrage absence. They consider that the integration level
may be measured by the distance between both sets of
discount factors. Thus, their measure is just the minimum
second order moment of random variables obtained by
differences of discount factors.

In order to introduce the Chen and Knez measure with
precision, consider that securities Al' A2, •• A r are available
in a first market, and securities Ar+1' Ar+2, •••An are availa­
ble in a second one. Extending their approach in order to
adapt their measure to the general context of this paper, let
t and s be two arbitrary trading dates. Consider the set
Fj (j = 1,2) of discount factors of marketj. So, F I (respec­
tively F2) is the set of square integrable Ls-measurable
random variables JI (respectively J2) such
that E(fipflL¡) = P:, i = 1, 2, , r (respectively
E(J2pflLd = P:, i = r + 1, r+ 2, , n). Then, the Chen
ana Knez (numerical) measure (hereafter denoted by
g(t, s)) is defined by

g(t, s) = Minimum {fn(J¡(W) - f2(W))2 dtJ.(w) : jj E F¡,f2 E F2}
To introduce a new integration measure between both

markets (see also Balbás and Muñoz (2» we can treat them
as parts of a combined market where n securities are avai"
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lable, and compute in this global market the measures m (t,
s, ro) and l (t, s, ro) and their expected values. As a con­
sequence, we provide both, numerical and stochastic inte­
gration measures.

There are interesting differences between the Chen and
Knez measure and the ones here introduced. They provide
different information about the level of market integration
and, therefore, all of them must be considered in analyzing
the integration between markets.

Let us summarize theabove mentioned differences
(further information may be found in Balbás and Muñoz
(2)). First, g (l, s) measures discrepancy in discount fac­
tors, and thus, discrepancy between the criteria applied for
both markets to price the securities. However, m (l, s, ro)
(and l (l, s, ro) and their expected values) measures discre­
pancy between the prices of real securities. It is known that
different criteria can sometimes lead to quite similar prices
for sorne securities, and therefore, E (m (t, s, ro)) and g (t,
s) can achieve quite different values, as shown in sorne
examples presented in Balbás and Muñoz (2). To be pre­
cise, E (m (t, s, ro)) can achieve low values (cross-market
arbitrage profits are small) while g (t, s) remains large.

Another interesting difference concerns the continuity
respect to initial data and parameters. E (m (t, s, ro)) is
continuous while g (t, s) does not verify this property.

This in an important fact that make g (t, s) very sen­
sitive respect to measurement errors or the effect of market
frictions.

E (m (t, s, ro)) is continuous respect g (t, s) (i.e. E (m
(t, s, ro)) achieves low values if so does g (t, s)) but the
converse may fail. This is an important fact since g (t, s)
does not provide information in monetary terms. Thus,
there might be situations for which g (t, s) gives low de­
gree of integration (g (t, s) is large) and the available ar­
bitrage profits almost vanish.

We can conclude that both measures provide different
information and both measures are useful and must be
considered.

The measure of Chen and Knez has been applied in
Hansen and Jagann¡lthan (15) to introduce a new way to
compute the discount factors of real markets. Moreover,
The Hansen and Jagannathan method was first applied in
a particular case by Jackwerth and Rubinstein (27) to
analyze the effect of the volatility smile on the discount
factors that must be used to price sorne underlying assets
and their derivative securities. Since the Chen and Knez
rneasure is not continuous respect to inirial data, the Han­
sen and Jagannathan method could present sorne difficul­
ties in sorne specific situations. It is well known that, for
imperfect markets, prices are not always defined with pre­
cision (for instance, one can choose among bid, ask and
real transaction prices) and that could make their procedu­
re very sensitive in practice.

It is an open problem to analyze the possibilities of
m (t, s, ro) (and the rest of measures here defined) as a tool
to compute discount factors (the dual approach may be
crucial) and the degree of fulfillment of theoretical asset
pricing models in the real world. This possibility, and the
differences respect to the Hansen and Jagannathan method,
should be analyzed in future research.

7. EMPIRICAL TESTS

The integration level among several Spanish financial
markets has been analyzed by means of the theory here
presented. To be precise, we have considered the Spanish
Markets "Sistema de interconexión bursátil español"
(SIBE), "Mercado español de futuros financieros sobre
renta variable" (MEFF"RV) and "Mercado de deuda ano­
tada" (MDA), and we have computed the static measure
appeared in Balbás and Muñoz (2) (summarized in the sec­
tion 3.C of this paper) after the minor modifications pro­
posed in section 5.A to incorporate the bid-ask spread and
the transaction costs.

The analysis reveals that the measure m (numerical and
not stochastic, since we are working in a static setting)
sometimes achieves positive values, and empirical eviden­
ce seems to validate the existence of possible cross-market
arbitrage riskless profits during stable periods. The profits
significantly increase when facing high volatility situatio­
ns, and further information about the results of the empi­
rical test may be found in Balbás et al (28).

8. CONCLUSIONS

The integration of financial markets is an important
question very often related to the existence of cross-market
arbitrage portfolios.

Recent papers have developed sorne integration mea­
sures in order to reflect the size of the cross-market arbi­
trage opportunities, and they also suggest the convenience
of extending the discussion to more complex modelsand
economies.

The present paper extends the results of Balbás and
Muñoz (2) and Balbás et al (3) and provides a new me­
thodology in a very general setting, allowing many instru­
ments in each market to test optimal arbitrage portfolios
depending on the state of nature and the date. Thus, our
theory applies for both, static and dynamic asset pricing
models, and ir may be also adapted in order to incorporate
several assumptions on the market frictions.

The measures have interesting interpretations since
they reflect relative attainable arbitrage profits. Furthermo­
re, they do not depend on the short selling restrictions
assumed and can be easily computed in practical situatio­
ns. A dual approach also leads to these measures, and the­
refore, they may be also interpreted in terms of the errors
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committed by agents when they price the different securi,
tieso The dual approach also yields discount factors, or a
proxy for them in no arbitrage free economies. Thus, we
extend the methodology of risk,neutral valuation.

FolIowing sorne ideas appeared in recent !iterature, the
integration measures here presented could be also appropriate
as a tool to test the degree of fulfilIment in practice of diffe­
rent asset pricing models. This is an interesting possibility
that should be the main objective of sorne future research.

The degree of integration of sorne Spanish financial
markets has been tested by means of the theory here deve­
loped, and sorne surprising results have been obtained sin­
ce the cross-market arbitrage seems to appear, at least in
sorne dates characterized by high volatilities.
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as a tool to test the degree of fulfilIment in practice of diffe­
rent asset pricing models. This is an interesting possibility
that should be the main objective of sorne future research.

The degree of integration of sorne Spanish financial
markets has been tested by means of the theory here deve­
loped, and sorne surprising results have been obtained sin­
ce the cross-market arbitrage seems to appear, at least in
sorne dates characterized by high volatilities.
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